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Tracing back primed resistance in cancer via
sister cells

Jun Dai 1,7, Shuyu Zheng 1,7, Matías M. Falco 1, Jie Bao1, Johanna Eriksson 1,
Sanna Pikkusaari 1, Sofia Forstén1, Jing Jiang1, Wenyu Wang1, Luping Gao1,
Fernando Perez-Villatoro 1,2, Olli Dufva 3, Khalid Saeed3, Yinyin Wang1,
Ali Amiryousefi 1, Anniina Färkkilä 1,2,4,5, Satu Mustjoki 3, Liisa Kauppi 1,
Jing Tang 1,8 & Anna Vähärautio 1,6,8

Exploring non-genetic evolution of cell states during cancer treatments has
become attainable by recent advances in lineage-tracing methods. However,
transcriptional changes that drive cells into resistant fates may be subtle,
necessitating high resolution analysis. Here, we present ReSisTrace that uses
shared transcriptomic features of sister cells to predict the states priming
treatment resistance. Applying ReSisTrace in ovarian cancer cells perturbed
with olaparib, carboplatin or natural killer (NK) cells reveals pre-resistant
phenotypes defined by proteostatic and mRNA surveillance features, reflect-
ing traits enriched in the upcoming subclonal selection. Furthermore, we show
that DNA repair deficiency renders cells susceptible to both DNA damaging
agents and NK killing in a context-dependent manner. Finally, we leverage the
obtained pre-resistance profiles to predict and validate small molecules driv-
ing cells to sensitive states prior to treatment. In summary, ReSisTrace resolves
pre-existing transcriptional features of treatment vulnerability, facilitating
both molecular patient stratification and discovery of synergistic pre-
sensitizing therapies.

Recent studies have highlighted the role of non-genetic heterogeneity
driving cancer treatment resistance1–4. Mechanistically, such hetero-
geneity accumulates continuously via inherent stochasticity in gene
expression, and is further strengthened upon each cell division due to
uneven partitioning of biomolecules and organelles5. As a result, even
isogenic cancer cells exhibit variable drug responses, associated with
transient changes in their chromatin or expression states before the
treatment1–4. Multiple methodologies have been developed to explore
these pre-existing resistant states, involving physical separation of cell
populations6 or predefined markers7. More recently, labelling lineages
by random barcodes that are readable by single-cell RNA-sequencing

(scRNA-seq) has enabled a fate-coupled analysis of full transcriptomic
profiles. They have been applied to study induced reprogramming8,
hematopoietic differentiation9 and lately also cancer resistance. For
example, ClonMapper allows physical separation based on barcode
hybridisation with scRNA-seq readout10. However, ClonMapper ana-
lyses fate-coupled transcriptomes on very large progenies, and is thus
optimal in finding only the structures with clear and stable transcrip-
tional differences. The Watermelon system further couples lineage
labels to proliferation rate but was able to determine specific tran-
scriptomics patterns associated with resistant fates only during, not
prior to the drug treatment11. Furthermore, the published studies do
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not strictly control the number of cell divisions, therefore leading to
large transcriptional divergence within the progenies, nor do they
estimate the level of this divergence for distinct transcripts and thus
are unable to assess the accuracy of fate-associated expression pat-
terns across the transcriptome.

We addressed these limitations by developing ReSisTrace, which
leverages the transcriptional similarity of sister cells to enable a high-
resolution prediction of primed resistance. ReSisTrace also allows
exploring asymmetric transcriptomic features between sister cells,
which accumulate phenotypic heterogeneity upon each generation of
cancer cells. We further analysed primed resistance in the subclonal
context to address the interplay between genetic and non-genetic
traits.We applied ReSisTrace against chemotherapy, targeted therapy,
and immune cytotoxicity, all in the context of high-grade serous
ovarian cancer (HGSOC). The improved resolution of ReSisTrace
enables the detection and targeting of distinct transcriptomic patterns
that precede treatment resistance, allowing us to discover cell states
with increased vulnerability to each applied treatment, as well as small
molecules that drive cells to these states.

Results
ReSisTrace reveals primed resistance via sister cell inference
To reveal the cell states that are primed to treatment resistance,
uniquely labelled cells are synchronised and allowed to divide once,
after which sample is split so that half of the cells are analysed by
scRNA-seq, while the other half undergoes anti-cancer treatment
(Fig. 1a). Surviving cells were allowed to recover, and then analysed by
scRNA-seq to identify resistant lineages and their gene expression
profiles. We determined the transcriptomes of these resistant lineages
at the pre-treatment stage based on sister-cell coupling, and annotated
themaspre-resistant cells. For simplicity, cellswith labelsmissing from
post-treatment samples were annotated as pre-sensitive whilst they
inherently also contain false negative pre-resistant cells due to inevi-
table cell loss, and cells that failed to divide after release from thymi-
dine block.

We applied ReSisTrace in a HGSOC cell line Kuramochi12 to
address primed resistance against carboplatin chemotherapy, the
PARP inhibitor olaparib, and anti-tumor immunity represented by
natural killer (NK) cells. Carboplatin is part of standard-of-care for
HGSOC patients, while PARP inhibitors are used as maintenance
therapy especially for patients with homologous recombination defi-
ciency (HRD)13,14. Kuramochi harbours a heterozygousBRCA2mutation
and is functionallyHRD15,16, although showing lower sensitivity to PARP
inhibitors than homozygous BRCA1/2 mutant cell lines16. NK cells are
one of the key players in anti-cancer immunity17, yet - unlike CD8 +T
cells - do not need to be autologous.We also included a non-treatment
control condition that mimicked the cell cycle synchronisation, split-
ting, re-plating, and growth conditions of the drug treatment experi-
ments, allowing us to assess the confounding effect of experiment-
specific growth fitness within primed drug resistance signals.

Cells were labelled uniquely by using lentiviral constructs with
randombarcodes of 20bases, and then sub-sampled froma largepool,
analogous to the concepts used in unique molecular identifiers
(UMIs)18. The ReSisTrace construct was incorporated to the Perturb-
seq19 vector backbone (Fig. 1a), achieving high detection efficiency
both before and after the treatments, in approximately 90% of cells
(Supplementary Fig. 1a). On average, 87% of the barcodes were unique
in each pre-treatment sample (Supplementary Fig. 1b). Cell synchro-
nisationwith thymidineblock increased theproportion of S phasecells
from 29% in control cells to 61%, whereas 8 h after release from thy-
midine block the proportion of S phase cells was only 19% (Supple-
mentary Fig. 1c, d, SupplementaryMethods). As expected, themajority
of colonies before splitting thepre-treatment samples consistedof two
cells (Supplementary Fig. 1e, f), whereas after splitting, most lineages
were represented by only one cell (Supplementary Fig. 1g). To assess

the accuracy of pre-sensitive cell labels while taking into account
experimental uncertainties, we performed computational modelling
and simulations where we incorporated experimentally measured
parameters for uneven cell doubling before the sample was split,
random distribution of sister cells during the split, as well as various
forms of cell loss during the experimental procedure and analysis (See
Supplementary Note for further details). The simulation showed that
on average more than 80% of pre-sensitive cells captured by ReSis-
Trace were truly positive (Supplementary Fig. 1h, Supplementary Note
and Supplementary Data 1) at the killing rate selected for the experi-
ment (Supplementary Fig. 1i). This suggests that the true pre-resistant
cells can be captured with four to five-fold enrichment in the observed
pre-resistant population compared to the observed pre-sensitive
population, despite experimental uncertainties. Furthermore, we
performed all the assays in two replicates, achieving highly consistent
transcriptomic changes between the pre-resistant and pre-sensitive
populations (Supplementary Fig. 1j). Notably, we observed consistent
transcriptomic changes also in the non-treatment control condition
between pre-surviving and pre-extinct cells, suggesting that the
experimental procedures themselves, such as those introduced by the
preceding release from the thymidine block, pose a non-random
selection pressure which should be addressed.

