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β-Variational autoencoders and
transformers for reduced-order
modelling of fluid flows

Alberto Solera-Rico 1,2, Carlos Sanmiguel Vila 1,2, Miguel Gómez-López 2,
Yuning Wang 3, Abdulrahman Almashjary4, Scott T. M. Dawson 4 &
Ricardo Vinuesa 3

Variational autoencoder architectures have the potential to develop reduced-
order models for chaotic fluid flows. We propose a method for learning
compact and near-orthogonal reduced-ordermodels using a combination of a
β-variational autoencoder and a transformer, tested on numerical data from a
two-dimensional viscous flow in both periodic and chaotic regimes. The β-
variational autoencoder is trained to learn a compact latent representation of
the flow velocity, and the transformer is trained to predict the temporal
dynamics in latent-space. Using the β-variational autoencoder to learn disen-
tangled representations in latent-space, we obtain a more interpretable flow
model with features that resemble those observed in the proper orthogonal
decomposition, butwith amore efficient representation.Using Poincarémaps,
the results show that our method can capture the underlying dynamics of the
flow outperforming other prediction models. The proposed method has
potential applications in other fields such as weather forecasting, structural
dynamics or biomedical engineering.

Turbulent flows are an important and ubiquitous phenomenon in
nature and engineering, with applications ranging from aircraft design
to weather forecasting. Understanding the behaviour of fluid flows is
often challenging due to their complex spatio-temporal dynamics
involving a large number of degrees of freedom and complex non-
linear interactions1. As a result, there is a growing interest in devel-
oping reduced-order models (ROMs) of fluid flow dynamics that can
capture the key underlying dynamics of the flow while reducing the
problem dimensionality2,3. Developing ROMs is one of the most pro-
minent research fields since they facilitate finding low-dimensional
representations that can be applied to perform flow control
applications4 or reduce the computational cost of numerical
simulations5,6. One of the most used techniques for dimensionality
reduction in the fluid-dynamics community is proper orthogonal

decomposition (POD), which involves finding the dominant modes of
variation in a given dataset and projecting the data onto a lower-
dimensional subspace spannedby thesemodes. Another famous linear
approach is thedynamic-modedecomposition (DMD),which identifies
dynamic modes that govern the evolution of the system over time7.
While POD and DMD, as well as the extensions of these methods such
as the spectral POD8 or the higher-order DMD9, have successfully
reduced the dimensionality of some flows10, their optimal linear bases
exhibit limitations when working with turbulent flows, which typically
involve complex non-linear interactions11.

In recent years, machine-learning (ML) techniques have emerged
as promising approaches for developing ROMs of fluid-flow
dynamics6,12–17. One of the potential ML techniques adopted to create
non-linear ROMs is the neural networks with convolutional
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autoencoder architectures18,19. These architectures comprise of both
an encoder and adecoder trained tominimise the reconstruction error
between the encoded-decoded data and the initial data. The resulting
encoder allows obtaining a latent-space composed of non-linear
representations. Then, neural-network architectures suitable for tem-
poral predictions12,20,21, such as long short-term memory (LSTM) net-
works, can be used to model the dynamics of the non-linear latent-
space, resulting in a fast surrogate model for fluid-flow predictions.

Among the different autoencoder architectures, variational auto-
encoders (VAEs) have proven to be effective for encoding the spatial
informationoffluidflows innon-linear low-dimensional latent-spaces12,22.
Unlike a standard autoencoder, a VAE architecture is based on a prob-
abilistic framework for describing an observation in latent-space by
including an additional loss termon the latent-space variables. However,
the low-dimensional representations obtained using these architectures
lack the orthogonality of the classical linear-decomposition techniques.
To overcome this issue, the β-VAE architecture introduced in Refs. 23,24
modifies the loss function of the VAE by adding a regularisation para-
meter to balance the reconstruction accuracy with regularisation and
latent-space disentanglement. The value of the parameter β is chosen
high enough to produce a near-orthogonal latent-space representation
but as small as possible to avoid increasing the reconstruction error. The
potential of these architectures to develop a compact and near-
orthogonal ROM was reported in Ref. 25, where they tested this archi-
tecture in a high-fidelity simulation of a turbulent flow through a sim-
plified urban environment. The results showed a ROM that was able to
capture up to 87.36%of the original energywith onlyfive variables in the
latent-space, compared to the 32.41% obtained with five POD modes.

For the temporal predictions, the LSTM has been shown to be an
effective architecture in turbulent flows20,26,27. However, in the latest
years, another neural-network architecture known as transformer28

appears to have the potential to outperform the LSTM and allow the
development of more complex ROMs. The transformer is a deep
neural-network architecture that has gained widespread attention in
recent years due to their state-of-the-art performance in natural-
language-processing (NLP) tasks such as language translation29 or text
generation30. Unlike traditional recurrent neural networks like LSTM,
which process sequential data one element at a time, transformers are
designed to capture long-range dependencies between elements in a
sequence. This capability is achieved using attention mechanisms
which allow the network to attend to different parts of the input
sequence at each network layer. As a result, transformers have been
shown to outperform previous state-of-the-art methods in several NLP
benchmarks, often by large margins.

