
Article https://doi.org/10.1038/s41467-024-45476-9

Anticipating regime shifts by mixing early
warning signals from different nodes

Naoki Masuda 1,2 , Kazuyuki Aihara3 & Neil G. MacLaren 1

Real systems showing regime shifts, such as ecosystems, are often composed
of many dynamical elements interacting on a network. Various early warning
signals have been proposed for anticipating regime shifts from observed data.
However, it is unclear how one should combine early warning signals from
different nodes for better performance. Based on theory of stochastic differ-
ential equations, we propose amethod to optimize the node set fromwhich to
construct an early warning signal. The proposed method takes into account
that uncertainty as well as the magnitude of the signal affects its predictive
performance, that a large magnitude or small uncertainty of the signal in one
situation does not imply the signal’s high performance, and that combining
early warning signals from different nodes is often but not always beneficial.
The method performs well particularly when different nodes are subjected to
different amounts of dynamical noise and stress.

Real complex systems often experience sudden and substantial
changes, also referred to as regime shifts or tipping events, as envir-
onments or the system’s internal properties gradually change. Such
sudden changes often alter functions of the system, sometimes in an
irreversible manner. Tipping phenomena have been used to explain,
for example, mass extinctions in ecosystems1,2, deforestation3,4, onset
of epidemic spreading5, and progression of mental disorders6–8 and
other diseases9,10. No matter whether the system transits from a
desirable state to an undesirable one (e.g., species’ extinctions, epi-
demic spreading) or vice versa (e.g., recovery from disease), one is
generally interested in anticipating a large regime shift due to a tipping
event before it occurs. From dynamical systems points of view, a tip-
ping event probably most famously corresponds to a change in the
stability of an equilibrium. Theory suggests that critical slowing down
happens near such a tipping point, which one can exploit to construct
early warning signals for an impending tipping event1,11. Various early
warning signals for tipping events, which can be applied to observed
datawithout knowledge of the dynamical systemequations, have been
proposed1,5,10–15.

Complex systems whose tipping points we want to anticipate are
more often than not composed of dynamical elements interacting on a
network. In an ecosystem, animals, plants, or microbial species, for

example, are interconnected by mutualistic, prey-predator, and other
types of interactions. In a climate system, geographical regions are
interconnected by, for example, water and heat transport. Network
resilience is a comprehensive approachwith which to understand how
dynamics on networks respond to perturbations and system failures16.
For dynamics on networks that possibly show tipping events and are
relevant to these applications, it is highly likely that the network
structure is complex17,18 and that, related to this, all the nodes do not
emit equally useful early warning signals19–24. Specifically, nodes that
are about to tipmaybe emittingmore useful earlywarning signals than
other nodes in the same system that are still far from tipping. Evidence
in favor of this view is that, as a dynamical system gradually changes,
some nodes may tip earlier than others, showing multistage
transitions11,25–29. Therefore, selecting an appropriate set of sentinel
nodes fromwhichone calculates the earlywarning signalmay improve
the quality of the signal in addition to saving the cost of observing
uninformative nodes.

Several methods for selecting a sentinel node set, denoted by S,
for constructing early warning signals have been proposed. The
dynamical network biomarker theory searches for an S thatmaximizes
a composite index9,10,30,31. The index is the average pairwise correlation
of the sample of data between the nodes within S multiplied by the
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standard deviation of the samples across the nodes in S, which is
divided by the average pairwise correlation of the samples between a
node in S and a node outside S. Another analytical approach is to
identify a multidimensional linear dynamics model near the bifurca-
tion point only from observed data and then use the dominant
eigenvector associated with the estimated dynamics to select S (i.e., as
the set of the ith nodes such that the ith entry of the dominant
eigenvector is the largest in termsof the absolute value)23. Note that an
earlier study pointed out the usefulness of the dominant eigenvector19.
Participation of the node in the dominant eigenvector is also used for
selecting S in other studies21,24. In addition, an eigenvector-based
method has also been proposed for ranking the nodes most sensitive
to perturbations32. A different study numerically showed that nodes
with small degrees (i.e., small number of the neighboring nodes) are
good performers20. A method to determine S based on network con-
trol theory also found an advantage of selecting nodes with small
degrees27. Using the nodes receiving the highest total input fromother
nodes is also a powerful heuristic for setting S29. Simply using the
nodes with the highest fluctuations also improves upon other naive
methods29. Note that the last two methods are often better than using
all the nodes in the network as S, and the same may be true for other
node selection methods.

Except for the dynamical network biomarker theory, these
methods provide ranking of nodes and suggest that we should include
the top-rankednodes in S. It is unclearwhether combining the nodes in
S improves an early warning signal compared to when the single top
node in S is used. Any early warning signal (e.g., variance of the signal,
lagged autocorrelation) is noisy because, by design, an early warning
signal exploits the informationabout impending tipping events hidden
in noisy observations. If a given earlywarning signalmeasured for each
ith node is independent for the different nodes in S, then averaging
them including the case of a weighted average is expected to produce
a better early warning signal owing to the central limit theorem.
Quantitatively, the standard deviation of the early warning signal
should decrease according to∝ n−1/2, wheren is the number of nodes in
S, and∝ represents “in proportion to”. However, nodes in a complex
system are interrelated, such as through edges in the case of conven-
tional networks, and the states of different nodes are correlated in
general33–35. Therefore, it is not a trivial concern whether or not com-
bination of the top-ranked nodes generates a high-quality early warn-
ing signal. For example, suppose that S is composedofnnodes close to
each other in the network and that the states of these n nodes are
hence strongly correlated. In this case, averaging the early warning
signals over the n nodes does not help much to reduce their fluctua-
tion because the n early warning signals are similar to each other. We
may be then tempted to select n nodes that are far from each other on
the network even if some of the n nodes do not provide early warning
signals of top quality.

In fact, the aforementioned dynamical network biomarker theory
aims to optimize the set S, which the original authors call the dominant
group, implicitly resolving this problem9,10,30,31. However, the compo-
site index that they propose is heuristic, and why this method works
well in medical applications10,36 and how the effectiveness of their
method translates to other applications such as in ecology are elusive.
Furthermore, this theory and most other proposals of early warning
signals neglect that early warning signals are themselves noisy. Con-
sidering fluctuations of early warning signals in their design is neces-
sary for at least two reasons. First, if a candidate early warning signal
carries a lot of noise, then that signal may not be useful even if its
expected value is sensitive to the approach of the system towards the
tipping point. A recent study highlighted interplay of the dominant
eigenvector direction of the Jacobian matrix of the dynamics and the
primary noise direction that is dragged towards the nodes receiving
high dynamical noise24. Second, in the aforementioned example of n
nodes, let us assume that the expectation of the single-node early

warning signal is the same for all the n nodes.We stated that averaging
over the n early warning signals would be beneficial relative to the
single-node early warning signals only if the n signals are not strongly
correlated with each other. In this situation, the expectation of the
averaged early warning signal is the same as that of the single-node
early warning signal. The bonus of the averaging is only present in the
reduced fluctuation in the averaged as opposed to the single-node
early warning signal. To enable such discussion, we need to assess the
fluctuation as well as the magnitude of early warning signals.

In the present study, we develop a mathematical framework for
node set selection for early warning signals based on stochastic dif-
ferential equations on networks. By assuming dynamics near the
equilibrium and using the variance of the node’s state as the early
warning signal, we propose an index whose maximization gives an
optimal node set for constructing an early warning signal. We
demonstrate our method with analytically solvable networks with two
or three nodes and with numerically investigated larger networks
combined with various dynamics models.

Results
Theory
We consider an N-dimensional noisy nonlinear dynamical system in
continuous time. We regard each of the N dynamical elements as a
node and the entire dynamical system as stochastic dynamics on a
networkwithN nodes.We denote by xiðtÞ 2 R the state of the ith node
at time t 2 R. Wewrite xðtÞ= ðx1ðtÞ, . . . , xNðtÞÞ>, where ⊤ represents the
transposition.We assume thatx(t) obeys a set of stochastic differential
equations in the Itô sense given by

dxðtÞ= FðxðtÞÞdt +BdW ðtÞ, ð1Þ

where F : RN ! RN ; B is an N×N matrix; W(t) represents an N-dimen-
sional vector of independent Wiener processes (i.e., white noise).

Assume that the dynamics given by Eq. (1) has an equilibrium in
the absence of noise, which we denote by x* = ðx*1, . . . , x*nÞ

>
. By line-

arizing Eq. (1) around x*, we obtain a set of linear stochastic differential
equations given by

dzðtÞ= � AzðtÞdt +BdW ðtÞ, ð2Þ

where z(t) = x(t) − x*, and theN ×Nmatrix A is the sign-flipped Jacobian
matrix of F at x(t) = x*. Equation (2) is a multivariate Ornstein-
Uhlenbeck (OU) process24,37, and x* is asymptotically stable in the
absence of noise if and only if A is positive definite.

The covariance matrix in the equilibrium, corresponding to
z* = (0,…, 0)⊤, is given as the solution to the Lyapunov equation given
by

AC +CA> =BB>, ð3Þ

where C = (Cij) is the N ×N covariance matrix, and Cij represents the
covariance between zi(t) and zj(t), which is equal to the covariance
between xi(t) and xj(t), at equilibrium37,38. The solutionC is unique if the
real part of all the eigenvalues of A is positive38.

