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Nickel-catalyzed electrophiles-controlled
enantioselective reductive arylative
cyclization and enantiospecific reductive
alkylative cyclization of 1,6-enynes

Wenfeng Liu1,3, Yunxin Xing2,3, Denghong Yan2,3, Wangqing Kong 1 &
Kun Shen 2

Transition metal-catalyzed asymmetric cyclization of 1,6-enynes is a powerful
tool for the construction of chiral nitrogen-containing heterocycles. Despite
notable achievements, these transformations have been largely limited to the
use of aryl or alkenyl metal reagents, and stereoselective or stereospecific
alkylative cyclization of 1,6-enynes remains unexploited. Herein, we report Ni-
catalyzed enantioselective reductive anti-arylative cyclization of 1,6-enynes
with aryl iodides, providing enantioenriched six-membered carbo- and het-
erocycles in good yields with excellent enantioselectivities. Additionally, we
have realized Ni-catalyzed enantiospecific reductive cis-alkylative cyclization
of 1,6-enynes with alkyl bromides, furnishing chiral five-membered hetero-
cycles with high regioselectivity and stereochemical fidelity. Mechanistic stu-
dies reveal that the arylative cyclization of 1,6-enynes is initiated by the
oxidative addition of Ni(0) to aryl halides and the alkylative cyclization is
triggeredby the oxidative addition ofNi(0) to allylic acetates. The utility of this
strategy is further demonstrated in the enantioselective synthesis of the
antiepileptic drug Brivaracetam.

Optically pure nitrogen-containing heterocycles have long been of
great interest due to their frequent occurrence in natural products
with diverse pharmaceutical activities1. For example, chiral
2-pyrrolidones and 1,2,3,6-tetrahydropyridines constitute core struc-
tural elements in medicinally relevant compounds. In particular, Bri-
varacetamandSeletracetamareused for the treatment of partial-onset
seizures (Fig. 1a)2,3. The ergot alkaloids lysergic acid and lysergol
exhibit a wide range of biological activities, and their synthetic deri-
vatives, such as bromocriptine and pergolide, are used as anti-
prolactin and anti-Parkinson’s disease drugs4,5. As a consequence, the
development of efficient and enantioselectivemethods to access these

important chiral nitrogen-containing heterocyclic scaffolds is highly
desirable and sought after.

Transition metal-catalyzed asymmetric cyclization of 1,6-enynes
involves carbometallation, cyclization, and β-elimination and is a
powerful tool for the construction of chiral nitrogen-containing
heterocycles6–11. The Lu group12–14 and the Murakami group15,16 pio-
neered the study on the Pd- and Rh-catalyzed asymmetric cis-arylative
cyclizationof 1,6-enyneswith arylboronic acids to formfive-membered
heterocycles, respectively. Very recently, our group developed a Ni-
catalyzed asymmetric arylative cyclization of fluoroalkyl-substituted
1,6-enynes with arylboronic acids for the synthesis of Seletracetam17.
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Alternatively, the Lam group described an elegant Ni-catalyzed asym-
metric anti-arylative cyclization of 1,6-enynes with arylboronic acids to
afford six-membered heterocycles18 via reversible alkenylnickel E/Z
isomerization19–25. These redox-neutral reactions were proposed to be
initiated by carbometallation of the alkyne moiety, followed by cycli-
zation and β-heteroatom elimination. Although remarkable achieve-
ments have been made in this field, there are still some considerable
limitations. (1) These transformations are essentially restricted to the
use of aryl or alkenyl metal reagents with limited functional group
compatibility. (2) Stereoselective or stereospecific alkylative cycliza-
tion of 1,6-enynes remains unexploited, probably due to the easy β-H
elimination of the alkyl metal intermediate (Fig. 1b).

On the other hand, transition metal-catalyzed asymmetric allylic
substitution reactions are an important method for C–C bond forma-
tion and have been widely used in the synthesis of natural
products26–30. In this context, the enantiospecific allylic functionaliza-
tion takes advantage of the ready availability of highly enantioenriched
allylic alcohols while avoiding the need for chiral ligands, providing
facile access to a range of enantioenriched products with alkene
functional handles for down-stream elaboration31,32. Such transforma-
tion involves the oxidative addition of a low-valent metal (Pd33–37,
Cu38–42, Rh43, and Ni44–46) to allylic electrophiles to generate π-allylic
intermediates, followed by coupling with various metal reagents such
as organomagnesium, organozinc, organoaluminium, and organo-
boron reagents (Fig. 2a).

