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Moiré effect enables versatile design of
topological defects in nematic liquid crystals

Xinyu Wang 1,4, Jinghua Jiang2,4, Juan Chen2,3,4, Zhawure Asilehan2,
Wentao Tang1, Chenhui Peng 2 & Rui Zhang 1

Recent advances in surface-patterning techniques of liquid crystals have
enabled the precise creation of topological defects, which promise a variety of
emergent applications. However, the manipulation and application of these
defects remain limited. Here, we harness the moiré effect to engineer topo-
logical defects in patterned nematic liquid crystal cells. Specifically, we com-
bine simulation and experiment to examine a nematic cell confined between
two substrates of periodic surface anchoring patterns; by rotating one surface
against the other, weobserve a rich variety of highly tunable, novel topological
defects. These defects are shown to guide the three-dimensional self-assembly
of colloids, which can conversely impact defects by preventing the self-
annihilation of loop-defects through jamming. Finally, we demonstrate that
certain nematic moiré cells can engender arbitrary shapes represented by
defect regions. As such, the proposed simple twist method enables the design
and tuning ofmesoscopic structures in liquid crystals, facilitating applications
including defect-directed self-assembly, material transport, micro-reactors,
photonic devices, and anti-counterfeiting materials.

Liquid crystals (LCs) consist of rod- or disk-like molecules, which can
self-assemble into well-definedmesoscopic structures with long-range
orientational order1. This ordering can be locally frustrated due to
topological reasons, leading to regions called topological defects2–4.
These regions are shown to segregate foreign molecules and particles
in the system, leading to defect-based applications in, for example,
directed self-assembly of molecules and colloids5, photonic devices6,
biosensing7, and material transport8–10. The capability of engineering
defects in LCs is important for the abovementioned applications.
Existing defect manipulation methods include magnetic and electric
field actuation9,11,12, optical control13,14, active stresses15,16, curvature
imposed by boundaries17–19, patterned substrates20–26, and chemical
interactions5,27. However, the topology, morphology, and periodicity
of defects these methods can engineer are often limited by the
intrinsic symmetry of the system and the imposed pattern. Hence, a
versatile method to manipulate defect structures, including their

shapes, periodicities, and orientations, remains at large, limiting their
further applications.

In recent decades, twistronics have emerged as a new field. By
rotating one layer of the lattice of material on top of another to a
certain angle, one obtains the so-called moiré pattern or moiré effect
with emerging periodicities28. Recent interests in moiré-based appli-
cations are motivated by strain analysis and metrology technology29,
super-resolution imaging in biological devices30, and van der Waals
heterostructures, e.g., superconductivity31, magnetism32, and corre-
lated insulators33.

Inspired by the above advances, we hypothesize that the moiré
effect can also serve as an alternative method to engineer the meso-
scopic structure of a material. As a proof of concept, here, we
demonstrate that moiré patterns can be used to manipulate the
mesoscopic director field and the emerging topological defects in a
nematic cell, which we term the “nematic moiré pattern”. In the spirit
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of the moiré effect, we consider a nematic cell confined by two sur-
faces with an identical, periodic pattern imposing orientational pre-
ference (namely, anchoring) to the nematic; we combine simulation
and experiment to study the moiré effect of different periodic
anchoring patterns. Our nematic moiré patterns can give rise to a rich
variety of periodic disclination structures, including straight lines,
helical-like curves, defect networks, and loops. Their three-
dimensional (3D) topological structures are modelled by continuum
simulations and then further confirmed by confocal microscope
experiments. The geometry of these emerging periodic topological
structures is sensitive to twist angles and cell gaps and reveals both
low- and high-frequency modes of the geometric moiré, the latter of
which are often difficult to see in conventional moiré systems. The
cross-polarized optical patterns from nematic moirés contain grain-
and ring-like features, which are distinct from the optical appearance
of isotropic moiré patterns, namely, periodic moiré patterns arising
from geometric patterns without anisotropy. The versatility of the
nematic moirés is further demonstrated by the fact that a certain one-
dimensional (1D) surface pattern can even form a two-dimensional
(2D) lattice of disclination loops and optical patterns. Furthermore, a
2D surface pattern formed by a lattice of ±1 defects can give rise to
heterogeneous defect structures corresponding to different regimes
in the geometric moiré pattern.

It is known that defect lines engendered in LCs can be used to
guide the self-assembly of colloidal particles20,34,35. This opens up
possibilities for a range of interparticle and assembly behaviors, such
asmodifying the dynamics of defect cores in nematics36, triggering the
gelation of colloidal dispersions37, and enhancing the thermal stability
of the blue phases against external fields38,39. Earlier studies have
thoroughly characterized various closed knot defects in nematic
colloids40–42. In this work, we report on the entrapment of colloidal
particles along line defects, akin to the entanglement defect structure
(a particle attracted by a defect line) shown in43. The 3D defect net-
works generated in thick nematicmoiré cells are capable of guiding 3D
self-assembly and nucleation of colloidal structures. Interestingly,
when a colloidal particle-laden defect loop in a nematic moiré cell
undergoes shrinkage, those particles can prevent self-annihilation
through jamming. Finally, we show that certain judiciously designed
nematicmoiré patterns can engender pixelated shapes represented by
defect regions. Taken together, our proposed nematic moiré pattern
offers a versatile platform to investigate the interplay of topology,
geometry, and ordering in LCs and other soft materials systems,
facilitates defect-based emergent applications, and opens the door for
inverse design of mesoscopic structures of materials.

Results
A 1D cusp-like splay-bend pattern generates versatile 1D defect
structures
Weconsider a nematic LC cell of gap sizeHboundedby twosurfaces in
the z-direction having identical surface patterns imposing preferred
orientations to the nematic as the anchoring condition. We first
examine a 1D periodic splay-bend pattern of a cusp-like shape on both
top and bottom substrates, resembling a 1D cosinusoidal grating pat-
tern (Fig. 1A, B, Fig. S1)28. Before rotation, the two identical anchoring
patterns on the two surfaces are aligned. The preferred orientation of
the nematic on both surfaces can be represented by ns = cosθ, sinθ½ �,
withθ � θ xð Þ=πx=L in a Cartesian coordinate system (Fig. 1A), whereL
is the pattern period (Fig. 1A, Fig. S1). These anchoring conditions can
lead to a defect-free ground state inwhich the director field of the bulk
nematic adopts the same orientations preferred by the two substrates.