The success of transformers in NLP has led to their application in
other domains, including computer vision31,32, audio processing33, and
robotics34. In particular, due to their ability to capture long-range
dependencies, transformers are particularly well suited to model
dynamic systems35. In fact, transformers are able to represent themulti-
scale character of turbulence in long temporal sequences36; this can
only be captured by LSTMs when separately predicting modes of dif-
ferent rangesof frequencies37. In these applications, thegoal is to learn a
low-dimensional representation of the system that captures the
underlying dynamics, which can then be used to make predictions or
generate new trajectories. Transformers are a promising tool for this
task, as they can learn complex temporal dependencies and capture
long-term trends in the data while allowing efficient parallel processing.

The potential combination of autoencoder architectures, which
enable obtaining near-orthogonal non-linear latent-spaces, with
transformer architectures for the dynamics of the temporal predic-
tions, is a powerful tool that can be employed tomodel complex flows
with a higher level of accuracy. For this reason, in this paper, we pro-
pose a β-VAE and transformer-basedmodel for encoding the fluid-flow
velocity fields and learning a ROM of its spatio-temporal dynamics.
Two flow cases are analysed, namely a periodic and a chaotic

configuration of a two-dimensional, viscous flowover two collinearflat
plates, obtained by numerical simulation. Flow past multiple bodies in
close configuration is relevant for a range of applications, such as
buildings or chimneys in urban and industrial environments, power
lines, offshore structures, and heat exchangers. Even at relatively low
Reynolds numbers, such flows can exhibit substantially more com-
plexity than flow over a single, isolated body38–40.

The resulting latent-space of β-VAEs is analysed using POD as a
reference case to analyse the resulting spatial mode features, and
different latent-spaces are tested. The temporal predictions of the
latent-space dynamics performed using transformer-based archi-
tectures are compared with other ML temporal models, including
LSTMs andKoopmanwithNon-linear Forcing41. Finally, the predictions
are assessed using the reconstructed predicted fields and Poincaré
maps to assess the dynamic behaviour of the resulting ROMs.

Results
Analysis of the latent-spaces
In this section, the β-VAE architecture and the POD are applied to two
flow cases generated from a numerical simulation of a two-dimen-
sional, viscous flow around two collinear flat plates. The characteristics
of both cases are discussed next:

• Periodic flow with Reynolds number based on the freestream
velocityU∞ and (single-plate) chord length cofRe =40, where the
two collinear plates are arranged at an angle of 90∘with respect to
the incoming flow. Total of 1000 instantaneous flow fields.

• Chaotic flow with Reynolds number of Re = 100, where the two
collinear plates are arranged at an angle of 80∘ with respect to
the incoming flow. Total of 150,000 instantaneous flow fields.

In both cases the domain where data is collected has dimensions
96c × 28c, where the spatial resolution is 300 × 98 grid points with a
uniform grid spacing. The separation between snapshots is one con-
vective time Δt = c/U∞ = tc for periodic case and Δt = c/U∞/5 = tc/5 for
chaotic case (downsampled in both space and time from the original
simulations). A more detailed dataset description and a sketch of the
flow configuration is given in the Methods section.

To compare the performance of β-VAE and POD as defined in
Methods, we define, following Ref. 25, the energy percentage E that is
captured by the low-order reconstruction as:

E = 1�
PNp

P2
i= 1 ðui � ~uiÞ2PNp
P2

i= 1 u
2
i

* + !
× 100%, ð1Þ

where 〈 ⋅ 〉 indicates ensemble averaging in time, Np is the number grid
points along the spatial domain ui denotes the ith reference value of
fluctuating component velocity and ~ui its low-order reconstruction,
respectively.

To assess the orthogonality of the latent variables, we calculate
the correlation matrix R = (R)dxd, which is defined as follows:

Rii = 1, Rij =
Cijffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

q , ð2Þ

for all 1 ≤ i ≠ j ≤ d where Cij denotes the components i, j of the
covariancematrix C and d is the dimension of the latent-space. A value
of 0 is reached when all the variables are completely uncorrelated
(Rij =0) and one when they are completely correlated (Rij = 1). This
metric reports the degree of correlation between the latent variables.

The modes have been ordered according to their cumulative
contribution to the reconstructed energy, E, following Ref. 25. The first
mode is chosen as the onewith the largest individual contribution to E,
and the next are those that have the maximum contribution when
added to the previous modes.
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The periodic case is used as a benchmark to validate the physical
soundness of the β-VAE model representations. This flow case can be
adequately represented only using two PODmodes that can represent
E = 98.4% of the kinetic energy of the fluctuations with respect to the
base flow, as observed in Fig. 1a. Figure 1c represents the two most
energetic PODmodes, which are identified as a sheddingwake. For the
β-VAE casewith β =0.001, the results in Fig. 1d show the spatialmodes.
The β-VAE spatial modes are defined as the result of using the β-VAE
decoder network with an input vector, si, containing a unit value in the
desired ith element and zero elsewhere, si = δ

j
i = ð0, � � � ,1, � � � ,0Þ, that

gives as a result the corresponding spatial ith mode. For a detailed
description, the reader is referred to the Methods section. The
reconstructed energy in this case is equal to E = 97.5%, with a cross
correlation coefficient, R12 = 0.0015. It is observed from Fig. 1c, d that
the spatial modes obtained from both methods exhibit the same pat-
tern of shedding flow. The spectrum of the temporal coefficients for
both methods is shown in the last column of Fig. 1c, d. The spectra

analysis is from the resulting ri(t) and ai(t) time coefficients for the β-
VAE and POD, respectively. This further confirms that the dynamics
associated with the spatial modes are also in good agreement: both
methods can capture the same characteristic frequency. This result
shows that the latent-space also exhibits meaningful physical phe-
nomena of the flows.

