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Understanding activity-stability tradeoffs
in biocatalysts by enzyme proximity
sequencing

Rosario Vanella 1,2 , Christoph Küng 1,2, Alexandre A. Schoepfer 1,3,4,
Vanni Doffini 1,2, Jin Ren 1,2 & Michael A. Nash 1,2,5,6

Understanding the complex relationships between enzyme sequence, folding
stability and catalytic activity is crucial for applications in industry and bio-
medicine. However, current enzyme assay technologies are limited by an
inability to simultaneously resolve both stability and activity phenotypes and
to couple these to gene sequences at large scale. Here we present the devel-
opment of enzyme proximity sequencing, a deepmutational scanningmethod
that leverages peroxidase-mediated radical labeling with single cell fidelity to
dissect the effects of thousands of mutations on stability and catalytic activity
of oxidoreductase enzymes in a single experiment. We use enzyme proximity
sequencing to analyze how 6399 missense mutations influence folding stabi-
lity and catalytic activity in a D-amino acid oxidase from Rhodotorula gracilis.
The resulting datasets demonstrate activity-based constraints that limit fold-
ing stability during natural evolution, and identify hotspots distant from the
active site as candidates for mutations that improve catalytic activity without
sacrificing stability. Enzyme proximity sequencing can be extended to other
enzyme classes and provides valuable insights into biophysical principles
governing enzyme structure and function.

Soluble proteins produced through natural selection are typically only
marginally stable. For enzymes, local flexibility is required at the active
site to achieve catalytic activity, however excessive mobility renders
them susceptible to denaturation. This tradeoff between activity and
stability is still not well understood in protein science1–4.

Observations on small numbers of homologous sequences
have shown how cold-adapted enzymes are typically more active
than thermophilic homologs5–7, however, competing studies rely-
ing on database meta-analysis8, experimental data and comparative
phylogenetics9 have challenged this thermal rate compensation
model. The question of how enzymes encode activity and stability,
and the interplay between the two over the course of natural

evolution or during experimental laboratory directed evolution10,11

therefore remains open. For enzyme engineering, these tradeoffs
mean that both stability and activity cannot be optimized simulta-
neously or with equal success. If we could experimentally deter-
mine sequence-function relationships describing folding stability
and catalytic activity of enzyme variants at large scale, it would
enable an understanding of the activity-stability tradeoff, and
potentially unlock enhanced enzymes for industrial and biomedical
applications.

With the advent of deepmutational scanning (DMS), the effects of
large numbers of genetic mutations on protein phenotype can be
analyzed using massively parallel methods12–14.
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However, catalytic enzymes are challenging for DMS studies
because very few massively scalable screening methods which suc-
cessfully link genotype and phenotype exist. Typically, enzyme fitness
is coupled to host cell survival using growth-based selection. Alter-
natively, microdroplet methods allow single clones to be analyzed
using colorimetric assays followed by droplet sorting and sequencing.
Enrichment of variants from pre- to post-selected pools allows tabu-
lation of phenotypic scores and provides insights into mutational fit-
ness landscapes15–21. In nearly all prior implementations of DMS on
enzymes, however, fitness scores comprise a conflation of expression
level (i.e. enzyme abundance) and catalytic activity. Klesmith and col-
leagues showed how enzyme fitness scores determined through
growth-based selection could be combined with solubility scores from
independent assays to reveal evolutionary origins of stability activity
trade-offs22. Markin et al. further presented a microfluidic enzyme
expression platform which decoupled the catalytic properties of each
variant from their expression levels23. While very powerful, each plat-
form has associated limitations in terms of throughput, ease-of-use,
compatible chemistries, and robustness.

Here we report enzyme proximity sequencing (EP-Seq), a novel
DMS-based method that combines enzyme proximity labeling with
next-generation DNA sequencing (NGS) technology to assay both
expression level and catalytic activity phenotypes of thousands of
variant enzymes from a cellular pool in a single experiment. EP-Seq
leverages features of yeast surface display24,25 to measure the expres-
sion levels of each enzyme variant via a pooled cell sorting-sequencing
experiment. In parallel, phenoxyl radical-based26–29 cell surface

proximity labeling links enzyme activity to a fluorescent signal, which
is then quantified by sorting and sequencing. We used EP-Seq to study
a nearly comprehensive site saturation mutational library of D-amino
acid oxidase (DAOx) from the yeast Rhodotorula gracilis, a model fla-
voprotein with industrial and therapeutic applications30–36. Down-
stream computational analysis of EP-Seq data reveals rich biophysical
insights into the enzyme by quantifying fitness propensities of sub-
stituted residues, identifying protein regions where catalytic activity
served as an evolutionary constraint on folding stability, and making
predictions of catalysis-enhancing mutations that maintain folding
stability.

Results
Workflow overview
An overview of the EP-Seq workflow is shown in Fig. 1. In one branch of
the experiment (Fig. 1, left), we analyze the expression levels of thou-
sands of variants in parallel by displaying a variant library on yeast,
staining the expressed proteins with fluorescent antibodies, and sort-
ing the cells into 4 bins using fluorescence activated cell sorting
(FACS). We then use NGS to sequence the variants in each bin, and
convert the NGS reads into expression fitness scores using a custom
computational pipeline. There is strong evidence that the level at
which yeasts secrete anddisplay a given protein sequence is correlated
with its folding stability22,25. Destabilizing mutations can activate the
yeast quality control system, exposing variants to proteases in the
secretory pathway which degrade unstable sequences and lower
expression levels37. The expression level of a variant enzyme analyzed
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Fig. 1 | Schematic depicting the EP-Seq workflow. (Top) A pooled library of
enzyme variants is displayed on yeast. (Left) The cell population is sorted into bins
based on the expression level of the displayed enzyme. (Right) The pooled variant
library is assayed for DAOx activity using a cascade peroxidase-mediated proximity
labeling reaction with single cell fidelity and sorted into bins. The genetic

composition of cells in the sorted bins is quantified via high-throughput sequen-
cing and the distribution of each variant along the expression and activity axes is
converted into a fitness score. Joint analysis of the two independent datasets pro-
vides insights into the effects of mutations on folding stability and activity of the
enzyme.
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through FACS and DMS can therefore serve as a proxy for folding
stability. In this study, we use the term folding stability to describe the
impact of mutations on the overall cellular stability of the target pro-
tein. This primarily relates to structural and thermodynamic stability,
but can also include other factors like mRNA stability, efficiency of
translation and secretion, and susceptibility to protease degradation,
all of which contribute to changes in the protein’s expression level.

In a parallel branch of the experiment (Fig. 1, right), the oxidase
activity of enzyme variants is assayed at large scale in a pooled format
using a horseradish peroxidase (HRP)-mediated phenoxyl radical
coupling reaction at the yeast surface. Similar proximity labeling
reaction schemes relying on HRP or ascorbate peroxidase-2 (APEX2)
have been used in quantitative proteomics38, proximity labeling in live
cells39–42, electron microscopy labelling43,44 and signal amplification in
biosensors45,46. In EP-Seq, the short half-life of phenoxyl radicals limits
the labeling reaction to the surface of the cell that generates H2O2,
affording an artificial quasi single-cell reaction compartment bymeans
of a reaction-diffusion limitation. The pooled cells displaying the var-
iant library stained in this fashion are sorted into bins based on fluor-
escent intensity, and sequenced by NGS. Finally, the large datasets
obtained in the two parallel screening protocols are combined, cross-
referenced and studied to reveal biophysical insights into protein
sequence, stability, and function.

