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Artificial Intelligence (AI) is currently experiencing a bloom driven by deep
learning (DL) techniques, which rely on networks of connected simple com-
puting units operating in parallel. The low communicationbandwidth between
memory and processing units in conventional von Neumann machines does
not support the requirements of emerging applications that rely extensively
on large sets of data. More recent computing paradigms, such as high paral-
lelization andnear-memory computing, help alleviate thedata communication
bottleneck to some extent, but paradigm- shifting concepts are required.
Memristors, a novel beyond-complementary metal-oxide-semiconductor
(CMOS) technology, are a promising choice for memory devices due to their
unique intrinsic device-level properties, enabling both storing and computing
with a small, massively-parallel footprint at low power. Theoretically, this
directly translates to a major boost in energy efficiency and computational
throughput, but various practical challenges remain. In thisworkwe review the
latest efforts for achieving hardware-based memristive artificial neural net-
works (ANNs), describing with detail the working principia of each block and
the different design alternatives with their own advantages and disadvantages,
as well as the tools required for accurate estimation of performance metrics.
Ultimately, we aim to provide a comprehensive protocol of the materials and
methods involved in memristive neural networks to those aiming to start
working in this field and the experts looking for a holistic approach.

The development of sophisticated artificial neural networks (ANNs)
has become one of the highest priorities of technological companies
and governments of wealthy countries, as they can boost the fabrica-
tion of artificial intelligence (AI) systems that generate economic and
social benefits inmultiple fields (e.g., logistics, commerce, health care,

national security, etc.)1. ANNs are able to compute and store the huge
amount of electronic data produced (either by humans or machines),
and to execute complex operations with them. Examples of electronic
products that containANNswithwhichwe interact inour daily lives are
those that identify biometric patterns (e.g., face, fingerprint) for access
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control in smartphones2 or online banking apps3, and those that
identify objects in images from social networks4 and security/traffic
cameras5. Beyond image recognition, other examples are the engines
that convert speech to text in computers and smartphones6, natural
language processing as for example the novel automated chat system
chat-GPT7, and those that provide accurate recommendations for
online shopping based on previous behaviours from ourselves and/or
people in our network8.

ANNs can be understood as the implementation of a sequence of
mathematical operations. The structure of ANNs consists of multiple
nodes (called neurons) interconnected to each other (by synapses), and
the learning is implemented by adjusting the strength (weight) of such
connections. Modern ANNs are implemented via software in general-
purpose computing systems based on a central processing unit (CPU)
and a memory —the so-called Von Neumann architecture9. However, in
this architecture a large amount of the energy consumption and
computing time is related to continuous data exchange between both
units, which is not efficient. The computing time can be accelerated by

using graphics processing units (GPUs) to implement the ANNs (see
Fig. 1a), as these can perform multiple operations in parallel10–12. How-
ever, this approach consumes even more energy, which requires large
computing systems and thereby cannot be integrated in mobile devi-
ces. Another option is to use field programable gate arrays (FPGAs),
which consume much less energy than GPUs while providing an
intermediate computing efficiency between CPUs and GPUs13–17. A sur-
vey carried out by Guo et al.18 on the existing hardware solutions for
ANN implementation and their performance is condensed in Fig. 1b.

In the past few years, some companies and universities have pre-
sented application specific integrated circuits (ASICs) based on the
complementary metal oxide semiconductor (CMOS) technology that
are capable to compute and store information in the same unit. This
allow such ASICs to perform multiple operations in parallel very fast,
making them capable of mimicking, directly in the hardware, the
behaviour of the neurons and synapses in the ANN. A comprehensive list
of these ASICs comprising those such as the Google TPU19, Amazon
inferentia20, Tesla NPU21, etc., are summarized in ref. 22. Such integrated

b

a

Year

Fig. 1 | Computing power demand increase and platform transition from Von-
Neumann towards highly parallelized architectures. a The increase in comput-
ing power demands over the past four decades expressed in petaFLOPS per days.
Until 2012, computing power demand doubled every 24months; recently this has
shortened to approximately every 2 months. The colour legend indicates different

application domains10. Mehonic, A., Kenyon, A.J. Brain-inspired computing needs a
master plan. Nature 604, 255–260 (2022), reproduced with permission from
SNCSC. b A comparison of neural network accelerators for FPGA, ASIC, and GPU
devices in terms of speed and power consumption. GOP/s giga operations
per second, TOP/s tera operations per second.
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circuits can be grouped in two categories. On one hand, dataflow pro-
cessors are custom-designed processors for neural network inference
and training. Since neural network training and inference computations
can be entirely deterministically laid out, they are amenable to dataflow
processing in which computations, memory accesses, and inter-ALU
communications actions are explicitly/statically programmed or placed-
and-routed onto the computational hardware. On the other hand, pro-
cessor inmemory (PIM) accelerators integrate processing elements with
memory technology. Among such PIM accelerators are those based on
an analogue computing technology that augments flash memory cir-
cuits with in-place analoguemultiply-add capabilities. Please refer to the
references for theMythic23 and Gyrfalcon24 accelerators for more details
on this innovative technology.

Previously mentioned ANNs and those reported in detail in the
survey presented in ref. 22 belongs to the subgroup of so-called deep
neural networks (DNNs). In a DNN the information is represented with
values that are continuous in time and can achieve high data recog-
nition accuracy by using at least two layers of nonlinear neurons
interconnected by adjustable synaptic weights25. Conversely, there is
an alternative information codification which gave birth to another
type of ANNs, the Spiking Neural Networks (SNN). In SNNs the infor-
mation is coded with time-dependent spikes, which remarkably redu-
ces the power consumption compared to DNNs26. Moreover, the
functioning of SNNs is more similar to the actual functioning of bio-
logical neural networks, and it can help to understand complex
mammal’s neural systems. Intel probably has the most extensive
research program for evaluating the commercial viability of SNN
accelerators with their Loihi technology27,28, and Intel Neuromorphic
Development Community29. Among the applications that have been
explored with Loihi are target classification in synthetic aperture radar
and optical imagery30, automotive scene analysis31, and spectrogram
encoder27. Further, one company, Innatera, has announced a com-
mercial SNN processor32. Also, the platforms developed by IBM
(TrueNorth33), and Tsingshua34 are well known examples of the
research effort of both the industry and the academia in this field.

However, fully-CMOS implementations of ANNs require tens of
devices to simulate each synapse, which threatens energy and area
efficiency, and thereby renders large-scale systems impractical. As a
result, the performance of CMOS-based ANNs is still very far from that
of biological neural networks. To emulate the complexity andultra-low
power consumptionofbiological neural networks, hardwareplatforms
for ANNs must achieve an ultra-high integration density (>1 Terabyte
per cm2) and low energy consumption (<10 fJ per operation)35.

Recent studies have proposed that the use of memristive devices
to emulate the synapses may accelerate ANN computational tasks
while reducing the overall power consumption and footprint36–42.
Memristive devices are materials systems whose electrical resistance
can be adjusted to two or more stable (i.e., non-volatile) states by
applying electrical stresses43. Memristive devices that exhibit two non-
volatile states are already being commercialized as standalone
memory44,45, although their global market is still small (~621 million
USD by 2020, i.e., ~0.5% of the 127-billion-worth standalone memory
market46). However, memristive devices can also exhibit three dis-
ruptive attributes particularly suitable for the hardware implementa-
tion of ANNs: i) the possibility to programmultiple non-volatile states
(up to ~10047,48, and even ~100049), ii) a low-energy consumption for
switching (~10fJ per state transitionwith zero-static consumptionwhen
idle50), and iii) a scalable structure appropriate for matrix integration
(often referred to as crossbar51) and even 3D stacking52. Moreover, the
switching time can be as short as 85 ps42.

So far, several groups and companies have claimed the realization
of hybrid CMOS/memristor implementations of ANNs53–61, —from now
on, memristive ANNs— with performance that is superior to that of
fully-CMOS counterparts. However, most of those studies in fact only
measured the figures-of-merit of one/few devices and simulated the

accuracy of an ANN via software62–67 in such type of studies the con-
nection between the memristors fabricated and the ANN is relatively
weak. Few studies went beyond that and built/characterized crossbar
arrays of memristive devices48,68–70, but that are still very far from real
full-hardware implementations of all the mathematical operations
required by the ANN. The most advanced studies in this field have
reported fully integrated memristor-based compute-in-memory
systems48,53–55,58,59,61,71–73, but a systematic description of essential
details on the device structure or circuit architecture are generally
lacking in these reports.

In this article we provide a comprehensive step-by-step descrip-
tion of the hardware implementation of memristive ANNs for image
classification —the most studied application often used to benchmark
performance, describing all the necessary building blocks and the
information processing flow. For clarity, we consider relatively simple
networks, being themultilayer perceptron themost complex case. We
take into account the challenges arising at both the device and circuit
levels and discuss a SPICE-based approach for their study in the design
stage, as well as the required circuital topologies for the fabrication of
a memristive ANN.

Structure of memristor-based ANNs
Figure 2 shows a flowgraph depicting the generalized structure of an
ANN; it has multiple inputs (for single channel images like indexed
color, grayscale and bitmap images, there are asmany inputs as pixels
the image to classify has) and several outputs (asmany as types/classes
of images the ANN will recognize). As it can be seen, the ANN consists
of multiple mathematical operations (green boxes), such as vector
matrix multiplication (VMM), activation function, and softargmax
function. Among all the critical operations in the ANN, the VMM is the
most complex anddemanding, and it is carriedoutmultiple timesboth
during the training process and inference. Hence, the development of
new hardware for ANN implementation is strongly oriented to realize
VMM operations in a more efficient way. Interestingly, the VMM
operation —often understood as multiply and accumulate (MAC)
routine—can be implemented using a crossbar array of memory ele-
ments. Thosememory devices could be either charge-basedmemories
as well as resistance-based memories25,74.

Before explainingmemristive hardware for ANN, in this paragraph
wedescribe the state of the art ofCMOShardware forANNs, to provide
the author with a comprehensive picture of the different technologies
available for hardware based ANNs. Among charge-based memories,
SRAM cells (a bi-stable transistor structure typically made of two
CMOS inverters connected back-to-back which retains a charge con-
centration, see Fig. 3a for an example of the structure of a crossbar
array of 6T SRAM) have been widely used for VMM75–77. If the elements
of the input vector and the weight matrix are limited to signed binary
values, the multiply operation is simplified to a combination of XNOR
and ADD functions carried out directly through SRAM cells. An
example of this is the work by Khwa et al., which reports a compute in
memory systembased on a crossbar array of 6T SRAMmemory cells as
binary synaptic connections that uses binary inputs/outputs78. The
proposed circuit comprises 4 kb synapses fabricated in a 65 nmCMOS
process and reported an energy efficiency of 55.8 TOPS perW. In cases
where x is non-binary, one approach is to employ capacitors in addi-
tion to the SRAM cells76,77,79, involving a three-step process. However, a
major drawback of SRAMmemories is their volatile nature. Due to the
low field-effect transistor barrier height (0.5 eV), the charge constantly
needs to be replenished from an external source and hence SRAM
always needs to be connected to a power supply. An alternative
memory element for VMM operation is the flash memory cell80,81, in
which the charge storage node is coupled to the gate of a FET with
charge stored either on a conductive electrode surrounded by insu-
lators (floating gate) or in discrete traps within a defective insulator
layer (charge trapping layer). Unlike in SRAM, the barrier height of the
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storage node is sufficiently high for long-term data retention. Also,
flash-based VMM operates in a slightly different manner than SRAM-
based VMM. In Flash-based VMM, each memory element contribute a
different amount to the current in each column of the crossbar
depending on the voltage applied to the input or crossbar row and
matrix element are stored as charge on the floating gate81 (i.e., multi-
plication) and all the currents in a columnare instantaneously summed
(i.e., accumulation) by Kirchhoff’s currents law. Because the devices
can be accessed in parallel along a BL, NOR Flash has generally been
preferred over NAND Flash for in-memory computing. This is the case
of the work by Fick et al from the company Mythic23, which relies on a
1024×1024 NOR Flash array to develop an analogue matrix processor
for human pose detection in real time video processing. However,
there is recent work describing the use of 3D NAND, consisting of
vertically stacked layers of serially connected FLASH devices, whereby
each layer of the array encodes a uniquematrix82. This approach could
help toovercome the scalability issue ofNORFlash,which is difficult to
scale beyond the 28 nm technology node. The proposed 3D-aCortex
accelerator83 is a fully CMOS implementation that relies on a com-
mercial 3D-NAND flash crossbar array as synaptic element. Partial
outputs from multiple crossbars are temporally aggregated and digi-
tized using digital counters, shared by all the crossbars along a row of
the grid, avoiding the communication overhead of performing these
reductions across multiple levels of hierarchy. The entire 3D array
shares a globalmemory and a columnof peripheral circuits, increasing
its storage efficiency. This is however still theoretical and is yet to be
fabricated. Nonetheless, the write operation on flash memories
requires high voltages (typically >10 V) and entails significant latency
(>10 µs) due to the need to overcome the storage node barriers. These
problems can be potentially solved using resistance-based memories,
ormemristors asmemory element at the intersections of the crossbar,
as they can realize the multiplication operation by Ohm’s Law (I=V·G,
where I is current, V is the input voltage and G is the conductance of
each memristor), while reducing the energy consumption and area
footprint as well as providing CMOS compatible operation voltages.
The structure of memristive crossbar arrays for VMM is depicted in
Fig. 3b, c: a common integration option is to place aCMOS transistor in
serieswith thememristor to control the current through it (Fig. 3b) in a
so called 1 transistor 1 resistor (1T1R) structure, while the highest
integration density would be achieved by a crossbar comprising no
transistors, i.e., considering cells usually referred to as 1 resistor/

memristor (1R or 1M) structures or passive crossbar (Fig. 3c). When
using crossbar arrays of memristors to perform VMM operations,
additional circuitry might be needed at the input and output to sense
and/or convert electrical signals (see red boxes in Fig. 2). Examples of
such circuits are digital-to-analogue (DAC), analogue-to-digital (ADC)
converters and transimpedance amplifiers (TIA). Note that other stu-
dies employed implementations slightly different from this scheme,
i.e., combining or avoiding certain blocks to save area and/or reduce
power consumption (see Table 1).

In the following subsections we describe in detail all the circuital
blocks required for a truly full-hardware implementation of a mem-
ristive ANN. To provide both a clear global picture and detailed
explanations, the titles of the sub-sections correspond to the names of
the blocks in Fig. 2.

Image capture hardware (block 1) and input vector conforma-
tion (block 3)
An image (or pattern) is a collection of pixels with different colours
arranged in a matrix form (referred as p×p in this article). In this work,
we will consider grayscale images, in which the colour of those pixels
can be codified by one single value. However, in coloured images, each
pixel is represented by 3 (in RGB encoding) or 4 (in CMYK encoding)
values, this arranged in a tensor fashion, i.e., p×p×3 or p×p×4. Both the
training and testing of an ANN for image classification are conducted
by presenting large datasets of images to its inputs. In a real ANN each
image could come directly from an embedded camera (block 1), or it
could be provided as a file by the user (block 2). Depending on the
format of the image (e.g., black/white, 8-bit *.bmp, 24-bit *.bmp, *.jpg,
*.png, among many others) the range of possible colours (encoded as
numerical values) for each pixel will be different. Each of the above
mentioned approaches to feed images to the neural network implies
different hardware overhead. For the case of on-the-fly image classifi-
cation, aCMOS imager is necessary to capture the input images82,83. For
instance, ref. 84 uses a 480×330 pixel image sensor, with each pixel
consisting of a photo diode and four transistors that generates an
analogue signal whose amplitude is proportional to the light intensity.
Then a 5×6 pixel binary image is generated by mapping 96×55 neigh-
bourhood pixels into one pixel in the binary image. A similar approach
is considered in ref. 85where a 640×480pixels image is capturedby an
image sensor and then resized to a 16×16 image. The resizing proce-
dure and the need of such a procedurewill be covered later in this Sub-

Fig. 2 | Generalized block diagram indicating the required circuital blocks to
implement amemristive ANN for pattern classification.Green blocks (3, 5, 7 and
8) indicate the required mathematical operations (such as the VMM or activation
functions). Red blocks (1, 2, 4, 6, 9, 11, 12, 13, 14, 15, 16) identify the required circuits
for signal adaptation and/or conversion. The data path followed during the infer-
ence (or forward pass) is indicated by the red arrows/lines. The data path followed
for in-situ training is indicated by the blue arrows/lines. The data path followed

under ex-situ training is shown by the yellow arrows/lines. For each box, the upper
(colored) part indicates the name of the function to realize by the circuital block,
and the bottom part indicates the type of hardware required. The box titled suc-
cessive neural layers would encompassmultiple sub-blocks with a structure similar
to the group titled First neural layer. 1S1R stands for 1Selector 1 Resistor while 1R
stands for 1 Resistor. UART, SPI and I2C are well known communication standards.
RISC stands for Reduced Instruction Set Computer.
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section. Both cases consider an FPGA in order interface the image
acquisition system (i.e. CMOS image sensor and the resizing algo-
rithm) with the memristor crossbar and its peripheral circuitry. On the
other hand, some studies exclusively focused on the memristor
crossbar use an on-chip communication interface to acquire the image
froma computer (e.g. ref. 54 uses a serial communication port) already
shaped in the required input format.

