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Realization of all-band-flat photonic lattices

JingYang1,2,3, YuanzhenLi 2,3, YumengYang2,3,XinrongXie 2,3, ZijianZhang2,3,
Jiale Yuan1, Han Cai 1,4, Da-Wei Wang 1,4,5 & Fei Gao 1,2,3

Flatbands play an important role in correlated quantum matter and have
promising applications in photonic lattices. Synthetic magnetic fields and
destructive interference in lattices are traditionally used to obtain flatbands.
However, such methods can only obtain a few flatbands with most bands
remaining dispersive. Here we realize all-band-flat photonic lattices of an
arbitrary size by precisely controlling the coupling strengths between lattice
sites to mimic those in Fock-state lattices. This allows us to go beyond the
perturbative regime of strain engineering and group all eigenmodes in flat-
bands, which simultaneously achieves high band flatness and large usable
bandwidth. We map out the distribution of each flatband in the lattices and
selectively excite the eigenmodes with different chiralities. Our method paves
a way in controlling band structure and topology of photonic lattices.

Flatbands lead to localization, high density of states (DOS), and non-
trivial topology, attracting increasing interest in electronicmaterials1–4,
atomic physics5–10, and photonic lattices11–23. In strongly correlated
electronic systems24,25, the small energy width and high DOS of flat-
bands facilitate the observation of many-body physics such as frac-
tional quantum Hall effect26, ferromagnetism27–29, and
superconductivity30–34. Flatbands also have promising applications in
photonic systems35–37. The zero group velocity in flatbands can be used
to achieve slow light38,39, enhanced light-matter interaction40, and
dispersionless image transmission41,42. Systematic methods have been
developed in generating flatbands in one43,44 and two45 dimensions. In
particular, by carefully engineering the hopping strengths between
lattice sites, it is possible to realize all-band-flat (ABF) lattices46–49,
which can balance the trade-off between flatness of the bands and the
useful bandwidth35, by turning all bands flat to utilize the full lattice
energy spectra. Such ABF lattices also provide a unique platform to
investigate Aharonov-Bohm caging1, compact localized states50, non-
linear and quantum caging46,47. Interestingly, it has been theoretically
proposed that by finely tuning the coupling strengths we can obtain
finite ABF lattices51,52. However, limited by the achievable range of the
coupling strengths and the dissipation of the resonators, so far not all
eigenstates can be grouped into flatbands in experiments53,54.

In this Letter, we experimentally realize ABF honeycomb lattices
of microwave resonators by engineering the coupling strengths
between resonators to mimic the Fock-state lattices (FSLs) of a three-
mode Jaynes-Cummings (JC) model, an emulation of quantumbosonic
topological states55,56 in photonic lattices. We precisely control the
coupling strengths at different locations and group all eigenstates in
flatbands, such that high DOS is obtained at discrete energies. The
perturbative strain field due to the spatially varying coupling strengths
introduces a pseudo-magneticfield, which has been used to generate a
few flatbands near the Dirac points53,54,57–61. Here we go beyond the
perturbative regime of the strain engineering to realize ABF lattices.
Wemeasure the distribution of states andmanage to selectively excite
different eigenstates in a flatband. Our results validate a scalable
method to generate ABF lattices with arbitrary size and offer a plat-
form to study topological transports in photonic lattices.

Results
Simulating FSL flatbands with photonic lattices
Electromagnetic resonators and waveguides have been widely used to
simulate topological physics of electrons62. Topological edge modes
propagating unidirectionally without being scattered by local defects
are promising for applications in robust photonic devices48,63,64.
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Beyond classical topological photonics, the Fock states of light form
strained lattices with ABF energy spectra55, which have been experi-
mentally realized in a superconducting circuit56. Such quantum topo-
logical states of bosonic modes provide new tools to design classical
photonic lattices for flat-band optical engineering. We note that one-
dimensional photonic lattices that mimic the coupling between Fock
states for coherent and topological transport have been proposed65,66

and experimentally realized67,68. Here we extend the technique to two
dimensions to realize ABF lattices.