Quantifying DAOx stability and catalytic activity fitness with
EP-Seq scores
We applied the workflow described above to study the 80kDa
homodimeric flavin adenine dinucleotide (FAD) dependent DAOx
from Rhodotorula gracilis (Rg), which promiscuously catalyzes dea-
mination of D-amino acids to alpha keto acids, generating H2O2 as a
byproduct35. DAOx has attracted attention for applications in both
industry and biomedicine, for example, in resolving racemic amino
acidmixtures, producing antibiotics32 or as a proposed cancer therapy
via reactive oxygen species30,31,47. We first optimized the functional
expression and display of the wild type DAOx (WT DAOx) fused with
theAga2anchor protein and established the tyramide-basedproximity
labeling assay to detect the activity of each displayed enzyme with
single-cell fidelity26,48,49 (Supplementary Note 1). Next, we constructed
a library for DMSanalysis through site saturationmutagenesis over the
entire coding region of DAOx and assigned 15 nucleotides unique
molecular identifier (UMIs) to each DAOx variant of the library (Sup-
plementary Note 2).

We investigated the effects of single amino acid substitutions on
DAOx expression and display at the yeast surface (Fig. 2, left). Fol-
lowing induction (48 h, 20 °C, pH 7), we stained the C-terminal His-
tag of the DAOx variant library with primary and fluorescent sec-
ondary antibodies. We sorted the library into 4 bins based on
expression level, where the non-expressing bin was set using a
negative control cell population incubated with only the secondary
antibody. The remaining yeasts were sorted into three sub-
populations containing equal percentages of expressing cells
(Fig. 2A). After sorting, we extracted plasmid DNA from each sorted
cell population, PCR amplified the regions corresponding to the
UMIs, and sent the amplicons for single end (SE100) Illumina
sequencing on aNovaSeq 6000. The number of reads per samplewas
on average 25-fold higher than the number of cells sorted into the
corresponding FACS bin (Supplementary Table 2). We filtered the
UMI sequences by readquality (Phred score ≥Q20) and expected size
(15 nucleotides) before assigning them to the corresponding DAOx
variants using the look-up table. We converted the number of reads
per variant into number of cells (Methods, Eq. 1) and calculated a final
expression score (Exp) for each variant (Methods, Eq. 2). The fitness
score per variantwas then calculated as log2ðβv=βwtÞwhere βv was the
weighted mean expression score of the variant enzyme and βwt was
the score of WT DAOx (Methods, Eq. 3).

To analyze DAOx catalytic activity in a massively parallel fashion,
we used a reaction cascade that converts DAOx enzymatic activity into
a fluorescent label on the cell wall. This approach is related to prior
work from our lab and others on enzyme-mediated polymerization
and peroxidase-based proximity labeling14,27–29,50,51. We set the low
fluorescence gate to include entirely the population of not displaying
cells or displaying inactive variants (Fig. 2C, Gate 1). The remaining
cells were equally divided into three populations corresponding to
increasing levels of tyramide-488 signal (Fig. 2C). We determined the
genetic sequences and their relative abundance in each bin through
Illumina sequencing as described above, and identified the corre-
sponding mutant enzyme sequences using the look-up table. The
activity score (Act) per variant was calculated (Methods, Eq. 2) and the
activity fitness score was computed by using as reference the score of
the wild type DAOx (Methods, Eq. 3). In both the expression and
activity screens, we determined a consensus score for each mutant
(Methods, Eq. 4) and we assessed the reproducibility of the DMS
workflow by calculating Pearson’s r value for a linear regression of the
fitness scores measured in two biological replicates and represented
by at least 10 total cells. For the expression assay replicates, the r value
was 0.94 (n = 7069; p <0.0001), and for the activity assay replicates, it
was 0.96 (n = 7036; p <0.0001) (Fig. 2B, D).

Validation of EP-Seq scores
To validate the DMS fitness scores of single clones, we randomly
selected 12 variants and tested them individually using bulk expression
and activity assays. The expression levels of the variants measured
individually using yeast display and flow cytometry strongly correlated
with expression fitness scores obtained from DMS (r =0.89,
p <0.0001) (Fig. 2E). The activity levels of the same 12 single mutant
variantswerenextmeasuredusing anAmplex Red assay, and the initial
reaction ratewasmeasured for themutants and thewild type enzymes.
The single clone score for eachmutant was obtained by dividing initial
reaction rate of the mutant by that of wild type. All mutants tested
showed activity levels consistent with those obtained from EP-Seq
(r =0.95, p <0.0001) (Fig. 2G).

To further validate the observed scores, we plotted a histogram to
visualize the expression (Fig. 2F) and activity (Fig. 2H) fitness scores of
all single nucleotide variants in the DAOx gene and color coded them
to distinguish between missense, nonsense (i.e. stop codon), and
synonymous mutations. We found that the distribution of missense
variants scores for both expression (n = 6434 variants) and activity
(n = 6404 variants) fitness were broadly distributed (Exp min= −0.72,
Exp max = 0.25, Act min = −0.75, Act max= 0.16). Fitness score dis-
tributions were on average offset towards negative fitness values,
indicating a generally deleterious effect of mutation on both expres-
sion and activity (median Exp = −0.15, median Act = −0.29, Fig. 2F, H).
The distribution of fitness scores containing synonymousmutations in
the expression screen was centered at 0.00 ±0.057 (n = 301 variants),
while in the activity screen it was centered at 0.00 ±0. 056 (n = 300
variants). This range of fitness values defined a neutral fitness range of
the assay. Variants whose scores fell in this range were expected to
have fitness comparable to that of wild type. Additionally, mutants
with nonsensemutations (i.e. stop codons) had strong negative fitness
on both expression and activity, with average expression score of
−0.69 ±0.04 (n = 334) (Fig. 2F) and average activity score of
−0.67 ±0.12 (n = 332). The higher activity scores and standard devia-
tion of nonsense variants compared to expression scores of the same
variants are due to the effect of stop codon at C-terminal positions of
the enzyme (position>350) preserving the formation of a fully folded
and functional DAOx enzyme.

As further validation, we calculated the average expression and
activity scores per position (n = 364) and mapped the values onto the
DAOx structure (PDB: 1C0P) (Supplementary Fig. 4A, B). We tested for
EP-Seq score correlation with a protein stability prediction algorithm
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(FOLDX)52 (Methods, Eq. 5).Weused FOLDX to calculate themeanΔΔG
score per position of the protein (n = 354) and compared them to
expression fitness scores obtained from the left branch of EP-Seq. We
found strong correlations between EP-Seq expression scores and
predicted ΔΔG values (Exp rho = −0.51 p <0.0001, Supplementary
Fig. 4C), supporting the use of yeast surface display for evaluating the
effects of mutations on thermodynamic folding stability. We further

compared the predicted ΔΔG values to EP-Seq catalytic activity scores
per position of DAOx and again found significant correlation

(Act rho = −0.59 p <0.0001, Supplementary Fig. 4D). As a baseline
level of structural stability is required for an enzyme to be catalytically
active, this result supports that part of the EP-Seq activity score is
attributable to effects of mutations on the folding stability (and
therefore expression) of DAOx.
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Fig. 2 | Deepmutational scanning of DAOx expression and catalytic activity by
EP-Seq. A Sorting gates for analysis of display levels.B Linear regression (Pearson r,
two-tailed) between expression scores calculated from two biological replicates.
C Sorting gates for catalytic activity screening.D Linear regression (Pearson r, two-
tailed) between activity scores calculated from two biological replicates. E Linear
regression (Pearson r, two-tailed) between variant surface display levelmeasured in
monogenic yeast culture vs. DMS expression fitness analyzed by EP-Seq for 12
DAOx single mutant variants. FDistribution of expression fitness effects measured
by EP-Seq. Dashed lines represent the range of fitness score for synonymous var-
iants. G Linear regression (Pearson r, two-tailed) between variant activity level
measured in monogenic yeast culture via peroxidase assay (Amplex Red) vs. DMS

