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Low-frequency vibrational density of states
of ordinary and ultra-stable glasses

Ding Xu 1,2,4, Shiyun Zhang 1,2,4, Hua Tong 2, Lijin Wang 3 &
Ning Xu 1,2

A remarkable feature of disordered solids distinct from crystals is the violation
of the Debye scaling law of the low-frequency vibrational density of states.
Because the low-frequency vibration is responsible for many properties of
solids, it is crucial to elucidate it for disordered solids. Numerous recent stu-
dies have suggested power-law scalings of the low-frequency vibrational
density of states, but the scaling exponent is currently under intensive debate.
Here, by classifying disordered solids into stable and unstable ones, we find
two distinct and robust scaling exponents for non-phononic modes at low
frequencies. Using the competition of these two scalings, we clarify the var-
iation of the scaling exponent and hence reconcile the debate. Via the study of
both ordinary and ultra-stable glasses, our work reveals a comprehensive
picture of the low-frequency vibration of disordered solids and sheds light on
the low-frequency vibrational features of ultra-stable glasses on approaching
the ideal glass.

Low-temperature properties of solids, such as specific heat and thermal
conductivity, are closely related to the excitation of low-frequency
vibrational states. For crystals, it is well-established that the vibrational
states, i.e., phonons, form a low-frequency vibrational density of states
(VDOS) following the Debye scaling law: D(ω) ~ωd−1, where ω is the fre-
quency and d is the spatial dimension, resulting in the T d scaling of the
specificheat at low temperaturesT 1. The thermal conductivity isbelieved
to be governed by the specific heat, phonon mean free path, and sound
velocity. In crystals, because the phonon mean free path and sound
velocity remain approximately constant in temperature, the thermal
conductivity follows the low-temperature scaling of the specific heat1.

However, we face great challenges when dealing with disordered
solids such as glasses. The low-temperature scalings of the specific
heat and thermal conductivity are no longer T d2–4. When T < 1K, the
specific heat is linearly scaled with T 2–4, which is attributed largely to
the existence of two-level systems instead of the VDOS5,6. It is also
believed that the two-level systems change themean free path, causing
anomalous behaviors of the thermal conductivity. At higher tem-
peratures, the VDOS matters. The disordered structure of glasses

causes the coexistence of phonon-like andnon-phononicmodes at low
frequencies7–14, so the VDOS is at least a superposition of the Debye
scaling and that of thenon-phononicmodes. The excess non-phononic
modes form a peak in D(ω)/ωd−1, defined as the boson peak11,12,15. It has
been shown that the boson peak may be correlated with the simulta-
neity of the peak in cp/T 3, with cp being the constant-pressure specific
heat, and the plateau in the thermal conductivity at the boson peak
temperature (~10K for typical glasses such as vitreous silica)4. Both
simulations and experimental measurements such as the neutron
scattering andX-ray, have significantly advanced our understanding of
the constituentmodes of the boson peak11–16. However, what the VDOS
of non-phononic modes looks like below the boson peak frequency is
still an unsettled issue7,8,17–31, which is crucial to understanding the
thermal properties in the 1–10K temperature regime. In addition to the
thermal properties, the anomalous low-frequency non-phononic
modes have been successfully applied to understand various other
properties of disordered solids, e.g., mechanical failure32–37, glass
transition13,38,39, and heterogeneous dynamics of glass-forming
liquids40–42.
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Numerous recent studies suggest that the low-frequency VDOS of
non-phononic modes exhibits the ωα scaling with α ≠ d − 17,8,17–31. How-
ever, the value of the exponent α is still under debate. A popular
argument is that α = 4 for generic glasses7,8,17–19, i.e., zero-temperature
disordered solids,which are constrainedwell above isostaticity and are
thus not governed by the jamming physics43,44. It has been claimed that
the quartic scaling is independent of spatial dimensions18,21 and inter-
action potentials19 and is valid for low-temperature glasses as well45.
There are theories supporting this scaling, e.g., mean-field theories
based on replica46,47 and effective medium approximation48,49, and
phenomenological theories50–53. However, some other studies also
reporteddeviations ofα from4. It has been shown thatαmayvarywith
the glass stability22,23, system size20,21,24, stress distribution25, and fre-
quency range accessed26–29. There are also models arguing that α ≠ 4.
For example, the fluctuating elasticity theory predicts α = d + 154,55; the
fold instability argument predicts α ≈ 336, independent of spatial
dimensions.

