
Article https://doi.org/10.1038/s41467-024-45444-3

An integrated self-optimizingprogrammable
chemical synthesis and reaction engine

Artem I. Leonov1,2, Alexander J. S. Hammer 1,2, Slawomir Lach 1,
S. Hessam M. Mehr 1, Dario Caramelli1, Davide Angelone 1, Aamir Khan1,
Steven O’Sullivan1, Matthew Craven1, Liam Wilbraham1 & Leroy Cronin 1

Robotic platforms for chemistry are developing rapidly but most systems are
not currently able to adapt to changing circumstances in real-time.Wepresent
a dynamically programmable system capable of making, optimizing, and dis-
covering new molecules which utilizes seven sensors that continuously
monitor the reaction. By developing a dynamic programming language, we
demonstrate the 10-fold scale-up of a highly exothermic oxidation reaction,
end point detection, as well as detecting critical hardware failures. We also
show how the use of in-line spectroscopy such as HPLC, Raman, and NMR can
be used for closed-loop optimization of reactions, exemplified using Van
Leusen oxazole synthesis, a four-component Ugi condensation and
manganese-catalysed epoxidation reactions, as well as two previously unre-
ported reactions, discovered from a selected chemical space, providing up to
50% yield improvement over 25–50 iterations. Finally, we demonstrate an
experimental pipeline to explore a trifluoromethylations reaction space, that
discovers new molecules.

Smart laboratory automation holds promise to accelerate chemical
research, eliminate tedious tasks, improve safety and reliability1–4.
Recently there has been significant progress towards more auto-
mated synthesis platforms5,6: systems that can perform a large
variety of synthetic processes7–12, giving access to a diverse set of
target compounds7,9,13. While these platforms perform elaborate
experiments in a fully automated fashion, they are limited to
sequential processes, adapted from literature and trivial laboratory
operations. The lack of real-time data and feedback control does
not allow for self-correction and dynamic process execution. Acid-
ifying a reaction mixture to a certain pH or maintaining the internal
reaction temperature during oxidant addition are trivial for a
human researcher but challenging and crucial for the safe operation
of automated laboratory equipment. While condition monitoring
and process control are routine tasks in the chemical and pharma-
ceutical industry14,15, it is much less common in academic research
laboratories, with much data reliant on human intervention (e.g.

visual inspection) not captured. The ability to intelligently select
and perform experiments, however, is key to fully leverage the
potential of robotic systems in the chemical domain16.

Reaction optimization, benefitting from incorporation of the
analytical data into the workflow, has become a part of the chemical
automation development17–21. However, the vast majority of published
platforms are limited to narrow chemical tasks with few exceptions of
systems for flow chemistry22–24. These systems, while demonstrating
proof-of-concept results, are bound to specific hardwaremodules and
software, thus making the optimal protocols not transferable across
chemical automation robots. In this work, we build upon our universal
abstraction of chemical synthesis, chemputation, by describing how
process sensors and analytical instruments can be coupled with our
chemical processing unit (Chemputer)25. This allows for the autono-
mous execution and optimization of literature protocols. Telemetry
data is used for process state monitoring and with predefined rules
allows for dynamic procedure execution, self-correction and real-time
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decision making. We show how the system can react to the changing
environment in an adaptive temperature-controlled thioether oxida-
tion, a colour-monitorednitrile formation and in caseof a critical liquid
handling platform failure. Furthermore, when coupled with analytical
instruments, capable of quantifying reaction outcomes, dynamic
execution is used to create a closed-loop system for reaction optimi-
zation, see Fig. 1.

This framework is built on top of the existing abstraction of
chemputation, which is encoded using the χDL programming
language26, thus enabling iterative optimization on any hardware
platform capable of performing the relevant chemical unit operations
(e.g. reagent addition, stirring with temperature control, etc.). We
demonstrate the system’s usability for reaction optimization by
improving the product yield and purity for the 4-component Ugi
reaction; Van Leusen oxazole synthesis; manganese-catalysed styrene
epoxidation and explorative trifluoromethylation using the
Ruppert–Prakash reagent. By using a unified format for storing and
sharing procedures, process data and results we ensure that every
protocol can be reproduced and verified. The key requirement for any
autonomous chemical robot is the ability to dynamically execute a
given list of instructions with real-time adaptation to changing process
parameters. To realize this on the Chemputer platform, the following
components were integrated in the overall framework: (a) hardware
and software support for a range of low-cost sensors, (b) dynamic χDL
as a basis for various feedback control chemical operations, (c) soft-
ware package for analytical instrument control and signal processing,
(d) χDL-based package for iterative reaction optimizationwith support
for parallel procedure execution. These improvements enabled the
first demonstration of an automated tandem of discovery-
optimization framework that uses XDL code as an input and returns
optimized XDL as an output, paving the way for fast collaborative
exploration of chemical spaces and reaction conditions.