To validate the use of sister cells as proxies, we confirmed that
cellswith shared labels, i.e. putative sister cells, have significantlymore
similar transcriptomes than random pairs of cells (Fig. 1b–d; average
Euclidean distances in random cell pairs are 46% higher than those of
sister cell pairs). We further compared the genes that showed sig-
nificantly higher similarity within sister cell pairs, termed sister-
concordant genes, against the other genes, termed sister-discordant
genes (Fig. 1e). The sister-discordant genes were expressed at lower
levels, along with increased drop-out noise (P < 2.2× 10−16, two-tailed t-
test; mean expression of the sister-discordant genes being 3.4% of that
of the sister-concordant genes) (Supplementary Fig. 2a). Sister-
discordant genes also showed on average 49% higher relative degra-
dation rates (P = 4.2 × 10-10, two-tailed t-test) and on average 65%
higher splicing rates relative to transcription (P = 0.000038, two-tailed
t-test) (Fig. 1f andSupplementaryFig. 2b, c), suggesting that transcripts
to be degraded show higher expressional variation. While sister-
concordant genes were not enriched in any pathway, the sister-
discordant genes were highly enriched in Inositol phosphate meta-
bolism and Phosphatidylinositol signalling system (Fig. 1g). These
pathways provide substrates for Phosphatidylinositol 3-kinase/AKT/
mTOR signalling, which has been shown to drive asymmetric cell
division in divergent contexts including cancer20–22.

Subclonal enrichment contributes to pre-resistance signatures
We next explored the structure of cell populations in the tran-
scriptomic space. A UMAP embedding showed no distinct separation
between the pre-resistant and pre-sensitive cells (Fig. 2a and Supple-
mentary Fig. 3a). As expected, all the post-treatment samples showed
larger clone sizes (Supplementary Fig. 3b) (P < 2.2× 10−16, two-tailed
Kolmogorov-Smirnov test) and smaller lineage diversity compared to
the pre-treatment samples (Supplementary Fig. 3c) (P = 3.80 × 10-5,
paired two-tailed t-test, n = 8). This was true also for the control con-
dition, further highlighting the need to assess the pre-resistance sig-
nals with the experimental fitness signal. To assess the putative role of
genetic heterogeneity, we inferred copy number variations (CNVs)
from the scRNA-seq data, and identified five subclones that closely
matched the unsupervised Leiden clustering in the UMAP (Fig. 2b,
Supplementary Fig. 4a, and Supplementary Fig. 4b; adjusted Rand
index 0.83). The subclonal identities of lineages were stable during the
treatments (Supplementary Fig. 4c), resulting in similar subclonal
proportions between pre-resistant and post-treatment populations
(Fig. 2c). These results suggested that subclonal selection is already
evident in the pre-resistant cells, as would be expected based on their
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shared genetic origin with post-treatment clones. Specifically, we
found that subclone A was significantly enriched in the pre-resistant
cells compared to pre-sensitive cells at all the treatment conditions,
especially for the carboplatin and olaparib treatments, when com-
pared to the control samples (P = 8.882 × 10-11 and P < 2.2× 10−16,
respectively, two-proportion Z-test) (Fig. 2c).

With the identity of pre-resistant and pre-sensitive cells, as well as
the identity of subclones, we determined rank-based transcriptomic
signatures for pre-resistance and subclones (Supplementary Data 2).

We found that the signature of subclone A was positively associated
with the pre-resistance signatures for all treatment conditions while
negatively associated with the pre-survival signature of the control
condition (Fig. 2d; associations estimated by the connectivity scores
defined in23). Overall, the patternswere consistentwith the enrichment
patterns of the subclones in the pre-resistant populations (Fig. 2c, d).
Gene ontology (GO) enrichment analysis revealed that mRNA surveil-
lance associated terms, nonsense mediated mRNA decay and viral
transcription, were enriched in the primed resistance signatures
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Fig. 1 | ReSisTrace leverages sister cell similarity to discover cellular states
primed for resistance. a Schematic representation of the ReSisTrace approach.
Uniquely labelled cells are synchronised and allowed to divide once. Subsequently,
the sample is divided in two for scRNA-seq and treatment. Next, barcodes of
recovered cells in the post-treatment sample are determined by scRNA-seq and
used to identify pre-resistant cells in the pre-treatment sample. b Schematic of
sister cell pairs and random cell pairs in a pre-treatment sample. c Euclidean dis-
tance of sister cell pairs in comparison to random cell pairs (P < 2.2 × 10 −16, two-
tailed t-test, randomcell pairsn = 6.85 × 108; sister cell pairs n = 3477. The boxplots
show the 25th percentile, median, and 75th percentile, with the whiskers indicating

the 1.5 × interquartile range. d A subset of randomly selected 10 sister cell pairs
shown in the Uniform manifold approximation and projection (UMAP). e Gene
expression fold changes in sister cell pairs (x axis) versus random cell pairs (y axis).
The Pearson’s correlation and its two-tailed test P value are shown. Sister-
concordant genes are displayed as red, and sister-discordant genes as blue.
f Inferred splicing and degradation rates of expression matched sister-concordant
and sister-discordant gene sets, with 919 and 107 genes, respectively. g Pathway
enrichment of 1332 sister-discordant genes. P values were determined using Fish-
er’s exact test and adjusted with the Benjamini-Hochberg method. Source data are
provided as a Source Data file.
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against all three treatmentmodalities, as well as in subclone A, but not
in the pre-survival signal of the control condition. Changes in pro-
teostasis were associated with primed resistance against olaparib and
carboplatin (Fig. 2e, Supplementary Data 3). Response to topologically
incorrect protein was associated with primed sensitivity towards ola-
parib or carboplatin, in line with DNA damaging therapies potentiating
endoplasmic reticulum (ER) stress to lethal levels24. We also found that
mitochondrial expression patterns were associated with primed sen-
sitivity towards NK, consistent with recent studies25. DNA replication
had a positive association only with the pre-survival signature in the
control condition yet not with any of the treatment conditions. This is
in line with proliferation increasing the chances of sister cell survival
after replating in the control condition, but decreasing survival in the
face of anti-proliferative therapies, or even NK attack26. Interestingly,
the cell cycle associations of the two DNA-damaging therapies
diverged formitosis.Mitosiswas enriched in primed sensitivity against
either NK cells or carboplatin that crosslinks DNA regardless of cell

cycle phase27. In contrast, olaparib damagesDNAby stalling replication
forks, where the immediate damage itself needs to occur in the S
phase28. In line with this, mitosis was not associated with primed ola-
parib sensitivity. Together, our results show that subtle pre-resistant
features can reflect the subclonal phenotypes that are subsequently
enriched during each treatment.