Regarding the input images, there aremultiple datasets of images
online available for ANN training and testing. Some of the most com-
monly used ones are: 1) MNIST (Modified National Institute of Stan-
dards and Technology), which is basically a dataset containing 70,000
greyscale images showing handwritten numbers from 0 to 9 (i.e.,
around 7,000 for each number); 60,000 of them used for training and
10,000 for testing86; 2) CIFAR (Canadian Institute for Advanced
Research), which contains 60, 000 color imagesdivided into 10 classes
for CIFAR-10 and 100 classes for CIFAR-10087; 3) ImageNet, one of the
largest image datasets, which consists of over 1.2 million labelled from
1000 classes for the ImageNet competition88. MNIST is a good starting

point, since this simple dataset can be classified with even small neural
networks. For benchmarking a device or a chip, it is essential to eval-
uate the accuracy of standard deep neural network models like VGG89

and ResNet90 on CIFAR and ImageNet dataset by utilizing architecture-
level simulation and realistic hardware statistics91,92. For clarity, herewe
illustrate with MNIST dataset. The number of types/classes of images
(referred to asm in this article) in the MNIST dataset is 10. The images
are compressed in a *.idx3-ubyte file that can be openedwithMATLAB;
each of them comes in grayscale and with a resolution of 28×28 pixels.
In Python, the MNIST images can be found embedded in a library
named Keras. The training images are used to let the ANN understand
the characteristic features of each pattern (i.e., the numbers), and the
testing images are presented to the ANN (after training) to be classi-
fied. A few examples of these images can be seen in Fig. 4a,where the X
and Y axis stand for the pixel index. Pixel’s brightness is codified in 256
grey levels between0 (fullyOFF, black) and 255 (fullyON,white). In the
MNIST dataset, each of the 60,000 p×p training images is represented
as a p2×1 column vector, and all these vectors are horizontally

Fig. 3 | Non-Von Neumann vector-matrix-multiplication (VMM) cores reported
in the literature. a Full-CMOS SRAM (Static Random Access Memory) crossbar
array,bHybridmemristor/CMOS 1T1R crossbar array and c Full-memristive passive
crossbar array. All cases assume a crossbar array integration structure which per-
forms the Multiply-and-Accumulate (MAC) by exploiting the Kirchhoff’s law of
currents. The use of memristors allows a smaller footprint per synapse as a lower
number of smaller devices is employed. Passive crossbar arrays ofmemristors allow
the highest possible integration density, yet they are still an immature technology

with plenty of room for optimization. a290 Yamaoka, M. Low-Power SRAM. In:
Kawahara, T., Mizuno, H. (eds) Green Computingwith EmergingMemory. Springer,
New York, NY (2013), reproduced with permission from SNCSC. b is adapted with
permissionunderCCBY4.0 license from ref. 54. c is adaptedwith permission under
CC BY 4.0 license from ref. 93. F is the feature size of the litography and the energy
estimation is on the cell-level. FEOL and BEOL stands for Front EndOf Line and Back
End Of Line, respectively.
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concatenated to render a p2×60,000matrix. Similarly, the test dataset
consists of a p2×10,000matrix. In both cases, each of thep2 pixelsmust
be fed to the crossbar array for further processing.

As previously mentioned, the simplest ANN architectures (multi-
layer perceptrons) shouldhave asmany inputs as pixels there are in the
images to be classified. In software based ANNs, this is not a challenge.
However, the available inputs in hardware ANNs are limited by the
maximal size of the memristor crossbar. In the literature, such a
challenge has been tackled considering different approaches: For
instance, given theMNIST dataset in which images have a resolution of
28 × 28 pixels one option is to implement the synaptic layer using
multiple crossbars to fit the 784 inputs (e.g., 13 64 × 64 or 4 256 × 256
crossbars would be needed93). However, for research efforts focused
on the device level, this is usually out of reach as requires a non-
straightforward CMOS – memristor integration. Another option is to
consider more complex neural networks, such as the convolutional
neural networks (CNN)55. LeNet-5 (a kind of CNN) first layer is 25 × 6,
which can be implemented with a 64×64 crossbar. In fact, image
classification tasks in modern deep learning usually rely on a con-
volutional layer. As for the previous case, this is not easy to implement
for research projects centred on the device level as it also requires
complex hybrid CMOS –memristor integration. Nonetheless, in some
cases, the first convolutional layers are implemented on software and
off-chip to reduce the image dimensionality and then the resulting
feature vector is feed to the memristive part of the ANN. Note that in
this case, device non-idealities are not equally represented through-
out the network, and their influence is only assessed for the fully-
connected part55. Finally, other option is to rescale each of the images
of the original MNIST dataset (in this work, represented by block 3).
For example, if our crossbar has 64 inputs, then the image would have
to be rescaled from 28 × 28 to 8 × 8 (i.e., 64 pixels); the size of the
rescaled imagewill be referred as n×n. The rescaling can be easily done
via software, using for example MATLAB and its Deep Learning Tool-
box as language/platform to carry out this type of computational
operations, or Python altogether with the TensorFlow, Keras or
Pytorch libraries. However, and as shown in Fig. 4b, the aggressively
rescaled images becomes barely readable and therefore the entire
dataset is changed and so it is the benchmark, i.e. inference results
obtained for the 8×8MNIST rescaled images should only be compared

with 8×8 MNIST results and not with the original MNIST benchmark
results. This is similar to using a custom-made dataset. With this in
mind, and provided the frequent use of this methodology in the lit-
erature, we will consider its usage yet stressing the aforementioned
considerations, and we encourage authors not to rescale the image
dataset if aiming to compare their results against the original datasets.

As an example, Supplementary Algorithm 1 shows the MATLAB
code used for image dataset rescaling from 28 × 28 to 8 × 8 pixels.
Before downscaling the images, each of them needs to be reshaped
from a p2×1 column vector to a p×pmatrix, using theMATLAB function
reshape(). Then, the image is resized to thedesiredn×n size in pixels by
the MATLAB function imresize()94. This function receives as argument
the desired down-sampling method, which in this example was selec-
ted to be the bi-cubic interpolation (as in other articles in the field of
memristive ANNs54). The results of the rescaling for a single image are
shown in Fig. 4b. Note that using this method, values outside the [0, 1]
range are expected. Thereby, the downscaled image is processed and
any output value exceeding such range is truncated to 0 or 1. The re-
scaled images are then reshaped back to the n2×1 column vector
representation format and stored in a newmatrix. Now this image can
be used as input in the crossbar array of memristors.

Input driving circuits (Block 4)
The colour of each pixel in the image (represented as n2 × 1 column) is
codified as a voltage that is applied to a row in the crossbar (i.e., word-
line), as depicted in Fig. 4c, resulting in a vectorV of analogue voltages
Vi. If the image is black-white (i.e., 2 possible values), the values of the
voltage Vi of each pixel will be 0 and VREAD (VREAD being a reference
voltage defined by the application); however, the colour of each pixel
can also range within a greyscale, which leads to a range of analogue
voltages. For instance, the colour of each pixel in the 8-bits p×p images
of theMNISTdataset (andhence, the colour of eachpixel in the resized
n×n image to be input to the crossbar) varies within a greyscale of 28 =
256possible values (codified inbinary representation from00000000
to 11111111), meaning that the voltages to be applied to each input of
the crossbar may take values such as 0V, VREAD/256, 2·VREAD/256,
etcetera until VREAD. Hence, an 8-bit digital-to-analogue converter
(DACs) is necessary for each input to convert the 8-bits-code into a
single voltage. When the ANN is employed to recognize other types of

Fig. 4 | Example of awidely popular image database used for ANNs training and
test, and how they are feed to the network. a Samples of the MNIST dataset of
handwritten numeric digits considered in this article. In all cases images are
represented in 28 × 28 px. Pixel brightness (or intensity) is codified in 256 levels
ranging from 0 (fully OFF, black) to 1 (fully ON, white). b Readability loss as the

resolution decreases from 28 × 28 pixels (case I) to 8 × 8 (case IV). c Schematic
representation of the unrolling of the image pixels. Note that each of the n image
columns of pixels are vertically concatenated to reach a n2 × 1 column vector. It is
then scaled by VREAD to produce a vector of analogue voltages that is fed to
the ANN.
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images codified with a different format (e.g., 24-bit), DACs of different
resolution are needed. The format in which the images are presented
dependson theultimate applicationof thenetwork, i.e., ANNs for plate
number identification may work well with black/white (i.e., 1-bit) ima-
ges, and ANNs for object identification may need to consider 24 bits
(16.7million) colours. Examples ofDACsoften employed inmemristive
ANNs are displayed in Fig. 5: N-bit weighted Binary (Fig. 5a), Current-
steeringDACFig. 5b,Memristive-DAC (Fig. 5c), N-bitR-2RDAC (Fig. 5d)
and Pulse Width Modulation (PWM)-based DAC (Fig. 5e).

Deciding the resolutionof theDACs at the input of each rowof the
crossbar is a critical factor affecting power consumption, area, and
output impedance of the ANN —lowering impedance is important to
realize large crossbars. Conventional high-resolution DACs with a low
output impedance comprise a DAC core with an operational amplifier
(in a buffer configuration) as output stage in order to lower the output
resistance. As such, the power dissipation of the DAC can be divided
into the switching/leakage power of the digital DAC core and the sta-
tic/dynamic power of the operational amplifier. On one hand, the
power dissipation of the digital DAC core can be estimated as PD =
fDCDV2+Pleakage, where fD is the output frequency, CD is the parasitic

capacitance, V is the supply voltage, and Pleakage is the leakage power
that depends on the technology node, and for a 65 nm technologywith
a 1 V power supply is of several pico-Watts in an inverter. On the other
hand, the power dissipation of the analogue block can be estimated by
assuming a class-AB follower stage, with an efficiency of 50%. In this
scenario the static power of this block equals its dynamic power and
the addition of them can be computed as PA=nV/R2, where n is the
number of memristors to drive and R is their minimum resistance.
Below frequencies of roughly 100MHz, PA is dominant, whereas above
this threshold, the dissipated power during the switching makes PD
bigger than PA.

Regarding the silicon area required for the DACs, this is mainly
defined by the DAC resolution, which in turn is limited by device
noise element matching. For DAC relying in resistors, the major
noise source is from the CMOS operational amplifier in the output
stage95, and it can be minimized using larger transistors (both in
width and length) for the differential input pair. Similarly, to max-
imize the matching between the reference resistors, wider devices
are encouraged, ultimately contributing to the increase in the sili-
con area required per DAC.

Fig. 5 | Schematic diagrams of DAC circuits conventionally used in the literature to bias the rows of the memristive crossbar. a N-bit weighted Binary, b Current-
steering DAC, c Memristive-DAC d N-bit R-2R DAC and e Pulse Width Modulation (PWM)-based DAC.
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To minimize silicon area and power consumption, the lower the
DAC resolution the better. As a result, apart from amplitude-based
encoding for crossbar inputs, time-encoding schemes are also
considered96. For instance, inpulse-widthmodulation (PWM) schemes,
inputs are codified in different pulse widths (0 s, TREAD/256 s, 2·TREAD/
256 s, etc. until TREAD). This allowsovercoming device non-linearity but
suffers from low throughput57. Alternatively, in the so-called bit-serial
encoding97 approaches, high-resolution crossbar inputs are presented
as a stream of voltage pulses with constant amplitude and width48,56.
For example, to represent 16-bit crossbar inputs,m-bit voltage signals
are streamed to the crossbar row over 16/m time cycles98. After VMM
calculation, the partial products (the outputs of each time step) are
accumulated together to form the final output value. Also, many
papers55,60,99,100, have explored the case of ANNs with binarized inputs,
as they employ the simplest DACs (1-bit). In the case of the 1-bit input
stream, DACs can also be replaced by inverters followed by an output
amplifier to allow the inverter to drive all the devices connected to it98.
In addition, the computation with time-encoded inputs is less affected
by the noise variations, whichmostly affect the amplitude of the input
signals rather than the pulsewidth.However, the disadvantage of time-
encoding schemes is the reduction of computation speed and hard-
ware overhead required for partial sums computation96.

An alternative to keep a high throughput and still employ a low-
resolution DAC is using approximate computing101. When using low-
resolution DACs (1-, 2- or 3-bit) there is a higher chance of multiple
inputs requiring the same driving voltage, which allows sharing DACs
among several lines, and thereby saving both power and area. How-
ever, one has to keep in mind that the output resistance of the DAC
limits the number wordlines that can be biased. Also, this approach
requires the use of analogue multiplexers (block 11) in between the
input driving circuits and the memristor crossbar which leads to
additional control circuit overhead. The problem of using low-
resolution DACs at the input of the crossbar is a loss in the accuracy
of the VMM operation. Hence, there is an inherent trade-off between
all these variables. The accuracy loss can also be reduced by exploiting
software-based training techniques for quantized neural networks.

VMM core (Block 5)
The voltages generated by each DAC (which represent the colour of
each pixel of the rescaled n2 × 1 image) are applied at the inputs (rows)
of the n2 × m crossbar array of memristors. The conductance of each
memristor within the crossbar describes the synaptic connection
between each input neuron (ith) and each output neuron (jth). This
scheme is used in various papers54,102. However, some others consider
also a bias term added to the weighted sum fed to the neuron57. This
can be done digitally and off-chip, or in the analogue domain. If done
analogue, an additionally row in the crossbar is needed, thereby
requiring a crossbar of (n2+1) × m. This operation produces a row
vector of size 1 × m (see Eq. 1). In a conventional Von Neumann com-
puting system, VMM is performed by doing each sub-operation
(multiplications and sums) sequentially, which is time consuming;
moreover the calculation time increases quadratically with the
dimensionality of the input arrays103, or in the case of using the so-
called Big-O notation, the VMM algorithm has a time complexity of
~O(n2). Memristor crossbars (such as the one shown in Fig. 6a) allow
performing VMM much more easily and faster because all the sub-
operations are carried out in parallel. In the crossbar, the brightness
(colour) of each pixel in each image is codified in terms of analogue
voltages and applied to the input rows (also called wordlines and
connected to the memristor’s top electrodes), while the output col-
umns (also called bitlines and connected to the memristor’s bottom
electrodes) are grounded through a transimpedance amplifier (see
Fig. 6b for an idealized representation). Then, the VMMis performed in
an analogue fashion, as the current flowing through each memristor
will be given by the voltage applied to the line and the conductance of

each memristor (Iij = gij·Vi). Note that in a pair {i,j} i stands for the
crossbar row, and j for the crossbar column. Then, the currentsflowing
through the memristors connected to a given bitline are summed and
sensed to form the output vector. Let us consider the following
notation to better explain this idea:

V 1 V 2 � � � Vn2

� �
×

g1,1 g1,2 � � � g1,m

g2,1 g2,2 � � � g2,m

..

. ..
. . .