Note that generic glasses lie at local minima of the complex
energy landscape56, whose stabilities can vary a lot from each other.
One can tell that the variation of α mentioned above is more or less
related to the stability. However, the localminimawith various degrees
of stability were always mixed up to calculate the VDOS in previous
studies. Moreover, probably limited by the development of experi-
mental techniques, as far as we know, there have been no direct
experimental measurements of α for molecular glasses. Therefore, the
examination of α has heavily relied on simulations. Inmost of previous
simulations, the VDOS was calculated for systems with periodic
boundary conditions, whose shapes were not allowed to change.
However, it has been shown that some glasses that are stable under
periodic boundary conditions may be unstable under certain
deformations57,58. Apparently, the effects of such deformation stability
on the VDOS were completely overlooked.

Here, we systematically study the low-frequency VDOS for both
ordinary and ultra-stable model glasses quenched from different par-
ent temperatures Tp. Remarkably different from previous approaches,
we divide all glasses into two categories: stable ones, which can resist
any infinitesimal deformations, and unstable ones, which are unstable
subject to some infinitesimal deformations, and calculate their VDOSs
separately. The VDOSs for stable and unstable solids depart from each
other below a crossover frequency ωd, where they have different
scaling exponents. For unstable solids, α = αu ≈ 3.3, independent of
system size and spatial dimension. For stable solids, α = αs ≈ 5.5 and 6.5
in 2D (d = 2) and 3D (d = 3), respectively, which does not vary with
system size either. The superposition of these twoVDOSs results in the
VDOS studied in previous approaches. This explains the variation of α
under various circumstances.Moreover, we observe the emergence of
an ω4 scaling right above the ωαs one when the system size of stable
solids increases for both ordinary and ultra-stable glasses in 3D.
Interestingly, our results suggest that the number of non-phononic
modes forming theωαs andω4 scalings decays with the decrease of Tp,
possibly vanishing at a sufficiently low Tp. Therefore, our study may
shed light on the perspective of the vibrational features of the
ideal glass.

Results
In this work, we mainly show results for systems composed of poly-
disperse soft particles interacting via the inverse-power-law (IPL)
potential (see Methods for details), which have been widely used to
study the glass transition8,26,28,59–62. In Supplementary Fig. 1 of the Sup-
plementary Information and a parallel study, we also show consistent
results for Lennard–Jones and harmonic potentials, suggesting the
generality of our findings. We obtain the zero-temperature glasses by
instantaneously quenching liquids equilibrated at the parent tem-
perature Tp. It is well-known that the stability of quenched glasses
increases with the decrease of Tp when Tp is lower than the onset

temperature Ton, i.e., the crossover temperature from Arrhenius to
super-Arrhenius dynamics56.Wewillfirst study glasses obtained froma
given Tp and discuss the Tp dependence afterward.

VDOSs for stable and unstable solids
In most of the previous simulations, the normal modes of vibration
were obtained from the diagonalization of the normal Hessian matrix,
with the elements being the second derivatives of the potential energy
with respect to particle coordinates. No boundary deformation was
taken into account in such an approach. A glass was treated as a stable
one if all nontrivial eigenvalues of the normal Hessian matrix were
positive. However, this cannot guarantee that the glass is stable subject
to boundary deformations. If we introduce the d(d + 1)/2 degrees of
freedom corresponding to the boundary deformations (shear and
compression) and construct the extended Hessian matrix (see Meth-
ods), the matrix of some glasses may have negative eigenvalues, indi-
cating that the glasses are unstable under somedeformations.We thus
define these glasses as unstable glasses. On the other hand, the glasses
whose extended Hessian matrix has no negative eigenvalues are
defined as stable glasses.Note that the extendedHessianmatrix is only
used to classify all glasses into stable and unstable ones, and VDOS is
still calculated from the normal Hessianmatrix. Here, we denoteDs(ω),
Du(ω), and D(ω) as the VDOSs of stable, unstable, and all glasses,
respectively.