Context dependent association between HRD status and sus-
ceptibility to NK killing
HRD is the key tumour phenotype that predicts clinical response to
PARP inhibitors and carboplatin in HGSOC. As the capability to repair
DNA can vary evenwithin genetically homogeneous cell populations29,
we hypothesised that cells with HRD-like states could be primed for
sensitivity to olaparib and carboplatin. To test the hypothesis, we first
determined an HRD-associated transcriptional signature (Supple-
mentary Data 4) from an isogenic cell line pair model, constructed by
comparing the gene expression of parental BRCA1 mutant COV362
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Fig. 2 | Interplay between genetic and transcriptomic features in primed
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permutation test. **P =0.001998. (Carboplatin n = 8419 genes; Olaparib n = 8406
genes; NK n = 8419 genes; Control n = 8410 genes). e Representative gene ontolo-
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Source data are provided as a Source Data file.
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cells to the BRCA1-restored cells (Fig. 3a). We confirmed that the
restored cells displayed a homologous recombination proficient (HRP)
phenotype with increased RAD51 foci after DNA damage, resulting in
reduced olaparib sensitivity (Fig. 3b–d and Supplementary Fig. 5a).
Kaplan-Meier survival analysis confirmed that HRD signature was
associated with improved overall survival (OS) in ovarian serous
cystadenocarcinoma patients in The Cancer Genome Atlas (TCGA)
cohort (hazard ratio = 1.51, P =0.009, log-rank test) (Supplemen-
tary Fig. 5b).

We then compared the HRD signature to the pre-resistance sig-
natures captured by ReSisTrace. We confirmed that the pre-resistance
signatures in olaparib and carboplatin conditions were negatively
associated to the HRD signature, as expected based on their
mechanisms of action that target HRD (Fig. 3e). More interestingly, the
pre-resistance signature for the NK condition showed even more
pronounced negative connectivity scores to the signature (Fig. 3e).
This unexpected finding prompted us to explore a causal connection
between HRD and sensitivity to NK treatment in ovarian cancer cells.
Indeed, we found that the BRCA2 restored Kuramochi cells (Supple-
mentary Fig. 5c, e) were consistently more resistant to NK when

compared to cells transduced with control plasmid (Fig. 3f). Further-
more, the other two isogenic BRCA1 restored cell lines (COV362 and
UWB1.289 (Supplementary Fig. 5d, f, g)) also showed increased resis-
tance against the NK cells from the same donor that was used in the
ReSisTrace experiment (Donor 1 from Supplementary Fig. 5h, i).
However, the responses to NK cells from other donors did not reca-
pitulate this, suggesting donor-specificity of the NK pre-resistance
signature (Supplementary Fig. 5h, i). In the non-autologous context,
variations in the HLA-C type can influence the interaction between NK
cells and target cells30, but the differences ofHLA-Chaplotypematches
could not explain the inconsistency between Kuramochi and other cell
lines (Supplementary Data 5). To investigate the potential of the NK
treatment at a population level, we stratified TCGA ovarian cancer
cohort31 into HRD and HRP groups by a genomic classifier called
ovaHRDscar32, and compared their deconvoluted33 gene expression
profiles. We found that the NK pre-sensitivity signature was positively
associatedwith the clinicalHRDsignature (connectivity score: 0.38 +/−
0.03). Furthermore, we used known NK cell markers (Supplementary
Data 6) to construct anNK signature that indicates presence of NK cells
in clinical specimens. Indeed, the NK cell presence was associated with
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restored cells. b–d Functional HR test of RAD51 foci within cyclin A2 positive cells
with representative images (b) and quantification from three replicates (c), as well
as olaparib sensitivity (d) of the parental, control plasmid or BRCA1 restored
COV362 cells. *0.01 < P <0.05, two-tailed t-test (RAD51+ cells: COV362 vs.
COV362 + BRCA1: P =0.039; COV362 + ctrl vector vs. COV362 + BRCA1: P =0.037).
Error bars are mean+/− s.d. of three replicates. e Association between the pre-
resistance gene signatures and the HRD signature displayed as connectivity scores.
Quantiles were determined by varying the adjusted P value threshold for filtering
the genes in the HRD signature (5× 10−16 < P <0.05, n = 20 gene sets).
****P < 1 × 10–4, two-tailed t-test (Control vs. Carboplatin: P = 5.18 × 10−8; Control vs.

Olaparib: P = 8.02 × 10−15; Control vs. NK: P = 5.44 × 10−15). The boxplots show the
25th percentile, median, and 75th percentile, with the whiskers indicating the 1.5×
interquartile range. f Measurements of NK cell-mediated killing of Kuramochi
control and BRCA2-restored cells using NK cells from four donors. Error bars are
mean +/− s.d. of at least three replicates. *0.01 < P <0.05; **0.001 < P <0.01; ***
1 × 10−4 < P <0.001; ****P < 1× 10−4, two-tailed t-test (exact P values are listed in
Source Data file). g Hazard ratios of overall survival in logarithmic scale for the
interaction between NK transcriptional signature and patients’ HRD/HRP status. P
values are determined by the Cox regression models (HRP n = 117; HRD n = 137).
Error bars are mean+/− 95% CI, with NK signature:HRP (mean in log(HR): 0.87 +/
− 3.63); NK signature:HRD (mean in log(HR): 5.72 +/− 4.73). Source data are pro-
vided as a Source Data file.
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improved survival only in the HRD patients (P =0.018, Cox propor-
tional hazard model), but not in the HRP patients (Fig. 3g). These
results suggest that HRD tumours might be more responsive to innate
immune cytotoxicity in the autologous context.

Targeting treatment-specific primed resistance with small
molecules
We hypothesised that small molecules that shift cancer cells toward
pre-sensitive states could sensitise them to the corresponding treat-
ments. We searched the L1000 database34 for such drugs that induce
gene expression changes opposite to the pre-resistance signatures
(Fig. 4a, upper panel). Top drugs were ranked by the negative con-
nectivity scores, which were further prioritised by a consensus P value
threshold derived from multiple variants of the pre-resistance sig-
natures (Fig. 4b and Supplementary Data 7). In addition to the
treatment-specific pre-resistance signatures with and without P value
thresholding,weused additional variants derived from the contrasts of
pre-resistance and pre-survival signatures, either unfiltered or filtered
by bootstrapping and/or permutation test P values, and selected drugs
that were predicted from all the six signature variants. Drugs with non-
or lowly expressed targets in Kuramochi cells were excluded, resulting
in ten drugs for experimental validation (Supplementary Data 8).

We performed a two-step functional validation for the predicted
drugs. As transcriptional responses to many drug classes are cell-type
specific35, we first assessed whether the drugs indeed induced pre-
sensitive signatures also in the context of interest, i.e. Kuramochi cells,
and then measured their ability to sensitise these cells to either car-
boplatin, olaparib or NK cells, when used prior to the main treatment
(Fig. 4a, lower panels). For the first step, we generated drug-induced
transcriptome profiles in Kuramochi cells through scRNA-seq, with
two replicates of each treatment and all samples processed simulta-
neously to minimise batch effects. Apart from sitagliptin that did not
induce consistent changes in gene expression, the drug-induced
replicates showed aligned gene expression changes, with average
correlation coefficient of 0.78 (Supplementary Fig. 6). The UMAP
projection shows that three proteasome inhibitors (bortezomib,
delanzomib, and ixazomib) induced transcriptome profiles that were
clearly clustered together and distinguished from the DMSO control
(Fig. 4c, d, Supplementary Fig. 7). In addition, the expression profiles
resulting from treatment with pevonedistat, a neddylation inhibitor36,
when applied in two distinct concentrations, did not overlay with
DMSO treated cells’ profiles on the UMAP projection. We found that
the predicted drugs indeed induced changes opposite to the corre-
sponding pre-resistance signatures, with significant negative con-
nectivity scores (Fig. 4e, Supplementary Fig. 8). For example,
clofarabine, one of the top predicted pre-sensitisers for NK cells
induced transcriptomic changes with highly negative connectivity to
NK pre-resistance. Pevonedistat, predicted to pre-sensitise cells
against all three treatments, induced changes with a modest yet sig-
nificant negative connectivity for their pre-resistance signatures. In
contrast, pevonedistat showed apositive connectivity score to the pre-
survival signal in the control condition, whichwas not observed by any
other drug.

