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A neural signature for the subjective
experience of threat anticipation under
uncertainty

Xiqin Liu 1,2,3, Guojuan Jiao2,4, Feng Zhou5,6, Keith M. Kendrick 2,
Dezhong Yao 2, Qiyong Gong 1,7, Shitong Xiang 8,9, Tianye Jia 8,9,10,11,
Xiao-Yong Zhang 8,9, Jie Zhang8,9, Jianfeng Feng 8,9,12,13 &
Benjamin Becker 14,15

Uncertainty about potential future threats and the associated anxious antici-
pation represents a key feature of anxiety. However, the neural systems that
underlie the subjective experience of threat anticipation under uncertainty
remain unclear. Combining an uncertainty-variation threat anticipation para-
digm that allows precise modulation of the level of momentary anxious
arousal during functional magnetic resonance imaging (fMRI) with multi-
variate predictive modeling, we train a brain model that accurately predicts
subjective anxious arousal intensity during anticipation and test it across 9
samples (total n = 572, both gender). Using publicly available datasets, we
demonstrate that the whole-brain signature specifically predicts anxious
anticipation and is not sensitive in predicting pain, general anticipation or
unspecific emotional and autonomic arousal. The signature is also functionally
and spatially distinguishable from representations of subjective fear or nega-
tive affect. We develop a sensitive, generalizable, and specific neuroimaging
marker for the subjective experience of uncertain threat anticipation that can
facilitate model development.

Uncertainty refers to the inability to predict theoutcomeof a situation,
or the likelihood, valence, intensity, time, or type of future events1. It
represents an essential part of our daily lives ranging from uncertainty
in the early stages of a romantic relationship to the likelihood of
catching a COVID-19 infection or the magnitude of climate change.

Uncertainty about potential threats in the future and the associated
anticipatory processes are central to the feeling of anxiety2,3. While
anxiety serves an important adaptive function to avoid or cope with
potential danger4, excessive anticipatory anxiety in the face of uncer-
tainty represents a key symptomof anxiety disorders2,5. Contemporary
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neurobiological frameworks for mental disorders therefore consider
‘potential threat’ and ‘uncertainty intolerance’ as candidate mechan-
isms of anxiety (e.g., the ResearchDomain Criteria, RDoC)6,7. However,
the neural pathways that underlie the actual subjective experience of
uncertainty-induced threat anticipation remain unclear.

Uncertain threat anticipation represents a prototypical paradigm
to evoke experimental anxiety2,8,9. Rodentmodels have identified brain
systems that mediate the behavioral and physiological responses to
uncertain situations (e.g., shock-probe burying)10. The bed nucleus of
the stria terminalis (BNST), for instance, critically mediates defensive
behaviors (e.g., freezing, flight and avoidance) during uncertain threat
anticipation11–14 and has also been proposed as a key anxiety system in
the RDoC framework6,7. Other core regions include the medial pre-
frontal cortex (mPFC), ventral hippocampus (vHPC), amygdala, insula
and thalamus10,13,15. Recent animal research have reconciled the region-
focused perspective into circuit-level frameworks demonstrating that
anxiety-related responses are mediated by distributed circuits10.
However, the contribution of these neural systems to the conscious
experience of anxiety remains unknown because subjective feelings
cannot be assessed in animal models16,17. Circuits that underlie defen-
sive behaviors are also distinct from those that generate subjective
emotional experiences18–22. Given current treatments based on beha-
vioral and physiological indices are less effective than
initially expected23,24, and feelings of excessive anxiety are the primary
reason for patients to seek treatment and reduction of subjective
symptomsmarks treatment success22, a mechanistic understanding of
the neural representation that supports the subjective experience of
uncertain threat anticipation can facilitate the development of
anxiety models10,18,22,25,26.

Human functional magnetic resonance imaging (fMRI) studies
have reported BNST activation to uncertain threat anticipation27–32, yet
evidence that the BNST encodes subjective anticipatory experience
remains controversial. Previous fMRI studies comparing uncertain
threat versus safe anticipation conditions (overview see33) have
revealed increased activity in a broad range of brain regions such as
BNST30,31,34,35, amygdala36–38, periaqueductal gray (PAG)29,34,39, anterior
insula (aINS)27–29,40,41, anterior cingulate cortex (ACC)28,29,40,42,43 and lat-
eral and medial frontal regions41,44–46. However, the comparison does
not allow for isolating the subjective feeling of uncertain threat
anticipation given that the conditions may differ in several other
mental processes (e.g., defensive responses or arousal), and the
identified regions are involved in fundamental cognitive processes
including salience or arousal13. Emotional experiences are highly sub-
jective yet accessible via introspective self-report47. Recent construc-
tionist theories suggest that the subjective experience is supported by
distributed interacting brain regions involved in emotional and non-
emotional operations48,49. However, there is limited research focusing
on the brain mechanism of actual subjective experiences during
uncertain threat anticipation and methodological limitations of the
prevailing neuroimaging designs and analytic approaches make it
difficult to isolate its specific neural substrates21,22.

One fMRI study determined the neural basis of the subjective
experience of anxious anticipation as a function of trial-by-trial self-
reported anxiety levels during aversive and neutral trials and showed
an association between anxious feelings and reactivity in amygdalo-
insular systems50. However, a conventional local mapping (mass-
univariate) approach employed in this study can only identify iso-
lated brain regions associated with subjective ratings and lacks
functional specificity to provide a sufficient brain-level model of an
emotional state51. A growing body of research suggests that many
cognitive and emotional processes involve distributed neural coding
across multiple brain regions or networks52–54, and it has been pro-
posed to examine population coding of neural activity in terms of
multivariate activation patterns55. Multivariate pattern analysis
(MVPA), therefore, has emerged as a powerful method for capturing

emotion-specific brain states at a fine-grained level56. Specifically,
multivariate predictive modeling, a machine learning technique
based on MVPA, is suggested to be more suitable for identifying
biomarkers for specific subjective emotional states with high effect
sizes by providing predictions (instead of local mapping) about the
emotional experience from distributed neural activity patterns51,57.
Chang et al. showed, for instance, that a whole-brain multivariate
model explained considerably more variance in predicting experi-
encing negative affect than local regions51,52, and this predictive
modeling approach has been successfully utilized to develop models
that can sensitively and specifically predict emotional experiences
such as fear21, pain53, and pleasure58.

Here, we developed an ‘uncertainty-variation threat anticipation
(UVTA)’ fMRI paradigm that modulates different aspects of shock
uncertainty to capture momentary variations in subjective reports of
anxious arousal. Using multivariate predictive modeling, we aimed to
determine (1) whether it is possible to develop a process-specific,
robust, andgeneralizable neural representation (‘signature’) predictive
of the intensity of subjective anxious experience during uncertain
threat anticipation on the population level, (2) whether this signature
can accurately track momentary trial-by-trial variations of anxious
anticipation on the individual level, and (3) whether and which regions
make consistent contributions to the whole-brain predictive models.
Next, we systematically determined the extent to which the signature
(4) depends on unspecific processes (e.g., negative emotional and
autonomic arousal, anticipation per se), (5) differs from signatures of
subjective fearor general negative experience, and (6)whether regions
such as BNST or ‘salience network’ are sufficient to predict subjective
anxious arousal.