Since the β-VAE architecture requires the user to set a latent-
space dimension d, it can be argued that d can be set to a value larger
than 2. However, we observed that models with larger latent-spaces
produce only two meaningful modes, as the remaining modes have
negligible values. This behaviour shows that the β-VAE regularisa-
tion effectively avoids the artificial creation of more modes than
necessary to represent the solution. In the work by Eivazi et al.25 it
was shown that the β-VAE produces compact representations of
latent-spaces, which suggests that these architectures may be a
good framework in cases that can be represented with few energetic
phenomena.

Fig. 1 | Proof of concept analysis with periodic flow case. a, b Fraction of energy
reconstructed by POD and β-VAE as a function of number of modes. a Re= 40,
α = 90∘, (b) Re= 100, α = 80∘. c, d Resulting modes for the Re= 40, α = 90 case: (c)
POD, (d) β-VAE. The first column contains the streamwise-velocity component

modes sampled with a unit value, and the second one the crosswise-velocity
component. The third column represents the frequency content in the temporal
coefficient associated with each of the modes (fc =U∞/c); note that in (d) this fre-
quency content is evaluated in the latent-space.
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After this first assessment of the latent-spaces created by the β-
VAE architectures, a non-linear and higher-dimensional chaotic case at
Re = 100 with the two collinear plates arranged at an angle of 80∘ with
respect to the incoming flow is tested. As well as the higher Reynolds
number, the change in angle adds additional complexity to the con-
figuration as the geometry is no longer symmetric with respect to the
freestream. In this case, the size of the latent-space is set to be as small
as possible but large enough to allow the separation of different phy-
sical effects in the resultingmodes. In this relatively complex case, it is
expected to find more variety of effects in the fluid flow, requiring a
more nuanced mapping to the low-dimensional latent-space, and an
evident lack of performance of linear methods such as POD.

To define an appropriate β value, different values were tested
between 0.001 and 0.4 and the correlation matrix and E were cal-
culated to evaluate the performance in both metrics with a fixed
latent-space. As previously mentioned, the value of β is chosen high
enough to produce a near-orthogonal latent-space representation
but as small as possible to avoid increasing the reconstruction error,
increasing β has also been found to slightly improve the general-
isation of the model, balancing train and test metrics. After this
study, a β = 0.05 is chosen, and an analysis of the appropriate latent-
space is followed. For this analysis, the loss terms from the β-VAE are
analysed during the training process as reported in Fig. 2a, with a
particular interest in the Kullback-Leibler (KL) divergence loss. The
figure shows that, as expected, the reconstruction loss is lower for
the β-VAEmodel with larger latent-space d = 20, asmore information
is allowed to flow through the autoencoder bottleneck. The less
constrained latent-space also allows for a lower KL divergence loss,
meaning the latent-space distributions are closer to standard nor-
mal distributions. This lower KL loss also reflects the better ability of
the model to produce disentangled representations in the latent-
space. In this case, E=89.8% for train data and E=80.1% for test data,

as seen in Fig. 1b, indicating a good reconstruction and general-
isation capability.

On the other hand, the model with a smaller latent-space d = 10
converges to a relatively higher reconstruction loss. Even the KL loss
term takes longer to converge during the training process because the
bottleneck is too strict. For d = 10, the reconstructed energy E=82.0%
for train data and E=61.6% for test data, reflect the loss of recon-
struction capability due to the constrained bottleneck. The informa-
tion is compressed into a few modes with less freedom for
disentangled representation, a fact that implies that even for these
architectures, a minimum number of modes is required to obtain an
appropriate latent-space. It was also observed that the β-VAE archi-
tecture tends to overfit the training data if the latent-space is insuffi-
cient to achieve proper disentanglement. Although the model with a
latent-space of size d = 10 is considered valid, the loss of general-
isation, as observed in Fig. 2a with a poor performance in the test data,
motivates the choice of d = 20 for the model chosen as a reference for
the present study. Apart from the latent-space dimension, the choice
of β is critical to ensure the generalisation of the latent-spaces. Lower β
values produce a large E in train data but at the cost of much lower E
values in test data, which indicates overfitting. Increasing β above a
critical value also affects the performance by not only affecting the
degree of disentanglement of the latent-space but also decreasing the
maximum E obtained, being the classical VAE architectures (β = 1)
tested with a poor performance in both train and test data. Apart from
that, we have also tested a vanilla autoencoder that was unable to
generalise the representation and did not produce a disentangled
latent-space, which reinforces the ability of the β-VAE to perform a
better generalisation23.