Outcomes of the covariancematrix such as the standarddeviation
and correlation coefficient are often used as early warning signals for
noisy multivariate dynamics. In practice, we need to estimate these
quantities from samples. Therefore, we consider the sample variance
of xi(t),which is amajor earlywarning signal1,39–41, and its average over a
givennode set29,42, as candidates of earlywarning signals. The choiceof
the variance rather than the standard deviation is because of mathe-
matical tractability. We emphasize that the rationale behind averaging
the sample variance over nodes is that wemay be then able to obtain a
less fluctuating early warning signal than that calculated from a
single node.
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Assume that we observe L samples of xi(t) from each node i in the
given node set S. We denote by V̂ i the unbiased sample varianceof xi(t)
calculated from the L samples. Let us consider the average of V̂ i over
the n= ∣S∣ nodes in set S as an early warning signal. Without loss of
generality, we assume that S = {1, 2,…, n}, where n ≤ N. We denote this
average by

V̂ S =
1
n

Xn
i= 1

V̂ i: ð4Þ

By assuming that zi,1,…, zi,L are i.i.d. and using E[zi,ℓ] = 0, we obtain

E½V̂ S�=
1
n

Xn
i= 1

E½V̂ i�=
1
n

Xn
i= 1

Cii =
1
n
Tr ðCÞ= 1

n

Xn
i= 1

λi, ð5Þ

where E denotes the expectation, Tr denotes the trace, C is the leading
principal minor of order n of C (i.e., the submatrix of C composed of Cij

with i, j∈ {1,…, n}), and λi is the ith eigenvalue of C. As shown in Sup-
plementary Note 1, we also obtain the variance of V̂ S, denoted by
var ½V̂ S�, as follows:

var ½V̂ S�=
2

n2ðL� 1Þ
Xn
i= 1

Xn
j = 1

ðCijÞ2

=
2

n2ðL� 1Þ Tr C
2

� �

=
2

n2ðL� 1Þ
Xn
i= 1

λ2i :

ð6Þ

The coefficient of variation (CV), i.e., the standard deviation
divided by themean, of V̂ S, which quantifies the relative uncertainty in
the estimation of V̂ S, is given by

CV =

ffiffiffiffiffiffiffiffiffiffiffi
2

L� 1

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 λ

2
i

q
Pn

i= 1 λi
: ð7Þ

Equation (7) has a couple of implications. First, the CV decays
according to∝ L−1/2 as the number of samples, L, increases, regardless
of thenode set S. This scaling corresponds to the central limit theorem.
Second, in the case of a single node, CV =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðL� 1Þ

p
regardless of the

node. Therefore, a large value of the sample covariance, V̂ i, or its
expectation, E½V̂ i�, at a node i compared to at other nodes does not
imply that V̂ i is better than V̂ j ’s (with j ≠ i) as an early warning signal. A
large signal carries a proportionately large amount of noise. This
property also holds truewhen one uses the sample standarddeviation,
instead of the sample variance, of single nodes as early warning signal.
Third, the CV with n ≥ 2 is always smaller than the CV with n = 1 (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ðL� 1Þ
p

) unless all but one eigenvalues ofC are equal to0.Note that
this result holds true owing to λi ≥ 0 ∀ i, which follows from the fact
that C is a covariance matrix and therefore positive semidefinite. This
result motivates us to use the average of V̂ i over nodes as opposed to
V̂ i at a single node with the aim of improving the performance of the
early warning signal.Wewill investigate this possibility in the following
sections.

Coupled nonlinear dynamics on networks with two or
three nodes
In this section, we analyze coupled nonlinear dynamics on networks
with N = 2 and N = 3 nodes. Through this analysis, we highlight rele-
vance of multistage transitions, impact of averaging V̂ i over nodes,
heterogeneous amount of dynamical noise given to different nodes,
and uncertainty of early warning signals, among other things. We then
propose ameasureof the quality of earlywarning signals in the formof

V̂ S and a method to select an optimal node set for constructing early
warning signals.

Two nodes connected by a directed edge. We consider a network
composed of two nodes and a directed edge of weight w(≥0); see
Fig. 1a for a schematic. We assume that node 1 influences node 2 but
not vice versa. We also assume that, as a bifurcation parameter,
denoted by r, gradually increases, node 1 undergoes a saddle-node
bifurcation and that node 2 also undergoes a saddle-node bifurcation
either almost at the same time asnode 1or after rhas further increased.
The model is given by

dx1ðtÞ= f ðx1ðtÞ, rÞdt + σ1dW 1ðtÞ, ð8Þ

dx2ðtÞ= f ðx2ðtÞ, r � ΔrÞ+wðx1ðtÞ+ 1Þ
� �

dt + σ2dW 2ðtÞ, ð9Þ

where Δr(≥0) is a constant, σ1 and σ2 are the intensities of dynamical
noise applied to nodes 1 and 2, respectively, and f(x) satisfies the fol-
lowing conditions. First, we assume f(x, r) = r + x2 when r ≤0 and
x ≤

ffiffiffiffiffiffi�r
p

+Δx, where Δx( > 0) is a small constant. This condition guar-
antees that, in the absence of coupling and dynamical noise, Eqs. (8)
and (9) are both the topological normal form of the saddle-node
bifurcation43. In other words, dx/dt = f(x, r) with r <0 has a stable
equilibrium x* = � ffiffiffiffiffiffi�r

p
and an unstable equilibrium x* =

ffiffiffiffiffiffi�r
p

, which
collide at x* = 0 when r =0. In Fig. 2, we show an example bifurcation
diagram of single-node deterministic dynamics given by dx/dt = f(x, r).
If σ1 = 0, then x1(t) undergoes a saddle-node bifurcation at r =0 as r
increases starting with a negative value. If σ2 = 0 and w =0, then x2(t)
undergoes a saddle-node bifurcation at r =Δr. Second, we assume that
f(x, r) is continuous in terms of x and r for simplicity. Third, we assume
that f(c, r) = 0 for∀ r ≥0 for a unique positive value of c, which is larger
than Δx. This implies that, in the absence of noise, x = c is the unique

21
(a) (b)

2 31w w w

r r - r r r r
Fig. 1 | Schematic of two networks. a A network with N = 2 nodes connected by a
directed edge. b A symmetric chain network with N = 3 nodes. The coupling
strength is denoted by w. The stress given to each node is either r or r −Δr.

Fig. 2 | An example bifurcation diagram of single-node dynamics given by Eq.
(8) without dynamical noise. The solid and dashed lines represent stable and
unstable equilibria, respectively.
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stable equilibrium after a node undergoes a saddle-node bifurcation as
r gradually increases. This assumption in combination with the
continuity assumption for f(x, r) also implies that the stable equili-
brium apart from x* = � ffiffiffiffiffiffi�r

p
persists for some r < 0 although its

position changes from x = c in general. Therefore, there are two stable
equilibria at least in some range of x <0 near x =0, as shown in Fig. 2.

We assume that w >0 and consider this dynamical system in the
range of bifurcation parameter r∈ [ − 1, 0), with (x1, x2) satisfying − 1 ≤
x1, x2 < 0 in the absence of dynamical noise. In other words, we assume
that x1 and x2 are both near the lower stable equilibrium in Fig. 2. In this
situation, the input that node 2 receives from node 1, i.e., w(x1 + 1), is
positive. To prevent node 2 from transiting from its lower to the upper
state through a saddle-node bifurcation earlier than node 1 when r
gradually increases, we assume that w ≤ Δr, which guarantees
that −Δr +w(x1 + 1) ≤ 0. Let us gradually increase r starting with r = − 1.
Then, x1 jumps from 0 to c at r = 0 via a saddle-node bifurcation. We
distinguish between two cases depending on the change in x2 right
after the transition of node 1 from x1 = 0 to x1 = c. If −Δr +w(c + 1) > 0,
then x2 transits from x2 = 0 to x2 = c immediately after x1 doeswithout a
further increase in r (i.e., at r =0). Otherwise, x2 does not transit at r =0,
and x2 does so at a positive value of r if we further increase r. The latter
case is a multistage transition28,29.

The lower equilibrium of the coupled dynamical system, which
exists if and only if r ≤0 and is locally stable when r <0, is given by

x* =
x*
1

x*
2

� �
=

� ffiffiffiffiffiffi�r
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r +Δr +wð ffiffiffiffiffiffi�r

p � 1Þ
p

 !
: ð10Þ

The linearized dynamics around x* is given by Eq. (2) with

A=
�2x*1 0

�w �2x*
2

 !
: ð11Þ

By combining Eqs. (3) and (11), we obtain

C11 = � σ2
1

4x*
1

, ð12Þ

C12 =
σ2
1w

8x*1ðx*1 + x*2Þ
, ð13Þ

C22 = � σ2
1w

2

16x*
1x

*
2ðx*1 + x*2Þ

� σ2
2

4x*2
: ð14Þ

Note that x*
1 and x*

2 are negative such that C11,C12, and C22 are positive.
Here we recall that E denotes the expectation, and we let std

denote the standard deviation. Because x*
1 = 0

� as r→0−, all of C11,C12,

and C22 diverge as r→0−. Therefore, E½V̂ 1�, E½V̂ 2�, and E½V̂ f1, 2g�, which
are equal to C11,C22, and (C11 +C22)/2, respectively, all diverge as r→0−

according to∝ (−r)−1/2. However, we argue that this fact does not

immediately imply that V̂ 1, V̂ 2, or V̂ f1, 2g is a high-quality early warning
signal for the saddle-node bifurcation occurring at r =0 because

std ½V̂ 1�, std ½V̂2�, and std ½V̂ f1, 2g�, which are proportional to

C11,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
11 + 2C

2
12 +C

2
22

q
, and C22, respectively, also diverge.