. ..
.

gn2,1 gn2,2 � � � gn2,m

2
666664

3
777775

=
Pn2

i = 1
V i�g i,1

Pn2

i= 1
V i�g i,2 � � � Pn2

i= 1
V i�g i,m

" #

ð1Þ

For the classification of the MNIST images with a n×n pixel reso-
lution with an ANN, multiple VMM operations are required, in which
the matrix of conductances gij in Eq. 1 is defined based on the matrix
WM of synapticweights, whichhas a size ofn2 × 10, and all the numbers
that form it are real numbers (WM 2 Rn2 × 10) with both positive and
negative values being possible —the way in which WM is calculated is
described in detail in section ANN training and synaptic weight update
(Blocks 2, 11-15): Learning algorithm. As the negative values cannot be
represented directly with memristors, some strategies have been
adopted. Reference 104 added anextra column in the crossbar (named
reference column, see blue arrow in Fig. 6c) with all its memristors set
to 0.5·GLRS, so totalling n2 × (m + 1) memristors in the crossbar. Then,
the total current at the {j} output of the crossbar is obtained by sub-
tracting the current generated by the reference column {ref} to the
current generated from a {j} column (see Fig. 6c). This concept is
mathematically represented in Eq. 2.

Xn2

i= 1

V i�g i,1

Xn2

i= 1

V i�g i,2 � � �
Xn2

i= 1

V i�g i,m

" #
!

Xn2

i= 1

Vi� g 0
i,1 � gref

� �Xn2

i= 1

Vi� g 0
i,2 � gref

� � � � �Xn2

i= 1

Vi� g 0
i,m � gref

� �" # ð2Þ

where gref stands for the 0.5·GLRS conductances of the reference col-
umn and g 0

i,j is calculated in such a way that devices with a con-
ductance above 0.5·GLRS produce positive synaptic weights, and those
with a conductance below 0.5·GLRS produce negative synaptic
weights104. This strategy has two disadvantages: on one hand, one can
only employ half of the states exhibited by the memristor for the
positive weights and the other half for the negative weights, thus
reducing the range between the maximum and minimum weight. On
the other hand, routing the reference column to the rest of the
crossbar columns tomake the corresponding subtractionoperation, is
not trivial. Another strategy is to use two memristors per synaptic
weight, resulting in two crossbars of n2 × 10 (20n2 synapses)105,106.
Within this approach, Eq. 2 could be re-written as

Xn2

i= 1

V i�g i,1

Xn2

i= 1

V i�g i,2 � � �
Xn2

i= 1

V i�g i,m

" #

!
Xn2

i= 1

V i� g +
i,1 � g�

i,1

� �Xn2

i= 1

V i� g +
i,2 � g�

i,2

� � � � �Xn2

i= 1

Vi� g +
i,m � g�

i,m

� �" #

ð3Þ

Where the positive and negative conductances are codified by a pair of
two adjacentmemristors (g +

i,j and g�
i,j), each of them set to a positive

value of conductance. This representation method, shown in Fig. 6d,
has been chosen in this study because it doubles the range of
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conductance levels of the crossbar, making it less susceptible to noise
and variability104.

To calculate the required conductance value for each of the
memristors in the pair, we begin by splittingWM into twomatricesW+

M
and W�

M as:

w+
M i,j

wMi,j
, wM i,j

> 0

0, wM i,j
≤0

(

w�
M i,j

0, wM i,j
≥0

�wMi,j
, wM i,j

< 0

( ð4Þ

each of them containing only positive weights, so that
WM =W+

M�W�
M. The matrix in the left side (WM, containing both

positive and negative values) can be represented as a difference
between the two matrices in the right side (W+

M and W�
M, both con-

taining only positive numbers). Thereby, by applying Eq. 4, we obtain

W+
M by replacing all the negative elements from WM by 0, while W�

M
was obtained by firstmultiplyingmatrixWM by -1 and then replacing al
the negative values by 0.

In the next step, the conductance matrices G +
M and G�

M (Equation
5) to bemapped into the crossbars are calculatedby employing a linear
transformation,107,108:

G +
M =a�W+

M +b= Gmax�Gmin

max WMf g�min WMf gW
+
M + Gmax �

Gmax�Gminð Þmax WMf g
max WMf g�min WMf g

h i
G�

M =a�W�
M +b= Gmax�Gmin

max WMf g�min WMf gW
�
M + Gmax �

Gmax�Gminð Þmax WMf g
max WMf g�min WMf g

h i
ð5Þ

here Gmin and Gmax are the minimal and maximal conductance
values of the memristors in the crossbar, and maxfWM} and minfWM}
are themaximumandminimumvalues inWM. At this point, it is critical
to note that this mapping strategy presents the synaptic weights from
WM to a continuum of conductance values in the range Gmin,Gmax

� �
.

Fig. 6 | Memristor crossbar structure and electrical connection diagram for
signed weights representation. a Sketch of the crossbar array structure. Red and
blue arrows exemplify the electron flow through the memristors connecting the
top (Word lines -WL-) and bottom lines (Bit lines -BL-). Different memristor resis-
tance states are schematically represented (High Resistance State -HRS- to Low
Resistance State -LRS-). The dashed blue line depicts the so-called sneak path
problem. The parasitic wire resistance is indicated for WLi and BLi. Reproduced

with permission under CCBY 4.0 license from ref. 253. b Equivalent circuit repre-
sentation of theCPA sketched in a, showing the input voltages, output currents and
TIA blocks that translates the output CPA current to a vector of analogue voltages.
In this case the circuit was simplified by ignoring the line resistances. Finally, two
different realizations of the memristive-based ANN synaptic layer are shown in c –

unbalanced – and d – balanced –.
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However, it has been widely reported109–111, that the more states one
memristor has, the more difficult to identify them, due to the inherent
variability. Moreover, depending on the material and fabrication
methods, some memristor devices can have only a limited number of
stable conductance states. To deal with these non idealities, advanced
mapping techniques have been proposed in the literature and they are
summarized in Supplementary Note 1 and Supplementary Note 2, the
latter focused onmitigating the heat-induced drift of synapticweights.
Thereby, when considering a device with a number x of states, each
position of the resulting conductance matrices should have only x
possible values. In order to exploit the entire dynamic range of the
memristors (which would make easier to identify each conductance
value), we consider Gmax =GLRS and Gmin =GHRS, being GLRS and GHRS

the conductance of the most and least conductive states (respec-
tively). In thisway, the synapticweights in theW+

M andW�
M matrices are

converted to conductance values within the range GHRS,GLRS

� �
:The

following example illustrates the procedure to convert theWM matrix
returned by the MATLAB training phase (i.e., a matrix of real values in
the range [−5, 5]) into two crossbar arrays of memristors (considering
that each memristor can have 6 linearly distributed resistive states at
GHRS, 0.2·GLRS, 0.4·GLRS, 0.6·GLRS, 0.8·GLRS and GLRS):

First, the ex-situ training produces a matrix of n2×m synaptic
weights:

WM =

1:1 4:7 �3:9 . . . 4:9

1:8 �3 �1:2 . . . 0:2

4:6 �4:9 0:3 . . . 1:3

..

. ..
. ..

. . .
. ..

.

�0:9 2:7 �2:2 . . . �4:8

2
6666664

3
7777775

ð6Þ

Second, the synaptic weights are represented as the difference
between two matrices:

W+
M�W�

M =

1:1 4:7 0 . . . 4:9

1:8 0 0 . . . 0:2

4:6 0 0:3 . . . 1:3

..

. ..
. ..

. . .
. ..

.

0 2:7 0 . . . 0

2
6666664

3
7777775
�

0 0 3:9 . . . 0

0 3 1:2 . . . 0

0 4:9 0 . . . 0

..

. ..
. ..

. . .
. ..

.

0:9 0 2:2 . . . 4:8

2
6666664

3
7777775

ð7Þ

Third, the weights are rounded to the closest state among the x
available states:

W+
Mq�W�

Mq =

1 5 0 . . . 5

2 0 0 . . . 0

5 0 0 . . . 1

..

. ..
. ..

. . .
. ..

.

0 3 0 . . . 0

2
6666664

3
7777775
�

0 0 4 . . . 0

0 3 1 . . . 0

0 5 0 . . . 0

..

. ..
. ..

. . .
. ..

.

1 0 2 . . . 5

2
6666664

3
7777775

ð8Þ

Finally, the quantized weights are mapped to a conductance
value:

G+
M�G�

M =

GLRS
5 GLRS GHRS . . . GLRS

2GLRS
5 GHRS GHRS . . . GHRS

GLRS GHRS GHRS . . . GLRS
5

..

. ..
. ..

. . .
. ..

.

GHRS
3GLRS
5 GHRS . . . GHRS

2
666666664

3
777777775
�

GHRS GLRS
4GLRS

5 . . . GLRS

GHRS
3GLRS
5

GLRS
5 . . . GHRS

GHRS GLRS GHRS . . . GHRS

..

. ..
. ..

. . .
. ..

.

GLRS GHRS
2GLRS

5 . . . GLRS

2
666666664

3
777777775
ð9Þ

The output value caused by a negative synaptic weight is achieved
by subtracting the current flowing through the memristors connected

to bitline i in G�
M matrix from that in the corresponding bitline i in G+

M
matrix.

Sensing electronics (Block 6)
Once the input voltages are applied to the inputs (rows) of the crossbar,
currents at the outputs (columns) are almost instantaneously generated,
which need to be sensed. There are threewidely used sensingmodes for
the output voltages112. The simplest approach is the use of a sensing
resistor (Fig. 7a). However, grounding the bitlines through a resistor
might alter the potential applied to the bitline, which will no longer be 0
volts, adding variability and thus altering the read over the sensing
resistor100,112. To sense low currents without this problem, one option is
to use trans-impedance amplifiers (TIA, see Fig. 7b). In this case, the
crossbar bitlines are grounded through a TIA implemented with an
operational amplifier or an operational transconductance amplifier
which ensures the bitline potential to remain at 0 V. Although very
popular102,113–116, this approach might be limited for the case of the
smallest technology nodes implementations as the gain and bandwidth
of the amplifiers are limited by the intrinsic transistor gain95,117. An
alternative is to replace the TIA block by a charge-based accumulation
circuit. This strategy was used to cope with pulse width modulation
encoding that excludes the utilization of one TIA. Note that the same
approach could be used along with other encoding techniques such as
digitization of inputs and pulse amplitude modulation. In its most basic
implementation, it is very similar to the use of a sensing resistor but
replacing the resistor by a capacitor (see Fig. 7c). The capacitor then
develops a voltage which is proportional to the integrated current
flowing through it. As such, this method adds the time-dimension to the
process of sensing the outputs: the current must be integrated over a
constant and well-defined period of time to generate an output voltage.
Note that inmany cases, to reduce the current to be integrated (and thus
the size of the integration capacitors), current divider circuits57 or dif-
ferential pair integrators118 are considered (see Fig. 7d).

Finally, note that the design choice of the sensing circuit will
depend on the input signals to the memristor crossbar, as shown in
Fig. 8. Assuming that the input signals of both positive and negative
cells are of the same polarity, an independent sensing/transducing
circuit is required for both the positive and negative bitline. Then a
subtractor circuit (implemented for instance with an operational
amplifier, as shown in Fig. 8a) generates an output voltage propor-
tional to the current difference. On the contrary, when it is possible to
apply input signals of different polarity to the G�

M and G+
M matrix, the

sensing electronics can be simplified, as by connecting the i bitlines
from the G�

M and G+
M directly performs the substraction in terms of

currents, and thereby only one sensing amplifier is needed (as shown
by the single transimpedance amplifier in Fig. 8b).

Activation function (Block 7)
Ideally, the output current of each bitline (column) pair in a
crossbar-based implementation of a VMM is a linear-weighted sum
of all the wordlines (rows) connected to such column. Since a
combination of linear functions results in a new linear function,
complex nonlinear relationships could not be replicated by an ANN
regardless of the number of the linear neural layers considered. This
problem can be overcome by introducing a non-linearity transfor-
mation on the weighted sum output by each column. This is done by
the so-called neuron activation functions, and the most common
are: Sigmoid (also called Logistic)119,120, Hyperbolic Tangent120 and
Rectified Linear Unit (ReLU)120,121. Also, for the particular case of
pattern classification tasks, the output values of the VMM per-
formed by the last neural layer have the added requirement of being
mapped to the [−1, 1] or [0, 1] range as they indicate the probability
of the input to belong to each class. To this end, the gap difference
between the value of the most active output (column) and the rest
needs to be compressed and the differences among the less active
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outputs, amplified. It must be noted, that although not necessary in
the case of neural networks implemented in the software domain, in
the case of neural networks based on memristor-VMM cores, the
elements of the input vectors to each neural layer must be within a
range of analogue voltages. For this reason, ReLU activation func-
tions, which are by definition unbounded activation functions
[0, ∞), needs to be slightly modified with an upper limit to prevent
the alteration of the synaptic weights recorded in the neural layer
memristors.

All these activation functions could be realized either in soft-
ware or hardware, and each implementation has its own virtues and
drawbacks. In this study, software-based implementations refer to
the designs, where the calculation of the activation functions and
processing of intermediate outputs between ANN layers is per-
formed in a separate hardware unit outside the crossbar. This
hardware unit can be an CPU, FPGA, microcontroller, micro-
processor or printed circuit board (PCB) depending on how cross-
bar architecture is integrated with the other processing units.
Hardware-based implementations refer to the integration of the
memristive crossbars and activation function units into the same
chip. In software based implementations, the output of each
crossbar column needs to be converted to the digital domain using
an ADC (which remarkably increases the area and power con-
sumption) and then sent for the further processing. This is the most
commonly used approach on research prototypes developed as
technology demonstrators due to its versatility, as the activation
function can be implemented and changed by simply modifying the
software code55,100,113–115,122,123. In the context of future product
development, reconfigurable ASICs are proposed for post
analogue-digital signal processing. Conversely, hardware ASIC-

based implementations of activation functions integrated into the
same chip as a crossbar cannot be changed once the circuit is fab-
ricated. Such activation functions can be implemented in both
digital and analogue domains. Digital domain processing leads to
the ADC overhead (same as for software-based implementations)
but is less affected by the noise and transistor mismatches. Digital
domain implementation of a ReLU activation integrated into the
sensing circuit is shown in124,125. In general, analogue CMOS imple-
mentations of the activation functions require a smaller number of
transistors and help to avoid analogue to digital conversion at this
stage. Analogue CMOS implementations of the activation functions
are shown in Fig. 9 (see Fig. 9a for the Sigmoid activation function
and Fig. 9b for the ReLU activation function). Even though such
designs cannot be reconfigured when fabricated, this weakness is
compensated by a much reduced power consumption (estimated in
ref. 102 for a 65 nm CMOS node to be roughly 30 times lower).
References 119,126, presented analogue CMOS implementations of
Sigmoid, ReLU and Hyperbolic Tangent activation functions within
ANNs and Generative Adversarial Networks (GAN), respectively.

Since ANNs need to have a very large number of activations to
achieve high accuracy, the reduced power consumption of such
custom-made analogue CMOS activation functions could still be
excessive. Using a compact and energy-efficient nano device
implementing the non-linear activation functions could further
advance the performance and integration density of memristive
ANNs. Reference 121 proposed the use of a vanadium dioxide (VO2)
Mott insulator device (which is heated up by joule power dissipa-
tion) to achieve the desired ReLU function (see Fig. 9c), and
reference 127 proposed the use of a periodically-poled thin-film
lithium niobate nanophotonic waveguide to implement this

Fig. 7 | Circuit schematics for the sensing electronics placed in at the output of
every column of the memristive crossbar. In all cases, the goal is to translate a
current signal into a voltage signal. a The sensing resistor is the simplest case, as it
translates current into voltage directly by the Ohm’s law. b The use of a TIA allows
to connect the crossbar columns to 0 volts and operate with lower output cur-
rents. As well as in the resistor-based approach, the current voltage conversion is
linear when operating the TIA within its linear range and the output voltage signal
is immediately available as soon as the output of the TIA settles. c For currents

below the nano-ampere regime, charge integration is themost suitable option for
current-voltage conversion. This can be achieved by using a capacitor. As such,
themeasurement is not instantaneous as a constant, controllable integration time
is required before the measurement. d To minimize the area requirements of the
integration capacitor, the use of a current divider allows to further reduce the
current and, with it, the size of the required capacitor. The tradeoff in this case is
with precision (mainly due to transistor mismatch) and output voltage
dynamic range.
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function in optical ANNs. Even though such designs are promising
as a small energy-efficient solution for implementing the activation
functions, their efficient integration with the other peripheral cir-
cuits and CMOS components is still an open challenge.