Next, we rotate the top substrate counterclockwise with respect
to the origin of the xy plane by an angle Ψ while fixing the bottom
substrate (Fig. 1B). Upon the rotation operation, the bulk nematic is
frustrated by the mismatched preferred orientations of the two sub-
strates (Fig. 1A, B). We introduce θt x,yð Þ and θb x,yð Þ � θ xð Þ to

represent the preferred orientations of the top and bottom surfaces at
coordinates (x, y), respectively. The preferred orientation angle dif-
ference, defined as Δθ x,yð Þ=θt x,yð Þ � θb x,yð Þ, will locally distort the
nematic (Supplementary Material 2.2). Because of the preferred angle
mismatch between the two substrates, there is a pointwise twist
deformation in the bulk achiral nematic. The handedness of the twist is
determined by the acute angle the two preferred orientations make.
When this angle transitions from acute to obtuse, there will be a twist
reversal, at which the bulk nematic is frustrated. Therefore, we expect
that disclinations will emerge where the two preferred orientation
angles are orthogonal, i.e., Δθ=mπ=2 with m= ± 1, ± 3, . . . :44,45 The
contour lines of Δθ=mπ=2 appear as equispaced, parallel lines in the
xy plane (Fig. S2).

To elucidate the nematic structure in the above patterned system,
we further perform continuum simulations (Materials and Methods)
by varying cell gaps H while fixing pattern period L and rotation angle
Ψ= 12�. For simplification, the one-elastic-constant assumption is
applied in our simulations, and a comparison with elastic constants of
real materials is discussed in Supplementary Information 6.2.4 and
Fig. S37. Interestingly, our simulations uncover three different types of
defect structures (Fig. 1C−E, Movie S1, Supplementary Material 2.4).
When H=L<0:3, straight line defects (S-state) emerge, appearing as
parallel and equispaced lines within the midplane of the cell; their
locations and directions match well with the theoretical prediction
(Fig. 1C, Fig. S2). The schematics of different local profiles of dis-
clination lines are given in Fig. S3. When 0:3 <H=L<0:8, curved line
defects (C-state) appear as equispaced, aligned curves, each of which
resembles a 3D helix and appears as a wavy line viewed in the z-
direction (Fig. 1D, Fig. S4). The handedness of the C-state defects can
be reversed by changing the rotation direction (Supplementary
Information 2.4 and Fig. S5). When H=L>0:8, web-like crossing lines
(W-state) emerge, consisting of two groups of equispaced, parallel
defect lines located near the two surfaces, exhibiting different orien-
tations, which appear like a web when viewed from the z-direction
(Fig. 1E, Fig. S4). The transition of the disclinations from straight to
curling shape as cell thickness increases can also be understood by
making an analogy to the Peach–Koehler force of dislocations in solids
under external stresses46. Note that as soon as the angle Ψ starts to
deviate from 0�, the disclination lines in the above states come from
infinity one by one with their distance decreasing with increasing Ψ.

Our subsequent experiments confirmed all three predicted
defect structures at different cell gaps using a photopatterning sys-
tem (Fig. 1I−K, Materials andMethods). Photo-alignment is a versatile
tool to pattern confining substrates and stabilize both singular and
nonsingular defects in LC cells44,45,47. The out-of-plane anchoring
strength is on the order of ∼ 10�3 J=m2 and the in-plane anchoring
energy is on the order of ∼ 10�4 J=m2 (strong anchoring)48. Based on
the simulated director fields, we apply the Jones-matrix approach to
obtain simulated polarized optical microscope (POM) images (Sup-
plementary Material 6.2.5). The POM images of the three defect
states also agree with the experiments. These POM images consist of
parallel arrays of dark grains, the size and aspect ratio of which are
different among the three defect states (Fig. S6). By contrast, iso-
tropic moirés constructed from the cosinusoidal grating patterns
appear as a similar spatial distribution of white grains (Figs. 1B, 2A
and Fig. S6). The Jones-matrix approach is good for thin samples
(Fig. S6A, B), while for thicker ones where focusing, ray deflection,
and oblique rays become relevant (Fig. S6C), the director field cannot
be seen clearly (Supplementary Information 6.2.5). These POM pat-
terns are insensitive to the choice of the orientation of the cross
polarizers (Movie S2). Although the separation distance between
neighboring arrays of grains is the same for the two types of moiré
patterns, the grain density in the nematic moiré is twice as dense as
that in the isotropic moiré (Fig. S6). To probe the 3D defect structure
in the W-state predicted by the simulation, laser scanning confocal
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Fig. 1 | Topological structures and 3D network colloidal assembly in a 1D splay-
bend cusp-like nematic moiré pattern. A Schematic of the system with a pat-
terned top substrate (pink) rotatedbyanangleΨ and an identicallypatterned,fixed
bottom substrate (dark green). Short rods represent surface-preferred nematic
orientations, and the geometric periodicity of the pattern is L. BMapping from the
geometric cosinsoidal pattern to the nematic surface pattern. Top and side views of
the simulated defect structures atΨ= 12� when H=L=0:3 (C), H=L=0:7 (D) and
H=L=0:9 (E) (colored by angle β). In (E), the 1st group of disclinations is near the
top surface, and the 2nd group defect is generated close to the bottom surface.
F Defect state diagram in terms of H=L and Ψ, blue dotted line forΨ= 12� and red
dotted line forH=L=0:43 (Fig. 2E, F).G Periodic, helical topological structureof the
C-state (colored by angle β). H Topological structure of the S-state and W-state

(colored by angle α). I–K Corresponding POM images for the S-, C-, andW-states at
Ψ≈ 12� showing good agreement with the simulation. Using confocal microscopy
to scan the cell from top to bottom, we observe L disclination lines (the first group)
close to the top substrate andM thedisclination lines (the secondgroup) appearing
near the bottom substrate. N, O Two 3D rotation views of the sample to visualize
the two groups at the same time. zc is the spacing between the two groups in the
scanning process, zc =40μm.NWhen the two groupsof disclinations are visualized
from the cell top at the same time, the bright lines are the first group disclination
lines, close to the top substrate. O Viewing the sample from the cell bottom. Both
groups of lines are showndue to the scattering effect, and the secondgroupof lines
close to the bottom substrate is in gray because of lower contrast. P 3D colloidal
assembly in the W-state. Scale bar: 50 μm.
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defects can be tuned in the nematic moiré. D Moiré period T=L as a function of
rotation angleΨ.EMoiré tilting angleω as a functionof rotation angleΨ. The insert
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fluorescence microscopy was conducted (Fig. 1L–O). Near the top
substrate, there are four disclination lines (the first group) along the
same direction, which are bright lines inside thick dark bands
(Fig. 1L). With scanning along the z-axis, another four thin, gray dis-
clination lines (the second group) appear near the bottom substrate
in another orientation (Fig. 1M). Our configuration is similar to the
two-layer configuration observed in ref. 49 by confocal microscopy.
Therefore, when viewed from the z-direction (Fig. 1M), the two
groups of defects appear as a web-like structure, confirming the
simulation prediction (Movie S3). 3D views of the web-like structure
are presented in Fig. 1N, O (Movie S4).