To investigate the quality of V̂ 1, V̂2, and V̂ f1, 2g as early warning
signals, we set w =0.5,σ1 = 0.1, L = 100, and used three pairs of Δr and
σ2 values, which we refer to as scenarios. In Fig. 3, we show
E½V̂ 1�, E½V̂ 2�, E½V̂ f1, 2g�, std ½V̂ 1�, std ½V̂2�, and std ½V̂ f1, 2g� as we gradually
increase r under the three scenarios. In Fig. 3a, we show the results for
thefirst scenario, forwhichwe setΔr = 1 andσ2 = σ1 = 0.1. The solid lines
represent the expected value of each early warning signal. The shaded
area represents the mean ± standard deviation. With these parameter
values, when node 1 transits from x1 = 0 to x1 = c at r = 0, node 2 is still
far from the bifurcation point. This is because the input from node 1 to
node 2, which is equal to w(x1 + 1) ≈0.5, is substantially smaller
than −Δr( = 1) such that x2 approximately obeys dx2 = ( −0.5 + x2)
dt + σ2dW2(t) near r = 0. Right after node 1 transits from x1 = 0 to x1 = c
at r =0, the input from node 1 to node 2 jumps to w(x1 + 1) ≈0.5(c + 1).
Therefore, a multistage transition in which nodes 1 and 2 transit from
their lower to theupper state atdifferent r values occurs if 0.5(c + 1) < 1,
i.e., 0 < c < 1. Otherwise (i.e., c ≥ 1), node 2 also transits from its lower to
the upper state at r =0. Regardless of whether or not a multistage
transition occurs, Fig. 3a indicates that E½V̂ 1� is more sensitive to
increases in r than E½V̂2� and E½V̂ f1, 2g�, and that std ½V̂ 1� is larger than
std ½V̂ 2� and std ½V̂ f1, 2g�. Therefore, it is not obvious which of V̂ 1, V̂ 2, or
V̂ f1, 2g is a better early warning signal.

To rank these different candidates of early warning signals, we
define the following index. We measure each early warning signal’s
mean and standard deviation at r = −0.3 and r = −0.1. We do so based
on the premise that it is necessary to measure signals at least at two r
values to estimate how responsive the signal is to the change in the
environment, i.e., r. As we explained in Supplementary Note 1, V̂ 1, V̂ 2,
and V̂ f1, 2g obey a normal distribution at equilibrium. Therefore, we
measure a distance, denoted by d, between the normal distribution at
r = −0.3 and that at r = −0.1 for each earlywarning signal. If d is large, it
is relatively easy to tell the increase in the signal with relatively small
uncertainty as r increases from −0.3 to −0.1, approaching a tipping
point. Therefore, we propose that an early warning signal attaining a
larger d value is better. Although there are various measures of the
separability of twonormaldistributions44, inspired by the t-statistic,we
define

d =
∣μ1 � μ2∣ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var1 + var2

p , ð15Þ

Fig. 3 | Early warning signals with different node sets in a network with N = 2 nodes connected by a directed edge. The solid lines represent the mean. The shaded
regions represent the standard deviation. We set w =0.5,σ1 = 0.1, and L = 100. a (σ2,Δr) = (0.1, 1). b (σ2,Δr) = (0.1, 0.5). c (σ2,Δr) = (0.2, 1).
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where μ1 and var1 are themean and variance of the normal distribution
at r = −0.3, and μ2 and var2 are those at r = −0.1. We show in Supple-
mentary Note 2 that the results shown in the remainder of this section
are robust with respect to the choice of the two r values for calculating
d. Note that d can be small even if themean of the early warning signal
grows by a large amount between the two r values. This is the case
when var1 or var2 is large, i.e., when the uncertainty of the signal is
large. In this situation, tracking the early warning signal is relatively
uninformative. In contrast, even if the absolute magnitude of the
increase in the signal is small (i.e., small ∣μ1 � μ2∣), the signal provides a
good early warning if the uncertainty of the signal is small.

We have found that dðV̂ 1Þ=2:58,dðV̂2Þ= 1:27, and dðV̂ f1, 2gÞ=2:78.
Therefore, we suggest that V̂ 1 is a better early warning signal than V̂2.
We emphasize that it is not because V̂ 1 is larger than V̂ 2 but because V̂ 1

respondsmore strongly to an increase in r than V̂ 2 does with relatively
small uncertainty. Furthermore, V̂ f1, 2g, i.e., the average of V̂ 1 and V̂ 2,
realizes a larger value of d than V̂ 1. Therefore, we suggest that V̂ f1, 2g is a
better early warning signal than V̂ 1 and V̂ 2. This is intuitively because
the averaging cancels out noise in the two signals, while V̂ 1 and V̂ 2 are
not independent of each other due to the edge between nodes 1 and 2.
We note that E½V̂ f1, 2g� is smaller than E½V̂ 1� (see Fig. 3a), challenging a
natural ideaof using single nodes ornode setswith the largest variance
as sentinel nodes.

We show in Fig. 3b themean and standard deviation of the signals
for the second scenario; we changed Δr from 1 to 0.5. In this scenario,
x2(t) always transits from its lower to the upper state immediately after
node 1 does so at r =0. This is because, when r→0−, Eq. (8) implies that
x1(t)→0− if we ignore the noise term, and r −Δr +w(x1(t) + 1) ≈0 com-
bined with Eq. (9) implies that x2(t)→0−. Therefore, even with a small c
value, both nodes 1 and 2 sequentially transit from its lower to the
upper state at r = 0. Figure 3b indicates that E½V̂ 2� is responsive to
increases in r to an extent similar to E½V̂ 1� is. The d values confirm this,
i.e., dðV̂ 1Þ=2:58,dðV̂ 2Þ=2:50, and dðV̂ f1, 2gÞ=3:40. Because the quality
of V̂ 2 ismuch better than in the first scenario, the average signal, V̂ f1, 2g,
is substantially better than V̂ 1 in terms of d in the present second
scenario, while V̂ f1, 2g was only marginally better than V̂ 1 in the first
scenario.

In addition to different amounts of constant stress as para-
metrized byΔr, different nodesmay be subject to different amounts of
dynamical noise.We show in Fig. 3c the results for the third scenario, in
which we set Δr = 1 and σ2 = 0.2. In this scenario, the saddle-node
bifurcation for node 2 is delayed such that a multistage transition may
occur, as in thefirst scenario. Thedifference to thefirst scenario is that,
in the present scenario, node 2 receives a larger dynamical noise than
node 1. Therefore, V̂2 is noisier than V̂ 1 and V̂ f1, 2g, which is apparent in
Fig. 3c. If we onlymeasure the early warning signals at one r value (e.g.,
r = −0.3 or r = −0.1), then one may be tempted to regard that V̂ 2 is a
better early warning signal than V̂ 1 and V̂ f1, 2g because E½V̂2� is larger
than E½V̂ 1� and E½V̂ f1, 2g�. However, this conclusion is erroneous for two
reasons. First, std ½V̂2� is larger than std ½V̂ 1� and std ½V̂ f1, 2g�. Second, V̂2

is not much sensitive to the change in r, as Fig. 3c shows. In fact, we
obtain dðV̂ 1Þ=2:58,dðV̂ 2Þ=0:97, and dðV̂ f1, 2gÞ= 2:12. This result sug-
gests that V̂ 1 is a better signal than V̂ 2 and V̂ f1, 2g. In this case, taking the
average of V̂ 1 and V̂ 2 does not help because V̂ 2 is too poor. Lessons
from the analysis of the present scenario are that (i) a large signal value
does not necessarily imply a better earlywarning signal and that (ii) it is
sometimes better to exclude some nodes from the calculation of the
early warning signal if those nodes are either only marginally respon-
sive to the change in the bifurcation parameter or they carry larger
fluctuations than other nodes.

Chain with three nodes. In this section, we consider three nodes of
identical nonlinear dynamics, except possible differences in the noise
strength, coupled as anundirected chain networkwithN = 3 nodes.We
showa schematic of thenetwork inFig. 1b. Specifically,we consider the

set of stochastic differential equations given by

dx1 = f ðx1Þ+wðx2 + 1Þ
� �

dt + σ1dW 1, ð16Þ

dx2 = f ðx2Þ+wðx1 + 1Þ+wðx3 + 1Þ
� �

dt + σ2dW 2, ð17Þ

dx3 = f ðx3Þ+wðx2 + 1Þ
� �

dt + σ3dW 3, ð18Þ

where f(x) is given in the “Two nodes connected by a directed edge”
section. If c is small enough and σ1 = σ2 = σ3, node 2 transits from its
lower to the upper state earlier than nodes 1 and 3 as r(≥ − 1) increases
from a negative value because node 2 receives positive input
from nodes 1 and 3 while node 1 and 3 each receive input
solely from node 2.