As the second validation step, we assessed whether the predicted
drugs indeed sensitised cells to the treatment in a synergistic manner.
We pre-treated the Kuramochi cells with the predicted drugs, changed
the media to remove the drugs, and then perturbed the cells with
carboplatin, olaparib, or NK cells. The predictions were highly accu-
rate: of the 12 predicted drugs, 11 showed synergy according to mul-
tiple reference models (Bliss, HSA, Loewe, or ZIP)37,38, and eight
showed synergy consistently by all of the referencemodels (Fig. 4f and
Supplementary Fig. 9). Importantly, these drugs were confirmed to
induce pre-sensitive-like transcriptomic changes in Kuramochi cells,
thus validating that the pre-resistance signatures identified by ReSis-
Trace indeed have functional significance. In particular, pevonedistat,

ixazomib citrate, andGW843682Xwerevalidatedas the top synergistic
drugs for carboplatin, olaparib, and NK cells, respectively (Fig. 4e, f).
Furthermore, we confirmed that pevonedistat - that induced an
expression profile similar to pre-sensitive cells in all the treatments yet
not in the control condition - strongly pre-sensitized Kuramochi cells
to all the three treatment modalities already at a low concentration
(0.33μM), despite having a minor inhibition on cell viability as a
monotherapy (Supplementary Fig. 9a). Pevonedistat inhibits neddy-
lation, a ubiquitin-like post-translational modification affecting a wide
range of cellular functions, such as mRNA splicing and surveillance,
DNA replication, and proteostasis36. Pevonedistat has shown synergy
with multiple treatment modalities in preclinical models, and is cur-
rently undergoing several clinical trials as a combination therapy in
both haematological and solid cancers39,40. Ixazomib citrate, together
with other three proteasome inhibitors (delanzomib, carfilzomib, and
bortezomib) synergized with olaparib, in line with the increased
response to topologically incorrect protein in olaparib pre-sensitive
cells (Fig. 2e). In contrast, the NF-κB inhibitor pyrrolidine-
dithiocarbamate was less synergistic with olaparib, whereas sitaglip-
tin used to treat type II diabetes had no effect, in line with its failure to
induce robust expression changes. For the NK treatment, two drugs
that causemitotic arrest were identified, including the PLK1/3 inhibitor
GW843682X and the tubulin polymerisation inhibitor nocodazole,
corroborating both the NK pre-sensitive-like expression changes they
induced (Fig. 4d, Supplementary Fig. 8) and gene ontology results
(Fig. 2e). In addition, the purine nucleoside antimetabolite clofarabine
was synergistic, suggesting that the cell cycle phase of cancer cells
modulates their vulnerability to NK cells. Taken together, the drug
signature analysis based on ReSisTrace enables a systematic and
accurate prediction of sensitising smallmolecules that reverse the pre-
resistant states to induce synergistic interactions with the target
treatment.

Discussion
Fates of cancer cells with recently shared ancestry are closely inter-
twined, showing aligned drug responses41 and preferential site of
metastasis42,43. Cells of the same progeny, at least until a couple of
generations apart, also present similar gene expression profiles9,44.
However, transcriptional patterns of pre-treatment cells do not fully
capture their future fate9, and cells with extreme fates, such as high-
dose drug persistence, may not display evident gene expression fea-
tures prior treatment11. Compared to previous lineage tracingmethods
that allow more than one cell division after labelling, ReSisTrace has
the advantage in identifying subtle and transient fate-coupled differ-
ences in gene expression patterns that are increasingly obscured by
stochastic noise upon each cell division. Live cell tracking has revealed
that divergence in protein expression significantly increases already
from sister cells, i.e. two cell progenies, to cousins or four cell
progenies6. However, a larger progeny size11, and even clonal
isolation10 of pre-resistant populations are beneficial when character-
ising primed states of extremely rare persisters in order to maximise
the odds of detecting each pre-resistant lineage. Thus, the selection of
optimal lineage tracingmethoddepends on the context, and is a trade-
off between sensitivity to detect and analyse the rare progenitors of
extreme perisister lineages, and sensitivity to identify more transient
expression patterns. Furthermore, as cell cycle synchronisation not
only enriches sister cells but also poses additional stress to the cells
being assayed, it should be carefully considered especially in more
sensitive cellular contexts, such as patient-derived organoids, or
primary cells.

Non-genetic heterogeneity should ideally be assayed in the con-
text of genetic heterogeneity, as clinical tumours are never completely
isogenic due their inherent genomic instability. We have previously
shown that subclones can be traced through the treatment in clinical
tumours to assess enrichment of pre-existing cellular states45. To
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Fig. 4 | Predicting drugs targeting primed resistance. a Schematic representa-
tion of the approach to predict and validate drugs that leverage the acquired pre-
resistance profiles by sequential treatment strategies. b Connectivity scores
between the L1000 drug-induced signatures and acquired pre-resistance sig-
natures filtered by unadjusted P <0.05. P values were determined by a two-tailed
permutation test. c Single-cell gene expression of drug perturbed Kuramochi cells
projected on a UMAP, with top predicted drugs shown as separate UMAP

projections along with DMSO induced profiles (d), and with induced fold changes
compared to those of respective pre-resistance profiles (e). Unadjusted P values
were determined by a two-tailed permutation test. f Synergy landscapes for the top
drugs for each treatment. Mean and maximal synergy scores are shown, with their
two-tailed P valuesdeterminedbybootstrapping test. Sourcedata are providedas a
Source Data file.
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improve clinical relevance of ReSisTrace inHGSOC that is an extremely
copy number unstable cancer46, we analysed primed resistance within
the subclonal context via scRNA-seq inferred copy number variations.
We found that subclonal structures drove global transcriptional clus-
tering, and discovered treatment-specific enrichment of subclones.
These enrichment patterns explained certain transcriptomic features
of the pre-resistant populations, such as those representing changes in
transcriptional quality control. However, themajority of the biological
processes enriched in treatment-specific pre-resistance patterns - such
as those related to proteostasis or cell cycle - were not detected by
subclonal analysis. This suggests that the increased resolution of sister
cell lineage tracing enables the discovery of deeper, non-genetic fea-
tures preceding resistance that cannot be identified by tracing cellular
progenies at the lower, subclonal resolution. It is important to consider
that subclonal enrichment contributes to differential expression of not
only CNV affected drivers but also the co-amplified passenger genes47,
thus providing an additional level of noise to the pre-resistance signal
and supporting the analysis of pre-resistant states in their subclonal
context. Thus, ReSisTrace revealed the interplay between genetic and
phenotypic heterogeneity in primed resistance, an aspect that
becomes increasingly relevant for patient-derived models such as
organoids or xenografts.