We further perform simulations to construct a defect state dia-
gram by varying the gap-to-pattern ratioH=L and the rotation angleΨ
(Fig. 1F). Consistent with the cell gap effect, we find that the three
defect states appear roughly in different ranges ofH=L in the diagram
(Fig. 1C–E). This state diagram can be understood by considering the
relative elastic energy costs of different defect states (Supplementary
Material 2.3). When the cell gap is narrow (small H=L), the surface
anchoring effect is important. The bulk nematic field represented by
the orientation angle θ x,y,zð Þ adopts surface-preferred orientations.
The anchoring conflict between the two surfaces will cause a transition
from θ x,y,zð Þ≈θb x,yð Þ near the bottom surface to θ x,y,zð Þ≈θt x,yð Þ
near the top surface (Fig. 1C, F). This transition canbe a smooth twist in
most areas. However, in certain regions where the angle difference
Δθ x,yð Þ becomes the maximum value π=2, twist-winding disclinations
are expected to appear (SupplementaryMaterial 2.2). This explains the
agreement between the prediction and thin-cell results. When the two
substrates are away from each other (large H=L), the surface pattern-
ing effect becomes relatively weak and the bulk nematic dominates.
Consequently, the system chooses to minimize its elastic free energy
by aligning the nematic uniformly in the bulk and forming defects near
the substrates to accommodate the surface anchoring pattern. This
argument canwell explain the emergenceof line defects in theW-state:
bulk nematic adopts a uniform director field; for each surface, defects
should appear where the difference between the surface-preferred
orientation and the bulk nematic orientation angle reaches the max-
imumvalue ofπ=2 (Fig. S4C). Therefore, two layers of disclinationswill
emerge in thick cells, and the separation distance between neighbor-
ing line defects for each layer should coincide with the periodicity L of
the anchoring pattern. At medium cell gaps, a delicate competition
between the surface patterning and the bulk nematic leads to a com-
plex defect structure, i.e., the C-state defect (Fig. 1D, G, Fig. S4B), the
morphology of which is essentially intermediate between the parallel
straight lines in the S-state and theweb-like lines in theW-state, serving
as a transition state between these two defect states (Movie S1). Similar
to the W-state (Fig. S4C, Fig. 1C, H, I), the C-state forms a locally uni-
form director field in the midplane, and the defects are repelled to the
two substrates (Fig. S4B).

Our further analysis of the local profiles of these emergent dis-
clinations reveals that they are structurally different from those
reported in similar systems50 (Supplementary Material 2.4). The
director profiles of these disclinations can be characterized by two
angles51,52, namely a twist angle β 2 0,π½ � and a phase shift angle α 2
½0,2πÞ: (“Methods”, Supplementary Information 2.4, Fig. S3). Pure-
twist corresponds to β =π=2; + 1=2 wedge winding and �1=2 wedge
winding are characterized by β=0 and β=π, respectively. A pure-twist
windingwithβ=π=2 canbe further characterizedby the angleα, which
can distinguish between tangential-twist (α =π=2, 3π=2) and radial-
twist (α =0, π) windings50. Our calculations show that line defects in
the S- and W-states are of the pure-twist type with β � π=2 (Fig. 1C, E,
Fig. S4). Despite the simple geometry of the line defect in the S-state,
its local winding periodically varies from radial-twist-I (α =0), to
tangential-twist-I (α =π=2), to radial-twist-II (α =π), then to tangential-
twist-II (α = 3π=2), and eventually back to tangential-twist-I
(α =2π � 0) profiles (Fig. 1H, Fig. S7). The angle α of the S-state

defect changes from0 to 2π in a latticeperiod L: this contrastswith the
line defect with uniform α in similar systems inwhich the top substrate
adopts a uniform anchoring50. However, for the two groups of parallel
defect lines in the W-state, the local director field along the curve
tangent is nearly constant (Fig. S4C, top plane and bottom plane). The
two groups of defects are tangential-twist-II (near top) and tangential-
twist-I (near bottom) (Fig. 1H). Within the same group, all the parallel
line defects share the same local profile and, therefore, the constant
angle α. In the C-state, the twist angle β of the local winding varies
along the defect curve (Figs. 1D, G, 2B, Fig. S4B): when the local
winding is close to the two surfaces, β approaches π=2 (pure-twist);
when the curve passes through the midplane of the cell, the local
winding is of wedge type, with β approaching 0 and π alternatively
(wedge-twist). Therefore, the C-state defect belongs to the wedge-
twist type. Distinct from 2D liquid crystals, in 3D nematics, wedge
disclinations of winding number ± 1=2 can be transformed through a
continuous transformation, with the symmetric twist state found in
between. This continuous transformation of the local profiles can also
be used to explain the state transitions (between the S-, C- and W-
states) as we tune the cell gap.

In Fig. 1M, the focus of the microscope is adjusted in the experi-
ments to provide a clear view of the top and bottom parts separately.
In the particular case of the defect network state (theW-state), colloids
are found to assemble in both groups of disclinations (top layer and
bottom layer), giving rise to a 3D configuration (Fig. 1P, Movie S5). This
is potentially helpful for reversible reprogramming of colloids as
building blocks to achieve multiple functions.

We also show that the geometric details of the emerging dis-
clinations, including neighboring defect spacing T , defect orientation
angle ω, helical periodicity T *, and projected helix diameter Axy (C-
state), are fundamentally dictated by the geometric moiré pattern
regardless of defect states (Fig. 2A, B, Supplementary Material 2.4). As
Ψ increases, the disclinations become closer to each other and their
orientations further rotate (Fig. 2B, Movies S6 and S7). Larger Ψ gives
rise tomore frequent variations in the anchoring anglemismatchΔθ in
space, the disclinations therefore appear denser in the system. Both T
and ω can be understood by the geometric moiré pattern28. The the-
oretical values T = L=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosΨÞ

p
and ω=Ψ=2 for the first-order

ð± 1,∓1Þ mode in the geometric moiré pattern (Fig. S8) are quantita-
tively matched by those measured from all three defect states in both
simulations and experiments (Fig. 2D, E). This programmable variation
in disclination lines can be directly utilized to template colloidal self-
assembly. For instance, when colloidal particles are added to the
nematic moiré in the S-state, they tend to self-assemble into linear
chains, the position and orientation of which follow the geometric
features of the nematic moiré (Fig. 2C, Movie S8). Interestingly, these
self-assembled colloidal chains can also impact straight-line disclina-
tions (with a local twist profile) by inducing entangled structures
(Fig. 2C insets). In an earlier work, the disclinations around particles
were found to be sensitive to the cell gap40. Different from the closed
entanglement loops around particles34,41,42, we show the interaction
between existing defect curves and particles, as particles are attracted
to the straight-line disclinations (the S-state). In our case, the defect
curve (S-state) in Fig. 2C has a constant pure-twist profile akin to the
assembly structures in ref. 53. The projected helix diameter Axy in the
C-state increases as Ψ decreases (Fig. 2F, Movie S6) or H=L increases
(Fig. 2G,Movie S1). Upon the transition from the C-state to theW-state,
Axy approaches T as the neighboring wavy-like defects intersect and
start to form web-like defects (Fig. 2F, G, Movie S1).

Different length scales that emerge from the defect structures
stem from moiré modes of different frequencies, the high-frequency
ones of which are usually difficult to see in isotropic moiré patterns
(Supplementary Material 2.4). For the C-state, there are two emerging
geometric parameters associated with the helical-like defects, namely
the period of the helix, T *, and its helical diameter projected onto the
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xy plane, Axy (Fig. 2B). For the W-state, T * is defined as the spacing
between adjacent defect crossings on the same pseudo line. It turns
out that T * in both states can be understood by the periodicity T 0 for
the ð± 1, ± 1Þ mode in the geometric moiré pattern (Figs. S8, S9), as
T *

T 0 =2 in both states (Fig. 2F, G). Therefore, our nematicmoirés provide
a simple method to tune the topology and geometry (shapes, peri-
odicities, orientations, etc.) of the disclinations using the geometry of
moiré patterns, which can further guide the colloidal assembly.

A 1D sinusoidal splay-bend pattern generates a 2D lattice of ring
defects
In the previous system, a 1D cusp-like pattern can generate 1D periodic
defect structures. Here, we demonstrate that an alternative 1D pattern
can generate a 2D defect lattice. Specifically, we consider a 1D sinu-
soidal splay-bendpattern for the two surfaces. Letθ x,yð Þ= π

2 sinð2πx=LÞ

for both surfaces prior to rotation (Fig. 3A, B, Fig. S1). We first use the
same theory to plot the predicted disclinations and find a 2D lattice of
loops of alternating sizes (Fig. 3D, Supplementary Material 3.1,
Figs. S10, S11). This predicted configuration agrees very well with the
thin-cell simulation (H=L=0:1) and experiment (Fig. 3H, Fig. S11). As
the cell gap increases, both simulation and experiment show that
smaller defect loops (Loop-I) shrink and eventually self-annihilate, and
larger loops survive (Fig. 3E, G, Figs. S12, S13, Movie S9). Simulations
also find that the surviving defect loops gradually switch from a more
round-like shape (Loop-II, Fig. 3E, F, Fig. S13B) to a rhombohedral
shape (Loop-III,H=L 2 0:2,0:6½ �, Fig. 3E, G, Fig. S13C) in the planar view.
This transition with an out-of-plane buckling is akin to the transition
from the S-state to the C-state in the 1D cusp-like pattern (Figs. S12,
S13). There is an excellent agreement between the simulated and
experimental POM images (Fig. 3H, I), again underscoring the fidelity
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of the simulation method. These novel optical images consist of a
lattice of dark grains and rings, in sharp contrast to that formed from
the cusp-like pattern and the corresponding isotropic moiré pattern
(Figs. 2B, 3C). For even thicker cells (H=L>0:6), a web-like defect is
formed (Fig. 3E), akin to the thick-cell results of the cusp-like pattern
(Figs. S4C, S12F). As we increase the angleΨ from 0�, the defects first
enter the simulation window around Ψ=6�, as shown in Fig. S14A.
Then we observe one array of closed defect loops atΨ= 12� (Fig. S14B)
and multiple arrays of defect loops with a distance of T after Ψ≥ 24�.
As Ψ increases, the aspect ratio of the loops decreases, and the loops
become rounder, as seen in the simulation and theory (Supplementary
Information 3.3, Fig. S14I).

The local topological structures of thesedefect loops aredifferent
from the pure-twist and wedge-twist defect loops (Fig. 3G, Fig. S13)
reported in driven and active nematic systems51,54. Along a standard
wedge-twist loop (Fig. 3G), its β profile continuously varies from pure-
twist (β=π=2) to + 1=2 wedge (β =0), then back to pure-twist (β=π=2),
to �1=2 wedge (β =π), and finally returns to pure-twist (β=π=2)
(Fig. S3A). For thin cells and medium-gap cells, the three kinds of
wedge-twist defect loops characterized by the profile of angle β are
generated in both simulations and experiments (Fig. 3D–I). Both Loop-
I and Loop-II are of elliptical shape and exhibit pure-twist profiles
(β =π=2), except for the two end regions along their long axes (Fig. 3F).
Loop-I and Loop-II are also different: Loop-I and Loop-II (blue loops in
Fig. 3D) exhibit negative and positive anchoring angle differences Δθ,
respectively (Fig. 3D), which implies that Δθ changes oppositely from
the inside to the outside region of the loop (Fig. S10). Moreover, the
two end regions along the major axis in a Loop-I have a + 1=2 wedge-
like profile (β <π=2), whereas the end regions along the long axis of a
Loop-II have a �1=2 wedge-like profile (β>π=2, Fig. 3F, Figs. S12, S13).
As the cell transits from a thin gap to a medium gap, a Loop-II can
evolve into Loop-III, a nontrivial, distorted, 3D loop (Movie S9). When
the tangent vector rotates along the Loop-III for one revolution, it goes
through both the + 1=2 wedge profile and �1=2 wedge profile 2 times
andpasses thepure-twist profile 4 times,which is also distinct from the
wedge-twist loop (Fig. 3G). Note that our system uses a patterning
technique and quasi-static rotation operation to manipulate topolo-
gical structures, and defect loops are stable except when they are
smaller than ~1200 μm2 in the experiments. For energy reasons, the
small loop gradually shrinks and eventually annihilates. The topologi-
cal charges of the three kinds of loops are all zero (Supplementary
Information 3.2) and they can self-annihilate if not prevented by laden
particles. Since there is no more than a π rotation from the top to the
bottom patterned substrate, knot formation is topologically
forbidden.