Over the past decade, there has been a surge of interest in Ni-
catalyzed reductive cross-coupling reactions, a strategy that allows
reactions to be performed under mild conditions with high functional
group tolerance and avoids the handling of sensitive organometallic
reagents (Fig. 2b)47–57. This strategy has emerged as an efficient and
practical method for the enantioselective coupling of alkyl
electrophiles58–62. Moreover, the Jarvo group developed the enantios-
pecific intramolecular reductive coupling of alkyl halides for the pre-
paration of enantioenriched cyclic compounds63,64.

Inspired by the attractive Ni-catalyzed reductive cross-coupling
approach, we envisaged that the reaction of alkyne-tethered allylic
acetate 1 with alkyl bromide is initiated by the formation of a π-

allylnickel intermediate, followed by intramolecular insertion into the
alkyne and cross-coupling with the alkyl halide, which would lead to
the formal alkylative cyclization product (Fig. 2c). Successful imple-
mentation of this strategy would address the challenging problem of
stereoselective alkylative cyclization of 1,6-enynes. Although non-
asymmetric reductive allylation reactions have been extensively
studied65–72 and the Co-catalyzed enantiospecific reductive vinylation
of allylic alcohols with vinyl triflates was developed by Shu73, to the
best of our knowledge, stereoselective reductive allylic alkylation
remains unexplored.

To achieve the conceptually simple yet attractive transformation
described above, many challenging issues need to be addressed. (1)
The oxidative addition of allylic electrophiles to low-valent nickel is
highly competitive with that of aryl halides, thus leading to a chemo-
selective problem. (2) Direct coupling between organohalides and
allylic electrophiles is also an important complicating factor. (3) As
reported by Lam18,19 and Montgomery74, alkenylnickel species are
prone to E/Z isomerization, which may result in a mixture of cis/trans
isomers. (4) Another challenging issue is to control the enantioselec-
tivity or enantiospecificity of the cyclization process.

Herein,we reportour recentfindings on the asymmetric reductive
cyclization of 1,6-enynes with organohalides (Fig. 2c). The enantiose-
lective reductive anti-arylative cyclization of 1,6-enynes with aryl
iodides was achieved, providing enantioenriched six-membered
carbo- and heterocycles in good yields with excellent enantioselec-
tivities. Moreover, the enantiospecific reductive cis-alkylative cycliza-
tion of 1,6-enynes with alkyl bromides has also been realized,
furnishing chiral tetrahydropyrroles in good yields with high regios-
electivity and stereochemical fidelity. Mechanistic studies reveal that
the arylative cyclization of 1,6-enynes is initiated by the oxidative
addition of Ni(0) to aryl halide, followed by carbonickelation of the
alkyne, E/Z isomerization and enantioselective addition to allylic
acetates. The alkylative cyclization is triggered by the oxidative addi-
tion of Ni(0) to allylic acetates to generate π-allylic intermediates,
followed by stereospecific insertion of alkynes and coupling with alkyl
halides. The utility of this strategy was further demonstrated in the
enantioselective synthesis of the antiepileptic drug Brivaracetam.
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Fig. 1 | Transition metal-catalyzed functionalization/cyclization of 1,6-enynes. a Bioactive molecules containing chiral 2-pyrrolidone and 1,2,3,6-tetrahydropyridine
skeletons. b Enantioselective cyclization of 1,6-enynes via carbometallation/cyclization/elimination pathway.
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Results
Reaction development
We initiated our investigation by exploring the enantioselective
reductive arylative cyclization of alkyne-tethered (Z)-allylic acetate 1a
with PhI 2a (Table 1). After extensive investigation of all of the reaction
parameters, we found that the use of Ni(OTf)2/(S)-iPr-NeoPhox (L8) as
the precatalyst and Mn as the reducing agent in DMA/HFIP at 80 oC
afforded the desired tetrahydropyridine 3aa in 74% yield with 95% ee
(entry 1). Changing (S)-iPr-NeoPhox (L8) to other chiral P,N-ligands
such as (S)-R-Phox ligands (L1–L4), (S,R)-In-Phox (L5), (S,Sp)-iPr-
Phosferrox (L6), and (S)-tBu-NeoPhox (L7) resulted in either lower
yields or lower enantioselectivity (entries 2-8). Using other nickel cat-
alysts such as NiBr2•glyme and Ni(OAc)2•4H2O or reducing the catalyst
loading resulted in lower yields, but the enantioselectivity of 3aa
remained unchanged (entries 9-11). Using Zn instead ofMngave 3aa in
49% yield with 95% ee (entry 12). Notably, the co-solvent HFIP played a
crucial role in achieving high yield and enantioselectivity. Both the
yield and enantiomeric excess of 3aa were dramatically decreased in
the absence of HFIP (entry 13). Other protonic co-solvents, such as TFE
and iPrOH, gave diminished yields and enantioselectivities
(entries 14–15).