DNA damage is known to induce NK-mediated cell killing48 and
aneuploidy activates NK clearance of non-transformed senescent cells
via NF-κB signaling49. However, the effect of HRD on NK cytotoxicity
has not been reported, although activation of intracellular innate
immune signalling has been shown to induce HRD50. In Kuramochi
cells, we identified a connection between subtle intra-population dif-
ferences in HRD state and sensitivity to NK killing, which was validated
by showing increased resistance upon BRCA2 restoration against NK
cells from four donors. However, other NK donor combinations did
not show aligned responses in additional BRCA1 restored isogenic cell
line pairs, and such discrepancy was not explained by differences in
HLA-C haplotype matches. It is also known that some cell lines are
more sensitive to TRAIL, TNF or Fas ligand mediated, and some more
to granzymeor perforinmediated killing51,52. Thus, one putative reason
for the inconsistency between Kuramochi and other cell lines could be
that the effect of HRD is more relevant in some of these NK-induced
apoptotic mechanisms than others. This suggests that primed resis-
tance against innate immune cells can be very context-specific. Inter-
estingly though, the presence of NK derived transcripts associated
positively with ovarian cancer patient survival only in an HRD depen-
dent manner, suggesting that in the native, autologous context, HRD
patients could be more susceptible to NK based anti-tumor therapies
than patients with HRP tumours. Taken together, the putative con-
nection between innate immunity and HRD provides an intriguing
extension to the body of evidence showing that HRD tumours are
more susceptible to adaptive immunity, with improved T cell-
mediated immunosurveillance53.

Drug resistance driven by non-genetic heterogeneity is mechan-
istically complex. Functional genetic screens can reveal causal factors
but are largely limited to mechanisms that rely on individual genes.
Longitudinal transcriptomic comparisons can capture complex drug-
induced patterns but do not allowdetecting the evolutionary selection
and enrichment of pre-existing resistant states during the treatment.
On the contrary, ReSisTrace allows characterization of resistant
populations already prior to the treatment, thus revealing also the
contrasting vulnerable states that couldbe induced via pre-treatments.
We applied a systematic approach of using drug-perturbed gene
expression signatures34 to predict pre-sensitising drugs, and validated
that context-specific induction of pre-sensitive states was a pre-
requisite for effective pre-treatments. We thus leveraged the plasticity
of cell states by identifying sequential treatments, providing an alter-
native paradigm to simultaneous combinatorial therapy predictions
that aim to kill themaximal proportionofmalignant cells. Importantly,

sequential treatments can mitigate many problems of simultaneous
combinatorial therapies - such as elevated toxicities and adverse drug-
drug interactions54,55 - but have thus far been largely neglected in drug
prediction approaches. In the clinical trial setting, we envision that the
predicted drugs could be used as short-term sensitisers prior to main
cytotoxic therapies that need to be started without delay for patients
with advanced disease, such as those diagnosed with HGSOC. In
summary, sister-resolution lineage tracing can reveal complex cell
states that prime treatment resistance in cancer, and allows opposing
these states to overcome drug resistance already before it emerges.

Methods
Cell culture
COV362 cells (Merck, 07071910) were grown in DMEM (Corning, 15-
013-CV) with 10% fetal bovine serum (FBS) (Gibco, 10270106), 1%
penicillin–streptomycin (PS) (Gibco, 15140122), and 1% GlutaMAX
(Gibco, 35050038). Kuramochi (JCRB Cell Bank, JCRB0098) cells were
grown in RPMI1640 (Corning, 10-040-CV) with 10% FBS, and 1% PS.
UWB1.289 (ATCC, CRL-2945) and UWB1.289 + BRCA1 (ATCC, CRL-
2946) cells were cultured according to the handling procedure
from ATCC.

Small molecules
Pevonedistat hydrochloride (HY-10484), Ixazomib citrate (HY-10452),
Delanzomib (HY-10454), Bortezomib (HY-10227), Carfilzomib (HY-
10455), Pyrrolidinedithiocarbamate ammonium (HY-18738), Sitagliptin
(HY-13749), GW843682X (HY-11003), Clofarabine (HY-A0005), Noco-
dazole (HY-13520) were all purchased from MedChemExpress.

Expansion of NK cells
NK cells were expanded by using K562-mbIL21-41BBL feeder cells as
described previously56. Briefly, peripheral blood mononuclear cells
(PBMCs) were isolated via gradient centrifugation with Ficoll-Paque
from buffy coats of healthy donors. Five million PBMCs were sus-
pended together with ten million feeder cells irradiated with 100Gy,
into 40ml of R10 media supplemented with 10 ng/ml recombinant
human IL-2 (R&D Systems, 202-IL-050). Cells were passaged twice per
week and feeder cells were added in a 1:1 ratio after 7 days to maintain
stimulation. After twoweeks of culture, NK cells were purified with the
NK Cell Isolation Kit (Miltenyi) and live-frozen. For the experiments,
NK cells from four donors were used: donor 1 NK cells for ReSisTrace
experiment, all donors’ NK cells for BRCA1/2 restored cell line pairs,
and NK cells from donor 2 to test predicted pre-sensitising drugs. All
NK cells were cultured for 3 days between thawing and the
experiments.

Synthesis of lineage barcodes library
The pBA439_UMI20 plasmid (Supplementary Data 9) was constructed
by ssDNA synthesis and NEBuilder® assembly tool. The lineage bar-
codes part ssDNA_UMI20 (5’-CTGGGGCACAAGCTTAATTAAGAATTC
ANNNNTGNNNNACNNNNGANNNNGTNNNNCTAGGGCCTAGAGGGC
CCGTTTAAAC-3’) was ordered from Integrated DNA Technologies.
pBA439 was a gift from Jonathan Weissman (Addgene, plasmid #
85967)19. pBA439vectorwas digestedwith EcoRI-HF (NEB, R3101S) and
AvrII (NEB, R0174S), then the larger linear fragment pBA439_linear was
recycled and purified by columns (Macherey-Nagel, 740609.50). The
ssDNA_UMI20 was assembled with pBA439_linear to construct a
pBA439_UMI20 library by the NEBuilder HiFi DNA assembly (NEB,
E2621L). For amplification, the pBA439_UMI20 library was electro-
porated into 25μl of Lucigen Endura ElectroCompetent Cells (Lucigen,
60242-2) using prechilled 1mm electroporation cuvettes (BioRad,
1652089) in a BioRad GenePulser I machine set to 10μF, 600 Ω, and
1800 V.Within seconds after the pulse, 1ml of 37 °C RecoveryMedium
(Lucigen, 80026-1) was added and bacteria were grown in round-
bottom tubes for 1 h at 37 °C while shaking at 180 r.p.m. Then, 1ml of
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the bacterial culture was plated on a 25 × 25 cm bioassay plate con-
taining LBmediumwith 100μg/ml ampicillin. Plates were incubated at
32 °C for 22 h, then LB medium was added and cells were scraped off
the plate. Bacterial cells were pelleted by 15min of centrifugation at
5000× g at 4 °C, and plasmid DNA was extracted with a Maxiprep
endotoxin-free kit (Macherey-Nagel, 740424.10).