SoftArgMax function (Block 8)
Instead of the activation functions previously described, the final
synaptic layer in an ANN as those here covered, uses a different block.
In this case it is necessary to have a block thatdetectswhich is themost
active output of the crossbar (i.e., which column drives the highest

current). This block (often named SoftArgMax function or SoftArgMax
activation function) with as many inputs as bitlines has the memristor
crossbar, basically implements Eq. 10:

yi = argmax
zi2Z

softmaxðzÞi
� �

ð10Þ

which indicates that the ith element of the vector Z is the maximum
among all the elements ofZ, and thereby identifies the input pattern as
a member of class i. The input vector Z represents the crossbar

Fig. 9 | Circuital implementations of the analogue activation functions used inmemristive neuralnetworks.Full-CMOS implementations of the a sigmoid andbReLU
activation functions. Aiming to minimize the area footprint of the activation function, c presents a ReLU implementation based on a VO2 Mott insulator device.

Fig. 8 | Equivalent electrical circuit of the topology used to implement the
mathematical difference between two electrical signals. a Assuming that voltage
inputs are unipolar (that is, only negative or positive), it is required to first transduce
the current signals into voltage and then add an operational amplifier in a subtractor

configuration. b If bipolar signals can be applied in the inputs, by biasing the negative
synapticweightswith a voltageoroppositepolarity, summing the resulting currents in
a common node (Kirchhoff’s Law for Current) already solves the subtraction opera-
tion, and only one transimpedance amplifier is required per column.
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outputs. This behaviour is achieved by combining two functions, the
argmax() and the softmax() functions, shown in Eqs. 11 and 12,
respectively.

argmax
zi2Z

ðziÞ : = i=zj ≤ zi8 1< j <K
n o

ð11Þ

softmax zð Þi =
eziPK

j = 1
ezj

ð12Þ

It could be argued that such a behaviour (i.e. identifying the
largest output of the network) could be achieved directly by the
argmax() functionwithout the need of the softmax() operation. This
is because as indicated in Eq. 11, argmax() is an operation that finds
the argument that gives the maximum value from a target function.
So, for inference-only accelerators it is acceptable to fed the output
of the activation functions directly to the argmax() function, omit-
ting the softmax() function. Some studies proposed to implement
the argmax() function via hardware128–148, which could be beneficial
to reduce the total transistor count and power consumption while
at the same time increasing the throughput. In this regard, there are
two possibilities: to use of a CMOS digital block128–131, or to use a
CMOS analogue block132–148, which can either operate with a current
or voltage input (see Fig. 10a, b, respectively). Note that this blocks
in fact implement the so-called winner-takes-all function, widely
used in SNNs and particularly in unsupervised competitive learning
(this could be regarded as similar to the argmax() function but with
the addition of lateral inhibition). The use of a digital block is sim-
pler and more robust (it can be easily written in Verilog or VHDL),
but it presents the big drawback of requiring an ADC at each output
(i.e., column) of the crossbar.

Yet, it is recommended (even for inference-only) to consider the
softmax() function as well, as it turns the vector formed by the output
of the activation functions to a vector of probabilities, where the
probabilities of eachvalue are proportional to the relative scale of each

value in the vector (the summatory of the probabilities of all elements
is equal to 1). Note that the ith output of the softmax() function is
determined not only by the value (z) ith input but also by the value of
the other jth inputs. Furthermore, for training-capable accelerators, it is
usually not possible to omit the softmax() function, as it is required for
calculating the loss function, which determines the way in which the
synaptic connections are adjusted. This process is done by back-
propagating the gradient of each mathematical function of the net-
work, to the previous layer (the details of these procedure will be
further described in section ANN training and synaptic weight update
(Blocks 2, 11-15): Learning algorithm). Since the gradient of the arg-
max() function is always zero, its usage without the softmax() function
would result in no update of the synaptic weights. Most studies
implement this block via software54,57,85, which uses a digitalized
representation of the voltage signal provided by the preceding acti-
vation function (discussed in section Activation function (Block 7)).
This approach requires the use of an ADC at the output of the activa-
tion function for each column (analogue hardware). This digitized
vector is read by a Python57 or MATLAB54 routine running on a PC or
FPGA85 and the highest valued element is identified. Although these
examples are essentially proofs-of-concept focusing on the hardware
implementation of ANNs, it could be argued that future systems-on-
chip including both in-memory-computing tiles and conventional Von
Neumann cores could rely on the latter ones for implementing func-
tions such as softargmax() function on the digitized vector provided
by the in-memory-computing tiles57. Note that in some cases, the
activation function is also implemented digitally and thereby the ADC
block is placed right after the sensing electronics discussed in section
Sensing electronics (Block 6).

Analogue to digital converters (Block 9)
In the cases in which ADCs are needed (either between the output of
the crossbar and the activation function block or between the activa-
tion function block and the softargmax() block), the most important
metrics to consider are: (i) their resolution (as it affects the accuracy),
(ii) sampling frequency (fs) (affects throughput or in other words, the
number of operations per second), and iii) surface area on the die

Fig. 10 | Analogue CMOS implementation of the Winner-Takes-All (WTA)
function. aWTA CMOS block with voltage input291. The gate terminal of transistor
Q5, and the source terminals of transistorsQ6 andQ7 are common to allWTA cells.
bWTACMOS block with current input148. Node Vcom is common to all WTA cells. In

both cases, the output voltage of the WTA cell with the highest input voltage/
current is driven to the positive reference voltage (VDD),while the output voltage of
the remaining WTA cells is driven to ground. The number of cells in the WTA
module is the same to the number of classes of images to identify by the ANN.

Review article https://doi.org/10.1038/s41467-024-45670-9

Nature Communications |         (2024) 15:1974 14



(limits the available silicon area tobedestined to synapticweights, that
is the 1T1R structures, which thus affects cost).

The resolution of ADC required to represent all possible outputs
of the VMMoperation depends on input precision K (DAC resolution),
number of crossbar rows N, and precision of the weights cells M
(conductance resolution), and can be calculated as ceilðlog2ðð2K � 1Þ*
ð2M � 1Þ*NÞÞ96. For example, 1-bit memristors (binary weights) and
binary inputs (1-bit) in a 256 ×m crossbar requires at least a resolution
of 8-bit to discriminate all output levels. 5-bit memristors with the
same vector dimension and binary inputs require a 13-bit ADC, which
represents a serious design challenge to preserve energy consump-
tion/area efficiency and thereby requires a careful cost and overhead
analysis149 since all these metrics are strongly linked. For instance,
based on refs. 150–152, increasing 1-bit resolution or increasing the
throughput by doubling the sampling frequency results in a 4×
increase in power consumption (particularly for highly scaled CMOS
technology nodes, where the power consumption is usually bounded
by the thermal noise153). Similarly, cutting the power consumption by
half or adding 1-bit resolution comes at the expense of 25% more sili-
con area. Moreover, ADC can consume up to 70–90% of the on-chip
area of the crossbar-based computation unit, including memristive
crossbar and peripheral circuits, and up to 80-88% of energy55,154,155. In
summary, ADCs are commonly the largest and most power-hungry
circuit block in a memristive neural network55,156. For these reasons,
many authors focusing on the optimization of the 1T1R memory cell
structures have opted for using off-the-shelf integrated circuits,
assembled in printed circuit boards54,85, as in this way they can avoid
the limitations posed by the trade-offs between resolution, area and
power of the ADCs. Nonetheless, for full on-chip integration of mem-
ristive neural network, the impact of ADC resolution on VMMaccuracy
needs to be carefully evaluated to identify the lowest ADC resolution
(and thereby required Silicon area) while preserving the neural net-
work accuracy91,92.

Overall, the choice of ADC architecture depends on the needs of
the application and proper system-level design can be very helpful to
identify the required ADC performance. As a rule of thumb, ADCs with
higher resolutions are slower and less power efficient, whereas the
ADCs with a higher sampling frequency have worse energy efficiency
and lower resolution. Thereby, if the focus is set on achieving high-
resolution (>10-bit) successive approximation register (SAR-ADC,
Fig. 11a) or delta-sigma (ΔΣ-ADC, Fig. 11b) can be utilized as they have
small form factors and the best signal-to-noise and distortion ratio
(SNDR). Furthermore, SAR-ADC and controlled oscillator-based ADCs
(Current-Controlled-Oscillators -CCO, see Fig. 11c- and Voltage-
Controlled-Oscillators -VCO, Fig. 11d-) are more suitable to smaller
technology node implementations95,117. In this regard, and unlike the
more commonly used VCO-based ADCs, CCO-based ADCs such as the
one proposed by Khaddam-Aljameh et al.71 (see Fig. 11c) eliminate the
need for additional conversion cycles and are amenable to trading off
precision with latency. As such, this approach facilitates having one
converter per column of the crossbar, thus minimizing the overall
latency as no resource sharing will be required. On the contrary, if the
focus is set on the sampling frequency (with reading times in the order
of 10 ns), low-resolution/high-speed-flash ADC (Fig. 11e) can be applied
via timemultiplexing tominimize die area as for instance ADCswith at
least 8-bit resolution are necessary to achieve high (>90%) classifica-
tion accuracy in a ResNET50-1.5 ANN used to classify the ImageNET157

database or in a multi-layer perceptron to classify the breast cancer
screening database57. This approach requires the use of analogue
multiplexers (block 11).

In general, the reduction of ADC overhead is one of the main
challenges in memristor-based ANN hardware design. One way to
address this problem is approximate computation or using lower
precision ADCs than required96,158. The other method is sharing a
single ADC across several columns or using a single ADC per

crossbar tile159,160. However, ADC sharing requires additional multi-
plexers and sample-and-hold circuits and also increases latency96

(i.e. more time is required to process each input pattern, thus
reducing the throughput of the ANN). In binarized networks, ADC
can be replaced by a 1-bit comparator96 or ADC-likemulti-level sense
amplifier158.

Having introduced the interplay between crossbar size, input
vector resolution,memristor’s available levels andADC resolution, and
how the ADC resolution impacts the Silicon area, it is worth discussing
how these set a constraint for how the memristive ANN will handle
input vectors with bipolar (positive and negative) elements. The
obvious approach i) is to design the DAC circuits with the capability of
providing both positive and negative voltages161. This means doubling
the number of DAC output levels, and thereby increasing the DAC
resolution in 1 bit (with the associated increase in the Silicon area cost
as explained in Section Input driving circuits (Block 4)). Nourazar et al
suggest in162 the use of an analogue inverter with low output impe-
dance which is alternatively connected to the DAC output or bypassed
based on the sign bit. Nonetheless, increasing the input DACs resolu-
tion by 1 bit, also means increasing the output ADCs by 1 bit, as the
number of levels to be distinguished doubles. Therefore, not only the
system becomes more sensitive and error-prone, but also its power
consumption increases exponentially as the resolution of DACs and
ADCs increase163,164. An alternative to avoid the Silicon area and power
consumption is to apply the positive and negative inputs in two
separate read phases with unipolar voltages and subtracting the
resulting ADC outputs via digital post-processing. This is similar to
what the platform ISAAC160 does, which provides 16-bit signed data to
the crossbar in 16 cycles (one bit per cycle) in 2’s complement format.
Despite being an appealing solution from the cost side, this approach
comes with an inevitable reduction of throughput as at least two
separate read phase must be employed to complete a single VMM
product.

ANN training and synaptic weight update (Blocks 2, 11-15)
Apart from driving the input and output signals, to perform a fruitful
VMM operation, it is fundamental to set the conductance of the
memristors in the crossbars to the required values. In the context of
ANNs, the process of determining such values is called training or
learning, and it can be classified based on i) the nature of the training
algorithm, and on ii) how the selected algorithm is implemented. First,
regarding the nature of the training algorithm, the typical method of
choice for classification problems (as the example discussed here) is
supervised learning. Supervised learning is a machine learning
approach that is defined by the use of labelled datasets, i.e., the
training and test data are paired with the correct label. For the MNIST
dataset, this means that an image displaying the number ‘9’ is paired
with a tag with the value ‘9’. By using labelled inputs and outputs, the
model can measure its accuracy and learn over time. Other learning
approaches include unsupervised learning165, semi-supervised learn-
ing, adversarial learning and reinforcement learning, but their hard-
ware implementation is much more complex. Note that most of the
literature claiming unsupervised learning with memristive devices
used software166, and we are only aware of a few works53,116,167, that
demonstrated hardware-based unsupervised learning. Second, and
concerning how the learning algorithm is implemented, this could be
done ex situ, that is, using an idealizedmodel of the networkwritten in
software (blocks 2, 11-14) and writing the synaptic weights to the
conductances once the training is finished or in situ, that is, using the
memristive ANN to compute the VMM operations (blocks 12-15) and
progressively updating the concuctance values during the training
process. In the following sub-sections the basics of the supervised
learning, the difference between ex-situ and in-situ training and the
procedure to tune the memristor conductance will be further
discussed.
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Learning algorithm. During the supervised learning, we compute the
output of the ANN when presenting an input vector from the training
dataset. Such output is then compared against the label associated to
the input vector to determine the network’s error. For the case of ANN
with n2 inputs,m outputs and no hidden layers, such error is a function
of the n2m synaptic weights of the network (Rn2m!R), often called
loss function. In order to reduce the error, the synaptic weights are
updated periodically after a number z of input vectors (images) are
presented to the network. Then, the learning procedure can be
understood as a multivariate optimization problem, where the

synaptic weights must be adjusted to values that minimize the loss
function. To achieve this goal two families of algorithms could be
employed: gradient-free and gradient-based algorithms (as shown in
Fig. 12a). Gradient-free methods such as the Particle Swarm
optimization168, Genetic Algorithms169 and Simulated Annealing170

algorithms are more demanding from a computational point of view,
andhence, they are rarely employed for ANN training, bywhich they lie
beyond the scope of this article.

To understand the basics of the gradient-based algorithms, let us
consider an example in which the loss function is a convex bivariate-

Fig. 11 | Schematic diagrams of ADC circuits conventionally used in the literature. a SAR-ADC, b ΔΣ-ADC, c CCO-ADC, d VCO-based ADC and e Flash ADC.
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function, which describes the error of the output (against the labels)
for a small networkwith only two inputs andoneoutput (and thereby 2
synapticweights, as presented in Fig. 12b), that isR2!R. The gradient
for such a function indicates, for a random point x1 = (w1,w2), the
direction in which the loss increases. Using the information provided
by the gradient, we can take a step by advancing contrary to the gra-
dient to a new point x2 = (w’1,w’2) and expect a lower loss. We can then
repeat the same action and make a further step in the direction
opposite to the gradient for the point x2 and reach a new point x3 =
(w”1,w”2). Such a process will continue iteratively until ideally finding
that the gradient is 0, or at least lower than a termination criterion.
Within the field of supervised training, each of these iterations is called
Epoch. At this point (assuming that we managed to avoid the local
minima) we would have found the values forw1 andw2 that minimizes
the loss function. A frequently used loss function for training ANNs is
the cross-entropy loss, which is calculated as follows:

H = �
X
i

yi log pi

� �
ð13Þ

were pi is the probability of each class for a certain input pattern
(calculatedwith the softmax function), and yi is 1 only for the classwith
the highest probability and 0 otherwise. However, when generalizing
these concepts to Rn2m!R, a plethora of challenges and varieties
appear, depending on: i) how the required gradient of the loss function
is computed, ii) how the loss function is evaluated, iii) how the direc-
tion in which to advance is determined, and iv) what is the size of the
step in each iteration (among other factors).

In most ANNs, the gradient of the loss function is normally com-
puted by the backpropagation algorithm171. Then the evaluation of the
loss function could be done deterministically or stochastically. For a
deterministic evaluation, all the samples in the train dataset are pre-
sented to the network and the loss is computed as the average loss
over all the samples. For the stochastic evaluation, the loss is estimated
by presenting one single input vector, which introduces a higher
degree of variability but speeds up the training process. Alternatively,
the use of batches has been also proposed to help reducing the
variability, by computing the loss over a batch of input vectors. In
other words, under deterministic evaluation of the loss function and
considering the MNIST dataset, every Epoch supposes the presenta-
tion of 60,000 images. Instead, during stochastic evaluation, every
Epoch may consist in presenting 1 image. Note that for the sake of
comprehensiveness, and to provide the most complete overview as
possible to potential readers who are not already familiar with the field
of deep learning, we list both deterministic and stochastic optimiza-
tionmethods.However, deterministicmethods are rarely (if ever) used
inmodern deep learning frameworks,with stochastic optimizers being
the de facto standard for the entire community. The reason for this is
the high computational burden involved in sending the entire dataset
to compute the gradient.