To this end, we used 9 datasets (Studies 1–11, n = 572), including
three fMRI datasets (Studies 1–3, n = 124) during which participants
experienced varying levels of anticipatory anxious arousal induced by
the UVTA paradigm (Fig. 1a). The UVTA paradigm was based on the
established ‘threat of shock (TOS)’paradigm frequently used to induce
anxiety during the anticipation of uncertain electric shocks in experi-
mental contexts (see ref. 9). We here modulated uncertainty along
different dimensions (occurrence, timing and number of shocks) to
induce within-individual variations in subjective ratings of anxious
arousal (Fig. 1b). We trained a predictive model of ratings using sup-
port vector regression (SVR) on whole-brain activity patterns (Study 1,
n = 44), termed the ‘shock uncertainty-induced threat anticipation
signature’ (SUITAS), whichwas evaluated in a validation dataset (Study
2, n = 30, identical paradigm, Fig. 1c). Using a prospective independent
dataset (Study 3,n = 50,modified paradigm) and twopublicly available
datasets (Study 4–5, n = 127), we tested the generalizability of SUITAS
across cohorts, paradigms, MRI systems and scanning parameters.
Next, four independent datasets were used to demonstrate the spe-
cificity of the SUITAS for subjective anxious arousal rather than pain
experience (Study 6, n = 33), general anticipation (Study 7, n = 100),
unspecific negative emotional (Study 8, n = 48, subsample of Study 3)
and autonomic arousal (Study 9, n = 65, subsample of Studies 2 and 3;
Fig. 1d). Finally, two additional datasets were used to determine whe-
ther the SUITAS is functionally and topographically distinguishable
from established signatures for subjective fear (Study 10, n = 67)21 and
subjective negative affect (Study 11, n = 121)52 (Fig. 1d). This design
allowed a sufficient brain-level description of subjective experience of
threat anticipation under uncertainty and we hypothesized that the
subjective anxious experience would be decoded by a sensitive, gen-
eralizable and specific distributed neural representation that is (partly)
separable from representations of fear exposure and negative affect.

Results
Validation of the UVTA paradigm
In Study 1–3, participants underwent the event-related UVTA para-
digm, a modified version of the classical ‘TOS’ anxiety induction
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paradigm9. Participants were instructed to anticipate potential
threats (highly aversive electric shocks) with four different uncer-
tainty levels (i.e., certain safety, low, medium, and high uncertainty)
varied in occurrence, timing and number of shocks indicated by four
different colored cues (Fig. 1a). For the certain safety condition, no
shocks would be administered after a white cue (6 ~ 10 s); for low
uncertainty condition, two consecutive shocks might occur imme-
diately after a blue cue (8 s); for medium uncertainty condition, two
consecutive shocks might occur immediately after a purple cue
(6 ~ 10 s); for high uncertainty condition, two or three shocks might
occur immediately after a red cue (6 ~ 10 s) (details see Methods). At
the end of each trial, participants retrospectively rated their sub-
jective level of anxious arousal during the anticipation period
(6 ~ 10 s) on a 1-5 Likert scale (for details, see Fig. 1a and Methods).
The paradigm robustly induced the entire range of anxious arousal,
such that 84%, 87%, and 98% of participants rated ‘1-4’ and 59%, 50%
and 80% of participants reported all 5 levels of anxious arousal in
Study 1, 2 and 3, respectively.

To validate whether different uncertainty conditions resulted in
varying subjective ratings of anxious anticipation, we estimated linear
mixed-effects models (LMMs) with self-reported ratings as the
dependent variable and uncertainty condition as the independent
variable in Studies 1, 2, and 3, respectively. We observed the main
effects of condition in all three studies (Study 1: F(3,129) = 367.00,
P <0.001, η2

p = 0.90 [0.87,1.00]; Study 2: F(3,87) = 164.90, P <0.001,
η2

p = 0.85 [0.80,1.00]; Study 3: F(3,147) = 448.54, P <0.001, η2
p =0.90

[0.88,1.00]), with subjective ratings increased with uncertainty levels
(safety < low <medium<high, all post-hoc Ps < 0.001, Fig. 1b and
Supplementary Fig. 1a), suggesting that our paradigm robustly
induced varied levels of anxious arousal.

Moreover, we asked whether participants’ subjective ratings for
different uncertainty conditions were affected by personality traits
such as trait anxiety (TA, measured by the Spielberger State-Trait
Anxiety Inventory, STAI59) and intolerance of uncertainty (IOU, mea-
sured by the Intolerance of Uncertainty Scale-short form, IUS-1260) via
SurveyCoder 3.0 (https://www.surveycoder.com/). LMM analyses
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Fig. 1 | Experimental design and analytic strategy. a In the UVTA task, partici-
pants anticipated potential highly aversive shocks during the cue periods. Each trial
beganwith a 4 ~ 6 s fixation cross followedby an anticipatory cue (blue, purple, red,
and white, 6 ~ 10 s), after which an outcome (either 2 ~ 3 shocks or no shocks) was
delivered to the participants’ left wrists accompanied by a black screen (750ms).
Each cue type signaled a specific uncertainty level. At the end of each trial, parti-
cipants reported their level of anxious arousal for the anticipatory phase (6 ~ 10 s)
on a 1-5 Likert scale (4 s). b Mean anxious arousal ratings according to the four
different uncertainty levels plotted for each participant in Study 1 (n = 44). Thedash
lines indicate themean ratings for each condition. cWe computed brain activation
images (beta estimates) for the anticipation period (6 ~ 10 s) for each level of
reported anxious arousal (1–5), and used a support vector regression (SVR) algo-
rithm to predict anxious levels based on brain activity in the training sample (Study

1, n = 44, 10 × 10-fold cross-validation) and then applied the model to new indivi-
duals in the validation sample (Study 2, n = 30) by calculating the predicted level of
anxious arousal as the dot product of the trained signature with individual’s brain
activation map. d Validation on independent datasets to test the signature’s gen-
eralizability (Studies 3–5, n = 50, 59, 68), specificity with respect to neural activity
during related processes including pain (Study 6, n = 33), anticipation of non-shock
events (Study 7, n = 100), negative emotional arousal (Study 8, n = 48) and auto-
nomic arousal (Study 9, n = 65) as well as predictive and topological specificity in
comparison to subjective fear (Study 10, n = 67) and general negative affect (Study
11, n = 121). + The sample (n = 48) in Study 8 was a subsample of Study 3. ++ The
sample (n = 65) in Study 9 was a subsample of Study 2 and Study 3. UVTA,
uncertainty-variation threat anticipation. Source data are provided as a Source
Data file.
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revealed that higher IOU scores were linked to higher anxious
experience in uncertain threat conditions (with safety as baseline), yet
no effect of TA scores was observed (see Supplementary Results and
Supplementary Fig. 2), confirming a specific involvement of intoler-
ance of uncertainty in the anxiety-provoking processes of our
paradigm.

SUITAS – a sensitive neural signature predictive of shock
uncertainty-induced threat anticipation
We applied machine learning-based MVPA techniques using an SVR
algorithm (i.e., predictive modeling) to develop a population-level
whole-brain signature in the training dataset [Study 1, n = 44; 198 acti-
vation maps total, 3 ~ 5 maps per participant, gray matter mask, mod-
eled for entire anticipation period (6 ~ 10 s), see Methods]. Then, we
evaluated the performance of the SUITAS by conducting 10 × 10-fold
cross-validation and applying the SUITAS to new individuals in the
validation dataset (Study 2, n = 30) to calculate the SUITAS pattern
expressions for each participant in Study 2 (entire anticipation period,
one map per rating, Fig. 1c; see also Methods). The SUITAS accurately
predicted subjective ratings in both the training and validation datasets
and the overall prediction-outcome correlation coefficients were 0.59
(explained variance score (EVS) = 24%; bootstrapped 95% confidence
interval (CI) = [0.48, 0.69], P <0.001; within-participant r=0.74 ±0.01,
mean EVS =45.6 ± 2.3%) and 0.61 (EVS = 28%; bootstrapped 95% CI =
[0.50, 0.70], P <0.001, one-sided permutation test; within-participant
r =0.77 ± 0.03, mean EVS = 50.5 ± 5.9%; Table 1, Fig. 2a), respectively.
Forced-choice tests indicated that the SUITAS accurately discriminated
between high (average of rating 4 and 5) and low (average of rating 1
and 2) anxious arousal in the training and validation datasets (training
dataset: accuracy = 100±0%, P<0.001, Cohen’s d = 10.44; validation
dataset: accuracy = 100 ±0%, P <0.001, Cohen’s d = 1.92). Further
control experiments and analyses were conducted to rule out the
possibility that the results were confounded by color- and motor-
related responses potentially involved in the paradigm (see Supple-
mentary Methods, Results, and Supplementary Fig. 3–4).