With optimal reaction conditions inhand, we turned our attention
to examining the scope of enantioselective reductive arylative cycli-
zation of 1,6-enynes (Fig. 3). A wide range of diversely substituted aryl
iodides could participate well in the desired reactions to give tetra-
hydropyridines 3ab–3am in moderate to good yields (48–80%) with
excellent enantioselectivities (92–98%). Aryl iodides bearing various
synthetic useful functional groups such asmethoxy (3ac), cyano (3ad),

ester (3ae), trifluoromethyl (3af), fluoride (3ag), boronic ester (3ah),
chloride (3aj), andmethylenedioxy (3al) at the aromatic ring werewell
tolerated. The substitution pattern of aryl iodides was also investi-
gated. Aryl iodides bearing a methyl group at the para- (3ab) ormeta-
(3ai and 3ak) position of the aromatic ring underwent the reaction
smoothly to provide the corresponding products in 59–80% yields
with 93–95% ee. The absolute configuration of 3ajwas unambiguously
established by X-ray crystallography, and those of all other N-hetero-
cyclic products were assigned accordingly. However, ortho-methyl
substituted aryl iodide failed to give the desiredproduct, probably due
to steric hindrance.

The substrate scope of 1,6-enynes was then investigated.
Remarkably, the stereochemistry of allylic acetate has little effect on
the reaction outcome. As shown, the (E)-1,6-enyne (E)-1a reacted
smoothly with PhI to provide the expected product 3aa in 83% yield
and 87% ee. It is worth mentioning that the Z-stereochemistry of the
alkene moiety is crucial for this addition-cyclization-elimination reac-
tion, whereas E-alkenes cannot form the corresponding cyclization
products in previously reported redox-neutral strategies18. Regarding
the substitute on the alkyne moiety, the reaction is compatible with
various aromatic groups and provided the corresponding products
3ba–3ka in moderate to high yields (32–77%) with excellent enan-
tioselectivities (90–96% ee). In general, electron-rich arene groups
such as 4-methylphenyl (3ba), 4-methoxyphenyl (3ca),
3-methylphenyl (3ha), and 3,4-methxylenedioxyphenyl (3ja) gave
higher yields than electron-deficient arene groups such as
4-methoxycarbonylphenyl (3da), 4-trifluoromethylphenyl (3ea), and
4-fluorophenyl (3fa). Notably, the reaction tolerates boronate (3ga)
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Fig. 2 | Asymmetric reductive cyclization of 1,6-enynes. a Enantiospecific allylic substitution with organometallic reagents. b Enantioselective or enantiospecific
reductive cross-coupling of alkyl halides. c Enantioselective or enantiospecific reductive cyclization of 1,6-enynes (this work).
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and chlorine (3ia) groups, offering opportunities for further transfor-
mations via cross-coupling manipulations. Replacement of the sub-
stituent on the nitrogen from p-toluenesulfonyl to tert-butoxycarbonyl
was also feasible, affording 3la in 41% yield and 95% ee. Moreover, 1,6-
enynes with various backbones were tested. Changing the linking
group between the alkyne and the allylic acetate to anoxygen or an all-
carbon tether enabled the formation of tetrahydropyran 3ma and
carbocycle 3na in 51% yield with 94% ee and 65% yield with 92% ee,
respectively.

We further expect to realize the nickel-catalyzed reductive alky-
lative cyclization of 1,6-enynes with alkyl halides. We explored the
reductive alkylative cyclization of 1a with alkyl bromide 5a. Instead of
obtaining the tetrahydropyridine product, we isolated the tetra-
hydropyrrole product 6aa in 79% yield as a single regioisomer with
excellent stereoselectivity (E/Z > 20:1) using the combination of NiBr2
and 2,2’-bipyridine (BPy, L9) as the catalyst, and Mn as the reductant
(see Supplementary Information Section 4). This result is quite dif-
ferent from Montgomery’s report on nickel-catalyzed oxidative cycli-
zation and reductive cross-electrophile couplingof aldehydes, alkynes,
and alkyl halide to produce a mixture of cis-trans isomers74. Encour-
aged by this result, we screened a series of chiral ligands in an attempt
to render the alkylative cyclization reaction asymmetric. However, all
our attempts resulted in only racemic products. We speculate that the

reaction mechanism of the alkylative cyclization is different from that
of the arylative cyclization and that the former may be initiated by the
oxidative addition of allylic acetates to nickel to form π-allylnickel
intermediates.We, therefore, turnedour attention to the development
of nickel-catalyzed enantiospecific alkylative cyclization of 1,6-enynes
with alkyl halides.