For each case (deterministic/stochastic) there are different algo-
rithms to determine the optimum direction in which search for the
minima based on the information provided by the gradient. These are
the so-called optimization algorithms. For the case of deterministic
evaluation, common optimization algorithms are the following: (i)
Gradient Descent165 (the simplest one and closest to the previous

[171]

Op�miza�on Algorithm

Determinis�c

Stochas�c

+

Learning rate

• Stochas�c Gradient Descent[179]
• Mini-batch Gradient Descent [180]
• Manha�an Update Rule [181]

• Conjugate Gradient
• Scaled[173]
• Polak-Ribiere [175]
• w/Momentum [175]
• w/Powel-Beale restarts [174]
• Fletcher-Powell [174]
• Manha�an Update Rule [181]
• Lavenberg-Marquardt [176]
• BFGS Quasi-Newton [172]

How do we update the 
weights during each itera�on?

• Fixed Learning rate [178]
• Variable Learning Rate
• Adap�ve Gradient Algorithm

(AdaGrad) [182]
• Root Mean Square Propaga�on

(RMSProp) [183]
• Adap�ve moment es�ma�on

(ADAM) [184]

88

Fig. 12 | Basic concepts of neural network training. a Simplified organization of
the most common terms reported in the literature, differentiating between gra-
dient based and gradient free training tools. For the gradient-based tools, we

propose an organization of the algorithms for (i) gradient computation, (ii) opti-
mization and (iii) learning rate. b Illustration of the gradient descent method, for a
trivial 2 × 1 neural network trained with supervised learning.
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paragraph’s explanation) and its variants (Gradient Descent with
Momentum165), (ii) Newton (analytically complex, as besides the gra-
dient it also requires the Hessian matrix associated of the loss func-
tion) and Quasi-Newton methods (which operates over an
approximation of the Hessian matrix to simplify the problem compu-
tation, as the Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton172),
(iii) Conjugate Gradient methods (an intermediate between the Gra-
dient descent and the Newton methods which avoids the use of the
Hessian matrix and instead makes use of the conjugated direction of
the gradient, e.g. Scaled Conjugate Gradient173, Conjugate Gradient
with Powell-Beale restarts174, Fletcher-Powell Conjugate Gradients175

and Polak-Ribiere Conjugate Gradient165,175). Alternatively, other
methods are the Levenberg-Marquardt176 (uses the Jacobian matrix
instead of the Hessian Matrix), Resilient Backpropagation177 and One
Step Secant178, but these are more demanding from a computational
point of view. For stochastic evaluation, the most common optimiza-
tion algorithms are: the i) Stochastic Gradient Descent179 (the sto-
chastic equivalent of the Gradient Descent165 method previously
mentioned, assuming that one epoch consists of only 1 training input
vector) and Mini-batch Gradient Descent180 (which is a generalization
of the stochastic gradient descentmethod for Epoch sizes greater than
1 and smaller than the entire dataset) and ii) the Manhattan Update
Rule181 (synaptic weights are updated by increasing or reducing them
depending on the gradient direction, but the step is equal for all
of them).

The size of the step made in each Epoch to update the synaptic
weights is critical because it severely affects the probability of the
algorithm to converge, as well as the convergence time, i.e., a large
step value will cause the learning not to converge, while small values
will result in a sometimes-unacceptable learning time. The simplest
approach is to consider a fixed step, although the most advanced
learning methods rely in a variable step that is auto-adjusted based on
a variety of metrics. In particular, for the case of deterministic eva-
luation of the loss function the Variable Learning Rate Gradient Des-
cent is often employed165, and for stochastic evaluation of the loss
function using a mini-batch of images diverse methods have been
employed, including Adaptive Gradient Algorithm (or AdaGrad)182,
Root Mean Square Propagation (or RMSProp)183, Adaptive Moment
Estimation (or Adam)184 and Adadelta185.

Each training algorithm has different mathematical character-
istics, which can severely change the accuracy and computing time.
For this reason, before employing any of them to compute the 60,000
images of the MNIST dataset, we conduct a small test (called k-fold

cross validation) in which a small number of training images and the
accuracy depending on the training algorithm is recorded. As an
example, Supplementary Algorithm 2 shows the detailed MATLAB
code used for this k-fold cross validation using 100 images. The small
number of training images is partitioned into k groups: k-1 groups are
effectively used to train the network,while the remaining group isused
to validate the training results. Then, this process is repeated r times, in
each of them using a new set of k groups formed by the same small
group of images (100 in this example) but shuffled in each repetition.
The ideabehind this approach is to checkwhether the trainedaccuracy
depends on the set of data used for the training or not. In this example
we divided the 100 images in 5 groups (k=5), leading to 80 images for
training and 20 for validation (which are different in each repetition),
and the accuracy of the ANNwas recorded for every repetition (r=10 in
this example) for each training algorithm. For brevity, we considered
only the algorithms for the deterministic evaluation of the cost func-
tion provided in the MATLAB Deep Learning toolbox. This implied in
total 110 trainings for the 100 images. The result of these tests are
reported in Fig. 13a, b, which shows that the ScaledConjugateGradient
and the Levenberg-Marquardt learning algorithms176 provide the
highest accuracy; however, the first one is much faster, and for this
reason it is the one selected for this example. It is also clear from
Fig. 13a, that apart from a lower accuracy, the accuracy obtained
with Gradient Descent with Momentum is highly dependent on the
training and testing datasets. Further details concerning each training
algorithm lie beyond the scope of this article, as we focus on the
crossbar-based implementation of the ANN.

After the validation, the real training using the 60,000 training
images and the 10,000 testing images is conducted using the Scaled
Conjugate Gradient algorithm. The MATLAB code employed to train
an ANN containing one 64 × 10 Single Layer Perceptron (SLP) ANN —

using MNIST images downsized to 8 × 8— is shown in Supplementary
Algorithm 3; the code depicts both the ANN creation and training. The
quality of the training process can be evaluated through different
figures-of-merit (see definitions in Table 2), which can also be used to
define a stopping point for the training procedure. This is critical since
if too few iterations are considered during the training phase, the ANN
mayunderfit the trainingdata, anddonotproperly recognize the input
patterns (even during the training phase). On the contrary, excessively
training the ANN results in an overfitting of the training data, which
although accurately recognizing the training images, reduces the
ability of the ANN to correctly recognize unseen input patterns (used
during the testing phase).

Fig. 13 | k-fold cross validationwith 10 repeats considering 11 different learning
algorithms. 165,172–178 The accuracy obtained in each repeat is plotted against
the CPU run-time of the learning algorithmwhen trained for the MNIST dataset for
two different resolutions: a 8 × 8 andb 28× 28 px. images. Although the Levenberg-
Marquardt algorithm shows the higher mean accuracy, it is also the slowest to
converge in our implementation, especially when considering large-size networks,

as those required for classifying the 28 × 28 px. images. As a trade-off between
accuracy and learning time, we have considered for the example to be described in
later in this article, the Scaled Conjugate Gradient, as the accuracy difference with
the Levenberg-Marquardt method is not statistically relevant: i.e., the observed
difference might be due to a data fluctuation in the test dataset.
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As an example, Fig. 14 shows themetrics for the training obtained
from Supplementary Algorithm 3. The most popular figure-of-merit is
the inference accuracy (see Fig. 14a), that is the ratio between the
number of correctly-classified images, respect to the total number of
images presented to the ANN in each iteration (often called epoch).
Another popular metric is the confusion matrix (see Fig. 14b), which
displays the ability of an ANN to associate each input pattern with its
corresponding class (in this example a digit from 0 to 9) and allows to
graphically represent the inference accuracy for each possible input.
Also, the loss function used for training is a critical metric. One of the
most commonly employed loss functions is the Cross-Entropy (see
Fig. 14c and Table 2), which can be computed as the difference
between the predicted value by the ANN and the true value. Last but
not least, other relevant metrics include the Sensitivity (Fig. 14d),
Specificity (Fig. 14e), Precision (Fig. 14f), F-1 score (Fig. 14g) and κ-
coefficient (Fig. 14h), whose definition is presented in Table 2, in terms
of the True Positives (TP, images from class k classified as members of
the class k), True Negatives (TN, images which are not members of
class k and that are not classified as class k), False Positive (FP, images
that do not belong to class k but are classified as class k) and False
Negatives (FN, images thatdobelong to class k, but are not classified as
class k). In supervised classification algorithms the cross-entropy
metric is used as the loss-function to be minimized during the train-
ing phase.

It is important to emphasize that thefigures-of-merit generatedby
the software (MATLAB, Python) code during the training phase until
this point have no connection with memristors or crossbar arrays. We
note that some articles focused on the fabrication and device-level
characterization of one/fewmemristors62–70,186,187, also present some of
the figures-of-merit generated by a software-based training ANN pro-
cess (similar to the ones in Fig. 14) in order to claim that their devices
exhibit potential for neuromorphic applications. This is not a recom-
mended practice and should be always avoided, as the models
involved in these cases keep little connection with the fabricated
devices, leading to unrealistic performance metrics.

Ex situ versus In situ training. For ex situ training, the resized n × n
images are introduced in a software-based ANN with a size n2 ×m. The
software calculates the synaptic weights that minimize the loss func-
tion by applying the selected algorithm (described in the pre-
vious Subsection), either for a certain number of Epochs or until the
loss function is below a given threshold. Then, the synaptic weighs
(block 11) are recorded into the memristive crossbar using the Write-
Verify approach (block 12-14, described in the following Subsection).
Ex situ training has the advantage of requiring little/no circuit over-
head to perform quick tests of the classification performance of the
network, and hasmade possible to evaluate the performance of home-
made memristive crossbar-arrays93,188. Note that in their most simple
implementation, the non-idealities of the hardware memristive cross-
bar notably degrade the accuracy obtained with ex situ trained mem-
ristive neural networks. To avoid this loss of accuracy, hardware-aware
training methods, in which device non-idealities are incorporated
during training have been proposed in the literature189,190.

In situ training stores and updates the synaptic weights (block 15)
directly in the memristors, and performs computations (for example,
forward passes) at the original place where the neural network para-
meters are stored, which has many advantages. For example, it avoids
the need to implement a duplicated system in digital computers, as in
ex situ training schemes,which substantially enhances the area/energy
efficiency of the system by eliminating the processor-memory bottle-
neck of digital computers and avoids the mapping process. More
importantly, in situ training with backpropagation is capable of self-
adaptively adjust the network parameters to minimize the impacts of
the inevitable non-idealities of the hardware (such as wire resistance,
analogue peripheral asymmetry, non-responsive memristors,Ta
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conductance drift and variations in the conductance programming)
without any prior knowledge of the hardware54. However, there are
two factors that complexifies the implementation of in situ training.
First, devices involved require high resolution to program the weight
update accurately and a high endurance due to the frequent SET/
RESET operation during training process191. Mixed-precision training,
which accumulates theweight update in software andonlyupdates the
memristor devices when the accumulated value surpasses the pro-
gramming granularity, can greatly relax requirement for conductance
update resolution and endurance and allow software-comparable
accuracy to be achieved192,193. Second, to fully exploit in situ learning in
a practical application, it is necessary not only to perform the VMM in
the crossbar, but also to carry out the learning algorithm on-chip. In
this regard, the challenge is twofold: On one hand, it has as a pre-
requisite a high maturity of the memristor technology involved. This
means that the memristor stack must be capable of being safely inte-
grated in the back-end-of-line of the CMOS process without compro-
mising the front-end-of-line. This is already a limitation to many
research studies in which the stack involves materials and processes
that are unfriendly to the typical CMOS stacks. On the other hand, and
provided that the previous condition can be met, the development of
the necessary on-chip electronics is not straightforward and supposes
amajor cost for research programs. As such, the trade-of solution is to
have the peripheral circuit electronics implemented off-chip with off-
the-shelf components. In this way, the impact of the analogue elec-
tronics can be assessed more realistically without incurring into pro-
hibitive expenses, leading to a variety of prototypes in which the
circuitry needed for thebackpropagation are implementedoff-chip, an
approach here labelled as partial-in situ. This is the case of refs.
54,105,194. In all these works the VMM operation required for the
forward pass is performed by the memristor crossbar and the digita-
lized output vectors recorded by an acquisition printed circuit board.
Then the output vector is processed by the training algorithm in
software to determine how to update the synaptic weight after each
training epoch. Through this partial approach, in situ training of ANN
accelerators and feed-forward ANNs were demonstrated from fully-
connected neural networks to convolutional neural networks (CNNs),
showing improved ability for pattern classification. Despite the learn-
ing methods described in the previous Subsection also being valid for

in situ training, the usual practice reported in the literature for this
kind of training has been the use of the so-called Manhattan Update
Rule105,194, or the Stochastic Gradient Descent54.

Weight programming. The weight programming stage is the process
by which the conductance (i.e., weights) of the memristors are upda-
ted to either map the ex situ trained weights or by following the spe-
cific rules of the learning algorithm for in situ approaches. The weight
update process is implemented by applying voltage or current pulses
to the memristors (block 13 and 14), following the Write-Verify (or
Close Loop Tunning)194–196, or the Write-without-Verify (or Open Loop
Tunning)103,107,197,198. The difference between them is that for the write-
verify approach a read pulse is applied in between successive write
pulses, to measure the conductance achieved after a write pulse and
determine whether the weight update has been completed, or more/
higher pulses are required. When the conductance of the memristors
in the crossbar require a frequent update, the write-without-verify
method is the most appropriate because it preserves the high-speed
operation and keeps the hardware overhead to aminimum, at the cost
of incurring in a higher writing error. On the contrary, if better con-
trollability of the conductance values is preferred over high-speed
operation or if a frequent conductance update is not a major
requirement, write-verify has been pointed out as the best option.

The processes by which the memristor conductance is increased
and decreased are called potentiation and depression, respectively,
and have been observed when applying different sequences of voltage
pulses199–204. They are associated with the modification of one/few
properties of the materials in the memristive device (e.g., position of
atoms, phase, polarization, spin, etcetera). A plethora of studies have
revised the different switching mechanisms of memristive
devices205–212, therefore we will not further dig into this issue. But the
important thing from an ANN point of view is that the conductance
change during the potentiation and depression processes is in most
cases nonlinear. Introducing nonidentical pulses can help to reduce
non-linearity, and some studies reached near-linear and symmetric
potentiation and depression process by applying incremental positive
pulses and decremental negative pulses, respectively213. In the 1T1R
architecture, the third terminal (i.e., the gate of the transistor) offers
higher controllability in tuning the conductance of the memristor54.

Fig. 14 | Typicalfigures-of-merit used toquantify the performanceofANNs intended forpattern recognition. In this case, they are plotted as a function of the training
epochs. a Accuracy, b confusion matrix, c Loss function (cross-entropy), d Sensitivity, e Specificity, f Precision, g F1-score, h κ-coefficient.
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However, using a variable pulse scheme usually requires a write-
verify approach to first identify the conductance state and then apply
the correct pulse scheme to the device, or storing externally the pulse
amplitudes to apply to each weight. For this reason, these approaches
have been demonstrated mostly for the weight update of isolated
devices, with just a few examples of on-chip integrated approaches214.
Also, both options inevitably increases the complexity of the periph-
eral circuits as well as the latency and energy likely making the in situ
weight updatewith variable pulse schemes just as inefficient asdoing it
externally in digital. Thereby, only approaches where identical pulses
are applied to devices are used when designing neuromorphic circuits
aiming to be energy efficiency. Yet, even the conventionalWrite-Verify
pose a great exigence on the current measuring block, which must be
accurate both for measuring the current through a single device
(during the weight update phase) as well as through the entire column
(during inference). In this regard, a promising new approach has been
recently proposed by Büchel et al.215, aiming to further optimize the
Write-Verify method. In this variant, instead of updating each weight
with the goal of reaching a given conductance target, the weights are
updated in order to minimize the error of the VMM product. As such,
the design requirements for the current measuring circuits are less
exigent.