To determine brain regions that reliably contribute to the pre-
dictive model and facilitate the interpretation, we performed a boot-
strap test through random sampling of participants with replacement
from the training dataset with 5000 iterations. Consistent model
weights were thresholded to identify important voxels that reliably
contributed to the prediction (uncorrected P <0.001, two-sided;
Fig. 2b for display purposes) which included positive weights in bilat-
eral aINS, thalamus, ACC, superior parietal lobule (SPL), inferior par-
ietal lobule (IPL), dorsolateral prefrontal cortex (dlPFC) and inferior
occipital gyrus (IOG), as well as negative weights in ventromedial
prefrontal cortex (vmPFC), supplementary motor area (SMA) and
posterior insula (pINS).

Generalization of the SUITAS performance
To test whether the prediction performance of the population-level
signature can be generalized to new datasets and paradigms, we
applied the SUITAS to a prospective generalization dataset (Study 3,
n = 50) with a different sample and slightly modified UVTA paradigm
(e.g., different shock uncertainty baseline, details see Methods) by
calculating the SUITAS pattern expressions for eachparticipant (entire
anticipation period, one map per rating). The SUITAS could sig-
nificantly predict anxious arousal ratings and the overall prediction-
outcome correlation coefficient was 0.57 (EVS = 19%; bootstrapped
95% CI = [0.48, 0.65], P <0.001, one-sided permutation test; within-
participant r =0.75 ± 0.04,meanEVS = 53.4 ± 4.6%; Fig. 2a). The forced-
choice test indicated that the SUITAS accurately discriminated
between high and low anxious arousal in Study 3 (accuracy = 94 ± 3%,
P <0.001, Cohen’s d = 4.41).

To further determine whether the SUITAS could generalize to
other paradigms that encompass an uncertain threat anticipation
period, we capitalized on two publicly available datasets acquired
during threat conditioning with different MRI systems and scanning
parameters in which a visual cue (Study 4, n = 59, details see ref. 61) or
auditory cue (Study 5,n = 68, details see ref. 62) (CS + ) was pairedwith
a shock on 43% or 33% of the trials, respectively, while a control cue
(CS − ) was unpaired. We tested whether the SUITAS generalized to
distinguish CS+ versus CS − , which is equivalent to uncertain threat
versus safe anticipation63. Results showed that the SUITAS accurately
classified CS+ versus CS− in both datasets (Study 4: accuracy = 79 ± 5%,
P <0.001, Cohen’s d = 1.09; Study 5: accuracy = 69 ± 6%, P < 0.005,
Cohen’s d = 0.49). Overall, the generalizability tests demonstrated that
the SUITAS could robustly generalize to new cohorts, paradigms, MRI
systems and parameters.

The SUITAS performance in predicting within-individual
anxious arousal
To test whether the population-level SUITAS can track moment-to-
moment variations in subjective anxious experience on the indivi-
dual level, the SUITAS was applied to single-trial activationmaps of
each participant in Studies 1–3. The SUITAS significantly predicted
momentary trial-by-trial ratings within individuals (~44 trials for
each participant in Study 1 and 2, and ~64 trials for each participant
in Study 3, seeMethods)withmeanprediction-outcomecorrelation
between actual and predicted ratings of r = 0.50 (P < 0.001, boot-
strap test) in Study 1, r = 0.41 (P < 0.001, bootstrap test) in Study 2,
and r = 0.37 (P < 0.001, bootstrap test) in Study 3 (Fig. 2c–e), indi-
cating that the SUITAS was also sensitive to predict within-
individual momentary anxious arousal during uncertain threat
anticipation.

A neurofunctional core system for the subjective experience of
uncertain threat anticipation
Emotional experience is a highly subjective and individually con-
structed state with interindividual variations49. The mental processes
and brain patterns that underlie affective states as well as the con-
struction of the affective state may vary greatly across participants21.
We further developed within-individual predictive model for each
participant using single-trial estimates of brain responses (Study 1,
~44 trials, 10 × 10-fold cross-validated, Supplementary Fig. 5a) and
transformed these within-individual patterns to ‘activation patterns’
using structure coefficients (Supplementary Fig. 5b) to determine the
core system that reliably and consistently contributed to the pre-
diction and encoded the model (Supplementary Fig. 5c, details see
Methods).

The core regions included the aINS, thalamic regions (intralami-
nar and mediodorsal nuclei), dlPFC, IPL, and IOG observed on SUITAS
together with anterior midcingulate cortex (aMCC) and parietal
regions involved in self-referential processing, e.g., precuneus and

Table 1 | Prediction performance (correlation) of the SUITAS
on anxious arousal, fear and negative affect ratings

Prediction Anxious
arousal

Fear Negative affect

Training dataset 0.59 [0.48,
0.69];
0.74 ± 0.01a

0.23 [0.12,0.33];
0.47 ± 0.06

0.22 [0.15,
0.30];
0.49 ±0.04

Validation dataset 0.61 [0.50,
0.70];
0.77 ± 0.03

0.25 [0.05,0.42];
0.46 ± 0.08

0.26 [0.16,
0.37];
0.55 ± 0.06

Generalization
dataset

0.57 [0.48,
0.65];
0.75 ± 0.04

0.34[0.19,0.47];
0.38 ±0.09

We applied the SUITAS to subjective anxious arousal, fear, and negative affect datasets and
calculated the overall (bootstrapped 95% CI) as well as within-individual (mean ± SE) prediction-
outcome correlations between the signature responses and the actual ratings. SUITAS, shock
uncertainty-induced threat anticipation signature.
a indicates cross-validated.
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posterior parietal cortex (PCC), the putamen and precentral gyrus
extending to SMA (FDR q < 0.05, one-sided, retaining positive values,
Fig. 3; see also Supplementary Fig. 5c for both positive and negative
values). To evaluate spatial distribution of the current results, we
mapped the core system onto regions showing activations to uncer-
tain threat versus safe conditions from a recent meta-analysis33 (out-
lined in Fig. 3). Visualizing the results indicated a high overlap between
the identified networks in themeta-analysis and our core systems (e.g.,
bilateral aINS, thalamus, dlPFC, SMA) but also emphasized a regional
specificity of the core systems, probably reflecting a higher specificity
for isolating the subjective experience sub-process. In line with the
approach employed in themeta-analysis,we additionally examined the
conventional univariate categorical effect (uncertain threat > certain
safety anticipation) in our training dataset and observed an extensive
and rather process-unspecific bilateral activity spanning the entire
insular-cingulate network, lateral frontal and subcortical (e.g., BNST,
amygdala, thalamus, and PAG), and occipital regions (FDR q <0.05,
one-sided, see Supplementary Fig. 6).

Testing the specificity of the SUITAS against pain, general
anticipation and unspecific arousal
The multivariate model might capture processes not specific to
anxious arousal but those inherently involved in the UVTA paradigm.
We employed a series of analyses with independent datasets (details
seeMethods and SupplementaryTable 1) to determine towhich extent
the SUITAS captures pain experience, general anticipation, and
unspecific negative emotional and autonomic arousal. First, we
examined whether the SUITAS measured antecedents of the pain
response using a publicly available dataset fromWager et al.53 (Study 6,
n = 33). Applying the SUITAS to brain activation maps for thermal pain
stimulation periods revealed that the SUITAS was less sensitive to
predict pain experience (r =0.31, P =0.05, one-sided permutation test)
than to predict anxious experience (Study 3: r =0.57, P <0.001, one-
sided permutation test; difference in effect size: Δr =0.26, P < 0.005,
one-sided permutation test). Forced-choice tests indicated that SUI-
TASdistinguishedhigh versus lowpainexperience (accuracy= 85 ± 3%,
P <0.001, Cohen’s d = 0.84, Fig. 4a) less accurately than high versus
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Fig. 2 | Shock uncertainty-induced threat anticipation signature (SUITAS)
model evaluation and weight maps. a Predicted ratings (signature responses)
modeled using the anticipatory brain activity (6 ~ 10 s) of n = 44 participants in the
training dataset (Study 1) compared to actual ratings across participants in Study 1
(10 × 10 cross-validated, P = 4.62 × 10-20), Study 2 (n = 30 participants, validation
dataset, one-sided permutated P <0.001) and Study 3 (n = 50 participants, pro-
spective generalization dataset, one-sided permutated P <0.001), respectively. r
indicates the Pearson correlation coefficient between predicted and actual ratings.
The P values for validation and generalization datasets are derived non-
parametrically through one-sided permutation tests (5000 random shuffles). Error
bars reflect standard errors of themean. b Themultivariate pattern of fMRI activity
predictive of subjective levels of anxious arousal during uncertain threat antici-
pation (SUITAS weight maps, 10 × 10 cross-validated, Study 1, n = 44) based on a
5000 samples bootstrap test (two-sided). The maps display voxel weights