We started our investigation by exploring the cyclization reaction
of alkyne-tethered (E)-allylic acetate 4a (99% ee) with 5a (Table 2). The
reaction was conducted in DMA at 20 °C using 10mol% of
Ni(ClO4)2

.6H2O and 20mol% of BPy (L9) as catalyst (entry 1). The tet-
rahydropyrrole product 7aa was obtained in 56% yield with a sig-
nificant decrease in enantiospecificity (5% ee), reinforcing the notion
that the enantiospecific alkylative cyclization would be far from trivial.
We found that the electronegativity of the ligandhas a strong influence
on the stereospecificity. Using the pyridine oxazole ligand L10, 7aa
couldbeobtained in60%yieldwith 80%ee (entry 2). Surprisingly, both
lowering the reaction temperature to 0 °C and increasing the tem-
perature to40 °C resulted in a significant decrease in the efficiency and
stereospecificity of the reaction (entries 3–4). The effect of different
solvents was also investigated, and the stereospecificity of 7aa
increased to 86% when THF was used as a co-solvent (entries 5–8).
Subsequently, we investigated the effect of electronic and steric
modifications of Pybox ligands on reactivity and selectivity (entries

Table 1 | Condition optimization for enantioselective reductive arylative cyclization of 1,6-enynesa

Entry Variation from standard
conditions

Yield (%)
of 3aab

ee (%) of3aac

1 None 74 95

2 L1 instead of L8 44 97

3 L2 instead of L8 62 90

4 L3 instead of L8 50 88

5 L4 instead of L8 42 37

6 L5 instead of L8 78 91

7 L6 instead of L8 36 95

8 L7 instead of L8 28 96

9 NiBr2•glyme instead of
Ni(OTf)2

65 95

10 Ni(OAc)2•4H2O instead of
Ni(OTf)2

41 95

11 10mol% Ni(OTf)2, 20mol%
(S)-L8

52 95

12 Zn instead of Mn 49 95

13 without HFIP 53 62

14 TFE instead of HFIP 51 90

15 iPrOH instead of HFIP 49 88
aReaction conditions: 1a (0.2mmol), 2a (0.3mmol), Ni(OTf)2 (15mol %), (S)-L8 (30mol %), and Mn (0.6mmol) in DMA/HFIP (2mL/2mL) in a sealed tube at 80 oC for 12 hours.
bIsolated yield after flash chromatography.
cThe ee values were determined by HPLC on a chiral stationary phase.
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9–14). Adjusting the electronic properties of the pyridine ring did not
lead to further improvements (L10–L12). A clear trend was observed
where increased steric bulk at the 5-position of the oxazoline ring
enhanced stereospecificity (L13). Adding steric repulsion on the pyr-
idine ring (L14) led to very low yield. To our delight, the spirocyclic
ligand L15 was found to be the most effective in terms of both reac-
tivity and stereospecificity. Other nitrogen ligands, including phe-
nanthroline (L17) and terpyridine (L18), have been widely used in Ni-
catalyzed reductive cross-coupling reactions47–57; however, they pro-
duced trace amounts of the desired product 7aa and resulted in a
significant erosion of the ee values (entries 15–16). The addition of NaI
proved to be crucial for the high efficiency of the reaction (entry 17).

Control experiments showed that the reaction did not occur in the
absence of Mn0 and ligand (entries 18–19).