activity fitness analyzed by EP-Seq for 12 DAOx single mutant variants.
HDistributionof activityfitness effectsmeasuredby EP-Seq.Dashed lines represent
the range of fitness score for synonymous variants. I Expression fitness scores for
each variant represented as a heatmap. J Number of variants analyzed per position
in the expression dataset, and secondary structure classification per position (PDB:
1C0P).KActivity fitness scores for each variant obtainedbyEP-Seq represented as a
heatmap. L Number of variants analyzed per position in the activity dataset and
secondary structure classificationper position (PDB: 1C0P). Links to interactive and
color blind accessible heatmaps can be found in the data availability statement
section of the manuscript.
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Mutability landscapes of DAOx stability and catalytic activity
We visualized the mutational effects of the 6768 (6434 missense, 334
nonsense) and 6736 (6404 missense, 332 nonsense) mutations in the
expression and activity screens (respectively) as fitness heatmaps
(Fig. 2I, K). Thenumbersofmissense variants corresponded to93%and
92.5% (respectively) of all possible single amino acid substitutions in
DAOx (Fig. 2J, L). The expression heatmap (Fig. 2I) reveals patterns of
higher and lower tolerance for mutation along the DAOx sequence,
discussed in detail below. The N-terminal region (residues 8–32) was
found to be highly intolerant to amino acid substitutions. This sug-
gests it plays a role in folding stability and could act as an N-terminal
intra-molecular chaperone53. The Rossmann fold is highly conserved in
this region,making contactwith the FAD cofactor, stabilizing structure
and maintaining function of the enzyme35.

Biophysical properties shape both expression and activity
landscapes
We evaluated the effect of mutant residue identity on both expression
and activity of DAOx using data from 6399 singlemissense variants for

which both EP-Seq expression and activity scores were available
(Fig. 3A, B, Supplementary Table 4, Supplementary Note 3). We
observed that the introduction of proline had the most pronounced
negative impact on both expression and activity, particularly when
located in the α helix and β sheet regions of DAOx54,55 (Supplementary
Fig. 5A, B, Supplementary Note 4). The introduction of cysteine, neu-
tral polar and non-polar residues (excluding glycine) had a positive
impact on the studied properties, while the introduction of charged
residues (excluding histidine) resulted in a lower activity score than
average. Residues with negative charges, glutamic and aspartic acids,
exhibited an overall neutral to positive effect on the expression score
compared to the average effect of all substituted residues. Finally,
among hydrophobic residues, introduction of bulky tryptophan
impaired both expression and activity fitness (Fig. 3A, B, Supplemen-
tary Table 4). As a general trend we also observed that DAOx linker
regions had greater tolerance to mutations in both expression and
activity screens compared to structured regions of the same enzyme
(Supplementary Fig. 5C, D, Supplementary Note 4). We next analyzed
expression and activity fitness as a function of the substituted wild
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type amino acids (Supplementary Fig. 5E, F, Supplementary Note 5)
and found the substitution of hydrophobic core aromatic residues
together with valine, which is one of the most abundant residues in
DAOx (n = 27), to have the highest negative impact on the expression
and activity of the enzyme. On the contrary, mutation of polar and
charged amino acids was associated with on average higher scores
than the other classes of residues (Supplementary Fig. 5E, F, Supple-
mentary Note 5).

Next, we assigned residue specific scores for hydrophobicity,
bulkiness and polarity of wild type andmutant amino acids56 to eachof
the 6399 single missense mutations registered by both assays and
calculated a Pearson linear correlation coefficient r between the values
of each feature and the experimental fitness scores (Fig. 3C, Supple-
mentary Fig. 6A). We observed no or very low linear correlation
between the experimental scores and properties of mutant residues
(Mut. hydrophobicity, Mut. polarity, Mut. bulkiness, Supplementary
Fig. 6A). Consistent with our previous observations, the hydro-
phobicity of wild type residues negatively correlated with both
expression (r = −0.22, p < 0.0001) and activity scores (r = −0.26,
p <0.0001), suggesting low tolerance formutations in the protein core
(WT, Δ hydrophobicity, Fig. 3C, Supplementary Fig. 6A). We found
moderate negative correlation of both expression and activity datasets
when considering the size of wild type amino acids or the size differ-
ence between wild type and mutant residue side chains (Fig. 3C, Sup-
plementary Fig. 6A, WT and Δ bulkiness). Finally, a positive correlation
of expression (r =0.19, p < 0.0001) and activity scores (r =0.25,
p <0.0001) with the polarity of wild type amino acids indicated higher
tolerance formutation ofpolar residues, typically foundon the surface
of the protein (Fig. 3C, Supplementary Fig. 6A, WT and Δ polarity).

Identification of stability activity trade-off regions in DAOx
We next sought to determine whether our expression and activity
datasets could beused to identify regions of stability-activity tradeoffs.
We analyzed average expression and activity scores of DAOx at each
position (nEpx = nAct = 360) in relation to biophysical properties of the
mutated sites (Fig. 3C) and observed several trends. For example, both
expression and activity fitness scores were positively correlated with
solvent accessible surface area (SASA) of themutated site (Exp r =0.43,
p <0.0001; Act r =0.64, p <0.0001). The temperature factor (B-factor)
was similarly positively correlated with both fitness scores (Exp
r =0.21, p < 0.0001; Act r =0.41, p <0.0001) indicating higher muta-
tional tolerance at sites located at the protein surface and at sites with
high structural mobility (Fig. 3C, Supplementary Fig. 6B, C).

We analyzed fitness scores of mutated sites with respect to their
distance from the FAD cofactor (Fig. 3C, Dis. to FAD). We found that
mutations near FAD often negatively impacted the catalytic activity of
the enzyme, as indicated by the positive correlation between the
activity scores and the distance of the mutated residue from FAD
(r =0.57, p <0.0001, Supplementary Fig. 6D bottom). In contrast,
expression fitness scores were not significantly correlated with dis-
tance of the mutated residue to FAD (r =0.08, p = 0.1134, Supple-
mentary Fig. 6D top), suggesting that folding stability was insensitive
to this parameter.We color-coded the 3D structure of DAOx according
to activity and expression scores in the vicinity of the FADcofactor and
in the active site (Fig. 3D i, ii, iv, v), where we found the largest dif-
ferences between the activity and expression scores. Mutations in
close proximity to FAD (distance<4Å) greatly impaired the catalytic
activity of the enzyme (avg. Act = −0. 557, −66%, n = 387; avg. Act
all = −0.336, n = 6,399; Fig. 3D iv) while at the same positions the
expression scores showed the opposite trend. This revealed how
mutations at the catalytic site tend to harm activity but improve sta-
bility (avg. Exp = −0.149, n = 387, +17%, avg. Exp all = −0.180, n = 6,399;
Fig. 3D i), supporting a well-documented phenomenon on the ther-
modynamic price paid by an enzyme to remain catalytically active
under conditions of functional selection4.

A similar behavior was found for residues known to coordinate
the substrate D-alanine35. While mutating these residues impaired
enzyme activity (avg. Act = −0.457, −36%, n = 111; avg. Act all = −0.336,
n = 6399; Fig. 3D v), it tended to improve stability (avg. Exp = −0.06,
+60%, n = 111; avg. Exp all = −0.180, n = 6399; Fig. 3D ii). Among the
residues interacting with FAD, the loop between strand β1 and helix α1
is highly conserved among Rossmann folds (GSGVIGL, positions: 11-17)
and is characterized by negative fitness scores in both datasets (avg.
Exp = −0.479, avg. Act = −0.639) (Fig. 3D i, iv). This indicates both a
functional and structural role of FAD in the overall fitness of the
enzyme. These results suggest DAOx folding is facilitated by interac-
tions with FAD, which is also essential for its catalytic activity. The
strong binding affinity between DAOx and FAD (dissociation constant,
KD = 20nM) and the low abundance of apo-enzyme further support
these observations57,58.