Figure 1a, b compares D(ω), Ds(ω), and Du(ω) in 2D and 3D,
respectively. They collapse above a crossover frequency ωd, and
depart from each other otherwise. Both low-frequency tails of Ds(ω)
and Du(ω) display a clear power-law scaling behavior, DsðωÞ∼ωαs and
DuðωÞ∼ωαu . Beyond that, Du(ω) forms a valley bottomed at ωd, while
Ds(ω) still monotonically increases and transits to ωd. However, αs and
αu are apparently different. In 2D and 3D, αs = 5.5 ± 0.2 and 6.5 ± 0.2,
respectively. In contrast, αu = 3.3 ± 0.1 in both 2D and 3D. This αu value
is close to the α ≈ 3 arguments of the fold instabilitymodel36. Note that
α ≈ 3 is obtained based on the approximation that the distribution of
the stress distance to instabilities is constant36, which may fluctuate if
the distribution is not strictly flat. The fold instability model is raised

Fig. 1 | Comparison of VDOS and participation ratio of stable, unstable, and all
glasses. a VDOSs of 2D systems with N = 256 and Tp = 0.12. b VDOSs of 3D systems
withN = 1000 andTp = 0.18. The solid lines are power-lawfittings toDs(ω) andDu(ω)
at low frequencies. The red dashed lines are results from Eq. (1). They are in
excellent agreement with the simulated D(ω) at low frequencies. c and d show the
participation ratio of stable and unstable solids for the same systems in (a) and (b),
respectively. The vertical dashed lines mark the frequency of the first
Goldstone mode.
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for glasses with weak stability and is prone to rearrangement upon
deformations and does not rely on spatial dimension. This agreement
thus proposes a plausible physical origin of the scaling behavior
of Du(ω).

By definition, the low-frequency part of D(ω) should be the
superposition of Ds(ω) and Du(ω):

DðωÞ = fsDsðωÞ+ ð1� fsÞDuðωÞ
= fsAsω

αs + ð1� fsÞAuω
αu ,

ð1Þ

where fs is the fraction of stable glasses, andAs andAu are prefactors of
Ds(ω) and Du(ω), respectively. In Fig. 1a, b, we compare the simulated
D(ω) with the prediction by Eq. (1) (dashed line). They are in excellent
agreement at low frequencies.

As done in previous studies, the low-frequency part ofD(ω) canbe
fittedwithωα. Figure 1a, b indicates thatα should bebetween αu and αs,
if we perform the fitting. Now, the excellent agreement between D(ω)
and Eq. (1) provides another interpretation of the α value at the low-
frequency tail. If the values of αs and αu are definite, the α value is
jointly determined by fs,As, andAu, whichmay changewith parameters
such as system size and parent temperature. We are thus able to
understandwhyαwas reported to varyunder somecircumstances20–24.
Moreover, at low enough frequencies, Du(ω) dominates. This may be
the reason why lower values of α were always observed when rather
low-frequency regimes were accessed24,27,28.

Figure 1c, d compares the participation ratio, Ps(ω) and Pu(ω), of
stable and unstable solids. A mode with a lower participation ratio is
more localized. We can see that, below the first Goldstone (phonon-
like) mode, the low-frequencymodes forming theωαs andωαu scalings
have the lowest participation ratios and are thus most quasi-localized
on average. However, the degrees of quasi-localization of stable and
unstable solids are similar, only that unstable solids extend to lower
frequencies.

Figure 2a, b visualizes the structures of themodes lying in theωαu

andωαs scaling regimes. They both exhibit the typical feature of quasi-
localized modes with localized regions hybridizing with the plane-
wave-like background. For the unstable solid in Fig. 2a, we show in
Fig. 2c its unstable mode of the extended Hessian matrix, whose
eigenvalue is negative. It looks almost identical to the mode in Fig. 2a.
The dot product of the two normalized modes in Fig. 2a, c is 0.997.
Note that when a disordered solid approaches the fold instability
under load such as shear and compression, its lowest-frequencymode
is responsible for the instability, whose frequency decays to zero fol-
lowing a power law while its structure remains unchanged36. This type
ofmode contributes to theω3 behavior predictedby the fold instability
argument36. Therefore, the perfect agreement between the lowest-
frequency mode of the unstable solid and the unstable mode of the
extendedHessianmatrix is the evidence supporting our argument that
αu ≈ 3.3 originates from fold instabilities. Figure 2d illustrates how the
boundary deforms associated with the unstablemode of the extended
Hessian matrix shown in Fig. 2c. It involves both shear and