With optimal reaction conditions in hand, we examined the scope
of enantiospecific reductive alkylative cyclization of 1,6-enynes with
alkyl bromides (Fig. 4).Wewere a pleasure to find that a variety of alkyl
bromides could undergo alkylative cyclization to furnish the tetra-
hydropyrroles 7aa–7ao in good yields with excellent enantiospecifi-
city. Alkyl bromides with different substituents and functional groups,
such as long-chain alkyls (7aa and 7ab), chloride (7ac), fluoride (7ad),
silyl ether (7ae), acetoxyl (7af), ester (7ag), cyanide (7ah), boronic
ester (7ai), acetals (7aj), amides (7ak–7am), alkenyl (7an), and alkynyl
(7ao), were well compatible with the current reaction conditions. The

Fig. 3 | Reaction scope of asymmetric reductive arylative cyclization. The reactions were performed on a 0.2mmol scale under the conditions in Table 1, entry 1.
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absolute configurationof 7aawas unambiguously determinedbyX-ray
crystallographic analysis, and those of all other N-heterocyclic pro-
ducts were assigned accordingly. A limitation of our method is the use
of secondary and tertiary alkyl bromides as coupling partners, which
failed to provide the desired product under the standard reaction
conditions.

The substrate scope with respect to 1,6-enynes was then investi-
gated. 1,6-Enynes bearing either electron-deficient (7ba) or electron-
rich (7cf) arenes at the terminus of the alkyne moiety could be con-
verted to the desired products in good yields with remarkably high
enantiospecificity. Of particular interest was the ability to accom-
modate aryl chloride (7da); no alternative competing by-products

were observed. The reaction is not restricted to the aryl groups at the
terminus of the alkyne moiety. Alkyl-substituted 1,6-enynes, including
2-phenethyl, methyl, and functionalized CH2OBn, were also viable
substrates, leading to the corresponding products (7el, 7fa, and 7gf) in
good yields and high enantiospecificity. Terminal alkyne was also tol-
erated to give the desired product 7 ha in high enantiospecificity and
excellent stereoselectivity (E/Z > 20:1). Notably, the presence of a
sterically hindered quaternary carbon on the ortho position of the
alkyne does not impede the cyclization reaction (7ia). Unfortunately,
only low enantiospecificity was achieved for the synthesis of the six-
membered ring product 7ja. Previously reported nickel-catalyzed
stereospecific allyl-aryl cross-coupling reactions were limited to aryl-

Table 2 | Condition optimization for enantiospecific reductive alkylative cyclization of 1,6-enynesa

Entry Ligand Solvent Yield (%)
of 7aab

ee/es (%)
of 7aac

1 L9 DMA 56 5/5

2 L10 DMA 60 80/81

3d L10 DMA 38 52/53

4e L10 DMA 48 67/68

5 L10 THF trace –

6 L10 DMF 49 75/76

7 L10 DMSO trace –

8 L10 DMA/THF(1/2) 78 86/87

9 L11 DMA/THF(1/2) 34 46/46

10 L12 DMA/THF(1/2) 77 84/85

11 L13 DMA/THF(1/2) 60 29/29

12 L14 DMA/THF(1/2) trace –

13 L15 DMA/THF(1/2) 78 91/92

14 L16 DMA/THF(1/2) 63 84/85

15 L17 DMA/THF(1/2) 43 8/8

16 L18 DMA/THF(1/2) trace –

17f L15 DMA/THF(1/2) 21 91/92

18g L15 DMA/THF(1/2) trace –

19 - DMA/THF(1/2) trace –

aReaction conditions: E-4a (0.1mmol, 99% ee), 5a (0.2mmol), Ni(ClO4)2·6H2O (10mol %), ligand (20mol %), Mn dust (0.3mmol), NaI (0.05mmol) in a sealed tube in 2mL solvent at 20 oC, unless
noted otherwise.
bIsolated yields after flash chromatography.
cThe ee values were determined by HPLC analysis with a chiral column.
dThe reaction was performed at 0 oC.
eThe reaction was performed at 40 oC.
fWithout NaI.
gWithout Mn0.
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substituted allylic esters. Replacement of the aryl substituent (R3) on
the allylic ester with an alkyl group resulted in poor regioselectivity
and low enantiospecificity44–46,73. One possible reason is that the pre-
sence of an aryl group can stabilize the key π-allyl nickel intermediate
through conjugation. Strikingly, the alkyl-substituted allylic esters

reacted smoothly to obtain the desired product 7ka in 70% yield with
slightly reduced stereospecificity (83% ee).

To explore the effect of alkene geometry on the stereochemical
outcome, we compared the alkylative cyclization reactions of (E)-4a
and (Z)-4a with the alkyl bromide 5a (Fig. 5). The alkylative cyclization
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reactions of (R, E)-4a and (S, E)-4a with 5a proceeded smoothly to
afford 7aa in 78–79% yields with excellent stereochemical fidelity
(91–95% ee). On the other hand, the alkylative cyclization of the sub-
strates (R, Z)-4a and (S, Z)-4a with 5a provided 7aa in high yields
(91–94%) with slightly reduced stereochemical fidelity (79–83% ee).
Clearly, the opposite absolute configuration of 7aawas observed from
the alkylative cyclization reactions of (E)-4a vs (Z)-4a, highlighting the
influence of alkene geometry on the stereochemical outcome.