Results and discussion
We have included a set of low-cost sensors into the existing infra-
structure of the Chemputer platform: colour, temperature, con-
ductivity, and pH sensors for monitoring of chemical processes, and a
liquid sensor for trackingmaterial transfer anddetecting failures of the
liquid handling system. An environmental sensor was added to record
the ambient conditions—temperature, pressure and humidity—and
identify potential reproducibility issues. All sensors are connected to a
custom-designed board, the SensorHub: an Arduinomodule, featuring
a variety of communication protocols and connected to the Chem-
puter IP network (ESI Section 3). Additionally, graphical interface is
provided through aweb-based dashboard application (Fig. S18), which
allows the user to control any sensor individually, or change the rate of
the background measurements for demanding processes. In addition
to the low-cost sensors, a vision-based condition monitoring system
was developed to add flexibility and improving the autonomy of
Chemputer operations.

To manage the control of the analytical instruments and pro-
vide a unified interface for obtaining spectral data, we have devel-
oped a stand-alone Python package—AnalyticalLabware. Covering
a range of several analytical instruments, our library includes con-
trol over UV-Vis, near IR (NIR), Raman and NMR spectrometers as
well as HPLC-DAD system from various manufacturers, see Fig. 2. In
addition, the library also has basic methods for spectra pre-pro-
cessing, such as peak picking or baseline correction, and domain
specific techniques, e.g. zero-filling and apodization for NMR
spectra (ESI, Section 2). The package is fully integrated into our
Chemputer workflow: from hardware graph, in which the instru-
ments are presented as hardware objects with corresponding
connection parameters, to dedicated high-level χDL steps, speci-
fying sampling routine and additional parameters to perform the
data acquisition.

Fig. 1 | Overviewof the dynamic chemical operations execution. The procedure,
illustrated using χDL syntax, may be executed sequentially one step after another
or dynamically, e.g. as highlightedwith AddDynamicwhere aWait step is inserted if
the temperature rises above given threshold. With integrated analysis and corre-
sponding χDL step (Analyze), the procedure could run iterative with dynamic
update of its parameters, thus allowing for closed-loop reaction conditions

optimization. The Setup step represents the definition of the hardware configura-
tion of the system and the chemical procedure defined digitally in the χDL code. In
the Execution step these components are used to operate the physical robotic
system to achieve the defined chemical operations, including the collection of
analytical data about the execution. In the Optimization step, the data is analysed
and algorithms are used to predict parameters for the next round of experiments.
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At the fundamental level χDLprovides a universal ontology for the
encoding and execution of chemical synthesis recognizing that all
chemical synthesis is based around four abstract properties: the
reaction; workup; isolation; purification. This means that well known
chemical reactions can be expressed as a process-driven language that
focuses on the practical actions needed to allow the reaction to hap-
pen. To extend this to dynamic reaction control, a base class for
dynamic processes, AbstractDynamicStep, is exposing three abstract
methods to control the execution flow, where each method returns a
list of steps to be executed, based on the current state of the step.
Here, we present a set of dynamic χDL steps to allow self-correcting
procedure execution for a range of potential use cases (addition,
transfer, execution, monitoring, optimization).

The ChemputationOptimizer software is designed to take further
advantage of the χDL dynamic step by leveraging a set of optimization
algorithms to dynamically update the procedure parameters based on
an end-point measurement obtained from a given analytical instru-
ment (Fig. 3). The χDL procedure, either translated from a literature or
obtained followed combinatorial or active learning reaction discovery,
is used as a starting point for the optimization cycle. The user only
needs to provide a corresponding hardware graph and a configuration
file. After robotically executing the procedure, the reaction output
(typically, a spectrum of the quenched reaction mixture) is analysed
and passed to an optimization algorithm to suggest the next set of
input conditions. The user can choose from a wide variety of state-of-
the-art optimization algorithms, including those implemented in the
Summit27 and Olympus28 frameworks. A server–client interaction
allows multiple clients to work together towards a joint optimization
problem. With the new set of reaction parameters, the procedure is
updated and executed, and this cycle is repeated until the maximum
number of iterations, or the desired target is reached. All experimental
procedures together with the corresponding set of parameters and
reaction results (both raw spectral data and the processed output) are
saved in a database and can be verified later.