Although the spatial variation details of the two 1D splay-bend
patterns (cusp-like and sinusoidal) are different, both can produce the
moiré period T and the tilting angle ω in terms of defect geometries
and optical patterns (Fig. 3H, I, Fig. S14, Movie S10). Note thatΨ=90�

is an interesting case in which theory predicts a square lattice of round
defect loops. This is indeed confirmed in experiments and simulations
(Fig. S15), which also identify ametastable state in which rectangle-like
disclination loops with their sides along the x- or y-direction appear
(Fig. S15). These defects can emerge when neighboring defect loops
coalesce into large ones.

When colloidal particles are incorporated into the sinusoidal
pattern system, we observe various loop-shaped colloidal assemblies
in the experiment. The expansion of the disclination loops during a
twist operation can be used to collect particles, which leads to loop-
shaped colloidal self-assembly structures (Fig. 4A). Importantly, when
a particle-laden defect loop undergoes shrinkage in the system, col-
loidal particles can prevent the self-annihilation of the defect through
jamming (Fig. 4B). By contrast, a particle-free defect loop will dis-
appear during the same shrinking process (Fig. 4B). We therefore

expect that the interplay of dynamic disclinations and colloids in
nematic moiré cells will give rise to more intriguing phenomena.

A 2D defect lattice pattern generates hybrid disclinations
To further demonstrate the versatility of the proposed nematic moiré,
we turn to 2D anchoring patterns. Specifically, we consider a surface
pattern of a 2D lattice of defects consisting of two interweaving square
lattices of bend-type + 1 and �1 defects (Fig. 5A). This 2D pattern is
similar to the dot screen pattern in isotropicmoirés28 (Fig. 5B, C). Here,
we focus on a thin-film scenario with H=L=0:3 (Fig. S16), in which the
system forms disclinations connecting two imprinted defects from
opposite surfaces at equilibrium. Before rotation, i.e.,Ψ=0o, eachpair
of same-charge surface defects at the same ðx,yÞ coordinate will be
connected by two disclination lines of half-integer charge instead of
onedisclination line of integer charge due to elastic reason55; these two
disclinations repel each other elastically, and they appear as loop-like
defects in 3D20 (Fig. S17A), and as shown in Fig. S17C–E, a nematic
between loops and patterned surface defect core positions has
depressed order and a quasiloop that connects two + 1 defect cores
and two �1 defect cores has β 2 ½0, π2� and β 2 ½� π

2 ,0�, respectively
(Supplementary Information 4.2).

At a small rotation angle (Ψ= 5o), the corresponding dot screen
moiré exhibits a tilt super lattice consisting of periodically overlapping
lattice points with a moiré period T and orientation angle ω (Fig. 5B).
The emerging defect structure in the nematic moiré is highly corre-
lated with this super lattice, with different regimes in the unit cell
engendering defects of different types and shapes (Fig. 5D, Figs. S18,
S19). The loop size is small near the unit cell center and gradually
increases with the distance from the center, while their windings
approach to the pure-twist profile (Fig. S18). Therefore, there is a
correlation between the size and the twist angle of the loops (Fig. S19).
Experiments have also confirmed this finding (Fig. 5E, F). The peri-
odicity of these defect structures and their orientation angles from
both experiments and simulations match well with the geometric
moiré theory (Fig. 5G, H, Fig. S20, Movie S11). At large rotation angles,
Ψ≥ 21o, the disclinations in the nematic moiré pattern appear to be
aperiodic (Movie S11, Supplementary Material 4.4, Fig. S21).

Interestingly, a periodic defect structure is observed around a
special angle Ψ= tan�13=4≈ 36:8o in the simulation (Fig. 5I), with a
lattice constant eT (different from the moiré period T) and orientation
angle eω (different fromthemoiré tilting angleω) (Table 1). The rotation
angleΨ= tan�13=4 represents a Pythagorean triple, leading to a super
lattice containing overlapping points from opposite layers (Table 1,
Fig. 5I). This intriguing defect configuration was also observed in the
experiment (Fig. 5J). Note that tan�1ð3=4Þ is a singular point in the
moiré theory (divergent black curve in the blue region in Fig. 5G)28 with
an infinitely large moiré period T (see the calculations in Supplemen-
tary Information 4.4). In the simulation and experiment, the defect
structures are found aperiodic for Ψ 2 ½34�,40�� except Ψ≈ 36�

(Fig. S21). The emergingdefect period eT and angle eω of the superlattice
around the rotation angleΨ≈ 36� agree between the experiments and
simulations and can be explained by the Pythagorean triple theory
(Fig. 5I, Table 1, Fig. S22) rather than the moiré theory.

In conventional moiré patterns, the translation of one layer can
lead to the translation of the emerging pattern in the orthogonal
direction. This feature is also found in our 2D nematic moiré
(Movie S12). We further confirm that the rotation center will not alter
thedefectperiod and tilting angle for smallΨ (Fig. S24, Supplementary
Material 4.6). For the special angle Ψ= tan�13=4, however, the emer-
gence of the periodic structures comes from the overlapping of
defects and therefore, the defect configuration is sensitive to the
choice of the rotation center (Fig. S23). Note that the defect structure
is also sensitive to the rotation speed.When the rotation is in the quasi-
static limit, the system showsperiodic disclinations during the rotation
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and can return to the initial state after a π-turn (Fig. S17). However, if
the rotation speed is fast (Materials and Methods, Supplementary
Material 6.2.2), the system will enter a disordered defect state and be
stuck in a state comprised of space-filling curve defects after a π-turn,
akin to the Truchet pattern (Movie S13). The hysteresis of the defect
structure is rooted in the complex free energy landscapeof the system.
During substrate rotation, there is a competition between the surface-
preferred director field and bulk elasticity. Slow rotation will render
the system remaining in the free energy minimum constrained by the
anchoring condition; for fast rotation, the bulk director has no time to
reorient to satisfy the anchoring condition, thereby leading to a dif-
ferent, path-dependent director field. This also explains the rotation
rate dependence of the defect structure in the 2D pattern. When the
ratio is lower, there are more bulk defects than near-surface defects
and the total volume of defects is lower (Fig. S25).

Applications of nematic moiré patterns
Beyond the versatility of the proposed simple twist method, we pro-
ceed to demonstrate the applications of nematic moiré cells. For
defect-based applications, existing research efforts have been devoted
to the forward design problem:which topological structureswithwhat
properties can be formed from a given geometry or a given pattern.
Moreover, for a given anchoring pattern, all the possible defect
structures are often quite limited to a few metastable states. This

greatly limits the applications of nematic disclinations. Here, we pro-
pose using the moiré effect to address the inverse problem of
designing arbitrary pixelated defect regions.