Based on these results, we propose that (Z)-4a and (E)-4a undergo
stereo inverted oxidative addition to nickel to form π-allylnickel
complexes I and II, respectively. The π-allylnickel complexes II
undergo the isomerizationof the substituent fromanti to synbywayof
σ-allylnickel intermediates. The π–σ–π rearrangement moves the
nickel from the back side to the front side to give the π-allylnickel
complex III, which has the same configuration as π-allylnickel com-
plexes I. This is the reason why (R, E)-4a and (S, Z)-4a react with 5a to
produce the same product (S)-7aa. This phenomenon is similar to the
previously reported Pd-catalyzed stereoselective nucleophilic sub-
stitution reaction of optically active allylic acetates75,76.

Synthetic applications
Our approach was also successfully applied to reactions using struc-
turally complex alkyl bromides derived from estrone (7ap) and glu-
cose (7aq) as precursors, while leaving other sensitive functional
groups (ester, acetal, and ketone) intact. Ourmethodprovides ameans
to incorporate enantioenriched tetrahydropyrrole into biologically
active molecules. For example, the alkylative cyclization of (E)-4awith
alkyl bromides derived from galactose and naproxen afforded the
products 7ar and 7as in moderate yields with high diastereoselec-
tivities, respectively (Fig. 6a).

Moreover, the alkylative cyclization reaction of (E)-4a with (bro-
momethyl)cyclopropane 5t followed by ring-closing metathesis
afforded the cyclohepta[c]pyrrole skeleton 8, which is widely found in
many natural products and pharmaceuticals77,78. To our delight, using
palladium on carbon as a catalyst for hydrogenation at one atmo-
sphere, the less substituted double bondwas selectively hydrogenated
to give tetrahydropyrrole 9aa in 91% yield while maintaining high
enantioselectivity. The tetrasubstituted alkenes in9aa couldbe further
hydrogenated at 10 atmospheres to give 10aa with three chiral ste-
reocenters with high efficiency (93% yield) and excellent asymmetric
induction (>20/1 d.r.) (Fig. 6b).

To further demonstrate the utility of this protocol in the field of
medicinal chemistry, the application of this approach to the concise
synthesis of pharmaceutically relevant molecules was performed. Bri-
varacetam, released in 2016 under the brand name Briviact, is used to
treat partial-onset seizures2–5. The alkylative cyclization of (E)-4l with
5a afforded the 2-pyrrolidone skeleton 7la in 65% with 82% ee. Selec-
tive hydrogenation of 7la gave product 9la in 99% yield. Ozonolysis of
9la gave the ketone intermediate, whichwas then reducedwith NaBH4

at −78 °C to afford alcohol 11 in 72% yield17. 11 underwent bromination,
and subsequent radical reductive debromination afforded
2-pyrrolidone 1279, which can be readily converted to the antiepileptic
drug Brivaracetam by known procedures (Fig. 6c)80,81.

Mechanistic studies
To shed light on the different reaction patterns of 1,6-enynes with aryl
halides and alkyl halides, we designed a series of mechanistic experi-
ments (Fig. 7). The reaction of 1,7-enyne 1o with 5a successfully
afforded the tetrahydropyrrole 6aa in 70% yield, indicating that the
alkylative cyclization reactionwas initiated by the oxidative addition of
allylic acetates to nickel to form π-allylic nickel intermediates (Fig. 7a,
left). However, the reaction of 1o with 2a did not produce the tetra-
hydropyridine 3aa or tetrahydropyrrole 3aa’, implying that a π-allylic
nickel intermediate may not be involved in the arylative cyclization
process (Fig. 7a, right).

Furthermore, we synthesized alkenyl iodides 13 and 14 and
subjected them to our standard reaction conditions of arylative
cyclization. To our surprise, the expected product 3aa was isolated
in 49% and 58% yields, respectively, while the ee value of 3aa was
drastically reduced to 3% (Fig. 7b). If the reductive cyclization
proceeds via oxidative addition of alkenyl iodide of 13 or 14 to
nickel to generate alkenyl nickel, and then addition to allylic acetate
followed by β-OAc elimination, the resulting product 3aa should be
highly stereoselective. Therefore, we believe that the reaction
proceeds through the oxidative addition of nickel to allylic acetate
to obtain allylic nickel, followed by cross-coupling with alkenyl
iodide. L8 may not be able to control the stereoselectivity of this
process.