We use a honeycomb lattice of microwave resonators with site-
dependent coupling strengths (see Fig. 1a)55 to obtain the ABF energy
spectrum. The resonators are labelled by Aijk and Bijk for A and B
sublattices, with i, j, and k being the indices in e1 = ð�

ffiffiffi

3
p

=2,� 1=2Þ,
e2 = ð

ffiffiffi

3
p

=2,� 1=2Þ and e3 = (0, 1) directions, satisfying i + j + k + (ξ + 1)/
2 =N with ξ= − 1 and 1 for A and B sites, respectively. At the triangular
lattice boundary one of i, j, k becomes zero, corresponding to the
vacuum state in FSLs. In total, the honeycomb lattice contains (N+1)2

sites. The coupling strength between Aijk and Bi−1jk site is
ffiffi

i
p

t0, and the
same rule applies to j and k. The square root factors are introduced to
emulate the couplings between different harmonic states55,56,69–71,
which involves the properties of bosonic annihilation operators. In the
lattice the coupling strengths vary from t0 to

ffiffiffiffi

N
p

t0, in a range smaller
than the existing proposals51,52 by a factor of

ffiffiffiffi

N
p

, which facilitates the
following experimental realization. These couplings are described by
the tight-binding Hamiltonian,
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where aijk and bijk are the annihilation operators of Aijk and Bijk reso-
nators. The eigenenergies are solved analytically (see Supplementary
Section I.A),

Em = ±
ffiffiffiffiffiffiffi

3m
p

t0, ð2Þ

withm =0, 1, 2, . . . ,N and degeneracies N −m + 1. Therefore, we group
all eigenstates in N + 1 flatbands.

In order to achieve wide tuning range of the coupling strengths
while maintaining narrow linewidths, we construct such lattices using
aluminum coaxial cavities shown in Fig. 1b, whose hexapole mode of
transverse magnetic (TM) polarization has a resonant frequency
12.002GHz. This TM mode is confined inside the cavity as shown in
Fig. 1b, c, without evanescent fields in the ambient55. We employ short
waveguides (WGs) to couple each resonator with its three neighbors.
The three coupling WGs with widths d1, d2, and d3 are connected to
three openings on the resonator wall. To correct the slight frequency
shift due to these openings, we use a fourth opening with width d4 to
align resonance frequencies of all cavities. All these widths are indivi-
dually designed for each resonator to obtain the ad-hoc engineered
coupling strengths. The evanescent waves in the WGs couple neigh-
boring resonators with coupling strengths being determined by the
widths of the WGs. Numerical simulation of the frequency splitting of
two connected resonators shows the relation
t = (4.4d 2 − 37.8d + 89.8)MHz (see Fig. 1d, Supplementary Section II).
We individually design the widths to achieve the required coupling
strength distribution beyond perturbative regime. The minimum
coupling strength t0 = 69MHz is much larger than the resonance
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Fig. 1 | Photonic lattice mimicking the coupling of Fock-state lattices. a An ABF
honeycomb lattice of microwave resonators withN = 9, containing 100 resonators.
Red and blue sites denote A and B resonators connected by lines with widths
proportional to the local coupling strengths. b, c The geometry of a single cavity
and the Ez field distribution of the TMmode in the xy b and yz c planes. The cavity
has an inner radius R = 24 mm and a height h = 20 mm. An aluminum rod in the
center of the cavity (with radius r = 1 and height l = 25mm) is used to make contact
with the antenna to maintain stability in excitation and measurement. Each

resonator is coupled to three adjacent resonators via short waveguideswith widths
d1, d2, and d3. The distance between two adjacent resonators is 50mm. An extra
opening with width d4 is used to tune the resonance frequency. The radius of the
hole in the top of the cavity is 3mm. d Numerical simulation (see Supplementary
Section II) of the frequency splitting of two coupled resonators. The coupling
channel width d2 changes from 7mm to 11mm with a 0.4mm step, while keeping
d1 = d3 = 8mm.
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linewidth (γ = 10 MHz) of a single resonator, such that the discrete
flatband energy levels are completely separated from each other.

Discrete energies of flatbands
We experimentally characterize the flatbands by measuring reflection
spectra site by site. We employ an antenna which functions as a point
source and a detector simultaneously. The antenna connected to a
vector network analyzer is inserted through the top hole on cavities,
and contacts the inside central rod. We measure the reflection spec-
trum on each site, R(rj, ν), which are related to the local DOS D(rj, ν)
(see ref. 72, Supplementary Section III),

Dðrj, νÞ �
X

m

2γ

ðν � νmÞ2 + γ2
jΦmðrjÞj2

/ 1� jRðrj , νÞj2,
ð3Þ

where Φm(rj) represents the mth lattice mode of eigenfrequency νm
and rj denotes the position of the jth resonator. The total DOS can be
evaluated with D(ν) =∑jD(rj, ν).