With these new hard- and software developments in place, we
validated that low-cost sensors can capture relevant process data of
the synthesis execution, ensuring safety and stability of operation. Our
experience showed that the most encountered critical failure within
theChemputer is related to various types of syringebreakage. For such
potential hardware failures, we employed the vision-based condition
monitoring system that uses multi-scale template matching, detects
anomalies using a holistic approach of structural similarity, and alerts
the operator (ESI Sections 3.3.1 and 5.3.1).

We deployed our data-rich reaction development engine to
passively monitor the turbidity during the formazine synthesis, an
organic colloid used as a turbidity reference material (Fig. 4a, ESI
Section 5.3.3). The system did not only capture ambient conditions,
e.g. the temperature of the room. Also reagent priming and their
addition left distinct signals in the liquid detector trace, while the
increase of turbidity as the reaction progressed has been detected by
the RGBC sensor. The liquid sensor was further used to monitor the
consistency of reagent delivery and proved valuable in challenging
steps such as filtration, where transferring volumes are not pre-
defined. Here, a simple binary output (i.e. 0 for an empty tubing and 1
for filled) was sufficient to increase the reliability of the process,
while quantitative volume data might be obtained via indirect ana-
lysis (ESI Section 5.3.2). Overall, combined data could serve as a
process fingerprint andmay be used for subsequent validation of any
reproduced procedure (ESI Section 5.3.4).We have demonstrated the
self-correcting execution of two functional group interconversion
reactions (thioether oxidation29 and nitrile formation30), using the
feedback from the temperature and colour sensors, respectively. The
examples were chosen to highlight the benefits of incorporating the
selected low-cost sensors in automated synthesis platforms. The first
example shows the slow addition of hydrogen peroxide monitored
by an internal temperature probe to prevent the thermal runaway. By
utilizing the dynamic step, it was possible to carry out the reaction
automatically on a 25-g scale without exceeding the maximum

Fig. 2 | The suite of sensors and analytical instruments integrated in the
Chemputer stack. The SensorHub provides a unified interface for a range of low-
cost sensors. Sensors were used to monitor colour, pH, ambient conditions
(pressure, humidity and temperature), internal temperature (Resistance

Temperature Detector (RTD) probe), conductivity and liquid transfers. An Internet
Protocol (IP) camera was integrated for video capture and active failure detection.
Analytical instruments (Raman, HPLC-Diode Array Detection (DAD), NMR) were
integrated for reaction monitoring and optimization.
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temperature specified in the literature procedure during the oxidant
addition step (Fig. 4b).

Next, the passive temperature monitoring revealed an uncon-
trolled exotherm during the subsequent heating step. Such insights
can be easily discerned through our dashboard (ESI Section 3.4),
enabling safe process development and scale-up. Our second example
demonstrates the use of a simple colour sensor to monitor a nitrile
synthesis from an aldehyde using ammonia and iodine, and dynami-
cally adjust the reaction time as the discolouration indicates complete
reagent consumption (Fig. 4c).

The reaction time of the chosen process varies depending on the
aldehyde substrate, whichmust be determined using a supervised trial
run if in-line feedback is not available. Typically, exact reaction times
are unknown and require a more general solution, such as the one
outlined in our χDL step for dynamic execution which performs the
respective child step(s) until termination criteria are met. In our
experiments, absolute thresholds for sensor readings proved unreli-
able as termination criteria due to changes in the ambient light, how-
ever we found that rate of colour change could be used to detect the
end of the process. Beyond enhanced process control and condition

monitoring, we were able to optimize reaction conditions for
multicomponent31, heterocycle synthesis32, and catalytic reactions33