We, therefore, further designed a crossover experiment in which
1c and 13 were reacted with PhI under standard reaction conditions
(Fig. 7c). The expected product 3ca was obtained with high enantios-
electivity (94% ee); while 3aa is almost racemic. This result further
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supports that the arylative cyclization mechanism is unlikely to pro-
ceed by first forming an allylic nickel intermediate.

To clarify possible catalytically active intermediates in the aryla-
tive cyclization reaction, we synthesized aryl-Ni(II) complex 1582,83 and

reacted it with 1a to give 3ae in 80% yield (Fig. 7d). This result suggests
that aryl-nickel species is a key intermediate in the catalytic cycle.

We assumed that the alkylative cyclization occurs through the
oxidative addition of nickel to allylic acetate to generate a π-allylic
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nickel, followed by migratory insertion into the alkyne to generate the
alkenyl-nickel(II) species 17. To verify this process, we performed a
stoichiometric reaction of Ni(COD)2 with 4a and quenched the reac-
tionwithwater. The product 16wasobtained in 77% yield (Fig. 7e). This
result confirms our hypothesis that alkenyl nickel(II) species 17 are
indeed involved in the catalytic cycle.

When the radical scavenger TEMPO was added to standard alky-
lative conditions, the reaction was completely inhabited, and the
TEMPO-trapped phenylethane product 18 was isolated in 12% yield
(Fig. 7f), indicating the involvement of the radical pathway.

To distinguish the sequential reduction and radical chain path-
ways in our reductive alkylative cyclization, the reaction of 4a with 5a
using stoichiometric Ni(0) catalyst in the absence of the reductant
(Mn) was carried out, leading to the desired product 7aa in 66% yield
(Fig. 7g). This result indicates that a radical chain mechanism is rea-
sonably proposed to be responsible for the catalytical cycle. The
sequential reduction pathway involving the reduction of alkenyl
nickel(II) 17 to nickel(I), oxidative addition to alkyl bromide to form
Ni(III), and reductive elimination can be ruled out at this stage.

Next, we performed a series of radical clock experiments. The
alkylative cyclization reaction of 1a and cyclopropylmethyl bromide
(5t) gave the ring-openingproduct6at in 52% yield (Fig. 7h). This result
clearly shows that alkyl radical was generated from the alkyl bromide
during the reaction process. Interestingly, the reaction of 1a with 6-
bromo-1-hexene (5u) afforded the ring-closure product 6au’ as well as
the uncyclized product 6au. We further investigated the relationship
between the concentration of nickel catalyst and the product ratio of
6au and 6au’ (Fig. 7i). A linear relationship was observed, supporting a
radical chain mechanism instead of cage-bound oxidative addition.

Based on the above experimental results, possible mechanisms
for the reductive arylative and alkylative cyclizations were proposed,
respectively (Fig. 8). For nickel-catalyzed enantioselective reductive
arylative cyclization, the oxidative addition of aryl iodides to catalyti-
cally active Ni(0) catalyst F would afford aryl-Ni(II) species A, which
undergoes intermolecular migratory insertion into alkyne to provide
alkenyl-Ni(II) intermediate B. E/Z isomerization of alkenyl-nickel

species B, involving a previously proposed possible zwitterionic car-
bene intermediate19,84,85, would afford a new alkenyl-nickel inter-
mediate C, which undergoes cyclization with allylic acetate to form
alkylnickel intermediate D. Subsequent β-OAc elimination of nickel
species D would furnish the chiral six-membered ring product 3 and
Ni(II)X complex E, which can regenerate the active Ni(0) catalyst F
upon Mn reduction. Arylative cyclization is initiated by the oxidative
addition of nickel to aryl iodides rather than to allylic acetates, prob-
ably because aryl iodides are more reactive than allylic acetates.