Figure. 3 shows, for the first 6 modes, the u and v components and
the spectrum obtained form the temporal modes associated with each
mode, while Fig. 4 shows the same quantities obtained using POD. The

Fig. 2 | Training and latent space analysis. a Evolution of β-VAE losses during training: (left) 10modes, (right) 20modes, (solid) train, (dashed) test. Losses are defined in
the Methods section. b, c Correlation matrices corresponding to the β-VAE mode coefficients for the case with Re= 100, α = 80∘.
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spectral analysis of the temporal dynamics of the modes is used to
identify different modes representing the same physical effect and
provides helpful information for determining the size of the latent-
space, since it allowsmoremeaningful comparison with the POD. In this
case, the β-VAE spatial modes are a non-linear combination of the most
relevant flow features. Comparing the β-VAE and POD spectra, it can be
seen that the β-VAE model can better separate different phenomena,
each of which has its characteristic frequency associated with it, which
appears as a peak in the spectrum. The different effects can be further
isolated as individual modes by using larger latent-spaces. However, it is
observed that the frequencies associated with the most energetic POD
modes appear in the β-VAE dynamics, suggesting the idea that the β-VAE
latent-spaces can find non-linear modes that effectively represent the
dynamics of the system. The effect of the mode disentanglement pro-
duced by β-VAE models can be observed in the correlation matrix
between the time series of each mode, Fig. 2b, c. As reported, the cor-
relation between different modes of the time series is almost negligible
due to the near-orthogonal representation in the latent-space. It is
observed that the β-VAE also appears to be able to find pairs of modes
that represent the orthogonal components of the harmonics of the
vortex-shedding process that represents the large-scale convective
structures of the vortex wake studied42, such as in POD modes.

Latent-space predictor models
In this section, the temporal dynamics of the latent-space r(t) for the
case d = 10 and d = 20 are combined with different ML models to

implement a framework able to predict the temporal dynamics in the
latent-space that can be used with the decoder from the β-VAE to
obtain flow-field temporal predictions. With this purpose, two trans-
former models, self-attention28 and easy attention43, a Koopman with
Non-linear Forcing (KNF) model41, and an LSTM network44 are imple-
mented and compared. The KNF and LSTM models have previously
been analysed and compared in Ref. 27 and applied to predict the
temporal dynamics of a low-order model of near-wall turbulence,
showing that both approaches can reproduce the temporal dynamics
of this system. Furthermore, the transformer has been used in the
context of temporal predictions of turbulent flows in Ref. 36. The four
model architectures were tuned to obtain the lowest mean-squared
error over the validation data, with the self-attention transformer later
discarded for clarity due to the significantly better results obtained by
the easy-attention model.

All three predictor models are trained to predict the next time
step of a temporal sequence of previous latent-space r(t) vectors.
Further details of the process and hyperparameter choice are detailed
in the Methods section. Once trained, the models are used recursively
to predict the next time steps. By predicting long time series, we can
determine whether the model has been able to learn the system
dynamics correctly. Fig. 5 shows the reference values ri(t) obtained by
encoding the test data using the previously trained β-VAE and the
corresponding pi(t) predictions from each model.

As expected for a chaotic dynamical system, all predictor models
diverge from the original trajectory after several time steps and appear

Fig. 3 | Analysis of β-VAE modes. Resulting β-VAE six first spatial modes for Re=
100,α = 80∘ ranked according to their contribution toE. Thefirst columncontainsu
values formodes sampledwith si = 1. The second column shows the v values for the

same inputs. The third column represents the frequency content of each individual
mode (fc =U∞/c).
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to exhibit similar quantitative performance. To further evaluate the
deviation error after several time steps, the ensemble average of the L2
error norm to the prediction horizon is defined as:

εðΔtÞ=
Xd
i =0

piðtÞ � riðtÞ
� �2

 !1=2* +

ensemble

: ð3Þ

This quantity is shown in Fig. 6a and the ensemble is computed over
100 evenly spaced windows in the test data to capture the average
trend. This plot shows how the error ε(Δt) increases as the prediction
horizonΔt gets longer. It can be seen that the error growth of the easy-
attention transformer is always one of the slowest, in particular for the
models trainedwithΔt =0.2tc. The better behaviour of the transformer
for cases sampled more densely in time could be the result of a better
ability to represent the multiple time scale phenomena present in the
data. However, the error growth over the prediction horizon does not
provide any information about the long-term behaviour of the
predictions associated with proper learning of the system dynamics.
Therefore, this aspect is further evaluated in terms of the dynamic
behaviour of the system through the Poincaré-map analysis using the
predictions for the 3000 test data time steps not seen during the
training process.

The Poincaré map is constructed as the intersection of the latent
vectors with the hyperplane r1 = 0 on the r2 − r3 space with direction
dr1/dt >0, using then a probability density function (PDF) to fit the

resulting intersection points. These distributions are plotted for the
true data and themodel predictions in Fig. 6b–d. This figure shows the
correlation between the amplitudes of the r2 and r3 latent variables at
the intersection. It can be seen from these figures that the KNFmodels
do not adequately reproduce the variability of this correlation. This
result can be explained by the tendency of the KNFmodel to converge
towards a harmonic behaviour as the prediction progresses, which
does not capture the variability in the evolution of the temporal
coefficients that represent this chaotic flow. The LSTM and, above all,
the transformer, produce accurate predictions of the dynamics of the
system using the patterns and correlations between the different ri(t)
in the latent-space learned by the β-VAE. This comparison between
models suggests that focusing only on instantaneous predictions may
not be the correct approach to develop ROM models based on ML
techniques. The choice of latent variables ri(t) for this figure is moti-
vated by the fact that these are the most relevant in terms of recon-
structing E. Still, this procedure was reproduced for all the
combinations of ri(t), being the quality of the results of the Fig. 6b–d
representative for all the cases. Finally, the first six probability density
functions of the predicted latent-space are shown in Fig. 6e, where it
can be seen that the transformer model is better able to capture the
variability of the latent-space.