When − 1 ≤ r ≤ 0, the equilibrium in the absence of noise satisfying
x*1, x

*
2, x

*
3 < 0 is a solution of

r + ðx*1Þ
2
+w x*2 + 1
	 


=0, ð19Þ

r + ðx*
2Þ

2
+ 2w x*1 + 1

	 

=0, ð20Þ

and x*
3 = x

*
1. If we ignore the dynamical noise, the first saddle-node

bifurcation, which is the transition of node 2 from its lower to
the upper state, occurs at r = rc, where rc satisfies
0> rc > r

00
c � 2w½�ðw+ 1Þ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðw+ 1Þ

p
�, as r gradually increases from

r = − 1. At r = rc, the two parabolas given by Eqs. (19) and (20) are
tangent to each other. See Supplementary Note 3 for the derivation
including that of the uniqueness of the stable solution satisfying
x*1ð= x*

3Þ<0 and x*2 < 0 when r ≤ rc. We set w = 0.05, which leads to
rc ≈ r

00
c ≈� 0:082. Therefore, we calculate the d values at r = −0.3

and −0.1 as we did in the “Two nodes connected by a directed edge”
section. We show in Supplementary Note 2 that the following results
are reasonably robust against variation in the two r values.

We obtain the mean and standard deviation of the early warning
signals, and then d, as follows. Equations (16), (17), and (18) lead to

A=

�2x*
1 �w 0

�w �2x*2 �w

0 �w �2x*1

0
B@

1
CA: ð21Þ

To facilitate further analyses, we assume σ1 = σ3. Then, by substituting
Eq. (21) and B = diag(σ1, σ2, σ1), which is by definition the diagonal
matrix whose diagonal entries are σ1, σ2, and σ1 in this order, into Eq.
(3), we obtain

C11 =C33 =
�4x*1x

*
2ðx*

1 + x
*
2Þσ2

1 +w
2 ð2x*1 + x*2Þσ2

1 � x*1σ
2
2

� �
8x*

1ð2x*
1x

*
2 �w2Þðx*1 + x*2Þ

, ð22Þ

C12 =C23 =
wðx*2σ2

1 + x
*
1σ

2
2Þ

4ð2x*1x*
2 �w2Þðx*1 + x*2Þ

, ð23Þ

C13 = � w2 x*
2σ

2
1 + x

*
1σ

2
2

	 

8x*

1ð2x*1x*
2 �w2Þðx*1 + x*2Þ

, ð24Þ

C22 =
�2x*1x

*
2ðx*1 + x*

2Þσ2
2 +w

2x*
2 �σ2

1 + σ
2
2

	 

4x*2ð2x*1x*

2 �w2Þðx*1 + x*2Þ
: ð25Þ

By substituting Eqs. (22)–(25) into Eqs. (5) and (6), we obtain the
mean and standard deviation of each early warning signal for any
node set S. Because V̂ 1 and V̂ 3 obey the same normal distribution,
we obtain E½V̂ f1, 3g�= E½ðV̂ 1 + V̂ 3Þ=2�= E½V̂ 1�= E½V̂ 3�. We also obtain
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std ½V̂ f1, 3g�= ðC11 + 2C13 +C33Þ=½2ðL� 1Þ�= std ½V̂ 1�× 1+Corr
2 , whereCorr is

the Pearson correlation coefficient between x1(t) and x3(t) in the
equilibrium. Therefore, std ½V̂ f1, 3g� is smaller than std ½V̂ 1� unless x1(t)
and x3(t) are perfectly correlated, which does not happen because they
are subjected to independent Wiener processes dW1(t) and dW3(t).
Therefore, V̂ f1, 3g is always better than V̂ 1 and V̂ 3 for this model. In
addition, due to the assumed symmetry between nodes 1 and 3,
S = {1, 2}, {1, 3}, and {1, 2, 3} exhaust all possibilities of combining
multiple nodes’ signals into one early warning signal. Therefore, it
suffices to compare the performance of V̂ 2, V̂ f1, 2g, V̂ f1, 3g, and
V̂ all � ðV̂ 1 + V̂2 + V̂3Þ=3, i.e., V̂ S with S = {1, 2, 3}.

We set σ2 = 0.1 and L = 100, and consider three values of σ1. In the
first scenario, we set σ1 = σ2 = 0.1. For this case, we show the mean and
standard deviation of V̂ 2, V̂ f1, 2g, V̂ f1, 3g, and V̂ all as a function of r in
Fig. 4a. Note that the result for V̂ 1 is the same as that for V̂ f1, 3g except
that std ½V̂ 1� is 2/(1 +Corr)( > 1) times larger than std ½V̂ f1, 3g�. It is not
straightforward to tell from Fig. 4a which signal is better than others.
However,we expect that V̂ 2 provides a better early warning signal than
V̂ 1 because the transition of node 2 from the lower to the upper state
as r increases from r ≈ −0.5 is more impending than the transition
of nodes 1 and 3. In fact, we obtain dðV̂ 1Þ=3:52,dðV̂ 2Þ=4:72,
dðV̂ f1, 2gÞ= 5:84,dðV̂ f1, 3gÞ=4:97, and dðV̂ allÞ=6:77, verifying this pre-
diction. Furthermore, it is the best to use V̂ all, i.e., the average of the
sample covariance over all nodes.

In the second scenario, we set σ1 = 0.7 such that nodes 1 and 3
receive larger dynamical noise than node 2. We show the behavior of
the earlywarning signals in this case in Fig. 4b. The figure indicates that
the mean magnitude of any signals including V̂ 1 (i.e., V̂ 1, 2, V̂ 1, 3, and
V̂ all) is much larger than that of V̂2. However, this phenomenon does
not imply that it is better to use a signal including V̂ 1 because the
enhanced signal size owes to the increased amount of dynamical noise.
We obtain dðV̂ 1Þ=3:49,dðV̂ 2Þ= 5:49,dðV̂ f1, 2gÞ=3:74,dðV̂ f1, 3gÞ=4:93,
and dðV̂ allÞ= 5:10. Therefore, we suggest that we should only use
node 2 as earlywarning signal under thepresent scenario because V̂ 2 is
the least affected by the dynamical noise. Note that the magnitude of
V̂ 2 in the present scenario is similar to that in the first scenario
(see Fig. 4a).

In the third scenario, we set σ1 = 0.015 such that node 2 receives
large dynamical noise than nodes 1 and 3. We show the behavior of the
early warning signals in this case in Fig. 4c. We find that E½V̂ 2� is much
larger than E½V̂ f1, 3g�ð= E½V̂ 1�Þ, which does not use V̂ 2. Note that, the
magnitude of V̂ 2 is similar to that in the last two scenarios because we
kept σ2 = 0.1 in all the three scenarios. We obtain
dðV̂ 1Þ=4:50,dðV̂ 2Þ=4:69,dðV̂ f1, 2gÞ=4:77,dðV̂ f1, 3gÞ=6:08, and
dðV̂ allÞ=4:84. Therefore, we suggest that V̂ f1, 3g is thebest earlywarning
signal under the present scenario. In the second and third scenarios,
the best early warning signal turns out to be the one having the
smallest mean magnitude at both r = −0.3 and r = −0.1.

Numerical results for larger networks and various dynamical
systems
Wepropose to use the node set Smaximizing d as the sentinel node set
from which we calculate the early warning signal, V̂ S. In the networks
with two or three nodes analyzed in the “Coupled nonlinear dynamics
on networks with two or three nodes” section, the maximizers of d are
composed of nodes with small dynamical noise (i.e., small σi). How-
ever, in networks with larger numbers of nodes, it may not be the best
to select nodes with small dynamical noise. It is because xi’s of these
nodes may be strongly correlated with each other, which typically
occurs when these nodes are closely located in the network. In this
case, averaging V̂ i over these nodes, which yields V̂ S, does not help
much to reduce the fluctuation, potentiallymaking this V̂ S a poor early
warning signal. Therefore, to test the performance of our method to
select the sentinel node set in networks with larger numbers of nodes,
we carry out numerical simulations with different networks and
dynamical systems in this section.

Setup for numerical simulations. We use six undirected and
unweighted networks with N nodes and denote a network’s adjacency
matrix by (wij), with wii = 0 and wij =wji∈ {0, 1} ∀ i, j∈ {1,…,N}.

Our theory requires the covariance matrix, C, or at least its
eigenvalues, estimated at two values of the bifurcation parameter. In
the previous sections, we theoretically calculated C by linearizing the
original dynamics around the equilibrium and solving the Lyapunov
equation given by Eq. (3). However, to know matrix A in Eq. (3), we
need to know the term driving the dynamics of the node, i.e., the
derivative of F in Eq. (1), which depends on the single node’s intrinsic
dynamics and form of the coupling between nodes. However, we
usually do not have access to such detailed information given
empirical data, while estimating them from observed data is an active
research field (e.g., ref. 23). Therefore, we use the sample covariance
matrix as an estimator of C. This choice is for simplicity, and there are
better estimators of the covariance matrix that are useful especially
when the number of samples, L, is small relative to the number of
variables,N45; we will discuss this limitation of the present study in the
“Discussion” section.