thresholded at uncorrected P <0.001 for display purposes. Inserts show the spatial
topography of the unthresholded patterns in the regions previously proposed as
core regions of the anxiety network33, in particular the ACC, bilateral anterior insula
and thalamus. c–e Z-scored actual ratings versus predicted ratings (signature
response, z-scored) within participants in Study 1 (c, n = 44, cross-validated), Study
2 (d, n = 30), and Study 3 (e, n = 50). The signature response was calculated using
the dot product of the SUITAS weight map with each participant’s single-trial
activation map. Mean r, mean within-participant Pearson correlation between
predicted and actual ratings; P values are based on 5000 samples bootstrap tests of
within-participant r values (one-sided). Each colored line represents a fitted line for
each individual. The black line represents the fitted line across participants. ACC
anterior cingulate cortex; SMA supplementary motor area; SUITAS shock
uncertainty-induced threat anticipation signature; vmPFC ventromedial prefrontal
cortex. Source data are provided as a Source Data file.
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low anxious experience (accuracy = 94 ± 3%, P <0.001, Cohen’s
d = 4.41, Study 3). Second, we asked if the SUITAS could capture the
anticipation of non-shock-related negative events (loss of money) or
the anticipation irrespective of valence (anticipation of a positive
event, i.e., gain of money). To this end, we tested the SUITAS on an
independent dataset that used a monetary incentive delay (MID) task
(https://zib.fudan.edu.cn)64 by classifying negative (monetary loss) and
positive (monetary gain) versus neutral (no gain or loss) anticipation
(Study 7, n = 100). The SUITAS could significantly discriminate loss
from neutral (accuracy = 65 ± 5%, P = 0.004, Cohen’s d =0.26) but not
gain from neutral anticipation (accuracy = 54± 5%, P =0.48, Cohen’s
d = 0.28, Fig. 4b), although the difference was not significant [(loss vs
neutral) vs (gain vs neutral): accuracy = 53± 5%, P =0.62, Cohen’s
d = 0.02]. These results indicated that the SUITAS might be more
effective at identifyingnegative anticipation thanpositive anticipation,
yet further research is needed to confirm this.

Third, we accounted for unspecific negative emotional arousal
which is inherently associated with uncertain threat anticipation30,65

by applying the SUITAS to classify the brain activations during pic-
ture viewing period of high-arousing negative (disgust) versus low-
arousing neutral visual stimuli (Study 8, n = 48). The classification
accuracy for high- versus low-arousing stimuli was at chance level
(accuracy = 58 ± 7 %, P = 0.31, Cohen’s d = 0.24, Fig. 4c), suggesting
that unspecific negative emotional arousal did not explain the SUI-
TAS. Since arousing pictures may generally rely stronger on visual
processing than UVTA, we recomputed the classification accuracy
after excluding the occipital lobe of both SUITAS and the test images
for arousal. The classification accuracy remained insignificant
(accuracy = 54 ± 7%, P = 0.67, Cohen’s d = 0.12).

Given that physiological responses are expected to (partly) co-
vary with subjective emotional experiences albeit with dissociable
neural bases66, we finally explored whether the SUITAS predicts
subjective anxious experience rather than its physiological correlates
by applying the SUITAS to binned brain activation maps for

anticipation period of five skin conductance levels (SCLs) for each
participant (n = 65). We found that the SUITAS predicted SCLs
(r = 0.22, P < 0.001, one-sided permutation test) to a lesser degree
than predicting subjective ratings (r = 0.56, P < 0.001, one-sided
permutation test; difference in effect size: Δr = 0.34, P < 0.001, one-
sided permutation test, Fig. 4d, see also Supplementary Results and
Supplementary Fig. 7) in a subsample of the combined validation and
prospective generalization datasets (Study 9, n = 65), demonstrating
that the SUITAS captured autonomic arousal to some extent but with
a smaller effect size, which is in line with previous studies on the
dissociation between subjective fear experience and its physiological
correlates66.

Further evidence arguing against the effect of nonspecific nega-
tive arousal can be found below (‘Comparing the SUITAS with the
predictive models of fear exposure and nonspecific negative affect’).
Together with the cross-signature evaluation in the following para-
graph, a series of analyses confirm a comparably high specificity of the
SUITAS for predicting anxious experiences during uncertain threat
anticipation.

Comparing the SUITAS with the predictive models of fear
exposure and nonspecific negative affect
We further determined the distinctiveness of our signature from that
of fear exposure and general negative affect by comparing the
functional and spatial similarities of the SUITAS with the established
predictive models of the subjective experience of fear (visually
induced fear signature, VIFS)21 and the subjective negative affect
(Picture Induced Negative Emotion Signature, PINES)52 during pic-
ture viewing periods. The prediction performance of the SUITAS on
subjective anxious arousal (Study 3: r = 0.57, P < 0.001, one-sided
permutation test) was twice as high as on subjective fear (r = 0.23,
P = 0.015; Δr = 0.34, P < 0.001, one-sided permutation test) and
negative affect (r = 0.22, P = 0.014; Δr = 0.35, P < 0.001, one-sided
permutation test; Table 1, Fig. 5a) while the VIFS and PINES more
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Fig. 3 | Core brain systems for the subjective experience of uncertain threat
anticipation. Within-individual core system for subjective experience of threat
anticipation under uncertainty using the conjunction (retaining positive values) of
thewithin-individualmodelweightmap (one-sample t-test, FDR-corrected q <0.05,
one-sided; based on SVR on each participant’s single-trial estimates of brain
responses) and the transformed within-individual model encoding map using
structure coefficients (one-sample t-test, FDR-corrected q <0.05, one-sided) of the

training dataset (Study 1, n = 44). The violet contour line delineates regions from a
meta-analytic activity study comparing uncertain threat versus safe anticipation in
healthy individuals33. aINS anterior insula; aMCC anterior midcingulate cortex;
dlPFC dorsolateral prefrontal cortex; IOG inferior occipital gyrus; IPL inferior par-
ietal lobule; PCC posterior cingulate cortex; Precen precentral gyrus; Precun pre-
cuneus; SMA supplementary motor area; Thal (IL-MD), intralaminar and
mediodorsal nuclei of thalamus. Source data are provided as a Source Data file.
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accurately predicted subjective ratings of fear and negative affect as
compared to the SUITAS (Supplementary Table 2). Applying the
SUITAS to classify high versus low levels of subjective anxious
arousal, fear and negative affect further confirmed that the SUITAS
distinguished high versus low subjective anxious arousal (accuracy =
94 ± 3%, P < 0.001, Cohen’s d = 4.41)more accurately than high versus
low fear (accuracy = 79.10 ± 5%, P < 0.001, Cohen’s d = 0.83) and
negative affect (accuracy = 77.14 ± 4%, P < 0.001, Cohen’s d = 0.80) in
terms of classification accuracy and effect size (see also Supple-
mentary Fig. 8). These results suggest that the SUITAS predicts
subjective experience of anxious arousal with high specificity relative
to that of fear, subjective negative affect or nonspecific negative
arousal. Next, we compared the spatial topography of the SUITAS,
VIFS and PINES (Fig. 5b). The pattern similarity among the SUITAS,
VIFS and PINES weight maps restricted to the gray matter mask
suggests that these models exhibited weak positive spatial correla-
tions on the whole-brain level (SUITAS versus VIFS: r = 0.07; SUITAS
versus PINES: r = 0.05; VIFS versus PINES: r = 0.08, all Ps < 0.001, one-
sided permutation tests). The Pearson correlations decreased after

thresholding the model weights at both uncorrected P < 0.01 and
uncorrected P < 0.001 (see Supplementary Results for details). To
test to what extent the similarity or distinction of performance
depended on the contribution of the visual cortex, we retrained
these models excluding the occipital lobe and then compared the
functional and spatial similarities and the results remained con-
sistent (see Supplementary Results and Supplementary Fig. 9), sug-
gesting little contribution of visual cortex in the differentiation
among predictive models of threat anticipation, fear exposure and
negative affect.