To this end, we are inspired by the application of moiré methods
in the protection of documents and products56. Based on the moiré
intensity profiles, new patterns are generated between two specially
designed periodic dot screens, one of which is a microstructured
image that is located on the document itself (bottom, green layer,
Fig. 6A), while the other (top, pink layer, Fig. 6A) plays the role of a
revealer. In the design of anti-counterfeitingmaterials, the superposed
new pattern of a highly visible repetitivemoiré pattern of a predefined
intensity profile shape and color gives the authenticated properties,
documents, or products. Here we use simulations to demonstrate that
a judiciously chosen nematic moiré pattern can be used to engender
arbitrary shapes represented by defect regions. Specifically, we design
a circular pattern for the top substrate and a Latin-letter pattern (U, S,
or T) for the bottom substrate (Fig. 6B). Combining the understanding
that disclination lines appear where the twist angle of the pattern
director has a 90� difference in a thin cell44,45, we propose an inverse
design possibility and map the “document” pattern (bottom) and
“revealer” pattern (top) to LC patterns. At a small twist angleΨ=4o, an
amplified letter region of topological defects much larger than the
periodicity of the pattern emerges, which consists of many defect
loops (Fig. 6C). Therefore, we anticipate that nematic moiré cells can
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generate various programmed shapes and can potentially be used for
inverse design, printing, self-assembly, photonics, and anti-
counterfeiting materials57.

Lastly, we study how nematic moirés respond to external electric
or magnetic fields. A uniform nematic cell can undergo the so-called
Frederiks transition if an electric field applied normal to the cell

surface is above a threshold value1. Twisting can lower the threshold
voltage (Supplementary Material 5.1). For comparison purposes, we
chooseΨ0 =Ψ= 12o for both twisted nematic cells (TNCs) and nematic
moiré cells. To characterize the transition in nematic moiré cells, we
introduce a tilting angleϕ to represent the angle between n and the xy
plane. The measured �ϕ from both uniform cells and TNCs in the
simulations agree well with the above theory (Supplementary Mate-
rial 5.2).We consider the 1D cusp-like pattern and compare the average
tilting angle �ϕ in the midplane of the cell as a function of the applied
voltage V for the three defect states with the same cell gap H in the
simulation (Fig. S26). Similar to the effect of twisting in planar cells,
spatial distortions of the nematic imposed by the surface patterning
can also facilitate the onset of the Frederiks transition (Fig. S26B,
Movie S14, SupplementaryMaterial 5.2, 5.3). Indeed, thenematicmoiré
pattern exhibits a thresholdvoltage approximately 10% lower than that

Table 1 | 2D defect pattern disclination period and tilting
angle (Ψ= tan�1 3=4
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of TNCs, showing the promise of nematic moiré patterns in applica-
tions such as displays and responsive materials.

Discussion
A versatile method to engineer the mesoscopic structure of a material
is crucial for its applications. As an important mesoscopic structure,
topological defects are ubiquitous in various physical systems and are
pivotal in understanding the bulk properties and phase transitions of
materials58–60. In this work, we propose to harness the moiré effect to
achieve a high degree of tunability of this mesoscopic structure in
nematic LCs. Todemonstrate, we combine continuum simulations and
experiments to examine a nematic cell confined by two surfaces with
identical, periodic anchoring patterns. Our simulation is a numerical
solver of the Ginzburg−Landau equation based on the Landau−de
Gennes free energy functional61; our experiment adopts a maskless
photopatterning technique to control the spatially varying anchoring
of the LC from the micrometer to centimeter scale50,62. We first con-
sider a one-dimensional (1D) splay-bend anchoring pattern. Before
rotation, the two surface anchoring patterns are aligned, and the
nematic is in a defect-free state. Upon twisting one surface against the
other, we observed a periodic defect structure, the periodicity and
shape geometry of which can be explained by the corresponding
geometric moiré pattern. The type, shape, and dimensionality of these
defect structures are highly tunable and sensitive to the rotation angle
and the cell gap. Based on the preferred orientation difference
between the two surfaces, a simple theory can correctly predict these
disclinations in the thin-cell limit but fails for thicker cells. The simu-
lations and experiments agree very well not only on defect config-
urations but also on optical structures (POM images), which appear
distinct from the optical images of the corresponding isotropic moiré
patterns. Importantly, for the 3D defect network structure, the con-
focal microscope experiment further confirms the simulation predic-
tion. The engendereddefect networks canbe used to guide the 3D self-
assembly of colloidal particles. Conversely, these particles can also

alter the defect structure by preventing self-annihilation of loop
defects through jamming.

We further investigate a 2D anchoring pattern consisting of a
lattice of ± 1 surface defects. The emerging topological structure
corresponds to the different regimes in the super lattice of the geo-
metric moiré. Interestingly, when the rotation angle coincides with a
Pythagorean triple, a rotation center-sensitive, highly periodic defect
pattern emerges. A similar photopatterning technique has been
adopted in the literature20,49,63,64, but the rotation operation over two
overlapping periodic patterns was not investigated. We also find that
the resulting nematic structure is sensitive to the rotation speed: slow
rotation can bring the system back to the ground state after a π-
rotation, whereas fast rotation can drive the system into disordered
defect states, which are stuck in a state comprised of surface defects.

Finally, we demonstrate two applications of nematic moiré cells.
First, a judiciously chosen nematic moiré pattern can give rise to
arbitrary shapes represented by defect regions. We anticipated that
our system could be used for anti-counterfeiting materials65 and
photonic devices66. Additionally, our calculations show that the Fre-
deriks transition voltage of the nematicmoiré is ∼ 10% lower than that
of a planar twist cell with the same twisting angle, which can facilitate
display-related applications. This can be understood by the finer
elastic distortions incurred by the anchoring pattern.

The proposed nematic system equipped with the moiré effect
shows the following features and advantages: (1) distinct periodic
topological structures with highly tunable periodicities can be sys-
tematically realized in one system by a simple twist method, and
their geometries can be well understood by the moiré theory-based
analytic model, which can enable the inverse design of these struc-
tures; (2) the unique POM images of nematic moirés could enrich
their applications in microscopic imaging and strain analysis; and (3)
the interplay between the engendered disclinations and colloidal
particles contains rich physics and can lead to emerging mesoscopic
patterns. If incorporating the nematic moiré effect in the ongoing
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defect-based application research, we can foresee much richer
applications of the moiré effect in liquid crystals, soft materials
systems and beyond.