Using the latent vectors predicted with the transformer, we can
develop a ROM of the flow in the latent-space that captures the
underlying dynamics, as shown by the Poincaré maps, and then using
these predicted ri(t) values the β-VAE decoder network can be used to

Fig. 4 | Analysis of PODmodes. POD spatialmodes for Re= 100, α = 80∘. The first column contains u values for each PODmode and the second column shows the v values.
The third column represents the frequency content of each individual mode ai(t) (fc =U∞/c).
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project the predicted latent-space vector back into physical space,
completing the flow field prediction model. The results of this pre-
diction are shown in Fig. 7. In the figure, the first column shows the
actual t + n flowfield in the dataset, the second column shows the same
snapshot compressed into latent-space and decompressed by the β-
VAE network, and the last column shows the field predicted by the
ROM created using the β-VAE and each predictor model. To assess the
performance of the complete ROM model, the reconstructed energy
over the prediction horizon is calculated using an ensemble over 50
evenly-spaced windows in the test data. The results shown in Fig. 8a
indicate a better reconstruction ability for models using d = 20, as
expected due to the less restrictive autoencoder bottleneck. For the
d = 20 case, models perform better when using Δt = tc, although the
easy-attention transformer appears to be less sensitive to the Δt used,
as previously discussed. The KNF models fail to produce accurate
predictions in the cases considered. As seen in Fig. 8a, all predictions
will diverge over time as small initial fluctuations in the model

accumulate over time, to analyse if the predicted velocity fields still
reproduce the dynamics of the system, we compare the POD of the
original test data with the predicted fields for the same data, in Fig. 8b
the results are compared, showing that the predicted fields still pro-
duce similar POD modes as the original data. These results reinforce
the quality of the reconstruction observed in Fig. 7 and show that the
model adequately reproduces the flow dynamics, reinforcing the
robustness of the methodology proposed in this work.

Discussion
This study presents and evaluates a ROM framework based on β-VAE
architectures to produce robust non-linear latent-spaces, combined
with the time-prediction model obtained by means of a transformer
architecture. Using a two-dimensional viscous flow around two colli-
near flat plates in periodic and chaotic regimes, a first analysis of the β-
VAE capabilities and the latent-spaces generated using these techni-
ques is assessed and compared with the ROM obtained through POD

Fig. 5 | Temporal evolution in the latent-space. Example of a trajectory of the latent-space modes with their associated predictions by different models: (a) Re= 40,
α = 90∘, (b) Re= 100, α = 80∘, six first modes.
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modes. For the periodic case, it is observed that the same modal fea-
tures are obtained, representing a vortex shedding with an equivalent
number of energetic modes. For the chaotic case, the β-VAE learns a
compact near-orthogonal latent-space that significantly improves the
energy reconstruction obtained by the POD using 20modes, E = 89.8%
for train data against E = 64.4% for POD. While the β-VAE ROM com-
prises 20modes, a total of 69 PODmodes would be required tomatch
the result obtained by the β-VAE (in terms of flow reconstruction). The
resulting modes from the β-VAE analysis exhibit temporal dynamics
with shedding frequencies equivalent to those observed in the most
energetic PODmodes suggesting that the β-VAE is able to obtain non-
linear modes that represent the most energetic or representative flow
features.

The latent-space generated by the β-VAE is combined with a
transformer architecture to predict the temporal dynamics. Its per-
formance is compared against other models used in previous studies,
such as LSTM or KNF. The results show that the LSTM and easy-
attention transformer models are superior to the KNF model. In par-
ticular, the inherent ability of the transformer model to learn an
internal representation with different frequency contents provides a
more robust prediction for different time steps between snapshots
compared to LSTMmodels. The analysis of the predictions shows that
the transformer can learn the correlations among the various temporal
coefficients. Combining the β-VAE and the transformer models, we
obtain a ROMmodel that can produce predictions with E of 78.1% and
64.6% at t + tc and t + 10tc, respectively, for previously unseen data,

Fig. 6 | Analysis of the predictions in latent-space.Case with Re = 100, α = 80∘: (a)
Average prediction error over the prediction horizon, b–d Poincaré sections with
plane r1 = 0 and dr1/dt >0, black lines correspond to the original data and blue lines

to the predicted data. e Probability density functions of predicted variables.
b–e Case with latent-space size d = 20 and Δt = tc.
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while capturing the original flow patterns. This study constitutes a
proof of concept of the capabilities of these novel ML techniques to
generate compact and robust non-linear ROMs that can be employed
to generate predictions in chaotic flows while capturing the most
relevant flow features. The combination of various VAE and transfor-
mer architectures exhibits great potential for the future of ROM
development in fluidmechanics, leveraging the inherent nonlinearities
of these techniques.