Results for the coupled double-well model. We first consider a
coupleddouble-wellmodel on networkswith dynamical noise given by

d xi = �ðxi � r1Þðxi � r2Þðxi � r3Þ+D
XN
j = 1

wijxj +ui

" #
dt

+ σidWi, i 2 f1, . . . ,Ng:
ð26Þ

Equation (26) represents dynamics of species abundance25 or climates
in interconnected regions26. Parameters r1, r2, and r3 control the

Fig. 4 | Early warning signals with different node sets in the undirected chain network with N = 3 nodes. We set w =0.05, σ2 = 0.1, and L = 100. a σ1 = 0.1. b σ1 = 0.7.
c σ1 = 0.015.
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location of the equilibria and satisfy r1 < r2 < r3; D(≥0) is the strength of
coupling between nodes, and ui is a constant stress given to the ith
node, equivalent to −Δr in Eq. (9).WhenD or ui ∀ i is sufficiently small,
x= ðx1, . . . , xNÞ> in which all the nodes are in their lower state near r1 is
the unique stable equilibrium. In contrast, when D or ui ∀ i is suffi-
ciently large, x in which all the nodes are in their upper state near r3 is
the unique stable equilibrium. In between, we initially set all the nodes
in their lower state at the start of each simulation, and as one gradually
increasesD or ui, all nodesmay flip to the upper stable state at once or
in multiple stages28,29.

For this system, we numerically assess the performance of the
variance of a single node or its average over the nodes in set S as early
warning signal to anticipate the first transition from the lower state to
the upper state. We use either ui or D as the bifurcation parameter in a
given sequence of simulations. If the bifurcation parameter is ui, we
started with D = 0.05 and ui = u = 0 ∀ i and gradually increased u until
the first transition occurs (see the Methods section for the precise
definition of the transition and parameter values for the numerical
simulations). We computed the covariance matrix at reasonably
separated two values of u, denoted by u(1) and u(2) (see the Methods
section for details). At each of u = u(1) and u = u(2), we collected
L = 100 samples of each xi, i∈ S and calculated d using Eq. (15). As a
demonstration, we show how noisy early warning signals gradually
increase aswegradually increase u in one series of simulations in Fig. 5.
When we select n = 5 nodes uniformly at random, the sample covar-
iance averaged over the nodes in S (i.e., V̂ S) gradually increases until
the first node transits from its lower to the upper state (see the orange
line). When we use the set of n = 5 nodes maximizing d, the sensitivity
of V̂ S to the increase in u is notably larger near the first tipping point
(see the blue line). Therefore, the maximizer of d provides an appar-
ently better early warning signal than a uniformly randomly selected
node set.

We assessed the performance of the sample covariance averaged
over thenodes inSusing theKendall’s τ, which is conventionally used13.
We evaluated Swith n = {1, 2, 3, 4, 5} nodes and also the S composed of
all N nodes, which refer to as “all”, as a control. We exhaustively
examined all possible S with n = 1 or n = 2 and uniformly randomly
sampled 5000 sets of S for each n∈ {3, 4, 5} due to a large number of
combinations. In Supplementary Note 4, we also provide a stopping

criterion and a numerical demonstration when one wants to explore S
with n > 5 nodes for better solutions (i.e., S with larger d values).

We show the results of one set of simulations on the Barabási-
Albert (BA) model network with 50 nodes and average degree
〈k〉 = 3.88 in Fig. 6. We gradually increased u as the bifurcation para-
meter. Figure 6a shows the relationship between the Kendall’s τ and d
when the early warning signal is the variance of a single xi. Each symbol
corresponds to a node. We find that the node maximizing d, indicated
by the intersection of the two dashed lines, is the third best performer
in terms of τ. At each value of n∈ {2, 3, 4, 5}, the maximizer of d is not
the topperformer in termsof τbut is a reasonablygoodperformer (see
Fig. 6b–e). For example, the pair of nodes attaining the largest d,
corresponding to the symbol at the intersection of the two dashed
lines in Fig. 6b, provides the eighth best early warning signal among all
the N(N − 1)/2 = 1225 pairs of nodes. At each value of n∈ {1,…, 5}, we
find that τ and d are positively correlated; the Pearson correlation
coefficient between τ and d is equal to 0.42, 0.46, 0.45, 0.44, and 0.43
for n = 1, 2, 3, 4, and 5, respectively. It should also be noted that both d
and τgenerally increase asn increases.When all nodes areused,d and τ
are the largest (see Fig. 6f). Therefore, in the present case, using all the
nodes is a better choice than using particular combinations of n ≤ 5
nodes. However, a reasonably large τ is attained only using n ≤ 5 nodes
if we choose appropriate node sets based on d. One can find S that
maximizes d only by observing the covariance matrix at two bifurca-
tion parameter values.

We quantified the performance of the optimized node set, i.e., the
node set that maximizes d at each value of n, using p1 and p2. For a
given n, we define p1 as twice the fraction of node sets whose τ is larger
than that for the optimized node set. We note that 0 ≤ p1 ≤ 2.We define
p2 as ðτmax � τ*Þ=ðτmax � hτiÞ, where 〈τ〉 is the average of τ over all the
node sets with n nodes examined, τmax is the largest (i.e., best) τ value
among the node sets with n nodes examined, and τ* is the τ value
realized by the maximizer of d with n nodes. Although we have
assumed that a larger positive τ is better, the definition of p1 and p2 are
similarwhen thenodes transit fromtheir upper to lower states through
tipping points and therefore a larger negative τ implies a better per-
formance of an early warning signal (Supplementary Note 5). If the
maximizer of d is the best node set, realizing the largest τ, then both p1
and p2 are equal to 0 and the smallest. Smaller p1 and p2 values are
better. If half the node sets arebetter than themaximizer ofd,meaning
that themaximizer ofd is no better than a uniformly randompick, then
we obtain p1 = 1. Similarly, p2 = 1 is equivalent to τ* = 〈τ〉, implying that
themaximizer of d is no better than a randompick. If themaximizer of
d is theworst performer, weobtain p1 = 2 and a value ofp2 larger than 1.

We show in Fig. 7a the p1 and p2 values for the double-well
dynamics on the BA network with n∈ {1,…, 5}. Each small symbol
represents the p1 and p2 values for a single series of simulations in
whichwe gradually increased the value of u towards thefirst transition.
Figure 6 shows the relationship between τ and d in one of the 50 series
of simulationswhose results are shown in Fig. 7a. The larger symbols in
Fig. 7 indicate the average over the 50 series of simulations. We find
that the optimizer of d is not a top but reasonably good performer
because the p1 and p2 values are substantially smaller than 1 in most
runs. The performance of the maximizer of d relative to that of uni-
formly randomly selected node setswith the samenumber of nodes,n,
degrades as n increases.

Robustness of node set optimization under different heterogeneity
scenarios, networks, dynamical systems, and other factors. To
examine the generality of the effectiveness of the node set optimiza-
tion, we ran simulations, assessed the performance of the early warn-
ing signals in terms of the Kendall’s τ, and calculated p1 and p2 for the
following variations. First, we have assumed that all nodes are homo-
geneous except with regard to the position in the network. However,
as we examined with Fig. 3a and b, different nodes may have different

Fig. 5 | Early warning signal, V̂ S , for the maximizer of d (blue line) and a set of
nodes selected uniformly at random (orange line). Both sentinel node sets are
composedofn = 5 nodes.We also show x*i for each node at each value ofu.Weused
the coupleddouble-well dynamics onaBAnetworkwithN = 50nodes andgradually
increased u.
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propensity to tip, yielding amultistage transition for the entire system.
To examine this case, we set ui = u +Δui in Eq. (26), where Δui inde-
pendently obeys the uniform density on [ −0.25, 0.25]. We continue to
use u as the bifurcation parameter. A nodewith large ui tends to transit
from its lower state to the upper state earlier as u gradually increases.

Note that a heterogeneous distribution of ui makes it more difficult to
find a good node set S only from the information on the network
structure. We show the p1 and p2 values when ui is heterogeneous and
σi is homogeneous in Fig. 7b. The results are qualitatively the same as
those for the case in which both ui and σi are homogeneous (see

Fig. 6 | Relationships between the Kendall’s τ and d before the first major
transition in the coupled double-well dynamics on a BA network with
N = 50 nodes. We gradually increased u. We considered node sets S with
n∈ {1, 2, 3, 4, 5,N} nodes. a n = 1. b n = 2. c n = 3. d n = 4. e n = 5. f n =N. The τ and d

values for the node setmaximizing d for each n value are highlighted by the dashed
lines. The cross represents “Large SD'', i.e., the node set comprised of the n nodes
with the largest sample standard deviation of xi(t).

Fig. 7 | Performance of the optimized node set in anticipating the tipping point
in the double-well dynamics on the BA model network with N = 50 nodes.
a Homogeneous stress and homogeneous noise. b Heterogeneous stress and

homogeneous noise. cHeterogeneous stress andheterogeneous noise. The smaller
symbols show the p1 and p2 values for the individual series of simulations. The
larger symbols show the average over 50 series of simulations.
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Fig. 7a). Separately, we also consider the case in which both the node
stress ui and the strength of the dynamical noise σi are heterogeneous.
We set σi = σ +Δσi, where σ =0.05, and Δσi independently obeys the
uniform density on [ −0.9σ, 0.9σ]. We show p1 and p2 for this case in
Fig. 7c. The results are qualitatively the same as thosewhen both ui and
σi are homogeneous (Fig. 7a) and when only ui is hetero-
geneous (Fig. 7b).