Fig. 2 | Visualization of the lowest-frequency modes of stable and unstable
solids. a Structure of the lowest-frequency mode of an unstable solid. b Structure
of the lowest-frequency mode of a stable solid. Here, we show 2D examples with
N = 1024 and Tp = 0.25. The red arrows show the polarization vectors of particles.
The modes lie in the ωαu and ωαs regimes, respectively. c Structure of the unstable
mode with the lowest and negative eigenvalue of the extended Hessian matrix for

the same unstable solid in (a). It looks almost identical to that in (a). The dot
production of the normalized polarization vectors in (a) and (c) is 0.997.
d Illustration of the boundary deformation associated with the unstablemode in (c).
The ratio of three strains (see Methods) is ϵxx : ϵyy : ϵxy= −0.359 : 0.352 :− 1. The
deformation involves both shear and compression (expansion).
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compression,which is the typical formof theboundarydeformationof
unstable modes.

System size dependence
Recently, it was reported that the value ofα forD(ω) increasedwith the
growth of system size for ordinary glasses quenched from high parent
temperatures20,21,24. As shown in Fig. 3a, for 2D systems, α indeed grows
from 3.4 to 4 when the system size N changes from 256 to 4096.
Interestingly, Fig. 3b, c shows that αs and αu remain constant in N.
However, both As and Au grow with N. Meanwhile, fs increases when N
increases, which can be fitted well with 1 − fs ~N −1.4, as illustrated in
Fig. 3d. Therefore, the system size dependence of α in 2D directly
reflects the competition among fs, As, and Au.

Figure 3 e–h indicates that similar system size evolution happens in
3D. When system size increases, α gradually increases. Again, αs and αu
are insensitive to the change in systemsize,whileAs,Au, and fs growwith
N. However, the comparison between Fig. 3b, f demonstrates a seeming
difference between 2D and 3D. In 2D, theωαs scaling extends all theway
to the crossover frequencyωd, abovewhichDs(ω) andDu(ω) collapse. In
3D, the ωαs scaling is deviated above another crossover frequency
ωs <ωd. Figure 3f shows that, when system size increases, ωs decreases
so that the frequency regime for theωαs scaling to survive is suppressed.

In addition to ωd and ωs, there is another characteristic frequency
ωp <ωd of the first peak in Du(ω). In Fig. 3d, h, we show the system size
dependence of these three characteristic frequencies. In both 2D and
3D,ωd is approximately scaledwithN−1/d. SinceDs(ω) andDu(ω) deviate
below ωd, if such system size dependence persists on approaching the
thermodynamic limit, we would expect that the ωαs and ωαu scalings
tend to disappear so thatDs(ω) and Du(ω) eventually become identical
to D(ω). Note that the Goldstone modes have the same system size
dependence. It may be plausible to ask whether ωd is associated with
some inherent properties of disordered solids such as the elastic
moduli, which contribute to the Goldstone modes. Figure 3d, h shows
that ωp is approximately scaled with N −0.55 in both 2D and 3D. As seen
from Fig. 3h, ωs(N) in 3D roughly agrees with ωp(N). At the current
stage,we arenot able to confirmwhether there are anyphysical origins

of these characteristic frequencies and hope to leave them to future
investigations.

In Fig. 4, we collapse the low-frequency parts of Ds(ω) and Du(ω)
for different system sizes by plotting N�νsDsðωÞ and N�νuDuðωÞ against
ωNνs and ωNνu , respectively. These scalings conserve the integrals of
the VDOSs. Our best data collapse gives νs ≈0.21 for both 2D and 3D
and νu ≈0.35 and 0.28 for 2D and 3D, respectively. The scaling collapse
indicates that As ∼Nðαs + 1Þνs and Au ∼Nðαu + 1Þνu , respectively.