Methods
Dataset description and pre-processing
The source data set is an incompressible, two-dimensional, viscous
flow over two collinear flat plates. Numerical simulation is used to
solve the governing Navier–Stokes equations for this flow using an
immersed-boundary projection method (IBPM)45,46. The two plates

have a chord length c and are separatedby a gapgof the same size. The
free stream velocity is U∞, and the Reynolds number, Re, is defined
based on the free stream velocity and single-plate chord length. A
diagram of the configuration of the flow is shown in Fig. 9c.

The simulations are performed on a series of nested grids of
increasing size and decreasing resolution. The finest resolution for the
simulation has a grid spacing of Δx =Δy =0.02c, and the total com-
putational domain has dimensions of 96c × 28c, with the upstream
boundary at x = − 9c. The dataset generation and its characteristics are
described in more detail in Ref. 47. The time step in the dataset
(downsampled from the simulations)was chosen to be equal to 20% of
the convective time Δt = c/U∞/5 = tc/5, which is sufficient to resolve the
dynamics of coherent vortical structures in the wake. In order to
investigate the influence of the temporal resolution in the results, a
number of models were trained with one snapshot in every five, being

Fig. 7 | ROM predicted fields. True, reconstructed and predicted fields for u and v velocity components at t + 10tc: (a) KNF, (b) LSTM, and (c) transformer with easy
attention.
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Δt = c/U∞ = tc. For all the models, the time series of the snapshots is
divided into two time series covering the respective time intervals:
[0, ttrain] and [ttrain + 1, tend] where ttrain= 27, 000tc, which corresponds
to 90% of the snapshots time series. The first period of the data is used

for training, while the remaining 10% is used as test data to validate the
generalisation capability of the models.

The dataset employed for this study is downsampled from the
original mesh to a spatial resolution of 300 × 98 with a uniform grid

Fig. 8 | Analysis of predicted fields. a Average E evolution over the prediction horizon. b PODmodes comparison of true and predicted fields. This is shown for the case
with Re= 100, α = 80∘.
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spacing, to reduce the GPU requirements for training. The fluctuation
components of the streamwise u and crosswise v velocity were stacked
as separate channels in the dataset. The values in the dataset were
standardised by subtracting the pixel-wise average and dividing by the
standard deviation for each velocity component over the entire data-
set. The resulting dataset size was reduced to 31.7 GB and fully loaded
into memory during training. This approach allowed the training
process to be efficient while still capturing the essential features of the
fluid flow.

β-VAE implementation details
The variational autoencoder (VAE) described in Kingma and
Welling48 is one of the most common architectures used in gen-
erative models. In the basic autoencoder architecture, the input x is
directly encoded as a vector r using the encoder E, r= EðxÞ, in a
lower-dimensional space of size d, which can bemapped back to the
original space by the decoder ~x=DðrÞ, being ~x the reconstructed
output. A disadvantage of conventional autoencoders is the fact
that there are no constraints imposed on the learned latent-space.

Fig. 9 | Model architectures and case schematic. a β-VAE encoder and decoder, (b) transformer. The dimension of the output for each layer has been indicated in each
block. The symbols T and dmodel denote the time-delay, MHA denotes multi-head attention. c Schematic representation of the numerical setup.
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The lack of constraints in the generated latent-space can lead to
overfitting and poor generalisation performance, especially for
high-dimensional input data. In contrast, in VAE architectures the
encoder maps input data to a parameterised prior distribution,
usually a Gaussian distribution, in the latent-space μ,σ = EðxÞ, where
μ and σ denote the mean and the standard deviation, respectively.
The prior Gaussian distribution encourages the model to learn a
compact and smooth representation of the input data. The dis-
tribution of the latent-space is then randomly sampled, and this
sample is decoded back into the original space by the decoder
~x=DðsÞ, with s following a distribution s ~N(μ, σ). The architecture
can therefore produce different outputs for the same input data,
each sampled from the corresponding latent distribution. The
encoder and decoder neural networks are trained by gradient des-
cent and backpropagation, enabled by a re-parameterisation of the
distribution sampling48. The training process for the VAE involves
simultaneous training of the encoder and decoder networks with a
compound loss function L,

LðxÞ= 1
Nt

XNt

i = 1

ðx � ~xÞ2

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Reconstruction loss

� 1
2

Xd
i= 1

1 + logðσ2
i Þ � μ2

i � σ2
i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KL loss

, ð4Þ

where Nt denotes the total number of points the in x. The first term in
the loss function is the reconstruction loss, Lrec, which measures the
model accuracy in reconstructing the input data from the reduced
latent-space representation. The second term in the loss function is the
Kullback–Leibler (KL) divergence loss49, LKL, which measures the
difference between the generated probability distribution and a prior
probability distribution, typically Gaussian. The overall training goal is
to optimise the model to produce accurate reconstructions
while keeping the latent distributions close to a standard normal
distribution.