using feedback from 19F NMR, HPLC-DAD, and Raman spectroscopy.
The goal was to illustrate a broad change of chemistry that features
commonly encountered reaction types in preparative synthesis to
showcase the benefits of digitalization for the traditional organic
chemistry community. The algorithms were chosen to highlight the
capabilities of our agnostic toolkit (integrated optimization routines
using random search, design of experiments, Bayesian optimization
and genetic algorithms aswell as interface to the Summit andOlympus
frameworks) and a user may choose the most appropriate algorithm
for their chemical system. In our experience, a wide variety of algo-
rithms were suitable for reaction optimization and even random
search provides a strong baseline. As a proof-of-concept for reaction
optimization, we have selected the Ugi four-component reaction
(Fig. 5a). Even though the reaction procedure is well established, it is
sometimes not trivial to obtain good results, given that multiple
parameters need to be optimized simultaneously. The target para-
meter for this reaction was selected as the ratio between the area
under the curve for the product and reference substance on the 19F
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Fig. 3 | Anoverview of the framework for chemical discovery and optimization,
ChemputationOptimizer, its system architecture and operation. The initial χDL
procedure (proc_v0.xdl) is obtained either via text translation from literature or
upon algorithmic reaction discovery. Together with the hardware graph (graph.j-
son) and a configuration file (config.json) are loaded, from which the optimizer
framework extracts the parameters to be optimized. If enough resources are
available, the optimizer performs the scheduling routine to allocate hardware
resources to the corresponding procedure steps for parallel execution, minimizing

the total duration. A lockingmechanismwhich ensures error-free execution during
runtime and eliminates the risk of unexpected cross-contamination. Upon suc-
cessful execution, the outcome of the reaction is analysed quantitatively and the
results are fed to the optimization algorithm to suggest the next parameter set and
update the initial procedure. The updated procedure, together with the results
table is saved, using the database. The architecture and implementation details are
given in the ESI (Section 1).
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NMR spectrum. In 30 experiments, it was possible to achieve a 38%
relative improvement for the yield of the product, compared to the
starting literature conditions.

The optimization was performed using a Sequential Model-Based
Optimization algorithm (SMBO) and consisted of four stages: five
random experiments to initialize the parameter search space, 14
experiments to explore this space (i.e. minimize the uncertainty), five
experiments with balanced exploration-exploitation approach and six
experiments to exploit the space (i.e. maximize the outcome, product
yield). A Gaussian Process regression model served as the surrogate
model. Figure 5a shows a typical 19F NMR spectrum of the reaction
mixture (bottom right) and explored reaction parameters space over
the optimization process (bottom left).

Showcasing the flexibility of our approach, a Van Leusen oxazole
synthesis was optimized using two parallel reactors with independent
heating and stirring (Fig. 5b). The throughput of the platform can be
increasedbyadding further reactormodules, however there is a trade-off
with the number and the quality of updates obtained from the optimi-
zation algorithm.Weused theSNOBFIT34 algorithm tomaximize the area
of the product peak in the HPLC chromatogram relative to an internal
standard while minimizing impurities and excess reagents achieving a
10% relative increase in the weighted objective in 26 iterations.

Finally, we optimized starting material conversion relative to an
internal standard in amanganese-catalysed epoxidation (Fig. 5c) using
online Raman spectroscopy in conjunction with the Phoenics35 algo-
rithm. Thanks to the fast acquisition time of the Raman instrument,
time-series data could be obtained as well, which could be used for
further analysis of the reaction kinetics. Not only classic process vari-
ables like temperature and time were considered but also often

overlooked factors such as addition speed proved crucial in this
transformation as they impact the formation of the active catalytic
species. Forty iterations were needed to find a robust optimum that
leads to full conversion. We also demonstrated how this closed-loop
approach can be extended to facilitate compound discovery and
optimization. Our suggested pipeline includes three stages: first, the
exploration of the product space achieved by a series of experiments
from random search to algorithmic maximization of the heuristic
novelty score (see ESI, Section 1.8). Next, the obtained spectra are
analysed to isolate regions of interest and identify potential products.
Finally, for each identified product a series of experiments is executed
to find reaction conditions, that will maximize the product outcome.
As an example of such exploration-optimization strategy, we have
selected the trifluoromethylation reaction36 within a small substrate
space of four different starting materials (Fig. 5d). Starting from a
complex mixture of substrates our system was able to identify three
products of this reaction, which were characterized by corresponding
peaks on the 19F NMR. These peaks were then used to guide the indi-
vidual optimization experiments,where the targetwas set tomaximize
the area under the curve for the main product, while minimizing the
areas for the other recognized peaks (full description is given in the
ESI, Section 5.5.2).