Lentivirus production and cell transduction
Lentiviral particleswere producedby transfecting 293FT cells (Thermo
Fisher, R70007) with the pBA439_UMI20 library, along with packaging
constructs psPAX2 (Addgene, plasmid # 12260) and pMD2.G
(Addgene, plasmid # 12259), gifts from Didier Trono. Constructs were
titred by serial dilution on the 293FT cells. The lentivirus was collected
48 h and 72 h after transfection and aliquoted to store at −80 °C, fol-
lowing filtering through a low-protein binding 0.45-μm filter.

Experimental BRCA +/− models
To clone the BRCA1/2 plasmids, lentiMPH v2 (Addgene, plasmid
#89308) was modified by replacing Hygro selection marker with GFP
to generate lentiMPH-GFP. BRCA1was amplified frompDEST-mCherry-
LacR-BRCA1 (Addgene, plasmid#71115), andBRCA2was amplified from
pCIN BRCA2 WT (Addgene, plasmid #16245). PCR amplified products
(templates and primers presented in Supplementary Data 10) were
assembled by the NEBuilder HiFi DNA assembly (NEB, E2621L) to
generate lenti-EMPTY-GFP, lenti-BRCA1-GFP, and lenti-BRCA2-GFP.
Lentivirus were made as described earlier to transduce either COV362
or Kuramochi cells to restore the BRCA1 and BRCA2 functions. len-
tiMPHv2was a gift fromFengZhang, pDEST-mCherry-LacR-BRCA1was
a gift fromDaniel Durocher, pCINBRCA2WTwas a gift fromMien-Chie
Hung57–59.

The COV362 model was validated with a colony formation assay,
whereCOV362 control and BRCA1 restored cells (10,000 cells per well)
were exposed to 0, 2.5 or 5μM olaparib. Colonies were stained with
crystal violet after 12 days of incubation.

ReSisTrace experimental workflow
Lentiviral p24 titer testing was performed by Biomedicum Virus Core
(HelVi-BVC) using Alliance HIV-1 P24 ANTIGEN ELISA Kit (PerkinElmer,
NEK050B001KT). For transduction, 320μl of pBA439_UMI20 lentivirus
library (3.25 × 106pg/ml) were used to transduce 6 million Kuramochi
cells to achieve MOI between 0.2 and 0.25, and 2 days after trans-
duction 2μg/ml puromycin were added for a seven day selection to
remove unbarcoded cells. All barcoded cells were equally divided into
6 vials (6 million cells per vial), 4 of which were cryopreserved and 2
were used for the subsequent experiment. Cells were synchronised
with 2mM thymidine (Merck, T1895) for 42h, then cells were washed
twice with PBS to remove thymidine, 16,000 cells/well were seeded on
6-well plates. After 48 h, 4 wells were used for cell counting
(27,000–31,000 cells/well), and 8 wells were used for the ReSisTrace
experiment. For each of the 8 samples, half of the cells were loaded for
scRNA-seq as pre-treatment samples, and the remaining half were
seeded back for either normal culture (13 days) or treated with car-
boplatin (Selleckchem, S1215, 1.2 μM, 3 days), olaparib (Selleckchem,
S1060, 1.2μM, 7 days), and NK cells (26,000 cells, 1 day). The drug
concentrations or the number of NK cells were chosen to kill 70–80%
of cancer cells compared tountreated cultures (Supplementary Fig. 1i).
After the treatment, cells were recovered for 10 (5 cell cycles), 6 (3 cell
cycles) and 7 days (3–4 cell cycles) respectively, after which indicated
number of cells (Supplementary Data 11) from each well were loaded
for scRNA-seq as post-treatment samples. The samples were
sequenced very deeply, with approximately 0.86 billion reads per
sample, to achieve high-resolution data with minimal dropout of both
labels and transcripts in this proof-of-concept experiment. We recov-
ered around 105k cells in total before QC and around 78k cells after
Seurat QC. From these cells, we further removed 8640 cells without

lineage label(s) and 28,640 after treatment cells whose lineage labels
were missing from the corresponding before treatment specimen
(column AT-New-cell in Supplementary Data 11), resulting in 40,444
cells (3102 + 29,540 from BT and +7802 cells from AT samples) that
were used for the analysis (detailed in Supplementary Data 11).

Computational modelling and simulation of lineage tracing
For the actual ReSisTrace experiments, the protocol involves mul-
tiple steps starting from labelling the initial pool of cells to har-
vesting viable cells for scRNA-seq. Additional uncertainties may be
introduced from e.g. unequal doubling, or cell drop-out due to
quality control (Supplementary Note, Supplementary Data 12).
Therefore, the lineage tracing process was simulated by considering
the following parameters that may affect the experiment outcome,
including (1) SampleSize - total number of cells at the start of
experiment; (2) KillRateTotal - killing rate of the treatment; (3)
LineagePropAfterDoubling - proportions of singletons, twins, and
quadruplets after doubling; (4) NCellBT - number of cells with
lineage labels in the pre-treatment sample which passed the quality
control; (5) NCellAT - number of cells with lineage labels in the post-
treatment sample which passed the quality control; (6) NCellPreSeq
- number of cells after recovering from treatment; (7) NCellSeq -
number of cells loaded to scRNA-seq.

To reflect the actual experimental settingup, prior knowledgewas
utilised to constrain these parameters, including (1) SampleSize to be
estimated as 16,000; (2) KillRateTotal to be estimated between 70%
and 80% of cell growth inhibition; (3) LineagePropAfterDoubling to be
estimated as [42.46%, 53.04%, 4.5%] for the proportions of singletons,
twins, and quadruplets separately, based on the observations shown in
Supplementary Fig. 1e; (4) NCellBT, NCellAT, NCellPreSeq, and NCell-
Seqwere estimated based on the results of scRNA-seq data as shown in
Supplementary Data 1.

The simulation was initiated with these estimated parameters,
creating a scenario where lineage labels were randomly assigned to
cells and then traced into the final scRNA-seq data in both pre-
treatment and post-treatment samples. Pre-sensitive predictive rate
wasdetermined, defined as the proportion of true pre-sensitive cells in
the predicted pre-sensitive cells. In contrast, the pre-resistant pre-
dictive rate, defined as the proportion of true pre-resistant cells in the
predicted pre-resistant cells, is always 100%. Therefore, A higher pre-
sensitive predictive rate suggested a higher quality of the experiment
data for determining the gene expression signature of primed resis-
tance. To obtain a theoretical upper bound of the pre-sensitive pre-
dictive rate, an ideal scenario with perfect doubling and zero drop-out
during the scRNA-seq was also simulated. Standard deviations were
determined using 100 iterations (Supplementary Fig. 1h).

Drug-induced transcriptome profiles by scRNA-seq
Kuramochi cells were seeded in6-well plates at around 50% confluence
overnight. Predicted small molecules (see concentrations from Sup-
plementary Data 13) or DMSO as control were added for 24 h in
duplicates. Then cells were simultaneously washed and detached from
plates. To further minimise the batch effect, each sample was indivi-
dually multiplexed with 3ʹ CellPlex Kit Set A (10x Genomics, PN-
1000261). After labelling and washing, every 12 samples were pooled
and then loaded for scRNA-seq experiments according to 10x Geno-
mics instructions.