We further used a river plot to illustrate the spatial similarity
between the predictive weights of these models (uncorrected
P <0.001) and a set of a priori regions of interest (ROIs, see Supple-
mentary Table 3) previously linked to negative emotion processing
including anxious anticipation, fear exposure and general negative
affect33,67,68. As shown in Fig. 5c, each ROI encoded at least one model
with different contributions: thalamus, dlPFC, aINS, and vlPFC were
contributed most by SUITAS, whereas MCC, amygdala, PAG, and
vmPFCwere contributedmost by theVIFS anddmPFCwas contributed
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Fig. 4 | Testing the specificity of the SUITAS against pain, general anticipation
andunspecific negative emotional and autonomic arousal. a–cWeused SUITAS
to classify between high versus low pain stimulation (Study 6, n = 33), monetary
gain/loss versus neutral anticipation (Study 7, n = 100), and high arousing negative
(disgust) versus low arousing (neutral) picture-viewing (Study 8, n = 48). The violin
and box plots show the distributions of the signature response. The box was
bounded by the first and third quartiles, and the whiskers stretched to the greatest
and lowest values within the median ± 1.5 interquartile range. The data points
outside of the whiskers were marked as outliers. Each colored line between dots
represents each participant’s paired data (red line, correct classification; blue line,
incorrect classification). The receiver operating characteristic curves illustrate the

discrimination ability of the SUITAS using forced-choice tests for each of the three
studies. Performance was shown as accuracy ± SE and Cohen’s d. ***P <0.001,
**P <0.01, nsP >0.05, two-sided binomial tests. d Using the SUITAS to predict
autonomic arousal (one-sided permutated P <0.001) and subjective anxious
experience (one-sided permutated P <0.001) during the anticipation period in the
UVTA task in a subsample of the combined validation and prospective general-
ization datasets (Study 9, n = 65). r, the Pearson correlation between actual and
predicted ratings (signature response). The P values are derived nonparametrically
through one-sided permutation tests (5000 random shuffles). SCL skin con-
ductance level. Error bars reflect standard errors of the mean. Source data are
provided as a Source Data file.
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most by the PINES. Summarizing, the double dissociation of predictive
performance and the distinct spatial topography suggest that these
signatures show distinct representations in predicting their corre-
sponding subjective emotional states.

Single subsystems are not sufficient to predict subjective
experience of threat anticipation under uncertainty
Previous ‘structure-centric’ theories proposed that emotions are
localizable in single brain regions or networks18,69–71. To determine
whether the subjective emotional experience of threat anticipation
under uncertainty can be reduced to specific systems, we re-trained
the predictive models in (1) five prior regions considered as ‘classical’
anxiety systems13,33; (2) salience network hubs associated with anxiety
and anxiety disorders72; (3) cortical network related to conscious
emotional experience18; (4) seven large-scale functional networks73,

and tested them on training, validation and generalization datasets.
Isolated regions (i.e., aINS, ACC, thalamus, and BNST, but not PAG) and
networks could predict subjective ratings, however, with considerably
smaller effect size as compared to the whole-brain model (see Sup-
plementary Results and Supplementary Fig. 10a). To control for the
potential effect of the numbers of features in the prediction analyses
(i.e., whole-brain model uses much more features/voxels), we ran-
domly selected certain numbers of voxels from a uniform distribution
spanning the whole brain or aforementioned networks. The asymp-
totic predictions with sampling from all brain systems were con-
sistently higher than sampling the same number of voxels from the
individual networks when exceeding 1000 voxels (Supplementary
Fig. 10b), suggesting that the whole-brain model has a much larger
effect size than those using the same number of features from single
networks.

a SUITAS predictions of subjective anxious arousal, fear and negative affect
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Fig. 5 | Comparing the SUITAS with the predictive models of fear exposure
(VIFS) and negative affect (PINES). a Using the SUITAS to predict subjective
reports of fear experience (VIFS, Study 10, n = 67) and negative affect experience
(PINES, Study 11, n = 121) based on samples acquired in the previous studies21,52. The
Pearson correlation coefficient (r value) between actual and predicted ratings
(signature response) of anxious arousal using the generalization dataset (Study 3,
n = 50, one-sided permutated P <0.001) was twice as high as that of fear (one-sided
permutated P =0.015) and negative affect (one-sided permutated P =0.014) (left
panel), and the differences of r values (Δr, dash lines in the middle and right panel)
were significant based on permutation tests of r value differences with 5000 ran-
dom shuffles (one-sided permutation test Ps <0.001). Error bars reflect standard
errors of the mean. b Spatial topography of the weight maps for anxious arousal,
fear and negative affect, each thresholded at P <0.001 (bootstrap test, two-sided,
uncorrected) within gray matter (retaining positive values). c River plot depicting
the spatial similarity (computed as cosine similarity) of the thresholded weight

maps (bootstrap test P <0.001, uncorrected, two-sided, retaining positive voxels)
in Fig. 5b with anatomical labels of predefined ROIs previously linked to negative
emotion processing. Ribbons are normalized by themax cosine similarity across all
ROIs. Ribbon locations in relation to theboxes are arbitrary. Pie charts showrelative
contributions of eachmodel to each ROI (that is, the percentage of voxels with the
highest cosine similarity for each predictive map). ACC anterior cingulate cortex;
aINS anterior insula; Amy amygdala; dlPFC dorsolateral prefrontal cortex; dmPFC
dorsomedial prefrontal cortex; IFG inferior frontal gyrus; IOG inferior occipital
gyrus; IPL inferior parietal lobule; ITG inferior temporal gyrus; MCC midcingulate
cortex;OFCorbitofrontal cortex; PAGperiaqueductal gray; PCCposterior cingulate
cortex; PINES Picture Induced Negative Emotion Signature; Precun precuneus; SFG
superior frontal gyrus; SMA supplementary motor area; Thal thalamus; VIFS
visually induced fear signature; vlPFC ventrolateral prefrontal gyrus; vmPFC ven-
tromedial prefrontal gyrus. Source data are provided as a Source Data file.
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In line with accumulating evidence21,52, the above results under-
score that subjective experiences of uncertain threat anticipation
require a distributed neurofunctional representation.