Dimerization stabilizes marginally stable but functional DAOx
monomers
DAOx is active as a homodimer in its native state and dimerization is
thought to be required for activity58,59. This motivated a detailed ana-
lysis of mutations in close proximity to the dimer interface, and whe-
ther they could significantly change folding stability and catalytic
activity of the enzyme. We calculated the distance between each
residue and the closest residue found at the dimer interface, and
assigned this distance value to each singlemissensemutation found in
both the expression and activity screens. We then calculated a linear
correlation coefficient between the experimental fitness scores and
the distance values. We found that the activity fitness data showed a
positive correlation with the distance of the mutated site from the
dimer interface (r = 0.20, p < 0.0001, Fig. 3C, Dis. to interface, Sup-
plementary Fig. 6E bottom), while the expression scores correlated
negatively with it (r = −0.34, p = <0.0001, Fig. 3C, Dis. to interface,
Supplementary Fig. 6E top). On average, sites located closer to the
dimer interface were more tolerant to mutation in the expression
screen, but less in the activity screen. This reflects a scenario where the
enzyme tolerates some amount of instability in order to remain as an
active dimer, analogous to the effects at the catalytic site. We visua-
lized theseeffects on the surfaceof the 3D structure of theDAOxdimer
(Fig. 3D iii). Mutations located near the dimer interface (distance < 5 Å)
impaired the catalytic activity of the DAOx enzyme as indicated by the
dominant red color of the structure (avg. Act = −0.363, −7%, n = 1298,
avg. Act all = −0.336, n = 6,399; Fig. 3D iii, right). The same mutations
showed overall positive effects on the expression and stability of the
DAOx structure (avg. Exp = −0. 07, +61%,n = 1298; avg. Exp all = −0.180,
n = 6399; Fig. 3D iii, left). We attributed this behavior to a strong
dependencyof DAOx catalytic activity on dimerization58,59. Apparently,
dimerization along with the conformation of the catalytic site provide
functional constraints during evolution of this enzyme, suggesting the
evolution of a more stable globular and monomeric form of DAOx
might have been impeded during functional selection for catalytic
activity.

EP-Seq expression scores combinedwith sequence conservation
reveal functional sites in DAOx
Sequence conservation scores derived frommultisequence alignment
reflect constraints imposed on the protein of interest as a result of
natural selection. Over evolutionary time, selection tends to maintain
both folding stability and catalytic activity60,61. We hypothesized that
combining conservation scores with our stability and activity datasets
could provide insights into functional sites in DAOx.We compared the
experimental scores with conservation scores (CONS) obtained by
aligning the DAOx sequence with five evolutionarily related D-amino
acid oxidase sequences62 (Supplementary Fig. 7). Both expression and
activity fitness score datasets showed negative correlation with con-
servation scores (Exp r = −0.29, p <0.0001; Act r = −0.40, p < 0.0001,
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Fig. 3C, Supplementary Fig. 6F), generally indicating higher tolerance
formutations at less conservedprotein sites.We identified41positions
with CONS= 100 and analyzed the average expression score per
position as a function of the distance of the mutated site from the
catalytic center of DAOx. We observed a significant negative correla-
tion of the expression scores with the distance of the mutation from
the catalytic site of the enzyme (r = −0.54, p = 0.0003, Fig. 4A). Among
the sites with conservation score 100, we then isolated the positions
associated with positive expression score (n = 9) and visualized them
on the 3D structure of DAOx (Fig. 4B). Three of the positions analyzed
(A51, G199, R285) found within 5 Å of the active site are reported to be
directly involved in catalysis through stabilization of the substrate
D-alanine (R285) or of the isoalloxazine ring of FAD cofactor (A51,
G199)35. Conserved residues R198, G199, Q200, G283, and the two
prolines in position 196 and 286, are part of two antiparallel strands β8
and β13 suggesting a role of the resulting β sheet in structuring the
catalytic pocket and coordinating the side chain of the arginine 285.
Finally, tryptophan 243 located at the surface of monomeric DAOx
plays an important role in the dimerization. In agreement with the

previous observations, itsmutationhas a direct impact on the catalytic
efficiency of the DAOx63 (Fig. 4C).

Activity enhancing hotspots are globally encoded
We finally used EP-Seq to identify regions of the enzyme where
mutations were associated with improved catalytic activity. We gen-
erated a two-dimensional scatterplot showing the average activity and
expression fitness per position as Y and X coordinates (Fig. 5A), and
assigned a color at each point based on the distance of the mutated
site to the enzyme’s catalytic pocket. The observed trends in this
depiction demonstrate how the two properties are related. Variants
that are found to be catalytically active must possess at least a mini-
mum level of stability in order to be correctly folded, secreted and
displayed. This fact is demonstrated by a lack of positions in the upper
left of the plot. Only 1 datapoint (~0.3%) was found with positive
activity fitness and negative expression fitness (Fig. 5A, top left).
Additionally, we found 35 positions (~10%) exhibiting positive expres-
sion fitness with impaired catalytic activity (activity fitness < −0.1)
(Fig. 5A, lower right). Thesepositions tendedon average tobe closer to
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the catalytic site (avg. distance = 14.6Å; avg. distance all = 17.4Å),
indicated by the dark blue color in the lower right of the plot. This
demonstrates stability-function tradeoffs at play in this enzyme, where
more stably expressed variants could be found by mutating crucial
catalytic residues at the cost of losing activity. Finally, manymutations
which moderately altered the expression of the enzyme resulted in
corresponding changes in the catalytic activity (Fig. 5A, diagonal). A
limited number of positions were tolerant to mutations for both
assayed properties (n = 23) (Exp > −0.05; Act > −0.05) and showed
either simultaneous improvement of both properties or an increase in
activity due tohigher expression levels on the surfaceof the yeast cells.
These tended to be found more distant from the catalytic site (avg.
distance 28.2 Å; avg. distance all = 17.4 Å). To further support these
observations, we have included a scatter plot to illustrate the rela-
tionship between activity and expression fitness for all the single
mutant variants included in our work (Supplementary Fig. 8A).

We finally deconvoluted the activity score from the expression
score inorder to identify regions of the enzyme susceptible to catalytic
improvement. We first selected all single mutant variants with
expression fitness values higher than the upper limit observed for
nonsensemutants (Expression fitness = −0.69 ±0.04; Fig. 2F). We then
normalized the non-logarithmic activity fitness of 6362 single mutants
relative to their respective expression fitness values. These normalized
activity scores exhibited reduced sensitivity to mutations’ impact on
enzyme folding stability, as evidenced by the decrease in correlation
with FOLDX algorithm predicted values, reduced from rho = −0.59
(n = 354, p <0.0001, Supplementary Fig. 4D) to rho =0.3 (n = 354,
p <0.0001). Figure 5B shows the enzyme structure colored according
to normalized activity. This normalization process resulted in 2029
variants with normalized activity scores exceeding 1, indicating
enhancements in catalytic activity independent of expression levels
(Supplementary Fig. 8B, C). We then ranked all variants based on their
normalized activity scores and selected the top 1000 variants from the
entire dataset. We extracted the six most frequently represented
amino acid positions within this subset and indicated them on the
three-dimensional structure of the DAOx (Fig. 5B). Four out of the six
identified positions were found to be closely situated to the substrate
tunnel region, through which D-alanine approaches the enzyme and
enters the active site (positions: 99, 216, 217, 218; Fig. 5B). In particular,
S216, D217, and P218 are components of the loop positioned at the
entrance of the tunnel and are in close proximity to the asparagine in
position 99. These findings suggest that this region plays a role in
controlling the accessibility of the substrate tunnel, through interac-
tions with the substrate itself or by dynamically reshaping the
enzyme’s structure to facilitate the entry of D-alanine into the reaction
site. The other two positions identified, K109 and D110, are located on
the opposite side of the dimer interface. Modifying these positions
could potentially trigger conformational changes in the overall
enzyme structure, which in turn may lead to allosteric effects on the
enzyme’s catalytic function (Fig. 5B).