Single-cell RNA-sequencing library preparation
On the 10x Genomics platform, for samples from ReSisTrace experi-
ments, we used the Chromium Next GEM Single Cell 3′ Kit v3.1 (PN-
1000268), Chromium Next GEM Chip G Single Cell kit (PN-1000120),
and Dual Index Kit TT Set A (PN-1000215) were used. For samples from
isogenic BRCAness +/− COV362 cells, cells were multiplexed with 3’
CellPlex Kit Set A (PN-1000261), then 7000 cells were loaded for
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scRNA-seq. For library preparation, the 3’ Feature Barcode Kit (PN-
1000262) and the Dual Index Kit NN Set A (PN-1000243) were addi-
tionally used. The resulting cDNA libraries were quantified by both
Agilent BioAnalyzer (Agilent, 5067-4626) and q-PCR (Roche, KK4835),
and sequenced by Illumina NovaSeq 6000.

NK cells mediated killing for BRCA +/− models
Onday 1, 8000 cancer cells perwellwere seededon96-well plates, and
NKcellswere culturedwith 10 ng/ml IL2.Onday2, NK cells were added
into cancer cells in indicated ratios (Fig. 3f and Supplemntary Fig. 5h, i)
to cancer cell numbers. On day 3, after removing the medium and the
NK cells that were in suspension, the viability of adherent cancer cells
was measured by the CellTiter-Glo® Luminescent Assay (Pro-
mega, G9242).

Cell viability assay
1500 cells/well were seeded in 96-well plates and then allowed to
adhere to the plates. Indicated concentrations of olaparib (Fig. 3d and
Supplementary Fig. 5g) were added for 4 to 6 days. Cell viability was
determinedusingCellTiter-Glo® LuminescentAssay (Promega,G9242).

Homologous recombination repair functional assay
HGSOC cells were seeded on 96-well plates in 60% confluence/10,000
cells per well in triplicates and allowed to attach to the bottom for
12–24 h. The cells were irradiated with 5Gy of ionising radiation to
induce DNA damage, followed by 8 h recovery time before fixation in
2% PFA. Fixed cells were permeabilized in 0.2% Triton X-100 in PBS++
(PBS with 1mM CaCl2 and 0.5mMMgCl2) for 20min, followed by 30-
minute blocking in stainingbuffer (0.5%BSA,0.15%glycine, 0.1%Triton
X-100 in PBS++). Next, the cells were incubated with primary anti-
bodies against RAD51 (ab133534, Abcam, diluted 1:1000) and cyclin A2
(GTX634420, GeneTex, diluted 1:500) overnight at 4 °C, followed by
incubation with secondary antibodies (goat anti-mouse IgG-Alexa
Fluor 488, A11029; or goat anti-mouse IgG-Alexa Fluor 568, A11004;
and goat anti-rabbit IgG-Alexa Fluor 647, A21245; LifeTechnologies,
diluted 1:1000) at RT for 1 h. Nuclei were counterstained with 2μg/ml
Hoechst. Images were acquired with Opera Phenix High Content
Screening System (PerkinElmer) at 40x magnification. Images were
analysed with ImageJ software using custom macros. At least 100
cyclin A2 positive nuclei per each well were analysed. Nuclei with ≥5
RAD51 foci were considered as RAD51 positive. Percentage of cyclin A2
and RAD51 positive nuclei out of all cyclin A2 positive nuclei was
calculated.

Drug combination screening and synergy scoring
1500 (for olaparib or carboplatin combination) or 4000 (for NK cells
combination) Kuramochi cells/well were seeded in 96-well plates and
then allowed to adhere to the plates. Indicated concentrations of small
molecules (SupplementaryFig. 9a)were added for 24 h, then cellswere
refreshedwith normalmediumwith indicated concentrations of either
olaparib or carboplatin added for 5 days or with different ratios of NK
cells for 24h. At the end point, cell viability was determined using
CellTiter-Glo® Luminescent Assay (Promega, G9242).

Dose-response matrices were analysed with SynergyFinder Plus
(synergyfinder.org) (R package v3.4.5)60. Four reference models were
utilised to access the synergy, including HSA (Highest single agency),
Bliss (Bliss independence), Loewe (Loewe additivity), and ZIP (Zero
interaction potency). As the reference models rely on different math-
ematical assumptions of synergy, we reported the results for all of
them. The degree of interactions between two drugs derived from the
HSA model was visualised in a synergy landscape over the dose
matrices (Fig. 4f and Supplementary Fig. 9). Significance of average
synergy scorewas evaluatedbybootstrapping test. Default parameters
were used for the analysis.

Lineage label mapping and processing
The lineage barcodes sequence (5′-CTGGGGCACAAGCTTAATTAA-
GAATTCANNNNTGNNNNACNNNNGANNNNGTNNNNCTAGGGCCTA-
GAGGGCCCGTTTAAAC-3′) was added to the GDCh38.d1.vd1 reference
genome with GENCODE v25 annotation, as an individual gene named
pBA439_UMI_20 according to the parental lentiviral library. The Cell
Ranger software (v5.0.1)61 was used to perform read alignment and
UMI quantification using the modified reference. Default parameters
were used for the analysis.

Lineage label sequences for each cell were extracted from the
“possorted_genome_bam.bam” file output by cellranger count com-
mand, by considering the sequences mapped to gene pBA439_UMI_20
and the sub-pattern “CANNNNTGNNNNACNNNNGANNNNGTNNN
NCT”. To mitigate the effect of sequencing errors, the directional
network-based method from UMI-tools (v1.0.1)62 was applied on the
lineage label sequences (cluster_method = “directional”). The sequen-
ces that differ at a single base from the representative sequence were
corrected. In addition, we removed the non-unique lineage label
sequences expressed by more than four cells in the pre-treatment
samples. We assigned the cells from each pre-treatment sample into
two groups: (1) pre-resistant cells with lineage labelsmatching those of
the corresponding post-treatment samples; (2) pre-sensitive cells
assigned to lineages that were not detected after the treatment.

Preprocessing of the scRNA-seq data
We used the Seurat (v4.0.4)63 to perform the data quality control,
normalization, top variable gene selection, scaling, dimensionality
reduction, and differentially expressed gene (DEG) analysis. For each
ReSisTrace sample, the genes expressed in less than three cells were
removed. Based on the distribution of the UMI counts (Supplementary
Fig. 10), number of genes, and percentage of mitochondrial tran-
scripts, we filtered out the cells using the thresholds indicated in
Supplementary Data 14.

We used the “NormalizeData” function (default parameter setting)
to normalize gene counts, and the “FindVariableFeatures” function
(default parameter setting) to find the top 2000 variable genes.
The “FindMarkers” function (test.use= “wilcox”, logfc.threshold =0,
min.pct =0) was used to determine the differentially expressed genes by
Wilcoxon rank sum test between different groups. To minimize experi-
mental noise from cases where both sisters were sampled in the scRNA-
seq analysis before the treatment, we performed the differential analysis
only on the cells lacking sisters in the same pre-treatment samples.

Sister cell similarity
Wemerged the pre-treatment data fromall the experiments. Cells with
matching labels were defined as sister cells, gaining 2939 lineages with
sister cells. Lowly expressed geneswhose total normalised expressions
are less than 1.25 (10% quantile) were removed. The UMAP coordinates
for visualisationof randomly selected sister cellsweredeterminedwith
the first 20 principal components of the top 2000 variable genes. For
extracting the sister concordant genes, we considered only the linea-
ges with two sister cells, and removed the sister cells with the Eucli-
dean distance of their transcriptomes larger than 14.9 (90% quantile).
The genes with log2 fold changes (log2FCs) significantly lower in the
sister cell pairs compared to random cell pairs were defined as the
sister-concordant genes (two-tailed t-testwith an FDR-adjusted P value
threshold of 0.05).