Using combinatorial search in limited chemical space we were
able to discover a reaction between toluenesulphonylmethyl iso-
cyanide and benzylidenemalononitrile, referred later as the tosMIC
reaction (Fig. 6a, see details in the ESI, Section 9). The χDL procedure
generated upon the discover was subjected for the optimization using
HPLC analysis feedback, set to maximize the product peak (ESI, Sec-
tion 5.5.3). Using the SMBO strategy we were able to increase the yield

Fig. 4 | Reaction monitoring in the automated synthesis execution. a Passively
monitored formazine synthesis, a turbidity reference material, b dynamically exe-
cuted thioether oxidation and c iodine-mediated nitrile formation with corre-
sponding exemplary data captured within the process. a Example data was
captured via passive monitoring during the formazine synthesis: The liquid
detector tracked reagent addition, the colour sensor (Red Green Blue Colour
(RGBC)) could detect the increase in turbidity as the colloidal suspension formed,
and the environmental (from a BME280 combined humidity, pressure and tem-
perature sensor—BME) and internal reaction temperature (RTD) sensors could
capture data relevant for reproducibility. b Internal reaction temperature was

captured in real time and used to control the addition of the oxidizing agent in the
highly exothermic thioether oxidation reaction. The original procedure demanded
to keep the internal reaction temperature below 75 °C. After the addition, passive
monitoring further revealed an uncontrolled exotherm upon heating the reaction
mixture to the temperature (85 °C) specified in the literature procedure. c A colour
sensor captured data during the addition of iodine and its subsequent consump-
tion as the reaction proceeds. The gradient was calculated post hoc, clearly
showing the iodine addition and consumption as peaks. Source data are provided
as a Source data file.
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by 22% in just 32 iterations (Fig. 6e). Furthermore, we decided to
perform another reaction in a similarmanner, this time, between three
components: phloroglucinol, benzylidenemalononitrile and
1,8-bis(dimethylamino)naphthalene. The optimization protocol con-
sisted of two distinct campaigns, the first one comprising 37 reactions
and the second campaign, comprising additional 13 reactions in the
expanded search space. The reason for such strategy originated from
careful analysis of the data obtained for the first campaign: 6 out of the
37 reactions performed at 25 °C with maximally allowed 1,8-bis(di-
methylamino)naphthalene concentration resulted in yields greater
than the yield at initial reaction conditions (27%), suggesting that a

more “adventurous” approach may lead to interesting results37. The
second campaign has been initiated with results from previous cam-
paign serving as input and the temperature and constraints allowing
for temperatures as low as 0 °C while allowing the 1,8-bis(dimethyla-
mino)naphthalene concentration to reach 8mol. During the first
campaign the optimization protocol yielded parameters which resul-
ted in a 49% yield, an absolute increase of 22% from the 27% obtained
for the initial reaction conditions.

However,with themoreopened constraints present, the explored
space has been expanded into unintuitive areas that would not have
been a first choice, or a choice at all, for the experimental chemist: in

Fig. 5 | Results of the closed-loop reaction optimization. a Four-component Ugi
reaction scheme (top); plot of the parameter space reduced to two dimensions
using t-distributed stochastic neighbour embedding algorithm, where colour spe-
cifies the target parameter and the shape corresponds to the strategy used for the
specific objective (bottom left); example of the 19F NMR spectrum of the reaction
mixture (bottom right).bVanLeusenOxazole synthesis scheme (top); optimization
results plot, *:purity is the relative areaof theproductpeak dividedby the sumof all
peak areas, desirability is calculated as the weighted average between the two
objectives (see Supplementary Information, Section 5.5.2); example of the HPLC
chromatogram (bottom right). c Manganese-catalysed epoxidation scheme (top);

example plot of the reaction monitoring using Raman spectroscopy (bottom
left); example Raman spectrum (bottom right). Full description of the optimi-
zation parameters and chosen targets is given in the ESI (Section 5.5).
d Trifluoromethylation reaction scheme; plot of the parameter space reduced
to two dimensions using t-distributed stochastic neighbour embedding algo-
rithm, where colour specifies the target parameter and the shape corresponds
to the strategy used for the specific objective (bottom left); examples of the 19F
Nuclear Magnetic Resonance (NMR) spectra where highlighted peak corre-
sponds to the CF3 group in the specified product (bottom right). Source data are
provided as a Source data file.
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this example the algorithmmoved into temperatures not suited for the
solvent used (DMSO freezing point is below 19 °C). This shift has led to
a further increase in the reaction yield by 50%with respect to the initial
reaction conditions, reaching 77%.