Discussion
Aberrant anticipatory responding towards uncertain threats is central
to anxiety-related disorders2,11. We here developed an uncertainty-
variation threat anticipation paradigm and utilized multivariate pre-
dictive modeling to systematically determine an accurate, robust,
generalizable, and specific fMRI-based neuro-affective signature for
the subjective experience of threat anticipation under uncertainty
using several independent datasets in healthy adults. The developed
SUITAS was predictive of the level of uncertainty-induced subjective
anxious experience on both the population and individual levels. The
signature showed a robust generalization across cohorts and para-
digms andwas less or not sensitive to processes inherently interwoven
with the paradigm, including pain, positive anticipation (but negative
anticipation), or unspecific negative emotional and autonomic arousal,
suggesting a comparably high specificity for predicting anxious
anticipation of aversive events. Comparisonwith established decoders
for subjective fear and negative affect indicated a certain extent of
cross-prediction, suggesting that the decoder may partly capture a
common underlying process, e.g. conscious emotional experiences or
interpretation74, but the considerably higher effect size for predict-
ing the target emotional state also suggests distinguishable neural
representations of uncertain threat anticipation, fear exposure, and
negative affect. Consistent model weights associated with subjective
anxious arousal were observed in the aINS, thalamus, ACC, somato-
sensory cortices, and IOG, while the within-individual models addi-
tionally revealed consistent contributions of aMCC, precuneus, PCC,
putamen, precentral gyrus andSMAtopredictmomentary trial-by-trial
variations. No single brain region or network was sufficient for accu-
rately predicting anxious experience, underscoring that conscious
emotional experiences require a distributed neural
representation10,21,33,52,66,75. The neuro-affective signature provides a
promising neuroimaging biomarker for subjective anxious experience
during uncertain threat anticipation which may facilitate rapid and
accurate evaluation of new interventions targeting subjective anxious
arousal related to uncertainty (for similar approach see e.g. ref. 76).

Uncertainty about potential threats has long been considered as a
key candidate mechanism underlying anxiety2,77,78. However, how
varying levels of uncertainty impact the subjective experienceof threat
anticipation remained unknown. Our UVTA paradigm based on the
established TOS paradigm - but manipulating different aspects of
anticipatory uncertainty - successfully induced sufficient and varying
intensity levels of anxious anticipation. Moreover, individuals high in
intolerance of uncertainty reported higher anxious arousal in the
uncertain conditions of the UVTA task. These results together
demonstrated uncertainty as a candidate mechanism underlying the
experience of anxious arousal and allowed us to determine the
underlying neuro-affective signature.

Employing a pattern recognition-based machine learning techni-
que that has been previously successfully employed to other sub-
jective emotional experience domains21,52,53,74,79,80 allowed us to identify
a robust and process-specific predictive pattern for the subjective
experience of uncertain threat anticipation and segregate it fromother
emotional states. Importantly, out-of-sample predictions in two inde-
pendent samples (study 2 and 3) protected against overfitting and
showed the robustness and generalizability of the brain-wide model81.
The generally higher signature response across rating levels of the
prospective generalization dataset might be attributed to the higher
baseline of uncertainty related to including a higher proportion of
uncertain trials of the UVTA task in Study 3 (see Fig. 2a).

The SUITAS provides evidence that the subjective experience of
uncertain threat anticipation involves distributed neural systems75,

which resembles current observations in animal models that the
response to uncertain threats recruits a distributed array of inter-
connected neural ensembles10. Further analyses demonstrated that no
single region or network was sufficient for predicting anxious experi-
ence, which aligns with predictive modeling results for other sub-
jective emotional experiences21,52 and argues against the traditional
structure-centric view70,71 but rather aligns with a constructionist
perspective48,49. The core system is partly consistent with recent meta-
analyses on induced anxiety-associated brain activity33 and structural
alterations in anxiety-related disorders82. The aINS, thalamus, and
aMCC are key regions of the cingulo-opercular network83,84, which
partly resembles the salience network85. These regions in concert not
only support the detection of threatening signals84 but also inter-
oceptive processes, emotional awareness of negative affect, and
autonomic activity86–90. The dlPFC, IPL, and precuneus constitute core
nodes of the fronto-parietal network which exerts top-down feedback
control and is involved in constructing conscious experiences and self-
related processes18,91. These regions together promoted the subjective
experience of anxious arousal on both the population and individual
level, which may suggest that the conscious experience of uncertain
threat anticipation is a constructed state that encompasses different
functional modules48,49.

The aINS has long been suggested to represent subjective feelings
from the body and emotional awareness across emotional domains
including anger, fear, sadness, happiness, disgust, and aversion86.
Moreover, the aINS is involved in uncertainty and risk processing
besides its established role in the perception of interoceptive and
subjective feeling states2,92. For example, the aINSplays a critical role in
the anticipation of uncertain threats relative to certain threats45,93,94.
Bilateral aINS activity has also been associated with risk prediction in
reward anticipation under uncertainty95. The aINS exhibits reciprocal
connections with the aMCC96,97, a region proposed to integrate infor-
mation about punishment, interoceptive, and subjective emotional
states to exert control in the face of uncertainty89. Our results there-
fore support the critical roles of aINS and aMCC in detecting, inter-
preting, and reacting to salient internal and environmental changes in
the face of uncertainty which is central to anxiety.

The thalamus consists of different nuclei that serve various
functions including relaying sensory and motor signals, memory,
and attention as well as the regulation of consciousness, alertness, and
emotion98,99. The present study robustly identified intralaminar and
mediodorsal thalamic nuclei as critical modules predictive of sub-
jective anxious arousal on both the population and individual level,
which may be related to their function in the integration of informa-
tion across multiple cortical circuits that influences the conscious
experience of anxious arousal during uncertain anticipation of the
future100.

Importantly, although the aINS, thalamus and aMCC are key
nodes of the salience network84,85, our control analyses suggested that
the SUITAS did not respond to salience or unspecific negative emo-
tional and autonomic arousal alone (Study 8 and 9).Moreover, none of
these regions or other networks was sufficiently predictive of sub-
jective anxious arousal, suggesting that the subjective experience
during uncertain threat anticipation requires a distributed and brain-
wide engagement to support the idiosyncratic and complex emotional
experience. Notably, although the BNST has been suggested to play a
prominent role in animal and human models of anxiety14,30,101, we did
not find BNST in the signaturepredictive of anxious anticipationwhich
may suggest that BNST representation did not code for subjective
experience despite its role in automatic processing of uncertain
threats30–32.

An important contribution of the current study is the comparison
of the neural representation of subjective experience of uncertain
threat anticipation with that of subjective fear (Study 10) and negative
affect (Study 11). The conceptual and neural differentiation of fear
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(acute threat), anxiety (potential threat) and nonspecific negative
affect has long been debated in neurobiological models of
emotion17,21,30,33,82,102, animal models11,15,103,104 and neuropsychiatric
models such as the RDoC framework6,7. Rodent models suggest that
defensive and physiological responses related to fear or anxiety are
mediated by distinct neural substrates, i.e., the central nucleus of the
amygdala and BNST, respectively11. In contrast, human fMRI findings
on functional dissociations between fear responses and uncertain
threat anticipation have been inconsistent29,30,33,36. Recent evidence
from a meta-analysis of human fMRI studies suggests that ‘fear’ (con-
ditioned versus unconditioned stimulus) and ‘anxiety’ (uncertain
threat versus safe anticipation)mayengage apartly overlapping circuit
including BNST, MCC, aINS, and PAG33,105. However, the mass uni-
variate and categorical contrast approach does not permit to clearly
segregate the neural systems underlying different mental processes
such that common neural circuits may alternatively reflect hard-wired
defensive behaviors or physiological responses aswell as the generally
increased arousal that characterize both fear and anxiety. The present
study demonstrates fine-grained distributed neural patterns can, to a
certain extent, segregate subjective experiences of uncertain threat
anticipation, fear exposure and negative affect functionally and spa-
tially such that the classic ‘emotional’ regions showed different levels
of involvement in representing different emotion domains (see
Fig. 5c), which suggests that these regions may to a certain extent
encode fear anxiety and negative emotions in distinguishable neural
representations.

Several important caveats should be taken into account when
interpreting the results of the present study. First, the developed
model was based on uncertain anticipation of electric shocks, and the
generalization datasets also used shocks as aversive stimuli. Including
datasets with other types of uncertain threats would allow for a more
robust test of the generalizability of our brain model. Second, the
parameter settings (C and epsilon) of the SVR were based on previous
studies with a similar purpose. However, a grid search may help to
determine the optimal combination of hyperparameters that allows to
yield the highest performance in future studies.Moreover, theremight
be differences in the task design (e.g., with rating or not) and experi-
mental parameters (e.g., stimulus type, durations) between our origi-
nal datasets and the external datasets for testing the specificity of the
SUITAS. Although we employed control experiments and analyses to
validate that the results were not explained by these potential con-
founding factors, datasets with comparable task design and stimulus
type are needed in future studies for the specificity test. Lastly, the
sample size for the training dataset was based on previous studies79.
While researchers recently proposed that testing the generalizability
of a model in novel samples could provide evidence for robust bio-
markers without large sample sizes106, research on a priori power and
sample size estimations for multivariate neuroimaging models in task-
fMRI will critically advance the field.