Second, we have considered six networks including the BAmodel,
three of which are model networks and the other three are empirical
networks (see Methods for the networks). Third, we have considered
four dynamical system models on networks including the coupled
double-well dynamics; the other three dynamics are a model of
mutualistic interaction dynamics among species46, a gene regulatory
system governed by the Michaelis-Menten equation46, and the deter-
ministic approximation of the susceptible-infectious-susceptible (SIS)
model on networks47. These fourmodels of dynamics arediverse in the
sense that the SIS model shows a transcritical bifurcation to mark the
onset of epidemic spreading, while the other three models show
saddle-node bifurcations. In addition, we started the mutualistic
interaction and gene regulatory dynamics from the upper state for
each node and gradually decreased the bifurcation parameter value,
which is the opposite to the case of the double-well and SIS dynamics.
This is because the loss of resilience such as species loss in mutualistic
dynamics and cell death in gene regulatory dynamics is of a practical
concern for these dynamical systems46. Fourth, we also varied D
instead of u as bifurcation parameter until the first bifurcation occurs.
For the SIS model, we only considered an equivalent to D, which is the
infection rate parameter, but not u because introducing and varying u
is unrealistic for the SIS model; see Methods for the discussion.

We show the p1 and p2 values for n∈ {1,…, 5}, the three different
scenarios for ui and σi (i.e., constant across all nodes or hetero-
geneous), two networks, four different dynamical systems, and two
different bifurcation parameters (i.e., uorD) in Fig. 8. Each figurepanel
contains the average of p1 and p2 over 50 series of simulations for the
three scenarios of heterogeneity (i.e., both ui and σi are homogeneous,
only ui is heterogeneous, and both of them are heterogeneous) for one
network and one dynamical system. Note that Fig. 8a is for the double-
well dynamics on the BA network, corresponding to Figs. 6 and 7. We
find that the node set based on the largest d value performs reasonably
well for the two networks (see Fig. 8a–g for the BA network and
Fig. 8h–n for the Chesapeake Bay carbon flow network) and for all the
four models of dynamics. The node set maximizing d tends to work
better relative to uniformly randomly picked node sets, yielding
smaller p1 and p2 values, when ui and σi are both heterogeneous across
the nodes (shown by the dotted lines) than when either ui or σi is
homogeneous (shown by the solid and dashed lines). This is pre-
sumably because the proposed method actively discards nodes with
high intrinsic noise by comparing the distribution of the signal var-
iance at two values of the bifurcation parameter. The node set max-
imizing d tends to work better relative to uniformly random node sets
with the same number of nodes, n, when n is smaller. However, even at
n = 5, the p1 and p2 values are at most approximately 0.7 and much
smaller in amajority of cases. The results are qualitatively the same for
the other four networks, with a caveat that the maximizer of d per-
forms poorly for the gene regulatory dynamics model on some net-
works (see Supplementary Note 6).

We also carried out the following robustness tests.
Our choice of the two bifurcation parameter values at which we

sample the covariance matrix and then calculate d (see Methods for
the definition of the two bifurcation parameter values) has been arbi-
trary. We used one bifurcation parameter value close to the start of
each series of simulation and the other value close to the first tipping
point, regardless of the type of bifurcation. This is because, with this
choice, the difference between μ1 and μ2, which is the numerator of d
(see Eq. (15)), is larger thanwhen the two bifurcation parameter values

are closer. Then, the contrast of d for different choices of S may be
larger, potentially helping to single out the S that maximizes d. To test
the robustness of our results with respect to the choice of the two
bifurcation parameter values, we measured p1 and p2 for various pairs
of the bifurcation parameter value, which are different in terms of the
separation between the two values and the closeness to the first tip-
ping point. For the three scenarios for ui and σi (i.e., constant across all
nodes or heterogeneous), six networks, four dynamical systems, and
two bifurcation parameters (i.e., u or D), we have found that the result
that p1 and p2 are small in most cases is robust. Specifically, p1 and p2
are considerably smaller than 1 when they are so for the original pairs
of the bifurcation parameter value, the two bifurcation parameter
values are not too close to each other, and the larger bifurcation
parameter value is reasonably close to the first tipping point. (See
Supplementary Note 2 for the numerical results.)

Not all the regime shifts accompany critical slowing down. Early
warning signals based on critical slowing down, including V̂ S for any
node set S, should be insensitive to such types of regime shifts1,11,14,48.
To verify that this is the case, we investigated coupled double-well
dynamics on the BA network experiencing a state transition from the
lower to the upper state of xi(t) driven by either dynamical noise or
impulse input given to xi(t)’s. Dynamical noise and impulse input are
two major scenarios in which regime shifts occur without critical
slowing down11,14. It should be noted that, in both scenarios, all the
systemparameter values remain the same throughout a simulation. As
expected, V̂ S is found to be insensitive to impending regime shifts until
they are about to occur, and therefore, τ is close to 0. These results
hold true for any choice of S, and the S maximizing d does not yield a
particularly large τ value. See Supplementary Note 7 for details.

In contrast to the last case, critical slowing down can occur even
when there is no sudden regime shift. Representative examples of this
phenomenon are transcritical and Hopf bifurcations14,49. The gene
regulatory and SIS models that we have employed show transcritical
bifurcations, at least in well-mixed populations. We showed that V̂ S

increases just before the bifurcation, which is captured by large τ
values, in the gene regulatory and SIS models (see Supplementary
Note 8 for numerical evidence). Therefore, consistent with the pre-
vious studies14,49, we are not claiming that V̂ S specifically increases
when a bifurcation accompanying a large regime shift, which is typi-
cally a saddle-node bifurcation, is being approached.

Last, we derived theory for the variance of xi(t) and its average
over nodes for mathematical convenience. However, the standard
deviationof xi(t) rather than the varianceof xi(t) is also a common early
warning signal for anticipating tipping points13,50,51. We verified that the
results on the advantage of the maximizer of d remained almost the
same when we used the average of the sample standard deviation of
xi(t) over i∈ S as the early warning signal (see Supplementary Note 9).

Comparison with other node selection methods. A simple heuristic
to select a node set for constructing earlywarning signals by averaging
is to use the n nodes with the largest standard deviation of xi29, which
we refer to as “Large SD”. While there are also other strategies to select
node sets, here we compare ours with Large SD because the mea-
surement of the standard deviation of xi does not require the infor-
mation about the network structure, and therefore it is fair to compare
Large SD and the present method. The crosses in Fig. 6 indicate the
Kendall’s τ value for the double-well dynamics on theBAnetworkwhen
we use the n nodes with the largest standard deviation to calculate the
early warning signal. Large SD detects the best single node, which the
maximization of d does not (see Fig. 6a), Large SD also outperforms
the maximizer of d, yielding larger τ values, when n∈ {2, 3, 4, 5} (see
Fig. 6b–e), whereas the advantage of Large SD is marginal for n = 5.
Therefore, when ui and σi are homogeneous, Large SD beats the
maximizer of d, at least for this example. However, the maximizer of d
usually behaves much better than Large SD when σi is heterogeneous.
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Figure 9 shows an example. In this figure, we used the double-well
dynamics on the BA network, as we did for Fig. 6, and assumed that
both ui and σi are heterogeneous. The figure indicates that the max-
imizer of d substantially outperforms Large SD except when n = 4 and
n = 5, for which themaximizer of d only slightly outperforms Large SD.
The compromised performance of Large SD in this scenario is
because Large SD tends to select nodes with large σi although a large
σi value simply reflects that the ith node is inherently noisier
than others.

To compare between the maximizer of d and Large SD more
systematically, we compared the Kendall’s τ values attained by these
two strategies for the six networks, the four dynamics models, and
whether the stress or dynamical noise is homogeneous or hetero-
geneous across the nodes. As we show in Supplementary Note 8, we
confirmed that the maximizer of d outperforms Large SD in a majority
of cases when both the stress, ui, and the noise strength, σi, are node-
dependent. The maximizer of d outperforms Large SD even when σi is
node-independent for the mutualistic interaction dynamics and D

Fig. 8 | Performance of the node set maximizing d on the BA and Chesapeake
Bay networks. The squares and circles represent p1 and p2, respectively, for the
given n, dynamics, network, and condition (i.e., whether ui or σi is homogeneously
or heterogeneously distributed) averaged over 50 series of simulations. a–g BA
network. h–n Chesapeake Bay carbon flow network. The panels on the leftmost
column correspond to the double-well dynamics, and the second to the fourth

columns to the mutualistic interaction, gene regulatory, and SIS dynamics,
respectively. The combination of the dynamicsmodel and bifurcation parameter is
as follows. (a, h): double-well, u. (b, i): mutualistic interaction, u. (c, j): gene reg-
ulatory, u. (d, k): double-well, D. (e, l): mutualistic interaction, D. (f, m): gene reg-
ulatory, D. (g, n): SIS, λ.
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being used as the bifurcation parameter. In the other cases, the max-
imizer of d is either on par with or slightly inferior to Large SD. How-
ever, there is no case in which Large SD substantially outperforms the
maximizer of d (i.e., Large SD outperforms themaximizer of d in terms
of τbyatmost ≈0.078), whereas themaximizer ofdoften substantially
outperforms Large SD.