In conclusion, low-cost sensors as well as process analytical
technology instruments were integrated into the growing Chemputer
software stack leading to enhanced process control and insight. This
represents a fundamental shift from previous iterations of the Chem-
puter platform that were open-loop control systems for chemical

synthesis to a closed-loop platform with feedback-enabled synthesis,
optimization, and discovery capabilities. In practice, this means that
new dynamic operations such as temperature-controlled reagent
additions or optical endpoint detection that were previously not
available can now be used in automated synthesis, increasing safety
and reliability of our system. Furthermore, we showed how χDL pro-
cedures derived from the literature can be improved and versioned
using optimization and databasing. Executing the optimized, ver-
sioned XDL codes on our platform leads to reproducible optimal
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results. Data thus obtained can be used to understand the influence of
process variables on given chemical transformationswhich in turnmay
help to populate reaction blueprints with tailored conditions for
library synthesis or accelerated molecular discovery projects. In this
context, the newly developed χDL-based parallel execution and
intelligent resource allocation have the potential to greatly enhance
the throughput of the Chemputer, while maintaining maximum
flexibility in varying experimental conditions and avoiding con-
straints typically encountered in HTE setups. We also demonstrated
how this approach can be extended for the exploration of unknown
reaction spaces, combining digital discovery and optimization in a
single framework. Overall, the reported system provides a universal
approach for optimizing digital recipes and can accommodate any
further module developments following the χDL standard. As the
number of robotically generated datasets grows, we envisage that
real-time telemetry data will provide an important means for data
verification. Ultimately, we believe that the toolkit described herein
will reduce barriers to automated process development and opti-
mization as well as more complex, autonomous molecular discovery
workflows.

Methods
Chemputer software
Chemputer Optimizer software package has been developed to exe-
cute closed-loop synthesis optimization using the Chemputer as
automation platform. The core routine utilizes the special methods of
the DynamicStep of the χDL framework to run the procedure itera-
tively, updating the user-defined parameters using the feedback from
analytical instruments. Additional dynamic steps have been developed
to execute chemical operations with processmonitoring using various
utility sensors: DynamicAdd—for dynamic reagent addition, Dynamic-
Transfer—for crucial liquid transferring operations and DoUntil—for
active reaction monitoring. The AnalyticalLabware library introduces
methods to control several analytical instruments in a unifiedmanner,
including HPLC, benchtop NMR and Raman spectrometer. In addition,
this libraryprovides operations for basic processing and analysis of the
acquired data. All modules are written in Python 3.9, with full source
code and documentation available online as supplementary files and
on GitHub. The code is compatible with existing ChemPU software
stack and can be extended for use in any χDL compatible automation
platform.

Experimental setup
All experiments were executed on the ChemPU platform, equipped
with 1/16” PTFE tubing. The HPLC instrument (Agilent 1260 Infinity
II) was installed with an additional sample loop switching valve
(Rheodyne MX Series II™) connected to the liquid handling system.
The instrument was triggered after sample loading, with additional
control over the experiment achieved using macro commands
implemented in the AnalyticalLabwaremodule. The benchtop NMR
(Magritec Spinsolve 80 Carbon) was equipped with a flow cell and
connected to the liquid handling system via threaded fitting and 1/
16” PTFE tubing. The Raman spectrometer (OceanInsight QE Pro) is
coupled with a 754 nm laser (OceanInsight LASER-785-LAB-ADJ-
SMA) and used with a contactless probe (OceanInsight RIP-RPB-
785-SMA-SMA) installed at the round bottom flask. All analytical
experiment were executed via dedicated χDL steps, specifying all
necessary protocol options, dilution or quenching steps. There-
fore, time inconsistencies between recorded reaction time and
actual reaction time are minimal systematic errors. All process
sensors were connected to the Chemputer network using the
SensorHub - a PCB featuring number of communication protocols
and an Ethernet module for control over an IP network. The details
of the setup for each experiment are given in the Supporting
Information.