Methods
Patterned surface alignment
The nematic liquid crystal 4’-pentyl-4-cyanobiphenyl (5CB) was pur-
chased from Jiangsu Hecheng INC. and used without purification in this
experiment. JXLC20000 is a commercialized nematic mixture pur-
chased from Grandinchem, INC (Fig. S30). The photosensitive material
azo dye SD1 (Fig. S30) was purchased from DIC INC. and used without
further purification. SD1 was mixed with n,n-dimethylformamide
(DMF) solvent at a 0:2 wt% concentration. Glass substrates were
washed in an ultrasonic bath with Cavi-clean detergent and then with
isopropyl alcohol and dried in an oven at 80 °C for 15 min. Subse-
quently, the substrates were placed in an ozone chamber under UV
exposure for 5 mins. The SD1 solution is spin-coated on the glass
substrates at 3000 rpm for 30 s. The glass plates were baked at 95 °C
for 20 min. The photosensitive azo dye on the glass substrates is
sensitive to andwill be orientedperpendicular to the irradiated linearly
polarized light67. The LC director is alignedwith the orientations of azo
dye molecules.

The topological pattern is created by using a maskless photo-
patterning setup based on a projector display50,62,68,69, Fig. S27A. To
produce the complex director pattern, for example, a director field
n= ½nx ,ny�= ½cosθ, sin θ�, where θ x,yð Þ=mtan�1 y

x

� �
+ θ0, m= + 1 is an

integer topological charge, and the phase θ0 =π=2 sets the distortion
with a pure bend (Fig. S27B), this pattern is divided into 36 segments
(Fig. S27C). One segment with an open angle of 10� is taken and set to
both the segment and linear polarizer along the x-axis, as shown in
Fig. S25D. The linearly polarized light can pass through the white
segment, while light from all other directions is blocked by the dark
background (Fig. S27D). Then, the rotation speed of the polarizer isR1,

and the segment is rotated at a speed of R2. The rotation of the
polarizer is controlled by a rotatory motorized stage, and the rotation
of the segments is controlled by the computer. Both rotations are
synchronized by a homemade LabVIEW program. If a circular pattern
shown in Fig. S27B is needed,m= R1

R2
= 1. Hence, the polarizer is rotated

at speed R1 = 10
o=10s to have a 10 s exposure time for each step.

Meanwhile, the time step between two segments is 10 s. After a full 2π
rotation of segments, the circular pattern will be created, as shown in
Fig. S27E, F. A two-dimensional (2D) lattice of topological defects can
be produced by controlling the distance between adjacent defects.
The produced 1D cusp-like splay-bend pattern is shown in Fig. S28.
Thus, the polarization pattern of light is imprinted into the photo-
sensitive substrate that is used to align the liquid crystal. Please note
that this maskless patterning technique by projecting display can
produce any pattern of the director field with the typical scale of
spatial gradients ranging from approximately tens of micrometers to
centimeters.

Sample preparation
To reduce the influence of light irradiation on the patterned
substrate, an additional layer of liquid crystal polymer is coated
on the top of the pattern. Monomer RM257, Fig. S26, purchased
from Wilshire, is mixed with toluene at a concentration of 7 wt%
with photoinitiator Irgacure 651 (from Ciba, Inc.) at a concentra-
tion of 5 wt% RM257. This solution was spin-coated onto the
patterned SD1 substrates at 3000 rpm for 30 s. The substrates
were photopolymerized under unpolarized ultraviolet light with
an intensity of 1:4 mW/cm2 for 30 min. The polymer pattern
replicates the pattern of SD1 alignment beneath it.

Two substrates with the same topological patterns are assembled,
and the gap is set by 10� 50 μm glass spacers. Specifically, in the

experiments involving a 1D cusp-like splay-bend pattern, a 10 μm
spacer was used for the S-state experiments, a 30 μm spacer was used
for the C-state experiments, and a 50 μm spacer was used for the
W-state experiments. In the experiments of the 1D sinusoidal splay-
bend pattern, a 10 μm spacer was used for the thin cell demonstration
and a 30 μm spacer for the thick cells. In addition, a 10 μm spacer was
used in the experiments using a 2D defect lattice pattern. 5CB is
injected into the cell by capillary force at 45 °C, which corresponds to
the isotropic phase of 5CB. After the sample is cooled to room tem-
perature, the disclination lines form, and the sample will be imaged by
polarizing opticalmicroscopy and bright-field opticalmicroscopy. The
top substrate is rotated manually to the set rotation angle Ψ. The
birefringence for JXLC-20000 is approximately 0.05, and the bire-
fringence for 5CB is approximately 0.2. Hence, the color of the images
is different. Both 5CB and JXLC-20000 liquid crystalmaterials are used
in the experiments. JXLC-20000 is used in Fig. 1, and 5CB is used in the
rest of the experiments.

5CB is doped with 0.01wt% silica colloids of radius 2:5 μm
(Cospheric Inc.). Colloids treated with octadecyl-dimethyl-(3-tri-
methoxysilylpropyl) ammonium chloride (DMOAP) produce perpen-
dicular director alignment and dipolar structures with a hyperbolic
hedgehog on one side of the sphere accompanying a spherical particle
with normal anchoring67. The colloidal dispersion in the LC is injected
into the photopatterned cell at room temperature (22 °C). The colloids
are manipulated by using a laser tweezers (JCOPTIX, China).

Optical microscopy
We used a 50X-1000X Advanced Upright Polarized light Microscope
from Amscope with both a 10x Plan, NA =0.25 objective and 20x Plan,
NA =0.40objective. Opticalmicroscopy images were captured by a 20
MP USB3.0 BSI C-mount Microscope Camera from Amscope. (resolu-
tion 5440×3648 pixels). The bright-field optical micrographs were
taken by a 40X-1000XUpright FluorescenceMicroscopewithRotating
Multifilter Turret fromAmscopewith both 10xPlan,NA =0.25 objective
and 20x Plan, NA =0.40 objective.

Laser scanning fluorescence confocal microscopy
The anisotropic fluorescent dye N,N′-bis(2,5-di-tert-butylphenyl)-
3,4,9,10-perylenedicarboximide (BTBP) (from Sigma‒Aldrich) was
mixed in methanol at 0.01wt%. Due to the low birefringence of LC
JXLC-20000, it is used in the confocal measurement to reduce the
scattering effectduring the imagingprocess. TheBTBP solution is then
mixed with JXLC-20000 at a weight ratio of 1:1. Then, methanol was
evaporated overnight on a hotplate at 90°C. This LC is filled in the
prepared cell. Imaging was performed with a Nikon A1 laser scanning
confocal fluorescence microscope using lasers with excitation wave-
length of 488 nm and emission wavelength of 530nm.