Seen from Fig. 3f, the ω >ωs part of Ds(ω) in 3D shows the trend
to converge to a master curve when system size increases. Figure 3f
also indicates that Ds(ω) reaches the maximum at ω =ω* ≈ 5, above
which Ds(ω) is plateau-like and gradually decreases. In Fig. 5a, we
focus on ω <ω* with more system sizes. There seem to be three
consecutive frequency regimes with different scalings: (i) ωαs when
ω <ωs, (ii) ωα1 when ωs <ω <ω0, and (iii) ωα2 when ω0 <ω <ω*. Unlike
the size-independent αs, α1 and α2 evolve with N. For the largest
system sizes studied here, we can observe the emergence of α1 ≈ 4
and α2 ≈ 1.5. Right below the plateau of the VDOS (ω0 <ω <ω*),
mean-field theories predict an ω2 behavior due to marginal
stability63,64. For the system sizes studied here, α2 slightly varies with
system size. Although we are not able to exclude the possibility that
α2 could approach 2 in sufficiently large systems, α2 ≈ 1.5 observed
here is still apparently lower than the mean-field value. It thus
remains a questionwhether α2 is meaningful and related tomarginal
stability. Recent studies suggest that quasi-localized modes below
ω0 could form the ω4 scaling. Here, we see this scaling right above
ωs. However, whether this scaling is real or is just a crossover still
needs to be examined in sufficiently large systems with good sta-
tistics. Note that, even if ω4 could be real, our results suggest that it
does not generally exist. As shown in Fig. 3b, in 2D, there is no sign
for the ω4 behavior to emerge in Ds(ω).

Assuming that the system size evolution ofωs is still valid inmuch
larger systems, we can expect that there is always a contribution of the
ωαs scaling below ωs, as long as the system size is finite. Therefore, the
low-frequency tail of D(ω) is always jointly determined by Ds(ω) and
Du(ω) according to Eq. (1).

Fig. 3 | System size dependence of the VDOSs. a–d VDOSs of all stable and
unstable glasses, D(ω), Ds(ω), and Du(ω), in 2D and system size evolution of the
fraction of stable glasses fs, the frequency ωp of the first peak in Du(ω), and the
frequency ωd below which Du(ω) and Ds(ω) depart from each other, respectively.

e–h Results in 3D. In (h), we also show the system size depends of the frequencyωs

belowwhich theωαs scaling exists. The parent temperatureTp is approximately the
onset temperature Ton for both 2D and 3D systems. The dashed lines show the
power-law scalings.
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Parent temperature dependence
It was also reported that α grew when the parent temperature Tp
decreased22,23. To understand this Tp dependence, we study the VDOSs
of glasses quenched from various Tp ranging from above the onset
temperature Ton to near the glass transition temperature Tg. Figure 6
compares D(ω), Ds(ω), and Du(ω) near the three representative tem-
peratures, Ton, Tmc (mode-coupling temperature), and Tg, for both 2D
and 3D glasses. Figure 6a, e shows that α evolves roughly from 3.4 to 4
when Tp decreases from Ton to Tg in both 2D and 3D, consistent with
previous studies22,24 and similar to the evolution with system size. The
difference is that the low-frequency part of D(ω) apparently decays
with the decrease of Tp. Figure 6b, c (f and g) indicates that αs and αu
also remain constant in Tp in 2D (3D). Unlike the system size depen-
dence, Au is insensitive to the change of Tp. Therefore, the evolution of
D(ω) at low frequencies is jointly determined by As and fs. When Tp
decreases, Fig. 6b, f shows that As decreases, while fs increases, as
shown in Fig. 6d, h.

For 3D ultra-stable glasses quenched from Tp ≈ Tg, Fig. 5b shows
that the three frequency regimes in Ds(ω) discussed above also
emerge. Compared to the high Tp case, the intermediate ω4 scaling
seems to be more pronounced. For example, for smaller systems with

N ≤ 1000, there is no apparent ω4 scaling in Fig. 5a, but we can already
see it in Fig. 5b. Again, the authenticity of the ω4 scaling needs to be
verified in sufficiently large systems,which is however still absent in 2D
ultra-stable glasses.