Furthermore, we compared the maximizer of d with another
heuristic algorithmwith which one selects the n nodes that receive the
highest total input (or lowest total input, dependingon thedirectionof
the bifurcation being considered) from the other nodes near the
bifurcation point29, which we refer to as “High/Low Input”. The results
of comparison between the maximizer of d and High/Low Input were
similar to the case of the comparison between the maximizer of d and
Large LD (see Supplementary Note 10 for the methods and results). In
other words, the maximizer of d tends to be better than the High/Low
Input algorithm, in particular when the nodes’ dynamics are assumed
to be heterogeneous. We note that High/Low Input requires the adja-
cencymatrix of the network, i.e., complete information on thenetwork
structure, which neither the maximizer of d nor Large SD requires.

Discussion
Based on theory of OUprocesses, we proposed an objective function d
for identifying sets of nodes, S, that are expected to reliably alert
impending tipping events when we combine the early warning signals
from S by averaging. While we focused on anticipating the first bifur-
cation in the entire network, the proposed method is equally applic-
able to anticipating the second and later transitions in the case of
multistage transitions in which different nodes experience regime

shifts at different timings11,25–29. We numerically demonstrated the
proposed method with various dynamics models, networks, and sys-
tem heterogeneity scenarios to confirm its good performances.
Application to domain-specific problems such as in ecology, climate
dynamics, and disease progression is saved for future work. In these
and other applications, further complexity of systems in question in
addition to the network structure and nonlinearity that we have
neglected, such as the mixture of positive and negative interactions18

and nonequilibrium dynamics32, may require alternations of our
method, posing further research questions.

Nonetheless, our method is readily applicable to empirical data
because it does not require the information about the network struc-
ture or the dynamical model equations. It only requires the covariance
matrix among the observables measured at two values of the bifur-
cation parameter, or two different states of the networked system, to
determine an optimal sentinel node set, S. In ecological52,53 and
psychopathological54 applications of early warning signals, it is cus-
tomary to calculate fluctuation-based early warning signals such as the
variance or covariance from multivariate time series data with sliding
timewindows, thus obtain time series of early warning signals, and use
them to give alerts for impending tipping points. To apply our meth-
ods to empirical multivariate time series data, once one has deter-
mined S as the maximizer of d, one only needs to collect signals from
the nodes in S in each of the sliding time windows, calculate the early
warning signal (i.e., V̂ S), and monitor it.

The proposed method tended to outperform other heuristics
when the amount of dynamical noise depended on nodes. The
assumption of heterogeneous noise, alsomade in a previous analytical

Fig. 9 | Relationships between the Kendall’s τ and d in the coupled double-well
dynamics on the BA network with N = 50 nodes under heterogeneous node
stress and heterogeneous dynamical noise. The network is the same as the one
used in Fig. 6. We considered node sets S with n∈ {1, 2, 3, 4, 5,N} nodes. a n = 1.

bn = 2. cn = 3.dn = 4.en = 5. fn =N. The τ andd values for the node setmaximizing
d are highlightedby the dashed lines. The cross represents “Large SD'', i.e., the node
set comprised of the n nodes with the largest sample standard deviation of xi(t).
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study24, is probably realistic because the nodes constituting a complex
dynamical system correspond to different species or geographical
patches in ecosystems, different genes or symptoms in complex sys-
temsof diseases, differentfirmsor countries in afinancial network, and
so on. Although it is not easy to measure dynamical noise for each
node in isolation in empirical complex systems, there is no a priori
reason to assume that different nodes are subject to the same amount
of intrinsic noise. As we have shown, heterogeneous noise across
nodes generally confuses early warning signals estimated from
observed data because, in heterogeneous noise cases, a larger variance
of anxidoes not imply thatxiprovides a better earlywarning signal.We
overcame this problem by quantifying fluctuations of the early warn-
ing signal, not just fluctuations of xi, and measuring it at two bifurca-
tion parameter values. We propose that we should observe the system
at two sufficiently distant bifurcation parameter values (practically,
two distant times) for identifying good early warning signals. The early
warning signals at nodes whose fluctuation is large due to large
intrinsic noise do not substantially grow between the two bifurcation
parameter values. In contrast, the early warning signals at nodes clo-
sely approaching their tipping point substantially grow between the
two bifurcation parameter values. An alternative strategy is to use
lagged autocorrelation as early warning signal because nodes with
large intrinsic noise may produce small autocorrelation. Autocorrela-
tion of multivariate OU processes is analytically tractable, whereas it is
more complicated than the variance and covariance37. Analysis of
autocorrelation and its average over nodes as early warning signals
with the present theoretical framework warrants future work.

In numerical simulations, we examined the size of the node set
n∈ {1,…, 5}. For n = 1 and 2, we inspected all the node sets for their
performance andd values. In contrast, we randomly samplednode sets
for n ≥ 3 due to the combinatorial explosion. If the number of nodes,N,
is less than approximately 20, it may be feasible to exhaustively
investigate all the node sets across all values of n to find the exact
maximizer of d. Note that the calculation of a single d only involves the
square and summation of the entry of the N ×N covariance matrix and
therefore is not costly. WhenN is larger, we need to find node sets that
only approximately maximize d. This combinatorial problem has
scarcely been discussed in earlywarning signal research community. It
is because prior studies highlighting that different nodes can emit
early warning signals of different quality either used systems with a
small number of nodes, typically withN ≤ 519,21–24, or linearly ranked the
N nodes20,27,29, thus implicitly abandoning the potential benefit of
wisely combining different nodes. However, real-world complex sys-
temswhose tipping events are of practical interest aremore often than
not larger complex networks17,18. Although we provided a stopping
criterion for exploring different n values and gave a demonstration
(see Supplementary Note 4), further deploying heuristics for combi-
natorial optimization to approximatemaximization of d for reasonably
large n and N is left for future work.

We used the sample covariancematrix as the estimator of the true
covariance matrix for simplicity. In fact, although the sample covar-
iance matrix is an unbiased estimator in the limit of L→∞, it is an
unreliable estimator when L is small relative to N, and there are better
choices such as different sparse estimators and covariance shrinkage
methods45. In the present study, the sample covariance matrix is not
problematic becauseweused a relatively smallN and large L. However,
in practical situations, wemay only have a small number of samples, in
which case one should consider a different covariance estimator.
Furthermore, we confined ourselves to linear combinations of early
warning signals measured at single nodes. However, a natural exten-
sion is to exploit covariance of xi and xj, where i ≠ j, to construct early
warning signals. Examples of such early warning signals include the
leading eigenvalue of the covariance matrix21,55,56 and Moran’s I 57–59. It
should be noted thatwe used the cross covariance, Cð1Þ

ij and Cð2Þ
ij , where

i ≠ j, only to evaluate the uncertainty of our early warning signals, not

to construct early warning signals. Early warning signals for hetero-
geneous networks when the number of samples is limited are a chal-
lenging open question.

Methods
Dynamical system models
We used the following four types of dynamics on networks with
dynamical noise.

A coupled double-well model on networkswith dynamical noise is
given by Eq. (26).We set (r1, r2, r3) = (1, 3, 5). In the presence of coupling
(i.e.,D >0), the lower and the upper state of each node is around xi = r1
and xi = r3, respectively. Here we succinctly regard that the nodes with
xi < r2 and xi ≥ r2 are in the lower and the upper state, respectively. We
set ui = u +Δui ∀ i. If u is the bifurcationparameter,we initially set u = 0
andD = 0.05. IfD is the bifurcation parameter, we initially set u = 0 and
D = 0. In the case of homogeneous stress, we setΔui =0 ∀ i. In the case
of heterogeneous stress, we draw each Δui independently from the
uniform density on [ −0.25, 0.25] for this and the following three
models of dynamics. We set σi = σ +Δσi, where σ = 0.05 for this model.
We set Δσi = 0 ∀ i in the homogeneous noise case and draw Δσi from
the uniform density on [ −0.9σ, 0.9σ] in the heterogeneous noise case,
including for the other three dynamical system models described in
the remainder of this section.

The mutualistic interaction dynamics among species is given by

d xi = Bi + xi 1� xi
Ki

� �
xi

Ci
� 1

� �
+D

XN
j = 1

wij

xixj
~Di + Eixi +Hjxj

" #
dt + σidWi,

ð27Þ

where xi represents the abundance of the ith species, and
Bi,Ci, ~Di, Ei,Hi, and Ki (with i∈ {1,…,N}) are constants46. Constant Bi
represents the migration rate of the ith species from outside the entire
ecosystem. The second term on the right-hand side of Eq. (27)
represents the logistic growth with carrying capacity Ki and Allee
constant Ci. The third term represents the mutualistic effect of the jth
species on the ith species under the assumption thatwij ≥0. This term is
bounded by definition for preventing xi to exceed Ki to break down the
logistic growth nature of the second term. We set
Bi =0:1 + u+Δui,Ci = 1, ~Di = 5, Ei =0:9,Hi =0:1, and Ki= 5 ∀ i∈ {1,…,N},
following ref. 46. Regardless of whether u or D is the bifurcation
parameter, we initially set u =0 and D= 1. We confirmed that all xi were
in their upper state (i.e.,≫0) at equilibrium when (u,D) = (0, 1). We set
σi= σ +Δσi with σ =0.25.