Theoretical model of numerical simulations
The director field (local orientation) of a nematic LC can be repre-
sented by a double-headed vector n (n�n). The tensorial nematic
order parameter Q is given byQij = Sðninj � δij=3Þ+ P

2 ðe1i e
ð1Þ
j � eð2Þi eð2Þj Þ,

where S is the scalar order parameter of the nematic, P is the degree of
biaxiality, eð1Þ is the secondary director perpendicular to n, and
eð2Þ =n × eð1Þ61. Our simulation is based on the Landau−de Gennes free
energy functional1,70 in terms ofQ. Infinite anchoring is assumed in the
simulation. The one-elastic-constant assumption is adopted, and the
length unit in the simulation is set to the nematic coherence length
(the defect core size), ξN =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L1=A0

p
, where L1 is the elastic constant and

A0 is the energy scale of the nematic. In the simulations, we neglect
floweffects and focus on the thermodynamic relaxation of the nematic
order. The simulation box dimensions are shown in Fig. S33, and
considering the boundary effect, the results are shown in a slightly
cropped box (Supplementary Information 6.2.1). We apply two
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substrate patterns and let the system relax to equilibrium. The total
free energy F consists of three bulk terms:

F =
Z

V
ðf LdG + f el + f EÞdV , ð1Þ

where f LdG is the Landau−de Gennes free energy, f el is the elastic
energy, and f E is the electric field-induced free energy. f LdG has the
form1

f LdG =
A0

2
1� U

3

� �
Tr Q2

� �
� A0U

3
Tr Q3

� �
+
A0U
4

Tr Q2
� �2

, ð2Þ

where parameter A0 is the energy density scale, and parameter U
controls themagnitude of S0 of a homogeneous static system through

S0 =
1
4
+
3
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3U

r
: ð3Þ

U is set to 3.5, and the equilibrium scalar order parameter S0 ffi
0:62 in the simulation. Defect regions are described by an iso-surface
of S=0:45. Using the above Doi expression for f LdG, the biaxiality P is
practically 0 in defect-free regions71–73.

The elastic energy density f el in our simulations is expressed in
terms of the Q-tensor form as

f Qel =
1
2
L1 ∂kQij

� �
∂kQij

� �
+
1
2
L2 ∂kQjk

� �
∂lQjl

� �
+
1
2
L3Qij ∂iQkl

� �
∂jQkl

� �
+
1
2
L4 ∂lQjk

� �
∂kQjl

� �
:

ð4Þ

For simplicity, we use a one-constant assumption without special
notation (Supplementary Material 6.2.1). The electric field-induced
energy density takes the following form:

f E = � 1
2
ϵ0ϵaE �Q � E, ð5Þ

where E is the electric field and ϵa is the molecular dielectric aniso-
tropy,Qs is thepatterned surfacefielddefined asQs = S0ðnsns � I

3Þwith
ns the imposed surface orientation and is fixed. To minimize the
thermodynamic potential in Eq. 1, we write a molecular field,

H= � δF
δQ

	 
st
, ð6Þ

where :::½ �st is a symmetric and traceless operator. The evolution for
bulk points is governed by

∂tQ = ΓsH, ð7Þ

where Γs is a relaxation constant and is related to the rotational
viscosity γ1 via Γs = 2S0

2=γ1
74,75, and t is time. Infinite (fixed) anchoring

condition is applied to approximate the strong anchoring condition
in the experiment76. The surface points in the simulation are set to
have constant equilibrium bulk order parameter S0 ffi 0:62. We
monitor the free energy as a function of simulation time (Fig. S34)
and do not find any divergence issue (Supplementary
Information 6.2.1).

There are two characteristic time scales associated with the
nematic. One is the nematic relaxation time τLC =

γ1ξN
2

L1
with γ1 defined

in the above. Theother timescale is the relaxation time associatedwith
the nematic cell74: τcell =

γ1H
2

L1
= 2S20H

2

ΓsL1
, with H being the cell height. In

simulation units, τLC ≈ 7:7 and τcell ≈623. The simulation time step
Δt =0:5 is more than ten times smaller than τLC and we set the total

simulation time τs ≫ τLC to ensure that our simulation can converge to
free energy minimum, where τs =Δt ×N and N is the total number of
simulation steps. For rotation operation simulations, we choose the
total simulation time τs ≫ τcell to approximate a quasi-static process.
We have also checked the nematic structure during rotation if τs ≫ τcell
is not satisfied (Movie S13).

The simulation is conducted via a finite difference approach, as
described in ref. 61. Following ref. 61, our simulation canbemapped to
the nematic 5CB at room temperature and atmospheric pressure by
choosing ξN ≈6:63 nm, A0 = 1:17 × 10

5 J=m3, γ1 = 0:078 Pa·s, and
ϵa = 11:5. This gives rise to τLC ≈0:667 μs and τcell ≈ 54 μs. In the
simulation, surface pattern period L= 30 in simulation units, corre-
sponding to ∼ 199 nm, which is compared to 75μm in the experiment.
Despite the system size mismatch, the simulation and experiment
agree very well.

Topological analysis of disclination lines
For each curve, we define vector t as its tangent, and Ω is the rotation
vector for each director profile along the curve.m is normal to both t
andΩ. β is the angle betweenΩ and t, which ranges in ½0,π�. If β =π=2,
the winding type of a local profile is pure-twist; if β=0 or π, a defect
curve point is claimed to be the wedge-twist type, β=0 being the + 1=2
wedge and β=π being the�1=2 wedge2,50,51. The schematics of angle β
are presented in Fig. S3A. Write n in terms of t and m,

n= cos
1
2
φm+ sin

1
2
φðcosβt×m+ sin βtÞ, ð8Þ

where φ is the azimuthal angle of the local profile. Furthermore, pure-
twist can be characterized as angle α in another triad t, e1, e2

� �
52.

Vector e1 is on the plane that is normal to t, pointing from the defect
core center alongφ=0, and e2 iswritten ase2 = te1. Then, vectorm can
be expressed as

m= cosαe1 + sinαe2, ð9Þ

and α is the phase shift angle between vectormand radial lineφ=0. As
α = 1=2π or α = 3=2π, the local profile is of the tangential twist type, and
α =0 orπ corresponds to the radial twist type. The schematics of angle
α are presented in Fig. S3B.

Data availability
Source data used tomake the plots inmain figures and Supplementary
Figs. are provided with this paper. Source data are provided with
this paper.

Code availability
Codes used tomake the plots in main figures and Supplementary Figs.
are provided with this paper.
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