The original VAE architecture was extended by Higgins et al.50 to
the β-variational autoencoder (β-VAE) architecture, which aims to
promote disentangled representations in latent-space23. The β-VAE
loss function, defined in equation (5), includes a scalar hyperparameter
β≥0 that modulates the trade-off between reconstruction accuracy
and latent-space disentanglement. A higher value of β results in amore
disentangled representation but may decrease reconstruction accu-
racy, whereas lower value of β may result in a more accurate recon-
struction but a less disentangled latent-space. As a result, by
incorporating the β parameter into the loss function, the β-VAE
architecture can achieve amore interpretable and disentangled latent-
space, which may improve the model generalisation ability.

LðxÞ=Lrec �
β
2
LKL: ð5Þ

The β-VAE architecture is adapted from Ref. 25. The encoder is
used to generate the temporal modes for the latent-space repre-
sentation using the mean vector for each time step r(t) =μ(t). The
mean vectors are generated by applying the encoder E to each input
timestep: μðtÞ,σðtÞ= EðxðtÞÞ. The spatial modes are reconstructed one
by one: Y i =DðsiÞ. Here Yi is the ith spatial mode,D is the decoder and si
is the vector that selects the mode to be reconstructed
(si = δ

j
i = ð0, � � � ,1, � � � ,0Þ). The β-VAE architecture is sketched in Fig. 9a.

The nature of the data determines the choice of a convolutional
neural network (CNN) to build the encoder, since the patterns in the
flow can be better captured by convolutional layers that preserve
the spatial relationships between points in the input. Fig. 9a shows a
representation of the model. In the encoder, we use six convolu-
tional layers with a stride of two so that each layer halves the spatial

dimension. The spatial reduction allows the subsequent layers to
capture information at larger scales in the input flowdata, which also
has similarities to the multiple scales of the studied chaotic flow and
can help to represent it. The number of filters in each layer pro-
gressively increases to preserve the information flow while reducing
the spatial dimension. After the sixth convolutional layer, the spatial
information is discarded, and a fully-connected layer is added to
combine the information. Finally, two parallel layers with the same
number of units as the latent-space dimension are used to output
the mean and variance of the latent statistical distributions. During
training, the distributions are sampled to generate inputs to the
decoder network, while only the μ(t) values are used to encode the
time series used later by the predictor.

The decoder model is designed as an almost symmetric network
to the encoder. Latent-space samples are fed into a fully-connected
layer, and its output is reshaped to the same shape as the last con-
volutional layer in the encoder. Six transposed convolution layers are
then used to increase the spatial dimensionwith decreasing number of
filters. A final transposed convolution layer with two filters produces
the two output channels. The chosen activation function is the expo-
nential linear unit (ELU)51 for all layers except the last, where the acti-
vation is linear.

It is well known that chaotic flows often involve complex, non-
linear interactions between fluid particles, which can lead to non-
linear relationships between variables. As a result, the dominant
modes of variability may not capture the complex, non-linear
behaviour of the flow. This effect can be seen in Supplementary
Fig. 1, where the first input to the β-VAE decoder network is sampled
with different scalar values while the remaining inputs are kept to
zero. Themode is sampled with input values in the range s1∈ [ − 2, 2]
because during VAE training the latent-space is sampled from a near-
standard normal distribution, driven by the KL-loss regularisation
during training. The non-linear representation is evident as the
shedding wake patterns changewith the latent input value. This non-
linear representation allows the β-VAE architecture to reproduce
E = 89.8% with only 20 modes. In contrast, POD only yields E = 64.4%
and would require using over 69 modes to obtain a reconstruction
above E = 90%.

Proper orthogonal decomposition
In this section POD is employed as a reference to compare the
resulting modes from the β-VAE latent-space with those obtained
using this classical method. In particular, the snapshot method52 has
been used for the present study. Considering the streamwise and
crosswise velocity components defined as U(x, t) and V(x, t),
respectively, being x = (x, y) with x and y the streamwise and cross-
wise coordinates and t the time. We decompose the velocity com-
ponents as:

Uðx,tÞ=UðxÞ+uðx,tÞ, V ðx,tÞ=V ðxÞ+ vðx,tÞ ð6Þ

where UðxÞ and V ðxÞ are the streamwise and crosswise time-averaged
velocity components and u(x, t) and v(x, t) are the streamwise and
crosswise fluctuating velocity components. The fluctuating quantities
can be approximated as a linear combination of basis functions ϕi(x)
as:

uðx,tÞ≈
XNm

i = 1

au
i ðtÞϕu

i ðxÞ, vðx,tÞ≈
XNm

i= 1

av
i ðtÞϕv

i ðxÞ, ð7Þ

where ai(t) are time-dependent coefficients and Nm is the number of
basis functions used. Here we assume a number of imagesNt, each one
consisting of Np grid points along the spatial domain x, with Nt <Np.
Following the snapshot method52, each image can be treated as an Np-
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dimensional vector and the data can be arranged into an Nt ×Np

snapshot matrix:

u=

uðx1,t1Þ � � � uðxNp
,t1Þ

..

. . .
. ..

.

uðx1,tNt
Þ � � � uðxNp

,tNt
Þ

2
6664

3
7775;v=

vðx1,t1Þ � � � vðxNp
,t1Þ

..

. . .
. ..