RNA velocity analysis
We selected expression-matched sets of sister-concordant and sister-
discordant genes. We generated a binned histogram for the sum of
expression in the pooled samples, and selected genes that belong to
the binwith themost balanced sister-concordant and sister-discordant
genes (the second-lowest bin).
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We used the velocyto (v0.17.17)64 to align and quantify the spliced
and unspliced RNA for each gene. Default parameters were used.
The dynamical model from scVelo (v0.2.3)65 was used to fit the
gene-specific rates of RNA transcription, splicing, and degradation
(“scvelo.pp.filter_and_normalize” function: min_shared_counts = 20;
“scvelo.pp.moments function”: n_neighbors = 30; “scvelo.tl.velocity
function”: mode = “dynamical”).

Shannon diversity
Shannon diversity of lineage labels for each sample was determined by
the “diversity” function from vegan R package (v 2.6.2)66. Default
parameters were used for analysis.

Pathway analysis
KEGG pathways for the expression matched sister-concordant and
discordant genes were determined by Enrichr (https://maayanlab.
cloud/Enrichr/)67,68. Gene set enrichment analysis (GSEA) function from
the clusterProfiler package (3.18.1)69 was used for the ordered fold
changes (logarithmic scaled) extracted from the pre-resistance differ-
ential expression analysis to inspect the enriched gene ontology bio-
logical process terms. Default parameters were used for the analysis.

Subclone analysis
CNV profiles for the individual cancer cells for each sample
were obtained with InferCNV (1.7.1)70 (cutoff = 0.1, analysis_mode =
subclusters, leiden_resolution =0.5, tumor_subcluster_partition_
method = leiden) using a common set of stromal cells from previously
published data45 as references. Briefly, InferCNV infers changes in
the number of copies by averaging relative expression levels over a
slidingwindow across large genomic regions. To enhance the accuracy
of CNV estimates, denoising filters are applied based on the
standard deviation of residual normal expression values. The Leiden
algorithm was used for determining the underlying subclonal popu-
lations based on the CNV profiles. At the subclone level, a Hidden
Markov Model followed by a Bayesian network is utilized to compute
the posterior probability of a CNV region belonging to a specific
amplification or deletion state. CNV regions with higher mean pos-
terior probabilities for the normal state are removed as likely false
positive predictions. Exceptionally for the Olaparib1 sample, the
algorithm was not able to recognise the smallest subclone (subclone
E), due to the small sample size. Therefore, the inferCNV analysis was
jointly run with the other Olaparib sample for the subclonal label
determination.

Pre-resistant gene expression signatures
After identifying the pre-resistant and pre-sensitive cells in the pre-
treatment samples, fold changes of gene expressions were deter-
mined. The log2FC between pre-resistant and pre-sensitive cells for
each gene was averaged across two replicates.

HRD signatures and NK signature
Two independent HRD signatures were derived. The clinically-derived
HRD signature was extracted from The Cancer Genome Atlas
Cohort (TCGA) cohort where HGSOC patients were stratified into
HRD/HRP groups based on a genomic scar analysis using
ovaHRDscar32. For transcriptomic comparison between these groups,
we used the limma R package (3.46.0)71 on the bulk expression data31

that had been deconvoluted to retain only cancer cell derived
expression using PRISM (0.9)33. Default parameters were used for
analysis. The experimental HRD signature was extracted from the
BRCA1 +/− cell line pair by DEG analysis from the scRNA-seq data as
described earlier. For the HRD signatures, we determined log2FCs
of HRD to HRP using sister-concordant genes only, thresholded
with indicated P values, We used “connectivityScore” function
(method = “gwc”, gwc.method = ‘spearman’, nperm= 300) from

PharmacoGx R package (v3.0.2)23 to determine the connectivity scores
between the HRD signatures and pre-resistance signatures.

The NK transcriptional signature was obtained from the coex-
pressed NK cell markers in our previous analysis of 22 clinical HGSOC
tumours45. To estimate NK cell enrichment within the immune com-
partment of the TCGA cohort, we determined Mann-Whitney U
statistic-like scores from the deconvoluted gene expressions using the
UCell R package (1.3.1)72. Default parameters were used for analysis. A
Cox proportional hazard regression model on the overall survival was
built using the survival R package (3.3.1)73, with the formula: coxph
(Surv (time, status) ~ nk_signature:HRD_status), wherein ‘nk_signature’
refers to the UCell score described above.

Predicting drugs to target primed resistance
Six variants of pre-resistant gene expression signatures were gener-
ated for each treatment with thresholds of P values based on different
adjustmentmethods, including: (1) Original log2FC, (2) Original log2FC
filtered by the Wilcoxon rank sum test P value < 0.05, (3) log2FC con-
trast between treatment and non-treatment control, (4) log2FC con-
trast between treatment and non-treatment control filtered by
bootstrapping test P value < 0.05, 5) log2FC contrast between treat-
ment and non-treatment control filtered by permutation test P
value < 0.05, and 6) log2FC contrast between treatment and non-
treatment control filtered by both bootstrapping test P value < 0.05
and permutation test P value < 0.05.

For the contrast signatures, the log2FC between pre-resistant and
pre-sensitive cells was calculated by for each genewas averaged across
two replicates and then subtracted by the log2FC of pre-surviving
versus pre-extinct cells from the non-treatment control samples:
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where R1 and R2 are the gene expression values in treatment pre-R
group in repeats 1 and 2, respectively; S1 and S2 are the gene expression
values in treatment pre-S group in repeats 1 and 2, respectively; R1’ and
R2’ are the gene expression values in control pre-R group in repeats 1
and 2, respectively; S1’ and S2’ are the gene expression values in control
pre-S group in repeats 1 and 2, respectively. Only the sister-concordant
genes were included in the rank-based signature.

The similarity of pre-resistant signatures and drug-induced con-
sensus gene expression signatures were evaluated by the connectivity
scores defined in the Connectivity Map (CMAP) project74. The analysis
was performed by using the “connectivityScore” function (method =
“fgsea”, nperm= 1000) from PharmacoGx R package (1.3.1). The drugs
with negative connectivity scores consistently with all of the six var-
iants of pre-resistant signatures (P value < 0.05) were selected as the
top candidates (Supplementary Data 7). We filtered out drugs whose
targets were not expressed or expressed at below 10% of Kuramochi
cells, including pifithrin-mu, AM-404, and methenamine for carbo-
platin; PSI-7976 and cilengitide for olaparib; oxyphenbutazone and
WAY-100635 for NK cells (Supplementary Data 8).

Statistics & reproducibility
All data showed themean +/− standard deviation (s.d.) of at least three
biological replicates with the n indicated in each experiment, unless
specifically indicated in figure legends. The statistical analyses were
indicated in the legends of each figure, with p <0.05 indicating a sta-
tistically significant difference. The statistical analysis was performed
in R (>3.0).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All the data needed to evaluate the conclusions in the paper are
available in the manuscript or the supplementary materials. All of the
ReSisTrace and drug-perturbed scRNA-seq raw data have been
deposited in the Gene Expression Omnibus (GEO) under accession
code GSE223003. The data is publicly available. Source data are pro-
vided with this paper.

Code availability
The source code for data analysis are available at GitHub (https://
github.com/TangSoftwareLab/ReSisTrace) and Zenodo (https://doi.
org/10.5281/zenodo.10418352).
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