Together, the current studyprovided a comprehensive brain-level
description of the subjective experience of threat anticipation under
uncertainty. The sensitive, generalizable and specific signature has
the potential to be tested prospectively in future studies with different
experimental settings and populations (e.g., patients).

Methods
Participants
A total of 124 healthy, right-handed, young Asian (Chinese) university
students (63 females, based on self-reported gender identity; age
range: 18–33; Supplementary Table 1) participated Studies 1–3 to
develop (Study 1, n = 44, 22 females), validate (Study 2, n = 30, 14
females) and prospectively test the generalizability (Study 3, n = 50, 27
females) of a multivoxel-pattern based predictive model of subjective
experience of uncertain threat anticipation. All studies were approved
by the local ethics committee at the University of Electronic Science

and Technology of China and were in accordance with the latest
revision of the Declaration of Helsinki. All participants provided writ-
ten informed consent on which Ethnicity was assessed by writing prior
to study procedures. Participants were remunerated 120 RMB for their
participation. Data from Study 1 and Study 2 were acquired in June
2021 (T1) using the same experimental design and scanning para-
meters at the same study site, while Study 3 was conducted 10months
later (April 2022, T2) with a slightly different experimental design (e.g.,
more experimental trials, different threat probability and uncertainty
baseline, details see Paradigm and procedures) and was a part of our
ongoing project examining cue-based anticipation of multimodal
affective input. We randomly selected 60% of the participants from T1
as the training dataset to develop the brain model (Study 1: n = 44, 23
females, mean ± SD age = 22.07 ± 2.50 years). The remaining partici-
pants comprised the validation dataset (Study 2: n = 30, 14 females,
mean ± SD age = 22.47 ± 2.76 years). Data from T2 were used as the
prospective generalization dataset (Study 3:n = 50, 27 females,mean ±
SD age = 20.08 ± 2.22 years) to test if the brain model identified in
Study 1 can be prospectively applied to independent data and gen-
eralized to different shock probability and uncertainty environments.
Participants were excluded if they reported a current or history of
neurological, psychiatric, or major physical disease, psychotropic
medication, substance abuse, MRI contraindications and any prior
participation in experiments with electric stimulation. No gender-
based analysis was performed because this work did not have a prior
hypothesis related to gender differences.

Paradigm and procedures
In Study 1 andStudy2, participants completed anuncertainty-variation
threat anticipation (UVTA) task while undergoing fMRI acquisition.
Before the start of the actual experiment, participants were instructed
that they would anticipate electric shocks with varying levels of
uncertainty and provide ratings of the anxious levels they experienced
during the anticipation period at the endof each trial. Prior toMRI data
acquisition, a shock calibration was implemented during which a
highly aversive but not unbearable shock level was determined for
each participant. Participants rated subjective shock discomfort on a
scale from 1 (not at all painful) to 5 (painful and difficult to tolerate) to
reach a level of 4 (painful but not unbearable). The shock calibration
procedurewas repeated in themiddle of the four experimental runs to
avoid habituation. 75% of participants in Study 1 and 70% of partici-
pants in Study 2 adjusted the level of electric stimulation during the
recalibration. Electric shocks were delivered to the underside of the
left wrist using a Biopac STM100C (Biopac Systems Inc., Goleta, CA).
The UVTA paradigm used an event-related design consisting of four
conditions repeatedly presented over four runs in a pseudorandom
order with nomore than two consecutive trials of the same condition.
The four conditions corresponded to four different uncertainty levels
fromcertain safety, low,medium tohigh threat uncertaintymodulated
by different combinations of event (shock), temporal (duration), and
number of shock uncertainty. Low, medium and high uncertainty
conditions were cued by a colored lightning bolt (blue, purple and red,
respectively) in the center of the screen and a border of the same color
whereas the certain safety condition was indicated by a white isosceles
triangle and awhite border (Fig. 1a). Prior to the task, participants were
told about the contingency between cues and outcomes, e.g. that the
blue cue would last 8 s and two consecutive shocks might occur
immediately after the cue presentation (low threat uncertainty: event-
only uncertainty); the purple cue would disappear any time between 0
to 16 s and two consecutive shocks might occur immediately after the
cue presentation (medium threat uncertainty: event and temporal
uncertainty); the red cue would disappear any time between 0 to 16 s
and two consecutive shocks might occur or three shocks might occur
either in a row or separated into two consecutive shocks immediately
after the cue presentation and one shock after the subsequent fixation
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epoch (high threat uncertainty: event, temporal and number uncer-
tainty); no shocks would be administered after the white cue lasting
between 0 to 16 s (certain safety). The exact shock probability for low,
medium, and high uncertainty conditions was not stated to the parti-
cipants and they were only told that the likelihood of shock outcomes
of these three conditions was equivalent. The shock probability was
predetermined to 60% for each uncertain threat condition. Thepurple,
red, andwhite cues in actuality ranged between 6 and 10 s (avg 8 s) and
both medium and high uncertainty conditions contained ‘fast’ trials
with 3 s of cue presentation and ‘slow’ trials with 13 s of cue pre-
sentation pseudo-randomly to increase the credibility of the instruc-
tion that the cues could disappear any time within 16 s after which
shocksmight occur. Each run contained 5 valid trials per condition and
4 dummy trials (2 fast trials and 2 slow trials, shock probability: 50%
throughout all runs), resulting in 24 trials in total in each run. The
dummy trials were not included in the behavioral and fMRI analysis.
Participants were asked to retrospectively rate their subjective level of
anxious arousal during the anticipation period (6 ~ 10 s) from 1 (no
anxiety) to 5 (extreme anxiety). Stimuli were presented via E-Prime 2.0
(Psychology Software Tools, Sharpsburg, PA). Note that the varying
levels of uncertainty conditions were deployed to induce different
levels of subjective anxious feelings and the behavioral rating patterns
confirmed that our paradigm successfully evoked varying levels of
anxiety between conditions (Fig. 1b and Supplementary Fig. 1).

Study 3 implemented amodified UVTA task. The differences were
that the total number of trials and the proportion of uncertain threat
trials increased (each run contained 29 trials, 8 trials per low, medium,
and high uncertainty conditions, 4 trials per certain safety condition,
and 1 ‘fast’ trial), which resulted in increased statistical power and a
different shock uncertainty baseline. The shock probability was pre-
determined to 50% for each uncertain threat condition and the ‘fast’
trial for each run belonged to a different condition and was always
presented in the first trial with shocks. The shock calibration proce-
dure was the same and 70% of the participants adjusted the level of
electric stimulation in the middle of the experimental runs. Partici-
pants were asked to retrospectively rate their subjective level of
anxious arousal during the anticipation period (6 ~ 10 s) from 1 (not
anxious at all) to 5 (extremely anxious). A chi-square test confirmed no
habituation effects of shock pain on anxious experience over the
course of the paradigm (χ2(3) = 16.21, P = 0.18; Study 1–3).

MRI datawere collected using aGEDiscoveryMR750 3.0 T system
(General Electric Medical System, Milwaukee, WI, USA). Functional
images were acquired with an interleaved T2*-weighted gradient echo-
planar imaging sequences (40 slices; repetition time (TR) = 2000 ms;
echo time (TE) = 30ms; slice thickness = 3.8mm; spacing = 0.6mm;
field of view (FOV) = 200 × 200mm; flip angle = 90°;matrix size = 64 ×
64; voxel size = 3.125 × 3.125 × 3.8mm). High-resolutionwhole-brain T1-
weighted images were additionally acquired to improve spatial nor-
malization (3D spoiled gradient echo pulse sequence; 154 slices; TR =
6ms; TE = 3ms; slice thickness = 1mm, FOV = 256 × 256mm, acquisi-
tion matrix = 256 × 256, flip angle = 8°, voxel size = 1 × 1 × 1mm).