We measure the reflection spectra at all resonators, and obtain
D(ν) shown in Fig. 2b. The result features with peaks corresponding to
the 19 flatbands of the lattice shown in Fig. 2a. The measured zeroth
Landau level E0 located at ω0 = 11.997GHz, slightly deviating from the
frequency of a single resonator. Such deviation is due to next-nearest-
neighbor couplings (see Supplementary Section I.B). The peaks above
and below E0 correspond to the positive and negative Landau levels,
respectively. The frequency difference between E0 and E1 is 0.12 GHz,
consistent with the theoretical value

ffiffiffi

3
p

t0. The spectra weight (peak
area) reflects the degeneracy of the corresponding Landau level,
consistent with the theoretical prediction. The positive Landau levels
show larger band splitting than the negative ones due to next-nearest-
neighbor couplings induced by a higher-order cavity mode at 12.5 GHz
(see Supplementary Section I.B). The positive Landau levels exhibit
larger spectraweights than the negative ones due to indirect couplings
between adjacent resonators (see Supplementary Section I.C).

Spatial distribution of modes in flatbands
We further experimentally image the modes in flatbands, by mea-
suring reflection coefficients R(rj, νm). Figure 3 presents the simulated
and captured mode patterns of mth flatband with m = 0, 1, 6, 8, 9
respectively. The pattern of the zeroth m = 0 Landau level in Fig. 3
shows anomalous parity,manifesting as nonzero local DOS only in the
A sublattice. Such sublattice polarization is due to the chiral sym-
metry breaking, originating from the site number difference between
the two sublattices. Different from the unstrained lattices where the
zero-energy modes occupy the terminating A sites53, here the zero-
energy modes are confined within the incircle of the lattice. This is
because the nonperturbative strain induces a semimetal-insulator
phase transition on the incircle. Within the incircle, the energy bands
touch at strain-shifted Dirac points, while outside of the incircle, a
band gap is opened. Therefore, the zero-energy modes only exist
within the incircle, which is a Lifshitz topological edge55.

By evaluating the variances of the mode functions (see Supple-
mentary Figs. S4 and S5), we observe that the mode functions spread
from the center to the edges whenm increases from 0 to N/2, and then
shrink to the center when m increases from N/2 to N. Their spatial dis-
tributions remain C3 symmetry with respect to the center of the lattice.
Different Landau levels have their own preferred locations to occupy.
Regardingm= 1, the eigenmodes on the A sites have highweights in the
three corners of the lattice, while for m=6, the three edges are pre-
ferred. The 8th Landau level has an annulus distribution with zero
intensity in the center, and the 9th Landau level which contains only one
mode is localized near the center. The eigenmodes in higher Landau
levels occupy sites beyond the incircle, with nearly equal populations in
the two sublattices (see Fig. 3). The distinctive distributions of the
Landau levels give us an additional controlling knob to selectively excite
a Landau level at specific positions of the lattice. Such a feature can help
us to use the whole energy spectra for flatband engineering. The pre-
cision in tuning the coupling strengths allows us to obtain a higher than
0.85 fidelity for most Landau levels (see the definition of fidelity and
evaluation of the band flatness in Supplementary Section IV).

Selective excitation of degenerate eigenmodes
In each Landau level, degenerate eigenmodes differentiate themselves
with different chiralities C 55 (see details in Supplementary Section I),
which plays the role of lattice momentum in an infinite lattice. The
chiralities of degenerate states manifest as relative phase differences
between lattice sites. For instance, the 7th Landau level has only 3
eigenmodes of chirality C = 0 and ± 2 (see the field distributions in the
middle of Fig. 4). The mode of C =0 exhibits a π phase change along
the radial direction, but remains in phase along the angular direction.
The eigenmode of C = 2 distributes far away from the center of the
lattice, and has 4πphase change along the counterclockwise direction,
similar to that of a vortex.

To selectively excite aneigenmodeof specific chirality in a Landau
level, we utilize multiple antennas with relative phase difference ϕ
which matches the phase distribution at corresponding lattice sites.
Forϕ = 0we excite the three sites with the samephase. Forϕ = 2π/3 we
excite the three sites with phases 0, 4π/3 and 2π/3 in the counter-
clockwise direction. The eigenmode with C =0 can be efficiently
excited withϕ =0 near the center, but not forϕ = 2π/3. This is because
the three sites have the same phase in this eigenmode. In contrast, for
C = 2 the eigenmode can be only efficiently excited for ϕ = 2π/3 away
from the center, but not for ϕ =0, consistent with the corresponding
phase distribution. We note that when the lattice sites are efficiently
excited, the phase distributions in the lattice are in accord with those
of the corresponding eigenmodes.