Discussion
EP-Seq is a deep mutational scanning workflow for studying enzyme
folding stability and catalytic activity. Yeast surface display combined
with peroxidase-mediated proximity labeling of single cells was able to
link enzymatic activity to fluorescent phenotypes for large libraries in a
pooled format, enabling cell sorting and high-throughput sequencing.
Wedemonstrated ourworkflowby constructing a near comprehensive
single substitution variant library of DAOx, and assaying it by EP-Seq
for folding stability and catalytic activity. By jointly analyzing the
expression and activity fitness datasets as a function of various bio-
physical and biochemical properties of the mutated residues at WT
residues, we gained structural and biophysical insight into DAOx.
When considering the correlation of fitness score with various bio-
physical parameters of themutated residues, formany parameters the

two datasets exhibited high concordance. This shows how in order for
a variant to be catalytically active, it must first be stably expressed and
secreted to the cell wall. We therefore observed an expression level-
dependency of the catalytic activity. However, our data further
revealed certain properties of mutated sites which were differentially
correlated with expression and activity fitness. These included dis-
tance of the mutated residue to the FAD cofactor and distance to the
dimer interface. We found that WT residues in close proximity to the
FAD cofactor and in the active site tended to destabilize the enzyme.
These residues could be mutated to enhance folding stability, pri-
marily through hydrophobic effects (Fig. 3D i and Supplementary
Fig. 8D). However, this increased stability was mostly achieved at the
cost of catalytic activity (see Fig. 3D iv and Supplementary Fig. 8E).
These observations suggest that functional constraints have con-
tributed to shape the evolution of DAOx over time, and provide direct
and clear evidence of an activity-stability tradeoff. The distance of the
mutated residues to the dimer interface was similarly decoupled
between expression and activity fitness datasets. Prior literature58,59

indicates dimerization is necessary but not sufficient for catalytic
activity. Mutations that disrupted the dimer interface therefore func-
tioned similarly to those in the active site, where destabilizing the
dimer interface through mutation could lead to higher overall
expression, however this increased stabilitywas achieved at the cost of
catalytic activity. Ourworkflow is compatiblewith enzymes that canbe
functionally displayed on the cell surface and whose activity can be
directly or indirectly (via enzymatic cascade) linked to the production
of peroxide. This includes enzymes with immediate therapeutic rele-
vance such as Arginase64, and Asparaginase (Supplementary Fig. 9), as
well as biocatalysts with diagnostic or industrial applications, like
Glucose Oxidase28. Due to its inherent scalability, our approach will
find applications in generating training data for machine learning
algorithms, which represents a major challenge for catalytic enzymes.
In the future, EP-Seq can contribute to a better understanding of
evolutionary processes in natural enzymes, help in identifying func-
tional allosteric sites, and be used to evolve protein catalysts for
industrial and biomedical applications.

Methods
DAOx sequence cloning
The gene coding for Rhodotorula gracilis D-amino acid oxidase
(DAOx) was acquired from Twist Bioscience codon optimized for
expression in Saccharomyces cerevisiae. The sequence was cloned
after restriction digestion with BamHI and XhoI into a pYDKan
plasmid, a modified pYD1 yeast display vector where the original
glycine-serine linker between Aga2 and the protein of interest was
replaced with the protein linker GTPTPTPTPTGEF65 and the β-
lactamase gene replaced with a kanamycin resistance gene. After
confirming the sequence through Sanger sequencing the plasmid
pYDKan_RgDAOx was transformed through a lithium acetate trans-
formation protocol66 in the yeast strain EBY100 and the positive
colonies selected on synthetic defined (SD) agar 2% (wt/vol) glucose
plates lacking tryptophan (-Trp). We provide the sequence of the
pYDKan_wtRgDAOx here: https://zenodo.org/record/8388902.

Expression and surface display of DAOx wild type
Positive transformants were cultivated in -Trp liquid medium with 2%
(wt/vol) glucose for 24 h at 30 °C to an OD600 ~ 8 with continuous
shaking at 200 rpm. Expression and display of the Aga2_DAOx fusion
protein were tested by transferring the cells to fresh -Trp liquid med-
ium with 0.2% (wt/vol) glucose and 1.8% (wt/vol) galactose further
supplemented with 100mM citrate/phosphate buffer at pH7. In the
optimization stepof theprotocol cells were transferred in an induction
mediumwithout buffer orwith 100mMcitrate/phosphate buffer at pH
range 3–7. Yeast cells were grown in induction media for 48 h at 20 °C
before being pelleted, washed with PBS 0.1% (wt/vol) bovine serum
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albumin (BSA) and used for antibody labeling in order to detect the
c-terminal 6xHistidine (6xHis) tag of the displayed fusion protein.

Yeast antibody staining to detect surface displayed DAOx
After induction of protein expression and display, yeast cells were
washed twice with PBS 0.1% (wt/vol) BSA before being resuspended at
a concentration of 2 million cells/100μl in the same buffer with the
addition of 1/500 dilution of anti-6x-Hismousemonoclonal antibodies
(Thermo Fisher Scientific Cat# MA1-21315, RRID: AB_557403). The
samples were incubated with the primary antibody 30min at room
temperature before being washed twice with PBS 0.1% (wt/vol) BSA.
After, the cells were resuspended at the concentration of 2 million
cells/100μl in PBS 0.1% (wt/vol) BSAwith 1/500 dilution of a secondary
goat anti-mouse antibody conjugated with Alexa Fluor™ 594 (Thermo
Fisher Scientific Cat#A-11005, RRID: AB_2534073). The samples were
incubated with the secondary antibody for 30min at 4 °C before being
washed twice with PBS 0.1% (wt/vol) BSA and analyzed through flow
cytometry. Surface expression of DAOx was determined through flow
cytometry using a Attune NxT (Thermo Fisher Scientific) cytometer
equipped with a 488 nm and a 561 nm laser. For flow cytometry,
10,000 cells per sample were recorded and analyzed.

DAOx Amplex Red activity assay
Yeast cell populations positive for the display of DAOx were assayed
through Amplex Red activity assay to detect D-amino acid oxidase
activity. Half a million yeast cells were mixed together with 35mM D-
alanine, 5.6μM HRP, and 100μM Amplex Red in PBS (pH 7.5). The
fluorescence was read at 590 nm.

DAOx mutant library construction and barcoding
Mutagenesis of the DAOx wild type gene was performed through a
plasmid based one-pot nicking mutagenesis protocol67. The method
involves successive nicking, degradation, and de novo synthesis of
plasmid DNA strands. Nt.BbvCI and Nb.BbvCI endonucleases identify
the same BbvCI site on the target dsDNA plasmid but nick only one
strand. After incubating the target plasmid DNA with one of these
endonucleases and then with an exonuclease for degradation, a new
DNA strand is synthesized through thermal cycling. This process uses
5’ phosphorylated NNK oligos and a high-fidelity DNA polymerase,
extending the primer around the circular template. A low primer to
template ratio favors the annealing of just one primer per template,
leading to the synthesis ofprimarily singlemutant variants. Finally, Taq
DNA ligase closes the new strand, creating a dsDNA plasmid with a
mismatch at the mutation site. Repeating the process on the other
DNA strand of the template using the other nicking endonuclease and
a non-mutagenic phosphorylated oligo in the amplification step tar-
geting a constant plasmid region, completes the synthesis of dsDNA
variant plasmids. We first transferred the entire DAOx expression
cassette, inclusive of galactose promoter, Aga2- WT DAOx open
reading frame (ORF) and Matα transcription terminator from pYDKan
(5498 bp) to a smaller pUC19 plasmid (4265 bp). The new plasmid was
further engineered through the insertion of two BbvCI restriction sites
located upstream and downstream of the expression cassette. The
original nicking mutagenesis protocol67 was integrated with an addi-
tional step: after the first incubation with Nt.BbvCI enzyme and exo-
nucleases, the reaction mixture was further incubated with 10 units of
Quick CIP phosphatase (New England Biolabs) at 37 °C for 20min,
followed by incubation at 80 °C for 20min. This step promotes the
removal of 5’ phosphate from nicked and partially degraded strands of
wild type DNA and prevents reformation of closed double strand wild
typeDNAplasmid in the following amplification and ligation steps. For
the mutagenic DNA amplification step of the protocol we used nested
NNK forward primers targeting codons 2 to 365 of the DAOx wild type
sequence. Primers were designed using the script create_primers.py68.
The length of each primer was adjusted within 25 and 51 nucleotides in