Figure 7directly displays theTp dependence ofAs. For 3D systems,
we also show theprefactorA4 of theω

4 scaling aboveωs. BothAs andA4

keep decreasing with the decrease of Tp. Similar Tp dependence was
reported for the prefactor of the ω4 scaling of D(ω)8,31. At the current
stage, it is difficult to obtain reliable results atmuch lowerTp. If suchTp
dependence persists at even lower Tp, the number of low-frequency
non-phononicmodes significantly decreases and could be expected to
vanish at low enough Tp. If this is the case, such low-temperature ultra-
stable glasses will only have phonon-like modes at low frequencies.
Although structurally disordered, evaluated by conventional criteria,
the glasses could behave like crystals at longwavelengths. In fact, there
was experimental evidence of the low-temperature Debye scaling for
ultra-stable glasses65–67, supporting that the non-phononic mode con-
tribution can be negligible if the glass reaches the highest stability. It is
thus interesting to figure out whether such ultra-stable glasses are
prototypes of ideal glasses and under what temperatures they
could exist.

Discussion
By classifying disordered solids into stable and unstable ones, we find
that their VDOSs, Ds(ω) and Du(ω), depart from each other when
ω <ωd, with the low-frequency tails following distinct scaling laws,
DsðωÞ∼ωαs andDuðωÞ∼ωαu , respectively. The robustness of the values
of αs and αu is verified by the solids with different sizes and quenched
from different parent temperatures. Using this classification, we can
understand the variation of the scaling exponent α reported pre-
viously. For finite-size disordered solids, it is due to the existence of
unstable solids and the competition among the fraction of (un)stable
solids and prefactors of the two scalings. Because unstable solids are
inevitable in confined systems, our study can explain a recent experi-
mental observation of α ≈ 3 in a confined quasi-2D nanosystem68.

We also find thatwhen system size increases,ωd decreases so that
the two scalings are pushed to lower frequencies. For stable solids in
3D, the ωαs scaling only exists below another crossover frequency
ωs <ωd, which also decreases with the increase of system size. When
ω >ωs, our results show the trend of the emergence of theω4 scaling in
the largest systems studied and ultra-stable glasses. At the current
stage, we cannot confirm the authenticity of the ω4 scaling, which
requires the verification of sufficiently large systems in future studies.
For stable solids in 2D, we do not see the emergence of the ω4 scaling.
Moreover, the prefactors of theωαs andω4 scalings both decrease with
the decrease of parent temperature, implying the possible existence of
ultra-stable glasses with only crystal-like low-frequency vibrations at
low enough temperatures. Such glasses may act as prototypes of the
ideal glass.

In this work, we are focused on generic glasses, which are
constrained well above isostaticity43,44,69,70. Marginally jammed
solids near isostaticity are less stable than generic glasses con-
cerned here. It is thus interesting to know whether and to what
extent our findings here are applicable to marginally jammed
solids. There are mean-field theories proposing the α = 2 scaling
of the VDOS63,64. The competition between different theoretical
frameworks may complicate the vibrational features of marginally
jammed solids moving away from the jamming transition43,44. We
leave these discussions to a separate study.

Methods
Simulation model
Our systems contain N polydisperse particles in a simulation cell with
side length L and periodic boundary conditions in all directions. All
particles have the same mass m. Particles i and j interact via the IPL

Fig. 5 | System size evolution of the VDOS of stable glasses in 3D. a Ds(ω) of
ordinary glasses quenched from Tp = 0.18. b Ds(ω) of ultra-stable glasses quenched
from Tp = 0.08. The solid, dashed, and dot-dashed lines show the ωαs , ω4, and ω1.5

scalings, respectively.

Fig. 4 | Scaling collapse of the low-frequency parts of the VDOSs for different
system sizes. The VDOSs of stable and unstable glasses, Ds(ω) and Du(ω), collapse
at low frequencies, when DsðωÞN�νs and DuðωÞN�νu are plotted against ωNνs and
ωNνu , respectively. Results of 2D glasses are shown in (a) and (b), while (c) and (d)
show results of 3D glasses. Here νs = 0.21 for both 2D and 3D; νu = 0.35 and 0.28 for
2D and 3D, respectively. The solid lines are power-law fittings to the collapsed
curves.
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potential:

UðrijÞ=
σij

rij

 !12

+ c0 + c2
rij
σij

 !2

+ c4
rij
σij

 !4

, ð2Þ

when their separation rij ≤ 1.25σij, and zero otherwise. The coefficients
c0, c2, and c4 ensure the continuity of the potential up to the second
derivative at the cutoff. The particle diameter σ is extracted from a
continuous distribution P(σ) =Aσ−3, whereA is the normalization factor
and σ∈ [σm, σM] with σm /σM=0.4492. To enhance the glass-forming
ability, we adopt a non-additive mixing rule to determine σij in Eq. (2):

σij =
σi + σj

2
1� ϵjσi � σjj
� �

, ð3Þ

where ϵ measures the degree of non-additivity. We choose ϵ =0.2 to
achieve a better performance59.