Fabrication/integration of the ANN chip
Crossbar arrays of two-terminal metal/insulator/metal (MIM) memris-
tive devices can be fabricated easily using standard lithography and
deposition techniques; this has been readily achieved by multiple
groups57,64,68–70,85,93,105,216,217. Some groups prefer to incorporate a tran-
sistor in series to each MIM cell to obtain a better control over the
currents through the device (i.e., improve conductance controllability
and minimize sneak path currents)53–55,60,61,102,113,167,194,218–222,). A common
practice is to fabricate the transistors in a company and mount the
MIM cells on top of the transistors in-house on the as-received wafer
(after the removal of the passivation film or native oxide, so that the
terminals of the transistor can be reached)48,57,219.

The crossbar (block 5 in Fig. 2) is then integrated in the ANN by
connecting each one of its inputs to a DAC (block 4, to apply the
analogue voltage that represents the brightness or colour of eachpixel
of the image), and each one of its outputs to a TIA (block 6, to convert
the output current into voltage); then, the analogue voltage output of
the TIA is feed to the block that implements the activation function
(block 7) and softargmax() function (block 8). To fully exploit the
advantages of the crossbar array of memristors, the best scenario
would be to fully integrate the CMOS blocks (DAC, TIA, ADC) on-chip.
However, to avoid slow and expensive microchip fabrication (i.e., tape
outs), most groups prefer to build the CMOS blocks off-chip. In the
following lines we list the most common strategies followed for the
hardware-implementation of memristive ANNs, from the most rudi-
mentary up to the most complex:

The most elementary approach is a sequential (row-by-row) ana-
logue multiplication with binary inputs194, which does not perform an
analogue VMM operation because, despite the multiplication opera-
tion is done in each memristor, the accumulation is performed by
external circuitry. Then, analogue VMM has been demonstrated both
for binary inputs and weights218–220, as well as for binary inputs and
analogue/multilevel weights60,85,105,217. In both cases, the circuit com-
plexity is slightly reduced by avoiding the use of DACs in the inputs of
the crossbar. Advantages specific to each case are for the case of binary
weights a simpler and more reliable conductance adjustment, and for
analogue/multilevel weights a higher number of bits per synapse.
However, in both cases the possible input voltages are only 0 or VREAD,
meaning that it can only work with two colours per pixel (i.e., black/
white images). The use of analogue/multi-level input signals is bene-
ficial to process images with more colours per pixel, but it sets the
requirement of a DAC for eachwordline.When the number of levels of

the input signal increases, so does it the complexity of the DAC circuit
(and with it, its power consumption and area). The most common
approach in this contest is the use of an Off-the-shelf, external DAC to
drive the analogue inputs54,55,102,222, which are integratedwith the rest of
the circuit (i.e. the memristor crossbar) in printed circuit boards. For
truly full-hardware, full-analogue VMM approaches, it is necessary to
integrate on the same silicon chip the DAC, ADCs and memristor
crossbar. This is usually limited by the area requirements of these two
analogue blocks. A cost-effective recurrent solution has been to use a
smaller number of DACs and share them among different rows by
adding a layer of analogue multiplexors between the DACs and the
wordline inputs93,95,221. With this approach (which we could refer to as
On-chip time-multiplexed analogue input – Analogue/Multilevel
weights), a given VMM operation is divided in n different sub-VMM
operations and the partial results of each of them are added up at the
end, saving area and power at the cost of throughput reduction.
Finally, the most advanced prototypes exploit the time-encoding
scheme, which simplifies the DAC design and allows one DAC per
channel, without losing resolution of the input vector57,71,167. We label
this case as On-chip multi-bit input – Analogue/Multilevel weights. In
Table 3, we present a brief comparison between the most advanced
hybrid RRAM/CMOS ANNs architectures and the Fully-CMOS versions
commercially available. As shown, they achieve a similar performance
in terms of throughput, but sometimes the hybrid RRAM/CMOS
architectures are still limited by the large area consumptionof theADC
circuits.

For all cases, the performance (defined in terms of accuracy,
operations per second, power consumption, and area requirements) is
limited by the electrical characteristics of the memristor devices (non-
idealities such as sneak-path effect, noise, line resistance which are
further discussed later in the article) and the available CMOS periph-
eral circuitry. To maximize the achievable performance with a given
memristor technology is critical to select adequate peripheral circuits
(described in Section Structure of memristor-based ANNs). Since the
design and further tape-out (i.e., fabrication) of customCMOSASICs is
time-consuming and expensive, it is imperative to keep the number of
design-fabrication-measurement cycles to a minimum. To meet this
goal, chip designers rely on simulators, which are capable of providing
an estimation of the integrated circuit performance and even spot
possible design troubles even before the tape-out phase.

Simulation of memristive ANNs
Simulators are an essential tool used from low-level device modelling
to high-level system exploration. Figure 15 illustrates the five major
abstraction levels on which simulations are used, whereas Table 4
presents a comprehensive list of the software considered in the lit-
erature for ANN andmemristive ANN simulation. In general, the trade-
offs between the simulation speed and the accuracy (i.e., how close the
electrical simulation resembles the real measurements of the circuit)
of the simulated results have to be considered. On one hand, simula-
tions on the neural network level require a high performance due to
the vast amount of operations (e.g., VMM, pattern flattening, activa-
tion functions) and, hence, it is not optimized in terms of simulation
accuracy. On the other hand, simulations conducted on the device
level have to compute accurate physical models to mimic the beha-
viour of the devices, which slows down the simulation speed. In the
following paragraphs we briefly summarize some of the main simula-
tors developed ad hoc for the simulation of ANNs at different
abstraction levels.

Neural Network level simulation
The highest abstraction level in neural network simulation is com-
prised by the conventional machine learning tools such as the open
source PyTorch223 (originally developed byMeta AI) and TensorFlow224

(proposed at Google Brain) frameworks, widely used in computer
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vision and natural language processing. Both are Python libraries
highly optimized to exploit GPUs and CPUs for deep learning tasks.
These simulators allow training and developing complex neural net-
work architectures (e.g., CNNs architectures such as the VGG and
AlexNET or Recurrent Neural Networks - RNN). Although extremely
popular, these simulators provide no link at all with memristive or
CMOS devices, as in both cases the magnitudes involved are non-
dimensional and the synaptic connections are represented by loosely
constrained numerical values.

A common workaround to partially solve these limitations, par-
ticularly for the case of Spiking Neural Networks (a particular kind of
ANNswhere the input vector is codified in terms of firing rate or timing
instead of voltage amplitudes), has been the use of biology-oriented
simulators. Among them, Brian2225 written in Python can be easily
executed on a CPU or GPU while implementing a wide variety of
neurons, input encoding methods and several learning methods such
as Spike-Timing Dependent Plasticity (STDP). Taken all this into
account and considering that the focus of Brian2 is on flexibility and
ease of use rather than performance, it only supports simulations
running on a singlemachine. An alternative simulator thatmaintains all
these features while also providing support for distributed simulations
across a cluster is the NEST simulator226. Another alternative to Brian2
capable of providing better performance at the cost of a lower fidelity
to the real biological model is the BindsNET simulator227, a Python
library built on top of PyTorch223. Apart from supporting CPU/GPU
operation and accounting for a wide variety of neurons, input encod-
ing methods and several learning methods (such as STDP), BindNET
can be used on multiple hardware platforms like: ASIC, FPGA, Digital
Signal Processing (DSP) or Advanced RISC Machine (ARM) based
platforms.

Another interesting approach proposed in the literature is the
addition of custom modules into the TensorFlow or PyTorch neural
network models, which are responsible of capturing the non-idealities
induced by the use of memristors. This approach could be treated as a
sub-category within this group, which accounts for hardware cali-
brated devicemodels.Whitin this group, we found for instance theDL-
RSIM simulator, proposed by Lin et al.228, which simulates the error
rates of every sum-of-products computation in memristor-based
accelerators externally, and injects the errors in targeted
TensorFlow-based neural network models. The same philosophy was

adopted by Sun et al.229, placing special emphasis on the effect of the
non-linear and quantized nature of the synaptic weight update. Since
both cases consider TensorFlow for the simulator implementation,
they offer support for pre-trained DNN conversion, GPU-accelerated
inference and parameter mapping. However, the negative side is that
these are rather closed pieces of software, which has been partially
solved by Ma et al.230 and Yuan et al.231, by using PyTorch instead of
TensorFlow, focusing in this case on the weight pruning and quanti-
zation effects. Also, the IBM Analog Hardware Acceleration Kit pro-
posed by IBM232 could be listed within this group. This framework
simulates neural networks with hardware-calibrated device models
and circuit nonidealities. However, it provides only accuracy estimates
using hardware-calibrated noise models and lacks the cycle-accurate
simulations of runtime or energy. A final example (although other
cases exist) is the NeuroSim91. This simulator can account for the
characteristics of the memory type, non-ideal device parameters,
transistor technology node, network topology, array size and the
training dataset by mapping ANN models onto tile resources, and
scheduling the full workload execution, from which it reports hard-
ware aware accuracy metrics. Although it also reports other system
parameters such as area, latency and dynamic energy consumption
these are obtained by analytical estimations and not cycle-accurate
simulations. All in all, these toolkits are very useful for an early-stage
estimation of the learning accuracy in run-time.

System-level simulation
The highest abstraction level that keeps some degree of connection
with the hardware implementation of the neural network is the System
Level simulation, which can be thought as a particular case of Trans-
action Level Modelling (TLM). In TLM the details of communication
among computation components are separated from the physical
mechanisms governing those components. Communication is mod-
elled by channels, while transaction requests take place by calling
interface functions of these channel models. Unnecessary details of
communication and computation are hidden in a TLM and may be
added later (see the following Sub-Section Architecture level simula-
tion). This can be greatly exploited when using TLM for top-down
approaches that start the design from the system behaviour repre-
senting the design’s functionality; then, generate a simplified system
architecture from the behaviour, and gradually reaches the

� Helpful for iden�fying the physical 
mechanisms

� Fast predic�on of parameters change 
on the electrical behaviour

� Develop the model for further stages

Device Simula�on

� Ginestra [257]
� T-CAD [258]

Finite Element

� Highest simula�on accuracy 
� Descrip�on at the transistor level
� Closest model to the tape-out stage
� Accounts for parasi�cs (RRAM and 

CMOS), variability, power, accuracy, 
latency, etc.

� Accuracy vs. performance trade-off is 
possible

Circuit Simula�on

� NVSim [245]
� Aguirre et al. [253]
� Fritscher et al. [256]

Transistor Level Modelling

� Biggest abstrac�on level
� Capable of accoun�ng for synap�c 

weight quan�za�on
� Suitable to evaluate training methods
� Purely numerical magnitudes (no 

connec�on with electrical 
magnitudes in most cases)

Neural Network Simula�on

� Pythorch [223]
� Tensorflow [224]
� Brian2 [225] 
� NEST [226]
� BindNET [227]

Python, MATLAB, C, C++

� Adds hardware calibrated models for 
memristors

� Power/latency/speed is es�mated 
analy�cally

� Does not provide cycle-accurate 
simula�on 

� Hardware aware accuracy es�ma�on

Neural Network Simula�on with 
hardware calibrated models

� NeuroSIM [91] 
� DL-RSIM [228]
� Sun [229]
� Ma [230]
� Yuan [231]
� AIHWKIT [232]

Python, MATLAB, C, C++

� Can describe a complete system
� Detail level can be adjusted based on 

accuracy vs. speed trade-off
� Detaches communica�on from the 

blocks itself. 
� Can account for �ming aspects in the 

computa�on and communica�on

System Simula�on

� Lee et al. [235]
� BanaGozar et al. [236]

Transac�on Level Modelling

� Blocks are represented in terms of 
registers

� Accounts for DACs/ADCs resolu�on, 
latency

� Include D2D / C2D
� Useful tool for architecture 

explora�on

Architecture Simula�on

� NVMain [238, 239]
� MNSIM [240, 241]
� CIMSIM [242]
� NVM-SPICE [252]

Transac�on / Register-Transfer 
Level Modelling

Simula�on Speed

Logical/Behavioural  Simula�on Electrical / Physical Simula�on

Simula�on Accuracy

SystemC, SpecC, C++
Verilog, VerilogA, VHDL

SPICE, FastSPICE

Fig. 15 | Schematic representation of the trade-off between simulation speed and accuracy across the different tools reported in the literature for memristive
ANNs evaluation. For each case, we list the main programming languages involved and some examples.
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implementation model by adding implementation details. It is pre-
cisely this capability of customizing the representation detail of the
connections and computation cores that enables high throughput
performance (always at the cost of decreasing accuracy and the con-
nection with the physical mechanisms governing the response of the
memristors). Although not limited to, conventional programming
platforms for System Level Simulation/Transaction Level Modelling
include SystemC233 and SpecC234.

Examples of this simulation abstraction level include the work by
Lee et al.235, which introduced a cycle-accurate system simulator to
model hardware-implemented spiking neural networks. These net-
works follow a hierarchical structure that conceives the computing-in-
memory system as an interconnection of neuromorphic cores or tiles,
each of these ultimately created by the joint assembly of crossbar
modules. The crossbar representation offers the ability of mimicking
the non-ideal effects of actual RRAMdevices which includes non-linear
RRAM effects like stuck-at-faults (SAFs), write variability, and random
telegraph noise (RTN). It is worth to remark that to efficiently connect
the tiles, a customizable network onchip (NoC) is used,which together
with the crossbar module description, allows for high flexibility and
configurability.

Compared to ref. 235, the simulator of BanaGozar et al.236

focuses on the system integration of neuromorphic computing sys-
tems. Hence, the authors implemented a micro-instruction set
architecture to control and operate the analogue as well as the digital
components of the system. In general, the simulator follows a similar
hierarchical structure as in ref. 235 by implementing computing in
memory (CIM) tiles. These tiles are composed of a memristive

memory crossbar, analogue/digital converters, digital input mod-
ulators and sample and hold stages. Furthermore, each tile has a
dedicated controller orchestrating the components responsible for
driving the computation.

Architecture-level simulation
Given their customization capabilities, TLM can be divided into dif-
ferent categories as indicated by Gai et al.237 (see Fig. 16). Specification
models (B) are those with the lowest degree of detail and lie closer to
the neural network models (A) described previously. On the opposite
corner, the Implementation Models (G) are the step immediately
before theCircuitalmodels (H) designed at the transistor level. As TLM
approaches the stage of implementationmodels, they are also referred
to as Register-Transfer Level (RTL) Models and embody what is
sometimes called Architecture-Level Simulation. In other words,
Architecture-Level Simulation can be considered as a sub-type of TLM
with a higher detail regarding the communication and computation
interfaces. Also, as the detail level increases, the programming lan-
guage migrates from SpecC and systemC (used for system-level
simulations) to Hardware-Description related languages, such as Ver-
ilog, Verilog-A or HDL, and even a combination of programming lan-
guages such as C++, CUDA, MATLAB and Python to simulate the
behaviour of memristive devices during inference.

Emerging non-volatile memory simulators NVMain238 (and its
successor, NVMain 2.0239) were proposed by Poremba et al., as an
example of architecture-level, highly flexible, user-friendly main
memory simulators. Although NVMain 2.0 allows to estimate energy
consumption metrics based on the results of circuit-level simulations,
it has limitations. Since it focuses on memory-oriented simulations of
emerging non-volatile structures it does not support the inclusion of
the peripheral circuitry that would be necessary tomodel compute-in-
memory architectures. To overcome this challenge, Xia et al.240 pre-
sented MNSIM and Zhu et al. presented the successor MNSIM 2.0241.
The simulator uses a behaviouralmodel to estimate theworst case and
average accuracy which significantly improves the performance of the
simulation. Since memristive devices show a non-linear I-V character-
istic, the behavioural model interpolates the physical characteristic
with a linear function to reduce the computational effort. As a result,
the performance is increased. MNSIM240,241, proposes a hierarchical
structure formemristor-based neuromorphic computing accelerators,
with interfaces for customization. Other architectural-level simulators
proposed in the literature and following a very similar approach
include CIM-SIM242 and XB-SIM243.