order to obtain oligonucleotides with similar melting temperature in
the range of 60–61 °C. We ordered hand-mixed degenerate oligonu-
cleotides in 96 well plate form from Integrated DNA technologies and
mixed the primers in equimolar proportion at a final concentration of
10μM. Finally, the one pot site saturation mutagenesis protocol was
performed into two subsequent cycles. The pool of plasmids recov-
ered after the first cycle was used as a template for the second cycle.
Equimolar amounts of the resulting plasmids from the two rounds of
mutagenesis were merged composing the final mutant library. Unique
molecular identifier (15 N) DNA barcodes were linked through stan-
dard PCR to each of the DAOxmutagenized inserts by using primers F1
and R1 (Supplementary Table 3). Nucleotide barcodes were added to
the 5’ end of the amplicon, upstream of the galactose promoter.
Amplified and barcoded expression cassettes withmutagenized DAOx
coding sequences were cloned into a BbVCI/PmeI digested pYDKan
vector using HiFi DNA Assembly (New England Biolabs). Assembled
products were column purified (Zymo-Spin I, Zymo Research) before
being electroporated into XL1-Blue electroporation competent cells
(Agilent, 200228). Positive colonies were selected on 15 cm LB agar
plates containing kanamycin (50μg/ml). The final barcoded library
size was capped through single cell sorting to 200,000 cells. After
sorting, cells were incubated for 20 h and then used to extract plasmid
DNA. 5μg of the library plasmid pool was transformed into the final
yeast Saccharomyces cerevisiae strain EBY100 through lithium acetate
transformation66. Serial dilutions of the final transformation reactions
were plated on -Trp agar plates with 2% (wt/vol) glucose. Quantifica-
tion of the colonies forming units from the dilution plates indicated a
final transformation yield between 6 and 10M colonies. After trans-
formation, the yeast mutant library was grown for 24 h at 30 °C in -Trp
liquid medium supplemented with 2% (wt/vol) glucose before being
diluted to OD600 = 1 into fresh -Trp medium supplemented with 2%
(wt/vol) glucose and grown for further 16 h at 30 °C. Finally, aliquots of
108 cells were prepared and resuspended in 25% (vol/vol) glycerol
before being stored at −80 °C. Sequences of pUC19_RgDAOx plasmid
andmutagenic primers are provided here: https://zenodo.org/record/
8388902.

Pacific Biosciences long read sequencing and data analysis
Weused PacBio long read sequencing to establish the link between the
DAOx variants represented in our mutant library and the 15 nucleo-
tides unique molecular identifiers (UMI). We sequenced the mutant
library before transformation of the mutagenized and barcoded pool
of plasmids into the final yeast strain EBY100. PacBio sequencing was
performed on bacterial extracted plasmid DNA. This procedure elim-
inates theneedof preparing the sequencing insert via PCRand thus the
possibility of strand exchange events. Barcoded plasmids were pur-
ified from bacterial cells and the sequencing inserts were prepared
through restriction digestion with PmeI and NotI restriction enzymes.
The final dsDNA pool was purified after agarose gel electrophoresis
and used for SMRTbell ligation. PacBio sequencing runwas performed
on a Sequel IIe system with a 30 hmovie collection time using a SMRT
cell 8M. Final PacBio circular consensus sequences (CCSs) were gen-
erated using the ccs program from Pacific Bioscience (https://github.
com/PacificBiosciences/ccs) and filtered in order to retain DNA
sequences with average Phred quality score higher than Q20. The final
sequencing file is available at https://zenodo.org/record/8388902.

We established a computationalworkflow tomap, extract and link
each UMI represented in our library to the respective DAOx variant
sequence. Through Minimap269 (version 2.19), using a reference
sequence (DAOx_ref.fa), we mapped on each read the region corre-
sponding to the UMI and themutations falling in the Aga2-DAOx open
reading frame.

minimap2� cs� ax map� hifi DAOx ref:fa pacbio:fastq>aln:sam
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The output of Minimap2 alignment was processed further by
using a C program called ppba.c. This program was specifically
designed for this task and it makes use of a custom library file named
libsccodon.h. Information regarding the nucleotide sequence of each
barcode, barcodes sequencing quality per position, mutations falling
in the Aga2-DAOx ORF and presence of indels were extracted and
stored into a first version of the look-up table (pre_lut).

:=ppba DAOx ref:fa aln:sam>pre lut:tsv

The resulting look up table file was processed to remove con-
flicting nucleotide barcodes through the python notebook Gen-
erate_Lut.ipynb. Identical UMIs associated with different DAOx variant
sequences were compared. Among those, we retained in the final
version of the look-up table UMIs whose link to a specificmutationwas
confirmedbymore independent sequencing reads orUMIswith higher
sequencing quality and linked to lower number of indels in the
sequencing read. If none of these criteria could be used to classify the
UMIs, conflicting barcodes were all removed from the final look-up
table. UMIs linked to mutations registered out of the targeted region
(codon 2-365 of DAOx)were kept in the lookup table and filtered out in
a later stage of the analysis. The resulting look-up table file was further
processed in order to finalize the table and remove all the nucleotide
barcodes with length different than 15 nucleotides. The C programs
used for this analysis were compiled by using GCC (version 7.4.0) on a
32-bit processor. The scripts, sequencing files and the final look-up
table are available at https://zenodo.org/record/8388902.

DAOx variant library expression and display
100M yeast cells transformed with the barcoded DAOx variant library
were inoculated at startingOD600 = 0.1 in 100ml of -Trp liquidmedium
with 2% (wt/vol) glucose and grown for 24 h at 30 °C to an OD600 ~ 8
with continuous shaking at 200 rpm. Protein expression and display
were induced by transferring the yeast cells at a starting OD600 of 0.4
to a 100ml fresh -Trp liquid culturewith0.2% (wt/vol) glucoseand 1.8%
(wt/vol) galactose. The induction medium was further supplemented
with 100mM citrate-phosphate buffer at pH7. Cells were cultivated in
the induction medium for 48 h at 20 °C shaking at 200 rpm, before
being washed twice with 25ml PBS 0.1% (wt/vol) BSA. 120M induced
cells were distributed into 6 tubes at a concentration of 20M cells/ml.
Detection of the displayed Aga2-DAOx protein construct was per-
formed in PBS 0.1% (wt/vol) BSA incubating the cells with 1/500 dilu-
tion of the anti 6xHis-tag mouse monoclonal antibodies (Thermo
Fisher Scientific Cat#MA1-21315, RRID: AB_557403) for 30min at room
temperature. After incubation with the primary antibody, cells were
washed twice with ice cold PBS 0.1% (wt/vol) BSA buffer before being
resuspended in the samebufferwith 1/500dilutionof a secondary goat
anti-mouse antibody conjugated with Alexa Fluor™ 594 (Thermo
Fisher Scientific Cat#A-11005, RRID: AB_2534073). The reaction was
then incubated at 4 °C for 30min. After the incubation the cells were
washed twice and resuspended in ice-cold PBS 0.1% (wt/vol) BSA at a
concentration of 20M cells/ml. In parallel, a negative control staining
procedure was performed. In a single tube 20M induced yeast cells
were incubated exclusively with the secondary goat anti-mouse anti-
body conjugated with Alexa Fluor™ 594 (Thermo Fisher Scientific
Cat#A-11005, RRID: AB_2534073) at the same conditions described
above. This sample was then used to detect eventual fluorescence
signals caused by unspecific binding of the fluorescent secondary
antibody to the yeast cells.