Four-component Ugi reaction optimization
The original procedure was translated into χDL, amended for iterative
optimization, and executed on the ChemPU platform with benchtop
NMR installed. The following strategies for the parameter optimization
were used: 5 experiments with random search strategy, 14 SMBO
explorative experiments, 5 SMBO balanced search and 6 SMBO
exploitation experiments. The reaction was analysed using 19F NMR
and the optimization was set to maximize the peak of the Ugi product
with respect to the 1,4-difluorobenzene as internal standard.

Three-neck 25-mL round bottom flask (reactor) equipped with
reflux condenser, glass stopper, tubing connector to a liquid handling
system, DrySyn© aluminium block and a magnetic stirrer bar. In the
beginning of the procedure the liquid handling system was washed
with methanol. Benzaldehyde (0.2mL, 1.96mmol) was added auto-
matically, following by benzylamine (0.10–1.00mL, 0.92–9.20mmol).
The reactionmixturewas stirred for0.0–30.0minand 2-fluorobenzoic
acid (2.0M solution inmethanol, 0.50–3.00mL, 1.00–6.00mmol) was
added, following by isocyanide (0.10–1.00mL, 1.63–16.3mmol). The
resultingmixturewas stirred for 2.0–18.0 h at 25.0–60.0 °C. Thereafter
the 1,4-difluorobenzene (0.2M solution in DCM, 5.00mL, 1.00mmol)
was added and the sample (2.5mL) of the resulting mixture was
transferred to the NMR for analysis. Upon analysis completion, the
samplewas transferredback to theflask and all its contentswasmoved
to an empty flask for storage. The reactor was cleaned twice with DCM
(15mL) and used for the next iteration.

Van Leusen oxazole synthesis optimization
The original procedure was translated into χDL, amended for iterative
optimization, and executed on a Chemputer platform equipped with
the HPLC and two independent reactor modules, each consisting of
three-neck 25-mL round bottom flasks with reflux condenser, glass
stopper, tubing connector to a liquid handling system, DrySyn© alu-
minium block and a magnetic stirrer bar. The optimization target was
to maximize the peak area of the product with respect to naphthalene
as internal standard while simultaneously minimizing impurities (see
ESI Section 5.5.2 for details). The SNOBFIT algorithm was used as
implemented in the Summit framework through the client-server
interface.

0.25M TosMIC in MeOH solution (4.10–6.15mL), 0.25M
4-formylbenzonitrile in MeOH (4.1mL, containing 0.05M naphthalene
as an internal standard), neat DBU (0.15–0.31mL) andmethanol (5mL)
were added to the reactor. The reaction mixture was stirred for
30–180minutes at 25.0–75.0 °C. After cooling to room temperature, a
sample is withdrawn from the reactor, 40 times diluted in an empty
flask, and subsequently loaded onto a 5mL sample loop and injected
into the HPLC. The remaining volume of the reaction mixture was
discarded, and the platform reset by cleaning all modules with
methanol and/or acetonitrile.

Styrene sulfonate oxidation optimization
The original procedure was translated into χDL, amended for iterative
optimization, and executed on a Chemputer platform equipped with
Raman spectrometermonitoring a single reactormodule consisting of
a three-neck 25-mL round bottom flask with reflux condenser, glass
stopper, tubing connector to a liquid handling system, DrySyn© alu-
minium block and a magnetic stirrer bar. The optimization target was
to minimize the area of the peak of the double bond of the starting
material at 1633 cm−1 relative to the area of the peak at 2250 cm−1, with
respect to the peak of an internal standard (acetonitrile). The deep
Bayesian optimizer Phoenics as available through the Olympus fra-
mework was chosen as the algorithm.

Five mM MnSO4 in water solution (0.5–5.0mL), 0.5M styrene
sulfonate inwater solution (5.0mL, 2.5mmol, 1 eq.), and0.5MNaHCO3

in water solution (0.5–5.0mL) were automatically transferred to a
reactor vessel, placed in front of a Raman probe. 30% Hydrogen
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peroxide in water (1.0–5.0mL) was added at a rate of 0.04–10.00mL/
min. The reaction mixture was stirred for 1.0–10.0h. The process was
continuously monitored via Raman and single end-point analysis was
taken for calculating the optimization target value. The reaction mix-
ture was discarded, and the platformwas reset by cleaning the reactor
vessel with water and a cleaning solution (volume).