Discussion
In conclusion, we construct two-dimensional ABF photonic lattices by
mimicking the coupling strengths in FSLs. Strained hexagonal lattices
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Fig. 2 | Density of states of the flatbands. a The numerically simulated eigen-
energies for the lattice withN = 9, t0 = 69MHz, and next-nearest-neighbor coupling
κ = 2 MHz. b Experimentally measured D(ν), which is obtained from reflection
spectraof each resonator by vector network analyzer 3672C. The peaks correspond
to the 19 flatbands with discrete eigenenergies. The positions of the peaks coincide
with the theoretical prediction. The spectra weight indicates the degeneracy of
each band.
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have been extensively used to synthesize pseudo magnetic fields,
resulting in flat Landau levels58–61. However, only the first several
Landau levels in the linear dispersion region can be obtained53,54. To
fully exploit flatbands for photonic engineering, this approach goes
beyond the perturbative strain engineering regime to obtain ABF
spectra. The method can be generalized to the rich configurations of
FSLs of atom-cavity coupled systems73, which are characterized by ABF
spectra with large degeneracy. Compared with the existing proposals
for ABF lattices with discrete translational symmetry46,47, our approach
is scalable for arbitrary-size lattices without non-flat edge modes. By
adding nonlinear elements e.g. varactor diodes in the resonators74,75,
we can introduce Kerr nonlinearity and investigate the nonlinear
localization effect and other many-body effect in such lattices46,76–78.

With realizable Kerr nonlinearity, breathing dynamics77 between flat-
bands can be observed in the current setup (see simulation in Sup-
plementary Section VII). Besides, it has been proved that flatbands can
enhance the second harmonic generation79. We can introduce second
order nonlinearity inour current setup80,81.With all bands beingflat, we
expect such an effect can be further enhanced. The current approach
can be applied to ABF photonic waveguides, which have promising
applications in dispersionless imaging41, nonlinear polaritons82 and
topological solitons83. In particular, the one-dimensional version of
similar photonic lattice engineering has been realized in the topolo-
gical transport of light field68. Such finite-size ABF lattices can also be
used in nano-lasers84–86 with high frequency purity and flexible mode
configurations.

m=0 m=1 m=6 m=8 m=9

Exp.

Sim.

Fig. 3 | Eigenmode distributions in themth Landau levels with m =0, 1, 6, 8, 9.
The first row shows the numerical simulation and the second row shows the
experimental data. The radii of the circles are proportional to D(rj, ν) on the A sites
(red) and B sites (blue). The zeroth Landau level only occupies A sites, while other

Landau levels have approximately equal weights in the two sublattices. The
eigenmodes in the zeroth Landau level are confined within the incircle (dashed
lines), which separates the inside semi-metallic phase from the outside insu-
lator phase.
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Fig. 4 | Selective excitation of the eigenmodes in the 7th flatband. a, b Field
distribution with three excitation sites near the center, which have a large overlap
with the eigenmode C =0. c, d Field distribution with three excitation sites that
have a large overlap with the eigenmode C = 2. The excitation phase difference

ϕ =0 in a, c, and ϕ = 2π/3 in b, d. The radii of the colored dots are proportional to
the field intensity on the lattice sites, with colors indicating the phases. The two
figures in the middle are the numerically simulated field distributions of the cor-
responding eigenmodes.
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Methods
Simulation
All the simulations are conductedwith CSTMicrowave Studio. In these
simulations, the metal under microwave frequency is modeled as a
perfect electrical conductor (PEC). The discrete ports are utilized as
the excitation sources. The simulation regions are slightly larger than
the objects under study, and are enclosed with boundaries of
open space.

Experimental setup
All the metallic cavity resonators are made of 6061 aluminum, and are
fabricated with Computer Numerical Control (CNC) technologies. All
the measurements are carried out on Ceyear-3672C Vector network
analyzer. Monopole antennas of 3-mm length are employed for exci-
tation and detection. In selective excitation experiments, the lattices
are excited simultaneously by three monopole antennas which are of
the same amplitude but different phases. Adjustable attenuators (KST-
30) and phase shifters are used to ensure the three antennas have the
same amplitude and desired phase differences respectively.

Data availability
The data generated in this study have been deposited in Figshare
database under the following accession code https://doi.org/10.6084/
m9.figshare.25027172.v2.

Code availability
The code that supports the plots within this paper can be found in
Figshare database under the following accession code https://doi.org/
10.6084/m9.figshare.25027172.v2.
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