DAOx single cell tyramide/peroxidase proximity labeling assay
Catalytic activity of displayedDAOxwild type and variant enzymeswas
assayed through a single-cell tyramide/peroxidase proximity labeling
method. After induction ofprotein expression and cell surface staining
of the yeast population as described above, 25M yeast cells were

mixed at a concentration of 500 cells/μl with 1/200 dilution of Alexa
fluor™ 488 Tyramide Reagent (Thermo Fisher, B40953), 56.8μM HRP
(Sigma-Aldrich, 77332) and 130mM D-alanine in 1 × PBS and 0.75%
(w/v) sodium alginate. The reaction was incubated for 20min at 25 °C.
Afterwards, the cells were spun down for 3min at 13000g in a table
top centrifuge. The cell pellet was washed twice with PBS 0.1% (wt/vol)
BSA +0.05% (vol/vol) Tween 20 and then used for flow cytometry and
single cell sorting experiments.

Fluorescence activated cell sorting (FACS) of the DAOx yeast
library
Expression level sorting: yeast cells stained for the expression and
display of DAOx variants were sorted using a FACSMelody cell sorter
equipped with 488 and 561 nm lasers and a 100μm nozzle. Cells were
sorted into pre-wet 5ml FACS tubes containing 0.5ml of 2X -Trp
mediumwith 4% (wt/vol) glucose and 1% (wt/vol) BSA. Yeasts were first
gated for single events and the population further divided into
4 sorting bins along the Alexa Fluor™ 594 fluorescence axis. The first
bin (Gate1, Fig. 2A) was set in order to capture the 99% of non-
fluorescent cells by using the negative control sample of the antibody
staining procedure as reference. The remaining part of the cell popu-
lation was divided into three further sorting bins capturing each an
equivalent fraction of the yeast population with increasing fluores-
cence intensity (Gates 2, 3, 4, Fig. 2A). The sorting procedure was
repeated two independent times sorting each time more than 10M
single yeast cells (Supplementary Table 2).

Activity level sorting: EBY100 yeast cells stained for the expres-
sion of the DAOx enzyme variants and assayed through single cell
tyramide activity assay were sorted using a FACSMelody cell sorter
equipped with 488 and 561 nm lasers and a 100 μm nozzle. As above,
cells were sorted into pre-wet 5ml FACS tubes containing 0.5ml of 2X
-Trp medium with 4% (wt/vol) glucose and 1% (wt/vol) BSA. Yeast cells
were first gated for singleton events and then the population divided
into four bins based on the level of green fluorescent signal. Bin 1 was
designed in order to include 99% of the population of cells negative to
display or displaying inactive DAOx variants, using as reference the
fluorescence level of the non-displaying yeast populations (Gate 1,
Fig. 2C). The remaining part of the population of cells was equally
divided into three yeast sub-populations with increasing fluorescent
signal (Gates 2, 3, 4, Fig. 2C). We performed the sorting of two inde-
pendently assayed yeast populations sorting each timemore than 8M
total yeast cells (Supplementary Table 2).

After each cycle of sorting both for expression and activity, yeast
cells part of the same gated population weremerged into 50ml falcon
tubes and pelleted 10min at 4000 g in a table top centrifuge. After-
wards, the supernatant was discarded and the cell pellet resuspended
in 10ml -Trp medium with 2% glucose supplemented with 100μg/ml
Penstrep. After sorting, all the cell populations were grown for 48 h at
30 °C shaking at 200 rpm before being sampled into aliquots of 50M
cells each and stored at −80 °C in 25% (v/v) glycerol.

DNA prep for Illumina sequencing
50M yeast cells per sorted population were used as starting material
for the preparation of Illumina sequencing inserts. Cells were first
collected from −80 °C and incubated 5min at RT before being spun
down 1min at 13,000g in a table top centrifuge. The supernatant was
discarded and the cell pellet resuspended in 250μl of miniprep
resuspension solution (GeneJET Plasmid Miniprep Kit, Thermo Fisher)
with the addition of 20U of Zymolyase (Zymo Research). The reaction
was incubated for 2 h at 37 °C shaking at 900 rpm.After this incubation
step the samples were processed following a typical plasmidminiprep
kit protocol (GeneJET Plasmid Miniprep Kit, Thermo Fisher). Finally,
plasmid DNA extracted from yeast cells was eluted in 15 µl of nuclease
free water. The region of the plasmids containing the 15 N UMI was
amplified through a standard PCR reaction using the NEBNext Ultra II
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Q5 Master Mix (New England Biolabs). 25 µl of the master mix were
mixed with 5 µl of each primer (1 µM) and 15 µl of template DNA. Pri-
mers were designed accordingly in order to target the region of
interest and be compatible with the Nextera indexing library pre-
paration. An equimolar mixture of four staggered primers was used in
each sample preparation as forward and reverse primer in order to
provide in both ends of the resulting amplicon different starting
nucleotides for the Illumina reads (F3-6 and R3-6 primers in Supple-
mentary Table 3). PCR was performed with the following program: 1
cycle at 98 °C for 30 s, 18 cycles at 98 °C for 10 s, 72 °C for 30 s, 72 °C
for 2min and a final elongation step of 2’ at 72 °C before storing the
reaction at 4 °C. Resulting DNA amplicons were then visualized
through DNA electrophoresis on a 1% (wt/vol) agarose gel in and
purified from the gel using a standard DNA purification kit. The con-
centration of DNA per sample was measured and DNA was purified
once more through the DNA Clean and Concentrator-5 kit (Zymo
Research). After addition of unique Nextera indexing sequences the
samples were pooled and sequenced through Novaseq 6000 Illumina
sequencing. Numbers of Illumina reads per sample are provided in
Supplementary Table 2.

Demultiplexed reads were then processed through a computa-
tional pipeline in order to extract the sequences of UMIs and align
them to the information contained in the look-up table.

Sequences corresponding to the UMI were first mapped through
BBMap alignment algorithm70 by using a reference sequence file
(ill_ref.fa)

bbmap:sh in = *:fastq ref = ill ref:fa out = *:sam

BBMap *.samoutputswere further processed through theC script
pib.c (process illumina barcodes). Through this step we extracted the
sequences and read quality of eachUMImapped by BBMap, saving the
information in a fastq format file.

:=pib*:sam>*:fq

Each UMI mapped and registered was then aligned to the infor-
mation stored in the look-up table through the C script rib.c (read
illumina barcodes). The following tags: 0 - not found in the look-up
table, 1 - found in the look-up table, 2 - read quality <Q20, 3 - UMI size
different than 15 N, were associated with each of the barcodes read
through Illumina sequencing. We applied a quality filter of Q20,
therefore tagging with tag 2 all the UMI associated with a read quality
lower than Q20.

:=rib� t lut m:tsv� q20*:fq > *:tsv

Finally, UMI sequences with tag 1 (found in the look-up table),
were extracted, sorted alphabetically and grouped by identity.

grep1*:tsvjsortjuniq� cjsed� E0s=*==; s==nt=0>t1sct*:tsv

All the Illumina reads files were processed through the reported
computational workflow. Finally, all the information about the UMI
sequences and count found in eachbin (t1sct_Bin#.tsv) weremerged in
a unique file using the python notebook ill_tag1_bins.

The C programs used for this analysis were compiled by using
GCC (version 7.4.0) on a 32-bit processor. The scripts and sequencing
files are available at https://zenodo.org/record/8388902.