For nickel-catalyzed enantiospecific reductive alkylative cycliza-
tion, stereoinvertive oxidative addition of allylic acetate to Ni(0) cat-
alyst would afford π-allylic nickel intermediate G, which undergoes
intramolecular stereoretentive migratory insertion into alkyne to
provide alkenyl-Ni(II) intermediateH. Meanwhile, the in situ generated
Ni(I) species J chemically engages a single-electron transfer event with
alkyl halide 5 to give rise to alkyl radical K and Ni(II) complex. The
radical addition of the alkyl radical K with the alkenyl-Ni(II) inter-
mediate H would generate Ni(III) intermediate I. The possibility of
reduction of alkenyl-Ni(II) H to alkenyl nickel(I) L followed by one-
electron transfer with alkyl bromide and recombination to formNi(III)
I was ruled out. Subsequent reductive elimination from the Ni(III)
species I would furnish the enantioenriched five-membered ring pro-
duct 7 along with the Ni(I) intermediate J.

Discussion
In summary, Ni-catalyzed enantioselective reductive anti-arylative
cyclization of 1,6-enynes with aryl iodides was reported, providing
enantioenriched six-membered carbo- and heterocycles in good yields
with excellent enantioselectivities. Moreover, the enantiospecific
reductive cis-alkylative cyclization of 1,6-enynes with alkyl bromides
was also realized, furnishing chiral five-membered nitrogen-containing
heterocycles in good yields with high regioselectivity and stereo-
chemical fidelity. Mechanistic studies reveal that the arylative cycli-
zation of 1,6-enynes is initiated by the oxidative addition of aryl halide
to Ni(0), followed by carbonickelation of the alkyne, E/Z isomerization
and enantioselective addition to allylic acetates. The alkylative
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cyclization is triggered by the oxidative addition of allylic acetate to
Ni(0), followed by stereospecific insertion of alkynes and coupling
with alkyl halides. The utility of this strategywas further demonstrated
in the enantioselective synthesis of the antiepileptic drug Brivar-
acetam.Further investigationon enantioselective alkylative cyclization
of 1,6-enynes is still ongoing in our laboratory.

Methods
General procedure for the enantioselective reductive arylative
cyclization of 1,6-enynes
An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with Ni(OTf)2 (0.03mmol, 10.6mg), (S)-L8 (0.06mmol,
21.2mg) and anhydrous DMA/HFIP (1:1, 2mL). This reaction mixture
was stirred at room temperature for 1 h in an argon-filled glovebox.Mn
(0.6mmol, 33.0mg), 1,6-enyne 1 (0.2mmol), aryl iodide 2 (0.4mmol),
and DMA/HFIP (1:1, 2mL) were then added. The sealed tubewas sealed
and removed from the glovebox. The reaction mixture was allowed to
stir at 80 °C for 12 h. The reactionwas quenchedby the addition ofH2O
(10mL) and EtOAc (20mL). The organic layer was separated, and the
aqueous layer was extracted with EtOAc (20mL× 3). The combined
organic layerswerewashedwith brine, dried over Na2SO4, filtered, and
concentrated. The residue was purified by flash chromatography on
silica gel, eluting with PE/EtOAc (50/1 ~ 5/1), to give the desired pro-
ducts 3.

General procedure for the enantiospecific reductive alkylative
cyclization of 1,6-enynes
An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with Ni(ClO4)2•6H2O (0.01mmol, 3.7mg), L15 (0.02mmol,
4.0mg), NaI (0.05mmol, 7.5mg) and anhydrous DMA (0.67mL). This
reaction mixture was stirred at room temperature for 1 hour in an
argon-filled glovebox. 1,6-Enyne 4 (0.1mmol), alkyl bromide 5
(0.2mmol), Mn powder (0.3mmol, 16.5mg), and anhydrous THF
(1.33mL) were then added. The sealed tube was sealed and removed
from the glovebox. The reaction mixture was allowed to stir at 20 °C
until the reaction was completed (monitored by TLC). The reaction
was quenched by the addition of a saturated aqueous solution of
NH4Cl (10mL) and EtOAc (20mL). The organic layer was separated,
and the aqueous layer was extracted with EtOAc (20mL× 3). The
combined organic layers were washed with brine, dried over Na2SO4,
filtered, and concentrated. The residue was purified by flash chroma-
tography on silica gel, eluting with PE/EtOAc (20/1–5/1), to give the
desired products 7.

Data availability
The authors declare that all the data supporting the findings of this
workare availablewithin the article and its Supplementary Information
files or from the corresponding author upon request. The X-ray crys-
tallographic coordinates for structures reported in this study have
been deposited at the Cambridge Crystallographic Data Center
(CCDC) under deposition numbers 2283739 (3aj) and 2271665 (7aa).
These data can be obtained free of charge from The Cambridge
Crystallographic Data Center via www.ccdc.cam.ac.uk/data_
request/cif.
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