Going deeper into details, the MNEMOSENE simulator244 adds
cycle-accurate capabilities to tile-level simulations by actually execut-
ing in-memory instructions (in the context of Fig. 16, this could be
interpreted as an Implementation Model, indicated by sphere G). It
also allows the user to track all the control signals and the content of
crossbar/registers, and due to the modular programming of the
simulator, the user can easily investigate different memristor tech-
nologies, circuit designs, andmore advanced crossbarmodelling (e.g.,
considering read/write variability). Then, moving forward with the
path toward the most accurate memristive neural network simulators,
the PUMAsimproposed by Ankit et al.154 uses VerilogHDL tomodel the
tiles and cores at the Register Transfer Level, which allows them to be
mapped into a 45 nm Silicon-on-Insulator CMOS process for area
estimation. Until this point, and regardless of their level of detail
(System Level or Architecture Level) simulators could be framed
between the cases describedbynodes B-G fromFig. 16. Thefinal step is
to describe each of the constituting blocks in term of the required
electrical devices, i.e., transistors and memristors.

Circuit level simulation
To deal with neuro-inspired computing on the circuit-level, Dong
et al.245 proposed NVSim which represents a simulator for emerging

Fig. 16 | Detail of the different stages of the transaction level modelling, with
the addition of the Neural Network and transistor (circuit) level simulation.
Modelling approaches are arranged based on how accurately (untimed, approx-
imate, cycle-accurate) the timing of the computation and communication aspects
are captured. Transaction level models then expand from B to G, with B being the
specification models (which uses considers the communication and computation
to be untimed) and G the implementation models (which considers both cycle-
accurate timing for both computation and communication). As we approach B, the
model can be regarded as a System Level Simulation, while if it approaches G, it is
regarded as an architecture-level simulation. Outside this group, we find those
models simulated in Python or similar tools which focus on the network topology
(A) and the circuital models which materializes the implementation models (G) in
the transistor or register transfer level.
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non-volatile memories like STT-RAM, PCRAM and ReRAM structures.
This allows: i) estimationof access time, access energy and silicon area,
ii) Design-Space exploration, and iii) optimization of the chip for one
specific design metric. However, and similarly to NVMain238, NVSim
focuses mostly on modelling non-volatile memory structures rather
than in compute-in-memory units. Alternatives to overcome this lim-
itation havebeenproposed, as for instance the simulator developedby
Song et al.246 to evaluate their PipeLayer architecture, which considers
highly parallel designs based on the notion of parallelism granularity
and weight replication. This simulator is based onNVSim and provides
a high-level functionality to cover the requirements for computer-in-
memory simulations. This is also the case of the RAPIDNN247 which
relies on H-SPICE and Nvsim simulations to evaluate the energy con-
sumption and performance. Another alternative for circuit-level
simulation has been largely covered in the literature when aiming to
simulate simple crossbar structures of the 1R kind. This methodology
initially reported by Chen248, and then further exploited in refs.
249–251, describes the electrical behaviour crossbar structure by its
associated mathematical representation, as a system of coupled
equations.

Although both previously described methods can tackle the
challenge of circuit-level simulation of memristor devices (the second
one in fact only for DC quasi-static signals) they fail to account for
hybrid CMOS-memristor structures. For this scenario, it is crucial to
consider simulators capable of dealing with industry-standard CMOS
models, preferably at the SPICE level and if not, at least at theRTL level.
This is the case of the work by Fei et al.252, although their proposed
simulation tool was not evaluated for hybrid CMOS-memristor neural
networks. In this regard, in our previous work253 we proposed a simu-
lation routinewhich, froma set of given parameters (e.g., network size,
memristor electrical characteristics and non-idealities, interconnec-
tions), creates a pre-trained hybrid CMOS-memristive neural network
described as a SPICE netlist (i.e., a text file that describes the circuit).
This procedure was successfully used to evaluate the accuracy, power
dissipation, latency and other figures-of-merit of hardware-based
neural networks during inference250,253. It also allows to study in detail
theweight update process254 and themitigation of stuck-at-faults255. To
speedup the simulation process, we rely for this implementation in the
FastSPICE simulator from the Synopsys Design Suite, although it is
perfectly compatible with standard H-SPICE. A similar path was fol-
lowed by Fritscher et al.256 but considering theCadenceDesign Suite. A
very interesting characteristic is that the environment combines the
analogue circuit simulator Cadence Spectre with the Cadence Incisive,
a system-level simulator, to model a complete system from the device
to the system level in a very comprehensive manner. As a final remark,
to fully cover Fig. 15, device-level-simulators likeGinestra257 or T-CAD258

are intended for physics-based simulations at the atomic level of a
single device, and its output is then further used for fine-tuning the
compact models used in SPICE simulations.

Software-hardware co-design and hardware-aware neural
architecture search
Software-hardware co-design tool chain implies the optimization of all
components involved in the hardware implementation of neural net-
works, including the memristive device performance, circuit blocks,
architecture hierarchy and communication between the blocks. There
is a lack of an efficient commercial tool for software-hardware co-
design, as device-level simulators do not consider architecture-level
and communication on the chip, while architecture-level simulators
lack the consideration of realistic device properties159.

In addition to hardware-level design considerations, the software-
related design parameters selected for the neural network can also
affect the hardware performance. These software-related design
parameters include the number of neurons and layers in the network,
the sizes of convolution kernels, activation functions, etc. For example,

memristor-related non-idealities can be mitigated by optimizing the
software-related design parameters for the neural network259.
Reference 260 shows that neural network design parameters can be
optimized to reduce the effects of conductance variations and con-
ductance drift in memristors without compromising performance
accuracy. Therefore, it is important to optimize both software and
hardware parameters together to achieve high-performance accuracy
and hardware efficiency of memristor-based neural network hardware
and mitigate device non-idealities.

Such optimization lies within the domain of hardware-aware
neural architecture search, which optimizes the design parameters of
the neural network considering hardware feedback261–264, or in some
cases, searches for the optimum hardware parameters265,266. For
example, an optimum crossbar size266, ADC/DAC resolution, and
device precision265 can be searched along with the software-related
parameters of the neural network. References 263,264, takememristor
device variations into consideration when searching for the optimum
software-related neural network parameters. The design parameters
search can be performed using reinforcement learning264,266, evolu-
tionary algorithms259,260,263,265, or differential methods261. Hardware-
aware neural architecture search is a promising approach to automate
the software-hardware co-design ofmemristor-based neural networks.

Example of memristive ANN analysis
To evaluate the feasibility of a memristive device (implemented in
crossbar arrays) for image classification, we have developed a proce-
dure for creating and simulating a single-layer perceptron (SLP)57. This
neural network type is simpler than those considered in other more
complex memristive ANNs, e.g. Multi-layer Perceptron (MLP)54,196,267,
Convolutional Neural Networks (CNNs)268, Spiking Neural Networks
(SNNs)269, among others (see Table 5). However, it allows studying and
clarifying the limitations of ANNs caused by parasitic effects and non-
idealities occurring in the synaptic layers implemented with crossbar
arrays of memristive devices. Such effects include the impact of the
non-negligible resistance of the line interconnections, the finite resis-
tancewindow (RLRS/RHRS), the Signal-to-Noise ratio (SNR), the synaptic
weight variability, and the inference latency, among others. The pro-
cedures here presented are valid regardless of the memory cell con-
sidered (1T1R or 1R). The presented procedure can be extended for
MLPs relatively easily; in such case, the circuit generation phase is
repeated as many times as layers have the MLP.

For the sake of simplicity, ex situ supervised learning will be
considered here. Once trained, the synaptic weights calculated by this
software-based SLP are converted to conductance values which are
then implemented with memristors (i.e., the conductance of each
memristor is programmed to the values calculated by the software).
The recognition of patterns from theMNIST86 dataset is considered for
benchmarking. The workflow is summarized in the chart depicted in
Supplementary Fig. 9. The overall process can be split into two parts:
the first one comprises a set of MATLAB subroutines for creating,
training, and writing the SPICE netlist for a SLP, while the second part
relates to the SPICE simulation of the proposed circuit during the
classification phase.

Translation of the synaptic weights from the Software based
ANN to conductance values
Thereare twopossibleways to set eachof thememristors placed in the
crossbars to its corresponding conductance value from theG+

M andG�
M

matrices. One is to simulate the programming phase, during which the
required conductance ineachdevice is achievedby the applicationof a
train of pulses of controlled amplitude andwidthwhilemonitoring the
progressive increase in the device conductance until meeting a target.
However, this process is very demanding in terms of simulation
resources specially for large networks. Another possibility is to use a
memristor compactmodel and estimate the value of the state variable
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in the Memory Equation that leads to the target conductance. For the
case of the Quasi-static Memdiode Model (QMM) considered in refs.
250,253, this is done by adjusting the control parameter λ that runs
between 0 (HRS) and 1 (LRS). The required value of λ is obtained by
solving Eq. 14:

I = sgn Vð Þ
W αIRSI0 λð Þeα abs Vð Þ+RS I0 λð Þð Þ� �

αRS
� I0 λð Þ

8<
:

9=
; ð14Þ

for I = g i,j�V , with gi,j being each of the elements of G+
M and G�

M. In
Eq. 14, I0(λ)=Imin(1− λ)+Imaxλ is the diode current amplitude, α a fitting
constant, and RS a series resistance. Equation 14 is the solution of a
diode with series resistance and W() is the Lambert function. Imin and
Imax are the minimum and maximum values of the current amplitude,
respectively. abs(V) is the absolute value of the applied bias and sgn()
the sign function. As I0 increases in Eq. 14, the I-V curve changes its
shape from exponential to linear through a continuum of states, as
experimentally observed for this kind of devices253. This equation is
solved for each of thememristors in the positive and negative array, as
indicated in the Supplementary Algorithm 4. As a result, two different
matrices (λ+

M and λ�M) are produced. Note that for other memristive
models the state variable would be calculated following a different
equation (for instance in the Stanford model270).

The non-negligible resistance of the metallic lines connecting the
upper and bottom electrodes of the memristors integrated in a
crossbar structure produces an IR (voltage) drop along them that
reduces the voltage delivered to the memristors. This phenomenon
worsens for memristors located away from the input (crossbar’s row
terminals) and output (crossbar’s column terminals) ports, as the
interconnection lines required to reach such devices are increasingly
longer. A widely accepted104,271, alternative design to minimize this
problem consists in dividing the large crossbars into smaller ones
(Supplementary Fig. 9b), whose reduced size improves their read
margin (that is the portion of the applied voltage in the inputs that is

actually delivered to the memristors). The number of partitions is
denoted as NP, and the recommended size of each partition depends
on the ratio of conductance between the memristors and the resis-
tance of the metallic wires. Supplementary Fig 10 shows the simplified
sketch of the partitioned crossbar and the interconnections required
to realize the complete VMM. By exploding the integrability of the
crossbar with CMOS circuitry, vertical interconnects used to connect
the outputs of the vertical crossbar partitionsmay be placed under the
partitioned structure (as well as the analogue sensing electronics)
allowing the partitioned crossbar to maintain a similar area con-
sumption than the original non-partitioned case104. The vertical inter-
connects are grounded through the sensing circuit (i.e. the TIA) to
absorb the currents within the same vertical wire. To achieve this
partitioned structure, both the λ+

M and λ�M matrices are subdivided into
smaller portions (as shown in the upper part of Supplementary
Fig. 9b). Each of these partitions is mapped to a different memristor
crossbar. For instance, those 4 different matrices are mapped to the 4
different crossbars in Supplementary Fig. 10.

Creation of the memristive ANN circuit representation
In the next step, the software (MATLAB in this example) is used towrite
(line by line) the SPICE netlist that corresponds to the n2×10memristor
crossbar-based ANN, taking into account the connection scheme
(positive and negative matrixes, each of them partitioned) and the
control logic necessary to perform the inference phase. Figure 17
describes the different abstraction levels going from the pure mathe-
matical representation of the VMM (Fig. 17a), then to the block dia-
gram involving the electrical magnitudes (voltages, conductances,
resistances and currents, see Fig. 17b), then to a circuit schematic with
no parasitics (including in this stage thememristors and the necessary
analogue electronics, see Fig. 17c), to finally reach the equivalent
analogue circuit that performs theVMMincluding the circuit parasitics
(Fig. 17d). In this example, we use the fprintf() function of MATLAB94,
and we employed a memristor cell that takes into account all the wire
resistances and capacitances. The custom-made MATLAB code

Table5 |Comparisonof the accuraciesobtainedwithdifferentmemristor-basedneural network typesand learningalgorithms,
both from simulation and experimental approaches

Neural Network type Learning algorithm Database Size Training Accuracy Platform Ref.

(Sim.) (Exp.)

Single-Layer
Perceptron (SLP)

Backpropagation (Scaled Conjugate
Gradient)

MNIST (n × n px.) 1 layer (n2 × 10) Ex-situ ∼91% SPICE sim.
QMM model

253

Manhattan update rule Custom pattern 1 layer (10 × 3) In-situ ND Exp.(TaOX/Al2O3) 105

Yale-Face 1 layer (320 × 3) In-situ ∼91.7% Exp. (TaOX) 194

Multi-Layer
Perceptron (MLP)

Backpropagation (Stochastic
Gradient Descent)

MNIST (8 × 8 px) 2 layers (64 × 54 × 10) In-situ ∼91.7% ∼91.7% Exp. (HfO2) 54

Backpropagation (Scaled Conjugate
Gradient)

MNIST (n × n px.) k layers (n2 × m×…× k × 10) Ex-situ ∼96% SPICE sim.
QMM model

253

Backpropagation MNIST (14
× 14 px)

2 layers (196 × 20 × 10) Ex-situ ∼92% ∼82.3% Software/
Exp. (HfO2)

196

MNIST (22
× 24 px)

2 layers (528 × 250 ×…×
125 × 10)

In-situ ∼83% ∼81% Software/
Exp. (PCM)

267

MNIST (28
× 28 px)

2 layers (784 × 100×…×10) Ex-situ ∼97% Software (Python) 288

Sign-
Backpropagation

MNIST
(28×28 px)

2 layer (784 × 300×…×10) In-situ ∼94.5% Software
(MATLAB)

289

Convolutional
Neural
Network (CNN)

Backpropagation MNIST
(28×28 px)

2 layer (1st
Conv., 2nd
FC)

In-situ ∼94% Software 268

Spiking Neural
Network
SNN)

Spike Timing
Dependent
Plasticity (Unsupervised)

MNIST
(28×28 px)

2 layer (784 × 300×…×10) In-situ ∼93.5% Software (C+
+ Xnet)

269

Note that in all cases the synaptic layers are implementedwithCPAs and simulations are performedwithout having into account the lineparasitics or realisticmemristormodels. Given that theCPA is
a building block in these complex neural networks, realistic SPICE simulations of the CPA are still required.
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receives as input arguments the array size and partitioning scheme,
and it automatically determines the number of memristors to place
and how to connect them to the adjacent line resistances to realize the
crossbar electrical structure. Such a source code uses nested for loops
that iterate over the number of rows and columns, creating the
crossbar structure. Also, the parasitic capacitance between parallel
adjacent lines in the same plane (i.e., between adjacent rows and col-
umns), between the top-bottom line intersections, and between the
bottom lines and ground are added. By this, we can account for the
delay propagation through the crossbar, also known as latency (that is,
when the goal is measuring the time elapsed since a pattern is applied
in the SLP inputs until the output stabilizes). As a result, each mem-
ristor in the crossbar structure is connected to 4 resistors and 5
capacitors, as shown in Fig. 17d. As an example, the resulting SPICE
code for a SLP to classify 4×4 pixels images is shown in Supplementary
Algorithm5. Inorder to avoid voltage loses at thewires of the crossbar,
we employed a Dual Side Connection scheme. Despite the increased
peripheral circuitry complexity, this scheme improves the voltage
delivery to each synapse248 by connecting the two terminals of each
wordline to the same input stimuli. The difference between Dual Side
Connection and Single Side Connection is shown in Fig. 18. In practice,
when designing the circuits for input voltage supply for the Dual Side

Connection scheme on a chip, any mismatches and variations in vol-
tagesVi (Fig. 18b) should be avoided. The voltagesVi fromboth sides of
the crossbar should be identical with carefully designed communica-
tion wires. Any variations caused by the difference in the length of the
wires connecting the crossbar rows to the input supply voltages can
lead to undesirable voltage drops and issues related to sneak path
currents.