Trifluoromethylation reaction exploration
The original procedure was amended to include an alternative workup
process to reduce overall experiment time. The initial exploration
phase of the experiment was set to maximize the novelty of the pro-
duct space, i.e. maximize number of novel peaks on the 19F NMR
spectrum. In the second phase a set of individual optimization
experiments were run with the objective set to maximize the integra-
tion area of the regions of interest on the spectrum, as identified
during initial phase.

Three-neck 25-mL round bottom flask (reactor) equipped with
reflux condenser, temperature probe, tubing connector to a liquid
handling system, DrySyn© aluminium block (connected to a chiller)
and a magnetic stirrer bar. In the beginning of the procedure the
liquid handling system was washed with THF. Cyclohexenone
(0.20mL, 1.0 mmol) was added automatically, following by 4-
fluoroacetophenone (0.23mL, 1.0mmol), butyrolactone (0.16mL,
1.0mmol), myrtenal (0.30mL, 1.0mmol) and THF (5mL). The reaction
mixture was adjusted to 22 °C and triflouoromethyltrimethylsilane
(0.9mL, 6.1mmol) was added, following by 0.1M solution of TBAF in
THF (0.4mL, 0.04mmol). The resulting mixture was stirred for 5min
at maintained temperature. Thereafter the reaction mixture was
adjusted to 22 °C, 1.0M TBAF solution in THF (3.0mL, 3.0mmol) was
added to cleave TMS group and the reaction mixture was stirred for
another 5min. The solution of fluorobenzene (1.0M in DCM, 2.0mL,
2.0mmol) was added and the sample (2.5mL) of the resulting mixture
was transferred to theNMR for analysis. Upon analysis completion, the
samplewas transferredback to theflask and all its contentswasmoved
to an empty flask for storage. The reactor was cleaned twice with THF
(20mL) and used for the next iteration.

The tosMIC and phloroglucinol reaction optimization
The original procedures have been obtained from the algorithmic
reaction discovery process, amended for iterative optimization, and
executed on a Chemputer platform equipped with HPLC.

The tosMIC reaction: for the parameter optimization were used:
10 experimentswith randomsearch strategy, and 22 SMBOexplorative
experiments. The reaction was analysed HPLC and the optimization
was set to maximize the peak of the product with respect to the
naphthalene as internal standard.

In all, 1.0M TosMIC in DMSO solution (variable), 1.0M benzyli-
denemalononitrile in DMSO (1mL) andDMSO (variable)were added to
the reactor. The reaction mixture was stirred for a variable amount of
time at a variable temperature. After cooling to room temperature,
reference was added to the mixture (1mL 1.0M naphthalene) and
afterwards a sample (0.5mL) is withdrawn for the reactor, transferred
to an empty flask, diluted to 10.0mL, and subsequently loaded onto a
5 µL sample loop and injected into the HPLC. The remaining volume of
the reactionmixturewas discarded, and the platform reset by cleaning
all modules with DMSO.

The phloroglucinol reaction: for the parameter optimization were
used: 10 experiments with random search strategy, and 40 SMBO
explorative experiments. The reaction was analysed HPLC and the
optimization was set tomaximize the peak of the product with respect
to the naphthalene as internal standard.

In all, 1.0M phloroglucinol in DMSO solution (variable), 1.0M
benzylidenemalononitrile in DMSO (1mL), 0.5M 1,8-bis(dimethyla-
mino)naphthalene in DMSO solution (variable) and DMSO (variable)
were added to the reactor. The reaction mixture was stirred for a

variable amount of time at a variable temperature. After cooling to
room temperature, reference was added to the mixture (1mL 1M
naphthalene) and afterwards a sample (0.5mL) is withdrawn for the
reactor, transferred to an empty flask, diluted to 10.0mL, and subse-
quently loadedonto a 5 µL sample loop and injected into theHPLC. The
remaining volume of the reaction mixture was discarded, and the
platform reset by cleaning all modules with DMSO.

Data availability
All data are available in the paper and its Supplementary Information
files and Source data files. Source data are provided with this paper.

Code availability
Raw data and code is linked and are available on Zenodo38: https://
github.com/croningp/analyticallabware; https://github.com/croningp/
chemputeroptimizer; https://github.com/croningp/summitserver/.
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