The gene regulatory dynamics is given by

d xi = �Bxfi +D
XN
j = 1

wij

xhj
xhj + 1

+ ui

 !
dt + σidWi, ð28Þ

where xi represents the expression level of the ith gene46. We set
B = 1, f = 1, and h = 2 by following ref. 46, and also ui = u +Δui. Regard-
less of whether u orD is the bifurcation parameter, we initially set u = 0
and D = 1. Then, we obtain xi > 0.1 ∀ i at equilibrium if the initial values
of xi ∀ i are sufficiently large, which we assume. We set σi = σ +Δσi,
where σ = 5 × 10−6.

The SIS dynamics on networks with dynamical noise is given by

d xi = λ
XN
j = 1

wijð1� xiÞxj � μxi

" #
dt + σidWi, ð29Þ

where xi represents the probability that the ith node is infectious, λ is
the infection rate (specifically, the rate at which the ith node is infected
by an infectious neighbor) and is equivalent to D in the coupled dou-
ble-well, mutualistic interaction, and gene regulatory dynamics mod-
els, and μ is the recovery rate. The first term on the right-hand side of
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Eq. (29) represents that the jth node infects the ith node. The second
term represents the recovery of the ith node. We set μ = 1 without loss
of generality; multiplying λ, μ, and σi by the same positive constant is
equivalent to changing the time scale and not to change these
parameter values. For this model, we only use λ as the bifurcation
parameter. This is because adding a term uidt on the right-hand side of
Eq. (29) would imply that infectious individuals can spontaneously
appear in the population in the absence of any infected host, which is
unrealistic. For the same reason, we do not have a concept of
heterogeneous node stress in this model. We initially set λ = 0. In the
absence of dynamical noise, it holds true that 0 ≤ xi < 1 ∀ i at
equilibrium. We set σi = σ +Δσi, where σ = 5 × 10−4.

Networks
We used the following three model networks and three empirical
networks in our numerical simulations. All networks are undirected
and unweighted by construction, or coerced to be so.

Thefirst networkwasgeneratedby the Erdős-Rényi randomgraph
with 50 nodes and exactly 125 edges. We connected a uniformly ran-
domly selected pair of nodes that had not yet been adjacent to each
other, one by one, until we had 125 edges. It happened that the gen-
erated network was connected. By construction, the average
degree 〈k〉 = 5.

The second network is a network generated by the BAmodel with
N = 50 nodes.We set the number of edges per each additional node to
m = 2. The initial condition was the complete graph with 3 nodes (i.e.,
triangle). In the limit N→∞, the model produces a degree distribution
with a power-law tail, i.e., p(k)∝ k−3, where k is the degree, and p(k) is
the probability that the degree is equal to k. The resulting network was
connected and had 97 edges, yielding 〈k〉 = 3.88.

The third network is the largest connected component of the
node fitness model proposed by refs. 60–62. This model produces
networks with heterogeneous degree distributions as follows.We start
with an empty network with N = 50 nodes and assign to each node i a
fitness score f i = ði+ i0 � 1Þ�α , where α is a parameter that controls the

heterogeneity of the degree distribution, and i0 =N
1�1

α½10
ffiffiffi
2

p
ð1� αÞ�

1
α

constrains themaximumdegree.We set α = 2. Then, we independently
connect each pair of nodes (i, j) by an edge with probability

f i f j=ð
PN

‘= 1 f ‘Þ
2
. We took the largest connected component of the

resulting network, which included N = 49 nodes and 125 edges, yield-
ing 〈k〉 = 5.1.

The fourth network is a record of carbon flows in the Chesapeake
Bay marine ecosystem63. The original carbon flow data is directed and
forms a connected network. We used the undirected, unweighted
version of the network stored by the Koblenz Network Collection64.
This network has 39 nodes, 170 edges, and 〈k〉 = 8.72.

The fifth network is the foodweb of a freshwater stream collected
in southern New Zealand65. Two species are connected if there was
evidence of one consuming the other. The original data is a directed
and unweighted network with 49 nodes and 110 edges66. We coerced
the network to be undirected and retained the largest connected
component, resulting in a network with 48 nodes, 110 edges,
and 〈k〉 = 4.58

The sixth network is a social network of wild dolphins observed in
Doubtful Sound, New Zealand67. The network is connected, undir-
ected, and unweighted, with 62 nodes, 159 edges, and 〈k〉 = 5.13.

Calculation and performance assessment of early warning
signals
We conducted 50 independent series of simulations for each combi-
nationof dynamicsmodel, network, andwhether bothnode stress (i.e.,
ui) and noise strength (i.e., σi) were homogeneous, only ui was het-
erogeneous, or both ui and σi were heterogeneous. Each series con-
sisted of simulations at linearly increasing values of a bifurcation

parameter in the case of the double-well or SIS dynamics, and linearly
decreasing values of a bifurcation parameter in the case of the
mutualistic interaction or gene regulatory dynamics. When we moved
to a next value of the bifurcation parameter, we increased it by Δu =
0.025 or ΔD = 0.0025 for the double-well dynamics, decreased it by
Δu = 0.1 or ΔD =0.01 for the mutualistic interaction dynamics,
decreased it by Δu =0.01 or ΔD =0.01 for the gene regulatory
dynamics, and increased it by Δλ =0.0025 for the SIS dynamics.

Each simulation given the dynamics model began from the same
value of xi ∀ i (double-well: xi = 1, mutualistic interaction: xi = 5, gene
regulatory: xi = 5, SIS: xi =0.001) regardless of the bifurcation para-
meter value. We used the Euler-Maruyama method with Δt =0.01 to
simulate each dynamics. In the SIS and gene regulatory dynamics,
whenever we obtain a negative value of xi(t) for any i due to dynamical
noise, we reset xi(t) = 0. We allowed 100 generic time units (TU) to
discard transients, except in the case of the mutualistic dynamics, for
whichwe allowed 10TUdue to a shorter characteristic timescale of the
mutualistic dynamics model. After discarding transients, we con-
sidered the system at equilibrium and took L = 100 evenly spaced
samples from each xi(t), i∈ {1, 2,…,N}; samples were spaced 1 TU
apart, with the exception of themutualistic dynamics model for which
the samples were spaced 0.1 TU apart. We stopped a series of simu-
lationswith a gradually changing bifurcationparameter value once any
xi was no longer near its initial state, specifically, once any xi satisfies
the following condition: xi ≥ 3 for the double-well dynamics, xi <0.1 for
the mutualistic interaction dynamics, xi <0.1 for the gene regulatory
dynamics, and xi ≥ 0.1 for the SIS dynamics.

After all simulations in a given serieswere complete, we calculated
the earlywarning signals for each node set Swith ∣S∣ = n, based on the L
samples taken at each value of the bifurcation parameter. In addition,
to calculate d, we used Eq. (5) to obtain μ1 =

1
n

Pn
i = 1 C

ð1Þ
ii

and μ2 =
1
n

Pn
i= 1 C

ð2Þ
ii , and Eq. (6) to obtain var1 =

2
n2ðL�1Þ

Pn
i = 1

Pn
j = 1 ðCð1Þ

ij Þ
2

and var2 =
2

n2ðL�1Þ
Pn

i= 1

Pn
j = 1 ðCð2Þ

ij Þ
2
. Then, we used Eq. (15) to calculate d

for the node set S. Note that this computation is easy once we have
calculated C(1) and C(2). We selected the two values of the bifurcation
parameter at which we calculated C(1) and C(2) as follows. Suppose that
the bifurcation parameter is u and that we have simulated the
dynamics at u=uk , k 2 f1, 2, . . . , ~Kg. Thus, the simulation with u~K was
the last simulation in which all xi remained near their initial state at
equilibrium. We selected kð1Þ = round ð0:1~KÞ and kð2Þ = round ð0:9~KÞ,
where round() denotes rounding to the closest integer. Then, we cal-
culated C(1) and C(2) from the L samples obtained at u= uð1Þ � ukð1Þ and
u=uð2Þ � ukð2Þ , respectively. We followed the same procedure to select
the two values of D at which we calculated C(1) and C(2) when the
bifurcation parameter was D.

In addition to bymaximizing d, we also determined node set S by
the Large SD algorithm29 for comparison purposes, which proceeds as
follows. First, we collected L samples from each xi(t) at u = u(2) (or
D =D(2) when D instead of u was the bifurcation parameter) and cal-
culated its sample standard deviation. Second, we defined S as the set
of the n nodes with the largest sample standard deviation of xi(t).
Third, we averaged the sample standarddeviationof xi(t) over i∈ S and
used it as early warning signal.

We quantify the extent to which a given node set S signals the
proximity of tipping by the Kendall’s τ rank correlation between the
early warning signal (i.e., the sample variance averaged over the
nodes in S unless we state otherwise) and the bifurcation
parameter13. Because of critical slowing down, the variance of xi(t)
grows large as the dynamical system approaches a tipping point1. In
our simulations, when the bifurcation parameter linearly increases
(i.e., double-well and SIS dynamics), the value of a perfect early
warning signal would monotonically increase, resulting in τ = 1.
When the bifurcation parameter linearly decreases (i.e., mutualistic
interaction and gene regulatory dynamics), a perfect early warning
signal yields τ = − 1.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The numerical data that are generated during the current study and
underlie the figures in this article are available on Github at https://
github.com/ngmaclaren/mixing-EWS.

Code availability
The code for generating the results and figures in this article is publicly
available on Github at https://github.com/ngmaclaren/mixing-EWS.
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