The input stimuli are obtained by scaling each of the 10,000
unrolled grayscale images from the MNIST test dataset, previously
stored in a n2×10,000 vector, by a voltage VREAD as shown in Fig. 4c.
VREAD is chosen such as to prevent altering thememristor states during
the inference simulation. In thisway, during the inference process each
of the test images is presented to the crossbar as a vectorVof analogue
voltages Vi in the range [0, VREAD].

During the inference phase, the inputs of the partitioned crossbar
need to be connected to the voltages representing the brightness of
the pixels, and the outputs of the crossbar need to be connected to
peripheral analogue circuits consisting on adders constructed using
few resistors and TIA (see Supplementary Fig. 9c left and Fig. 19a)250,253.
During the write phase, the partitioned crossbar needs to be con-
nected to the peripheral circuitry necessary to produce the electrical
stimuli that program the memristor conductance to the values

Fig. 17 | Different representations of the Vector Matrix Multiplication opera-
tion typical from a synaptic layer. (a) Unitless mathematic VMM operation. (b)
Mathematic VMM operation involving electrical magnitudes. (c) Electrical circuit
representation of the memristive crossbar-based analogue VMM operation. (d)
Realistic memristor crossbar representation considering the line resistance (RL)

and the interline capacitances (see the inset showing a circuit schematic of a
memristive cell in a CPA structure considering the associated wire parasitic resis-
tance and capacitance). Aspects such as device variability are captured by the
memristor model employed.

Fig. 18 | Connections schemes used to feed the CPA with the input pattern.
a Single Side Connect (SSC) and (b) Dual Side Connect (DSC). On the SSC case, the
input stimuli are applied only to the inputs of one side of the CPA, while the other is

connected to high impedances (or remain disconnected). b In the DSC case, both
terminals of a given wordline (horizontal lines in the CPA) are connected to the
same input voltage, which thereby reduces the voltage drop along the wordlines.

Review article https://doi.org/10.1038/s41467-024-45670-9

Nature Communications |         (2024) 15:1974 28



calculated via MATLAB. This peripheral circuitry consists of a crossbar
address block, Row/Columnaddress decoders, Row/Columnselectors,
and a Write Acknowledge block (see Supplementary Fig. 9c right and
Fig. 19a). The crossbar Address Block (crossbar-AB) is a circuit that
produces a pulse every time the memristor located in the {i,j} position
is completely written in all partitions (thereby working as a counter, as
depicted in Fig. 19b), which thereby results in n2/NP·10 output pulses
(corresponding to the number of memristors in each of the NP parti-
tions). These pulses (generated by a sensing amplifier comprising a
comparator and a latch circuit as shown in Fig. 19c) are propagated to
the crossbar Column Decoder (crossbar-CD). The crossbar-CD is an
asynchronous counter with 4 parallel outputs (see Fig. 19d) used to
indicate, in a binary code, which column to address during the pro-
grammingWrite-Verify loop. Also, the columndecoder outputs a pulse
every time 10 pulses are received, which can also be seen as a pulse
every time a row is completely programmed. This pulse is sent to the
crossbar Row Decoder (crossbar-RD), which is a similar counter but
with n2/NP parallel outputs and thereby S control inputs, with S being
the nearest integer higher than log2(n2/NP)). The codes of the
addressed row and column are then propagated to the crossbar Row/
Column Selector (crossbar-RS/crossbar-CS). Both the crossbar-RS and
crossbar-CS blocks comprise two stages. The first one, shown in

Fig. 19d, is a digital de-multiplexer with S control inputs (for a crossbar
with 10 columns, the control input is a 4 bit code, S1-S4, and it can be
generalized as the nearest integer higher than log2(x), with x the
number of rows/columns). For a given control input, only one of the
parallel outputs is active at a time. Thereby this produces a sparse
column vector of size 10 (crossbar-CD) or n2/NP (crossbar-RD). The
second stage is a column array of 10 (crossbar-CD) or n2/NP (crossbar-
RD) of analogue switches that connect the input node of each crossbar
row to VWRITE or VREAD (for addressing that particular Row during the
write procedure), VDD/2 (if another row is being addressed) or to Vi
(when the ANN is operating in the inference state). The column
selector is a similar array that connects the columns output nodes to a
sensing amplifier (sensing amplifier, a TIA coupled to a voltage com-
parator) if that particular column is being addressed, or VDD/2 (if
another column is being addressed). Each of these analogue switches
comprises 4 pass gates cells, as indicated in Fig. 19e. Figure 19a shows a
bigger picture of this latter concept, indicating how themultiplexor in
the Row/Column selector blocks is connected to the array of analogue
switches, which are ultimately connected to the crossbar block. After
the MATLAB code generates a netlist, it is passed to a SPICE simulator
which evaluates the voltage and current distributions in the crossbar
circuit and then passes the resulting waveform back to the MATLAB

Fig. 19 | Detail of the control circuits used for the dual inference/write proce-
dures. a complete circuit schematic for a 4×8 1T1R crossbar array. b Detail of the
synchronizers including the sense amplifiers used to detect the correct program-
ming of a given memristor. c Address block, essentially a counter which sequen-
tially addresses eachmemristor in the crossbar. d Row and column decoders, used

to enable thememristor addressed by the address block. e Row and columndriver,
used to bias the rows with the voltage input or with the programming signal, and to
connect the columns to the output neurons (during inference) or the sense
amplifier (during write-verify).
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routine for metrics extraction (Supplementary Fig. 9d). In this exam-
ple, all the peripheral circuitry connected to the crossbar have been
designed using a commercially available 130 nmCMOSprocess,whose
model is available in SPICE libraries.

SPICE Simulation and metrics extraction
Inference Procedure. Between the inference and write routines, the
inference is simpler. During this phase eachof the test images from the
dataset are presented sequentially to the inputs of the SLP as a column
vector V of size n2×1, where each of its elements are voltages Vi within
the range [0, VREAD] (see Supplementary Fig. 9). Each of these image
vectors produces a current through the wordlines and bitlines, as they
flow through the memristors (artificial synapses). Depending on the
strength of such synapses, the current will be high (strong synapsis –
high memristor conductance) or low (weak synapsis – low memristor
conductance). The total current flowing out of each bitline of the
crossbar is sensed at the bitline output. For a dataset with m classes
(i.e.m possible output values), and considering a differential encoding
(i.e., each synapticweight is representedwith 2memristors) a crossbar
with 2·m bitlines is required, which results inm output current signals.
Themain idea behind the inference phase is that for an input image of
class k, the current flowing out of bitline kwill be the highest. Similarly,
for classes k-1 and k+1, the bitlines with the maximal current will be k-1
and k+1. A schematic representation of this behaviour is presented in
Fig. 20. As seen, the case ofmisclassified images exists, corresponding
to the highest current for an image from class k not being provided by
column k. The selection of the highest current at a given time t is
performed ex situ (i.e. via MATLAB) by processing the recorded cur-
rent traces. This could be easily implemented on-chip by including a
softargmax()148 CMOScircuit as thosediscussed in Section SoftArgMax
function (block 8). This block has to be tailored for the dynamic range
of the output current, as it depends on the size of the crossbar and the
resistance of the lines.

To study the inference phase, different metrics were defined and
they are divided in two groups, which can be referred as: (i) pattern
recognition metrics (which are intrinsic characteristics of the SLP or
ANN and were introduced in Table 2 and Fig. 14) and (ii) electrical
measures (related to the particular memristor-based implementation
of the SLP). The second group comprises the average output current
range, the power consumption of the crossbar (useful not only to
address the energy requirements of the crossbar, but also to deter-
mine where the power dissipation takes place: in the interconnections

or in the memristors), the Signal-to-Noise ratio of the output current
signals, the inference latency, the read and write margins (that is, the
portion of the voltage applied in the crossbar inputs that effectively
reaches the memristors during the read or write operations) and the
maximal operational frequency of the complete neuromorphic circuit
(crossbar plus CMOS electronics).

Write-verify procedure. During thewrite operation eachmemristor in
a crossbar (Mi,j) is individually addressed and supplied with a train of
alternating read and write pulses of amplitude VREAD and VWRITE

respectively, that causes a gradual increment (or decrement) of the
memristor conductance. Such addressing procedure is performed
following the VDD/2 approach as it minimizes the line disturbance248.
Within this writing method, the non-addressed rows are set to a con-
stant source of valueVDD/2. Similarly, theoutput nodeof the columnof
the addressed memristor is grounded through the sensing amplifier,
which measures the current flowing out of this column (the other
columns are at VDD/2). Such current is proportional to the applied
voltage pulses and the memristor conductance plus the parasitic wire
resistance corresponding to the addressed device (Mi,j). This allows to
estimate the conductance of the addressed memristor. This process is
represented by the simplified equivalent circuit shown in the inset
of Fig. 21.

Before starting the write process, we translate the conductance
matrix for each partition to a currents matrix, by multiplying each
element gi,j by VREAD. In this way, we obtain a measurable quantity for
each of the elements in the conductance matrix. The goal of the write
cycle is to gradually increase the conductanceof a given element in the
crossbar until sensing that the current flowing through it has reached
the value indicatedby the currentsmatrix for the sameposition (target
value), which means that the desired conductance was also reached.
The writing procedure for the addressed memristor Mi,j begins by
sensing the output current during the read pulse of voltage VREAD. In
case this current is lower than a target value (gi,j·VREAD), a write pulse of
voltage VWRITE is applied (VWRITE>VREAD), causing an increment in the
Mi,j conductance. Then a new read pulse is applied, and the current is
sensed again. This process continues iteratively until the sensed cur-
rent during the read pulse meets the target value. Once reached, the
sensing amplifier outputs a pulse that indicates the completion of
the writing procedure for the addressedmemristor (Mi,j), stopping the
train of read/write pulses and preparing the following devices to be
programmed.

Fig. 20 | Schematic representation of the n2×1 column vectors of analogue
voltages being fed to the SLP. 4 cases are represented: a–c corresponds to the
correct classification of images from classes k, k+1 and k-1, respectively (for

instance, in the case of the MNIST database, theymight be images of the ‘5’, ‘6’ and
‘4’ digits). d Depicts the case of misclassification, as the highest current corre-
sponds to the k+1 output for an image from class k.
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It is worth noting that the partitioned architecture allows the
simultaneous programming of theMi,j memristor of all partitions using
a smaller control circuit. Let us assume that the devices to be pro-
grammed are the Mi,j memristors of a 2×(n2×10) crossbar with NP par-
titions, such as the one presented in Supplementary Fig. 9d. In this
case, the ith output of the row decoder (n2/NP outputs) will be the only
active output, as well as the jth output (10 outputs) of the column
decoder. Then these output vectors are passed to every Row/Column
selector, which simultaneously select the Mi,j memristor in every
crossbar. This causes all the ith rows to be connected to a train of
alternating read and write pulses and all the jth columns to be con-
nected to the partition sensing amplifier (each crossbar partition has
its own sensing amplifier). All other rows and columns are connected
to VDD/2. The current flowing through each of theMi,j memristors (and
therefore out of the jth columns) is sensed by its associated sensing
amplifier until the target conductance value for that Mi,j memristor is
achieved. Then the associated sensing amplifier propagates an
acknowledge pulse (ACK) to theWrite Acknowledge block, which then
disconnects the addressed memristor from the write pulse generator
to prevent it from being further potentiated/depressed. This block
waits for the ACK pulses from the sensing amplifiers of every partition.
Once all ACK pulses are received, the ith,jth position of all crossbars is
considered to be successfully written, and by the time the Write
Acknowledge block receives the following system clock pulse, it
instructs the crossbar address block to address the Mi,j+1 memristor
and the write sequence starts again. This process continues until the
crossbar address block has addressed all the memristor positions in
the crossbar partitions (n2/NP×10 positions).

Memristive ANNs help on reducing the data transfer typical from
digital processors, by performing computations locally within the
memory. However, these systems have their own unique challenges
which still limit their further development. To exploit the intrinsic
advantages of crossbar-based computation, a careful design of the
system architecture is crucial, as otherwise, the peripheral CMOS cir-
cuits become a bottleneck impeding the power, area, and latency
improvement that in-memory-computing could achieve. A main goal
in designing these architectures is to keep this peripheral overhead to
a minimum without sacrificing performance. However, and despite
that the concept of analogue neuromorphic accelerators has been
investigated for over the last decade, papers reporting true full-on-
chip hybrid CMOS/memristors have only started to appear in the last
two years. Thereby, performance metrics obtained from systems
heavily relying on extensive off-chip electronics should be analysed
carefully.

While the crossbar computations are performed in the analogue
domain, digital encoding is used for the external routing/processing.
Although every block in the peripheral circuit supposes a considerable
effort by itself, the conversion between the analogue and digital
domains, constitutes the main challenge in the design of memristive
ANN. This is achieved by the analogue-to-digital and digital-to-
analogue converters, and a primary trade-off that needs to be made
in the design of a memristive ANN is that between energy efficiency
and precision: high precision comes at the cost of greater ADC/DAC
silicon and thereby power consumption. Nonetheless, there are var-
ious ways to reduce this overhead, such as by encoding the weights to
reduce ADC precision, by multiplexing techniques of the crossbar
outputs or reducing the number of available states in the memristors.
Given the overhead that ADCs imply, another option points towards a
fully analogue approach, pushing the analogue/digital frontier towards
the end of the neural network: some architectures remain mostly
digital by using binary inputs and quantized/binary weights for the
VMM; some consider analogue inputs and weights, but the VMM
product is immediately digitalized and processed in the digital
domain; and others are almost fully analogue, with digitalization only
taking place after the activation functions and softargmax() blocks.

Beyond the CMOS circuits required for pre/post processing the
signals, the performance of memristive ANNs is also threatened by the
non-idealities intrinsic to the crossbar geometry and the individual
memory devices of the crossbar. Non-ideal physical properties of the
devices compromise the reliability, scalability, accuracy, latency and
power consumption of the memristive ANN. The available number of
conductance states, and the potentiation and depression linearity play
a fundamental role in the weight update procedure and sets basic
requirements for the peripheral CMOS circuitry in charge of per-
forming that process. Consequently, device–hardware co-design (i.e.
optimizing the device characteristics based on the circuitry cap-
abilities, and vice versa) is indispensable, and a powerful tool to enable
this process is the realistic electrical simulation of hybrid CMOS/
memristor systems.

The simulation of ANNs allows to tackle design problems before
fabrication as well as to estimate the hypothetical performance
achievable by a given memristor technology. Depending on the
requirements, it can go from a high abstraction level, with little (if any)
connection to the actual devices, down to the circuit level, using
standard SPICE/Verilog compact behavioural models for the CMOS
devices and the memristors. In between these two extremes, there are
various transaction-level approaches which consider a varying level of
detail to represent both the ANN architecture as well as the

Fig. 21 | Write-verify approach for conductance programming. a Schematic
representation of theWrite-Verify loop approach for programming thememristors
in the CPA to a given conductance value. Reproducedwith permission under CCBY
4.0 license from ref. 253. b Sensed output current for a SLP partition (one small
CPA) during the programming phase in a Write-Verify loop procedure. The greater

the peak, the higher the conductance level being programmed. The inset in the
center shows a schematic representation of the currentmeasured during the verify
and write pulses, as well as the current target. The inset in the right of both panels
shows a schematic of the equivalent circuit using during the verify phase. Repro-
duced with permission under CCBY 4.0 license from ref. 254.
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communication between them. The selection of the most suitable
simulation technique depends thereby in the requirements of the
specific design stage: the closer it gets to the tape-out, higher accuracy
in the simulation is required (achievablewith circuit level simulations),
instead, for the early design stages, system-level modelling is enough
to get a quick estimation of the achievable performance in large,
complex ANNs. In any case, properly combining this many different
simulation tools will ultimately lead to the optimization and further
development of the memristive ANNs.

Data availability
The code examples provided in the Supplementary Information are
publicly available at https://github.com/aguirref/supplementary_ANN_
algorithms.

Code availability
The MNIST dataset used for the image classification in this study is
openly available at https://yann.lecun.com/exdb/mnist.
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