We set the average particle diameter �σ, particle mass m, and the
Boltzmann constant kB to be 1. The number density ρ =N/Ld is 1.01 and
1.0 for 2D and 3D, respectively.

We use an efficient swapMonte Carlo algorithm59 to prepare well-
equilibrated liquids at parent temperatures Tp. The onset, mode-

coupling, and glass transition temperatures for our IPL model systems
are Ton ≈0.25(0.20), Tmc ≈0.123(0.108), and Tg ≈0.082(0.072) in 2D
(3D), respectively8,60. After equilibration at the parent temperature Tp,
the liquids are rapidly quenched to zero temperature to obtain the
zero-temperature glasses (inherent structures) via the fast inertial
relaxation engine algorithm71.

Vibrational quantities
We consider two types ofHessianmatrix. The normalHessianmatrix is
defined as

Mn =
∂2U

∂R2 , ð4Þ

where R = (r1, r2,…, rN) with ri (i = 1, 2,…,N) being the location of par-
ticle i. The normal Hessian matrix does not take any boundary defor-
mation into account. In comparison, the extendedHessianmatrix with
(dN + nex) × (dN + nex) dimensions is58

Me =
∂2U

∂~R
2 , ð5Þ

wherenex = d(d + 1)/2 is the extradegrees of freedomof the systemand
~R = ðr1,r2, . . . ,rN , ϵ1, ϵ2, . . . ,ϵnex

Þwith ϵi(i = 1, 2,…, nex) being the strain of
the i − th deformation. The strains ϵi are upper triangular elements of
the d × d strain tensor

ϵβ1β1
ϵβ1β2

� � � ϵβ1βd

ϵβ2β1
ϵβ2β2

� � � ϵβ2βd

..

. ..
. . .

. ..
.

ϵβdβ1
ϵβdβ2

� � � ϵβdβd
,

0
BBBBB@

1
CCCCCA ð6Þ

where βj (j = 1, 2,…, d) denotes the Cartesian coordinates. These nex
degrees of freedom involve boundary deformations, including com-
pression (expansion) and shear. More details and the stability analysis
using the extendedHessianmatrix can be found in Ref. 58. The normal
modes of vibration are obtained by diagonalizing the matrix using the
IntelMathKernel Library72. If the extendedHessianmatrix has negative
eigenvalues, the system is unstable to certain boundary

Fig. 6 | Parent temperature dependence of the VDOSs. a–d VDOSs of all stable,
and unstable glasses, D(ω), Ds(ω), and Du(ω), and parent temperature evolution of
the fraction of stable glasses fs for N = 256 systems in 2D. e–h Results for

N = 1000 systems in 3D. The vertical dashed lines in (d) and (h) locate Ton, Tmc, and
Tg, respectively. The dashed lines in the other panels show the power-law scalings.

Fig. 7 | Parent temperature dependence of prefactors of the VDOS of stable
glasses. a Prefactor As versus Tp in 2D. b Prefactors As and A4 versus Tp in 3D. The
vertical dashed lines locate Ton, Tmc, and Tg, respectively.
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deformations58. Otherwise, the system is stable to compression and
shear in arbitrary directions. The participation ratio of a normalmode j
is calculated as

Pj =

PN
i = 1

��eji��2� �2
N
PN

i = 1

��e j
i

��4 , ð7Þ

where e j
i is the polarization vector of particle i in mode j. In the

calculation of the VDOSs and the participation ratio, we exclude
some lowest-frequency localized modes caused by rattler-like
particles, as explained in Supplementary Fig. 2 of the Supplementary
Information.

Data availability
The data that support the findings of this study are included in the
article and/or the Supporting Information and are available from the
corresponding authors upon request.

Code availability
The computer codes of this study are available from the correspond-
ing authors upon request.
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