Expression and activity fitness scores calculation
The number of sequencing reads linked to each variant enzyme (rv)
was converted into number of sorted cells of the same variant (cv) per

sorted bin using the following Eq. 1:

rv
rtot

=
cv
ctot

ð1Þ

where rtot is the total number of illumina reads of the bin and ctot is the
total number of cells sorted in the same bin. Then, the final expression
and activity scores per variantwere computed as the expected value of
fluorescent intensity of the variant across all the four bins of the
experiment. We calculated first a weighted mean (β) of the cell num-
bers (cv) where the median fluorescence of the yeast population in
each bin (ω) was used as the weighting factor:

β=
Pbin

i= 1ωi � cvi
Pbin

i = 1cvi
ð2Þ

The expression and activity fitness score (F) per variant were
finally calculated as follow:

F = log2
βv

βwt

� �

ð3Þ

where βv is the weightedmean expression score of the variant enzyme
and βwt is the score of wild typeDAOx. To calculate the final consensus
fitness score (Ffin) for each variant enzyme, we used a weighted mean
of the single fitness scores recorded in each replicate (Fv) of both the
expression and activity assays. Theweighting factorwas the number of
cells associated with the measured fitness in each experiment (cv)
(Eq. 4).

Ff in =

Prep
j = 1Fvj�cvj
Prep

j = 1cvj
ð4Þ

FoldX ΔΔG calculation
In order to predict the effect of missense mutations on the stability of
the DAOx monomeric structure we used the FOLDX algorithm52

(version 5.0). We first processed the DAOx crystal structure (PDB:
1C0P) through the FOLDX RepairPDB function in order to identify and
repair residues of the structure with bad torsion angles or energy
clashes. The repaired structure was then processed through the
FOLDX tool PositionScan that mutates the residue of the structure
(positions 2-361) to the 20natural amino acids providing an estimation
of the change in energy between the folded and unfolded state of the
wild type protein and comparing it to the change in folding energy
upon amino acid mutation. The final score ΔΔG was then calculated
through the following equation:

ΔΔG=ΔGMut� ΔGWt ð5Þ

Positive values of predicted ΔΔG scores indicate a negative effect
of mutations on the stability of the structure. Negative values of ΔΔG
predictions indicate positive effect ofmutations on the overall stability
of the structure. A mean ΔΔG score per position of the protein was
calculated and the final values (n = 360) were correlated to experi-
mental expression and activity fitness scores. Input-output and setting
files used for the ΔΔG prediction are provided at https://zenodo.org/
record/8388902.

DAOx structural properties calculation and extraction
Solvent accessible surface area (SASA) was used as a measure of resi-
due solvent exposure. SASA scores were calculated per residue of the
DAOx wild type monomeric protein (PDB: 1C0P) through the PyMol
tool get_sasa_relative (https://pymolwiki.org/index.php/Get_sasa_
relative). Scores ranging between 0 (minimum solvent exposure) and
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100 (maximum solvent exposure) were extracted and analyzed in
relation to the activity and expression fitness scores. B-factor scores as
a scale of thermal induced dynamic disorder and flexibility of the
structure were extracted per position of DAOx monomeric structure
(PDB file 1C0P.pdb). Residues involved in the monomer-monomer
contact at the dimer interface of DAOx dimeric structure (PDB:1C0P)
were selected through the pyMol tool InterfaceResidues (https://
pymolwiki.org/index.php/InterfaceResidues).Coordinates of the alpha
carbons (Cα) of interface residues were extracted from the DAOx
structure file (PDB:1C0P) and the distance between each residue of the
structure to the closest interface Cα was calculated. Spatial coordi-
nates of all the atoms of the flavin adenine dinucleotide (FAD) cofactor
were extracted from the 3D structure of DAOx wild type (PDB:1C0P).
We calculated the distance of each Cα of DAOxmonomeric protein to
each of the FAD cofactors atoms. A final mean value distance per
residue to the FAD was calculated by computing the arithmetic mean
of all the distances of the same residue to the FAD atoms.

Single mutant variants expression and activity level
From the 6399 single mutant variants of DAOx analyzed through our
DMS workflow both for expression and activity, we randomly selec-
ted 12 single mutant DAOx variants: S48C, L153R, A187K, A187E,
G199E, Q200W, S215A, T237M, S268Y, P292E, L310P, G315P. Genes
coding for each of the selected DAOx variants and codon optimized
for the expression in Saccharomyces cerevisiae were synthesized and
cloned into a recipient pYDKan plasmid in frame with Aga2p coding
sequence on a BioXP 3250 synthetic biology workstation (Codex
DNA). All the sequences were confirmed through Sanger sequencing
and the final plasmids were transformed into the yeast strain EBY100
through lithium acetate transformation protocol. Positive colonies
were selected on synthetic defined (SD) agar 2% (wt/vol) glucose
plates lacking tryptophan (-Trp). Positive colonies were cultivated in
-Trp liquid medium with 2% (wt/vol) Glucose for 24 h at 30 °C to an
OD600 ~ 8 with continuous shaking at 200 rpm. Expression and dis-
play of theAga2-DAOxwild type andmutant constructswere induced
by transferring the cells at OD600 = 0.4 to fresh -Trp liquid medium
with 0.2% (wt/vol) glucose and 1.8% (wt/vol) galactose and supple-
mented with 100mM citrate/phosphate buffer at pH7. The cells were
grown in induction medium for 48 h at 20 °C before being pelleted,
washed with PBS 0.1% (wt/vol) BSA and used for antibody labeling in
order to detect the c-terminal 6xHistidine (6xHis) tag of the dis-
played fusion protein.

Yeast cells stained for the expression of DAOx wild type and
mutant variants were analyzed through flow cytometry. Yeasts were
first gated for single events and the resulting population of cells was
further divided into 4 gates along the Alexa Fluor™ 594 fluorescence
axis. Gate 1, set between fluorescence values 0-2500, included the 99%
of the non-stained yeast population used as negative control. Other 3
gates were set respectively at 2500-25000, 25000-250000, 250000-
2500000 fluorescence arbitrary units in order to cover the entire
range of fluorescence. 10’000 single cells from each yeast population
were analyzed. We recorded the median value of the population in
eachof the four gates and the % of yeast cells represented in each gate.
Each population was assayed for expression three independent times.
We calculated a weighted mean (β) of the distribution of cells (%c)
where themedianfluorescenceof the yeast population ineachgate (ω)
was used as the weighting factor (Eq. 6).

β =

Pgate
i= 1 ωi � %ci
Pgate

i= 1 %ci
ð6Þ

Finally, the single clone expression score (Fsing. clone) was calcu-
lated by dividing the weighted mean expression of each DAOx variant
tested (βv) by the weighted mean of the wild type DAOx (βwt) assayed

through the same procedure (Eq. 7)

Fsing:clone =
βv

βwt
ð7Þ

To measure the activity of DAOx wild type and mutant variants,
yeast cell populations expressing these variantswere assayedusing the
AmplexRedmethodwithD-alanine as the substrate. Amixture of half a
million yeast cells, 35mM D-alanine, 5.6μM HRP, and 100μM Amplex
Red in PBS (pH 7.5) was prepared. The fluorescence signal was then
measured at 590 nmevery 60 s for a totalof 30min. The linear rangeof
the reaction for all the variant enzymeswas determined between0 and
10min of incubation, and the slope of each reaction was calculated.
The single clone activity score for each variant was obtained by
dividing the slope of the reaction for the variant by the slope of the
reaction for the wild type enzyme. The final scores were calculated as
the average of six independent measurements per cell population.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data required for replicating the study, DNA sequencing files and
the raw data associated with each figure, have been deposited in the
Zenodo database and are accessible to the public through the accession
code: 8388902 (https://zenodo.org/records/8388902). Information
about the PDB Entry 1C0P (DAOx) are found here: https://www.wwpdb.
org/pdb?id=pdb_00001c0p. Additionally, the heatmaps and their asso-
ciated raw data have been made available in color-blind accessible and
interactive formats at the following location: https://nash-lab.github.io/
DAOx-DMS/heatmaps/hm_expression_activity.html, https://nash-lab.
github.io/DAOx-DMS/heatmaps/hm_normalized_activity.html.

Code availability
All the customcomputer codes andprograms required to generate the
data of this work are publicly available in the Zenodo repository and
accessible through the https://doi.org/10.5281/zenodo.8388902.
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