.

vðx1,tNt
Þ � � � vðxNp

,tNt
Þ

2
6664

3
7775:

ð8Þ

Using the snapshot matrix, the two-point correlation matrix can
be written asG =uuT + vvT, where the superscript T refers to thematrix
transpose. Solving the eigenvalue problem of G returns the eigenva-
lues λi and the left and right eigenvector matrices. The left and right
eigenvector matrices are respectively the matrix Ψ containing in its
columns the temporal modes ai(t) (which are orthonormal vectors of
length Nt and unitary norm) and its inverse (i.e. its transpose). Note
that the columns ofΨ form a basis of rank Nt and that the eigenvalues
λi are representative of the energy contribution of each mode. The
orthonormal spatial modes ϕn(x) can then easily be computed as
Σuϕu =ΨTu and Σvϕv =ΨTv, where Σu and Σv are diagonal matrices
which, in each ith diagonal element, contain the streamwise and wall-
normal Reynolds-stress contributions of the ith mode.

For consistency purposes, the POD is computed using the snap-
shots time series that covers the time interval [0, ttrain].

Time-series prediction models
The β-VAE encoder network generates the entire dataset latent-space
time series, r(t), where the snapshots time series is divided into two
time series that cover the following time intervals: [0, ttrain] and
[ttrain + 1, tend] where ttrain = 27, 000tc that corresponds to the 90% of
the snapshots time series. The first period of the data is used for
training being the last 10% used as test data. Note that the test data
have not been used for training the β-VAE and is only encoded by the
previously trained β-VAE model. The transformer model is used to
predict the latent-space vector r(t + 1). In the present study, we use the
time-delay53 dimension of 64 steps for temporal prediction, which
means that the input to the transformer is a sequence of the previous
64 time steps, and the output is the prediction of the next time step for
the latent vector in the sequence. The transformer is trained to mini-
mise the difference between the prediction of the next time step and
the true data using a mean-squared-error loss function.

A time-space embedding module is added to each input latent-
space vector to incorporate temporal and spatial information before
passing it to the transformer blocks, allowing the model to distinguish
between latent vectors generated at different time steps. The pooling
layers are designed to draw the characteristic information from time-
series data, facilitating the model to capture the key information of
temporal dynamics of the physical system. Note that we adopt stride
steps of two for one-dimensional average pooling and maximum
pooling.

The transformermodel comprises a stack of transformer encoder
blocks, each consisting of a multi-head attention block and a feed-
forward neural network. Note that, in the present study, we employ
two types of attention mechanisms: self-attention28 and easy
attention43, which has demonstrated promising performance in pre-
dicting the temporal dynamics of chaotic systems, and in our case
significantly outperforms self-attention transformer. The attention
blocks allow the model to weigh the importance of different parts of
the input sequence whenmaking predictions54, while the feed-forward
network allows it to learn complex non-linear relationships between
the input and output sequences. In the present study, we use four
heads for attention modules to implement multi-head attention and
adopt a feed-forward dimension of 128. We adopt four transformer
blocks to ensure the capability to identify the complex dynamics in
latent-space. After the transformer blocks, a one-dimensional con-
volutional network and a fully-connected layer are added to decode
the transformer output and form the final latent-space vector predic-
tion. The architecture is illustrated in Fig. 9b.

The LSTM model architecture includes four layers of LSTM ele-
ments, followed by a fully-connected layer of 128 neurons and a final
output layer matching the latent-space size. The time-delay dimension
for the LSTM is the same as transformer models.

The KNF-model implementation is based in the code fromRef. 27.
After the hyperparameter tuning, the number of previous time steps
used to predict is 5, and the maximum order of the functions for
construction of the forcing term is 3 for polynomial functions and4 for
trigonometric functions.

Training setup
The Torch 2.0 deep-learning framework55 was used to implement the
models and the training pipeline. AnNVIDIAGeForceRTX4090 and an
NVIDIA A100 GPU were used to train the β-VAE models and transfor-
mer models, respectively. Training the β-VAE model and transformer
took approximately 40 minutes and 100 minutes, respectively. The β-
VAE model is trained using the Adam algorithm56. The learning rate is
variable with a one-cycle schedule as proposed in57, starting at 1 × 10-4,
with a maximum value of 2 × 10-4 at 20% of the training epochs and
decreasing to 5 × 10-6 at the end of the training. Themodel was trained
over 1000 epochs using batch size of 256. The encoder and decoder
network have 1.06 × 106 trainable parameters each. The first 90%of the
snapshots time series are used for training, and the remaining are used
for testing the models.

The resulting temporal dynamics from the β-VAE are then used to
train a transformer architecture using the Adam algorithm56 with ϵ of
1 × 10−8 for stability reasons. The learning ratewas initially set to 1 × 10−3

and decreased to 6.6 × 10−6 within 1,000 epochs via exponential decay
using a decay rate of 0.99, whereas the batch size was set to 256. Note
that for the case with a sampling factor of 5, we set the early-stopping
schedule with respect to the loss, which stops the training process
after 50 epochs if the error value is no longer decreasing. Table 1
summarises the employed architectures in the present study. The last
10% of time steps are not used during training are utilised as test data.

Data availability
All datasets used in this study are openly available in Zenodo, acces-
sible at: https://doi.org/10.5281/zenodo.10501215.

Code availability
The codes used for this work are available at: https://github.com/KTH-
FlowAI/beta-Variational-autoencoders-and-transformers-for-reduced-
order-modelling-of-fluid-flows.
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