Skin conductance data was continuously acquired during fMRI
scanning using an MRI-compatible Biopac system (MP-150). Skin con-
ductance (1000Hz) was sampled using MRI-compatible disposable,
radiotranslucent, pre-gelled electrodes (EL508) attached to the index
and middle fingers of the non-dominant (left) hand.

fMRI preprocessing and analysis
The fMRI data were preprocessed and analyzed using Statistical
Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/) and the procedures for preprocessing and general
linear model (GLM) analyses were the same for Study 1, 2 and 3. The
firstfive volumesof each runwerediscarded to allow formagneticfield
equilibration. Prior to preprocessing, image intensity outliers were
identified using CanlabCore tools (https://github.com/canlab/

CanlabCore, for details, see ref. 21). Each time point identified as out-
lier was included in the first-level model as a separate nuisance cov-
ariate. The remaining functional images were correct for slice timing
differences, head movements, co-registered with the T1-weighted
structural images, normalized to Montreal Neurological Institute
(MNI) standard template (interpolated to 2 × 2 × 2mm voxel size), and
spatially smoothed with an 8-mm full-width at half maximumGaussian
kernel (For details, see ref. 21).

Preprocessed images were subjected to a first-level GLM using
SPM12 for prediction analysis. The four runs were temporally con-
catenated beforehand to ensure that there were enough trials for
each rating. The model included five separate boxcar regressors
time-locked to the anticipation period (6 ~ 10 s) corresponding to
each rating (i.e., 1–5), which allowed us to model brain activity in
response to each anxious level separately. Note that we only included
the anticipation periods after which no shocks occurred to obviate
any potential interference of the shock pain107–109. Accordingly, the
anticipation periods followed by shocks, the ‘fast’ and ‘slow’ trials as
well as missed trials, were treated as regressors of no interest. The
outcome period was also modeled with a boxcar regressor to
examine the effects of shock delivery. Tomodel any effects related to
motor activity, one boxcar regressor indicating the rating period was
included. The two fixation-cross epochs served as implicit baseline.
All regressors of interest were convolved with a double gamma
canonical hemodynamic response function (HRF). Additionally, 24
headmotion parameters (6 realignment parameters demeaned, their
derivatives and the squares of these 12 regressors), indicator vectors
specifying ‘spikes’ by framewise displacement (FD) that had devia-
tions larger than 0.50 mm110 and outlier time points identified from
image intensity (see above for details) were treated as nuisance
regressors.

Developing the brain model
Using the training dataset (Study 1,n = 44), wedeveloped awholebrain
neural signature (graymattermasked) predictive of subjective anxious
experience (i.e., SUITAS) by training a support vector regression (SVR)
model. We first concatenated each participant’s data across runs and
then used individual first-level GLM images (one per rating of no-shock
trials for each participant) across participants as features to predict
participants’ ratings of the anticipation periods (Fig. 1c). The SVR was
performed using a linear kernel function (C = 1) with epsilon setting to
0.1 in the Spider toolbox (http://people.kyb.tuebingen.mpg.de/spider)
with individual activationmaps (one per rating for each participant) as
features to predict participants’ anxious arousal ratings of the antici-
pation period while undergoing fMRI.

Model evaluation
To evaluate themodel performance andminimize overfitting, we used
10 × 10-fold cross-validation within the training dataset in Study 1 and
applied the brain model (i.e., SUITAS) to new individuals in Study 2
(Fig. 1c). The cross-validation procedures were repeated ten times by
producing different splits (10 subsamples) in each repetition. Activa-
tion maps from 9 subsamples were trained to predict the anxiety rat-
ings, and then the performance was tested on the holdout participants
(1 subsample). To obtain unbiased estimates of the model perfor-
mance, we predicted subjective ratings in new individuals from the
validation dataset (Study 2, n = 30) by calculating the signature
responses using a dot product of the SUITAS weight map with each
vectorized activationmap (oneper rating). Toprovide an interpretable
effect size metric, we calculated Pearson correlations between the
predicted ratings and the actual ratings across participants for both
Study 1 and Study 2, and the statistical inferencewas determined using
a permutation test with 5000 random shuffles only for Study 2 given
that cross-validated permutation test is very time-consuming.
Explained variance score (EVS) was computed to indicate the overall
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prediction error (for similar approaches see ref. 21). We additionally
assessed the classification accuracy between high (average of rating 4
and 5) versus low (averageof rating 1 and 2) levels of subjective anxious
ratings using two-sided forced-choice tests from receiver operating
characteristic curves.

Generalization of the SUITAS
We tested whether SUITAS could predict subjective ratings in new
individuals from Study 3 (n = 50) who were not included in the initial
model training and validation and underwent a modified UVTA
(Fig. 1d). The independent dataset in Study 3 could provide a good test
for the model generalizability and also allow us to obtain unbiased
estimates of the model sensitivity. Similarly, pattern responses were
estimated for each test participant by computing the dot product of
the SUITAS pattern with the participant’s vectorized activation map.
The calculations for Pearson correlation, permutation test, EVS, and
classification accuracy were the same as in Study 2. The statistical
inference of Pearson correlation was determined using a permutation
test with 5000 random shuffles. Moreover, we used two publicly
available datasets (Study 4, n = 59 from our previous study using a
visual threat-conditioning paradigm61; Study 5, n = 68 from a previous
study using an auditory threat-conditioning paradigm62; details see
Supplementary Methods and Supplementary Table 1) to further test
the generalizability of the SUITAS in distinguishing uncertain threat
versus safe anticipation across cohorts, paradigms, MRI systems, and
scanning parameters.

Within-individual prediction
To further determine the sensitivity of the population-levelmodel (i.e.,
SUITAS) in tracking within-individual variation in anxious ratings, we
estimated single-trial responses using a GLM design matrix with
separate regressors for each trial (no shock) in Study 1, 2 and 3,
resulting in ~44 trials for each participant in the training and validation
datasets and ~64 trials for each participant in the prospective gen-
eralization dataset. The SUITAS was next applied to the single-trial
activation maps to obtain the signature responses, which were finally
correlated with the true ratings for each participant separately. Note
that we used 10 × 10-fold cross-validation to obtain less biased test
results for each participant in Study 1, whereas the within-individual
prediction in Study 2 and Study 3 did not use cross-validation proce-
dures because theywere not included in the training of themodel. The
correlation coefficientswerefirst r to z transformed and then averaged
toobtainonemeancorrelation value. Bootstrap tests (5000 iterations)
were used to test whether the distributions of within-individual
prediction–outcome correlations were significantly higher than zero.

Identifying a core system consistently involved in subjective
experience of anxiety
To identify the important brain regions for the subjective experience
of uncertain threat anticipation, we located the consistent voxels
across participants that (1) reliably contributed to the model predic-
tion (i.e., model weights) and (2) were associated with subjective
anxious arousal (i.e., model encoding). Previous studies have sug-
gested that both model weight (‘betas’) and model encoding maps
(‘structure coefficients’) are necessary to interpret the model74,111. We
therefore obtained both model weight maps and model encoding
maps at the individual level and then calculated their conjunction (i.e.,
significant voxels in bothmaps) to determine the core brain system for
subjective experience of threat anticipation under uncertainty.

To do this, we first ran a separate prediction analysis (linear SVR
with C = 1) for each participant in the training dataset (Study 1, n = 44)
using their single-trial activation maps (~44 trials, 10 × 10-fold cross-
validated). A one-sample t-test (FDR q < 0.05, one-sided) acrosswithin-
individual patterns was performed to evaluate the consistency of each
weight for every voxel in the brain. Next, model encoding (‘structure

coefficient’) maps were computed for each participant by transform-
ing the within-individual predictive pattern using the following for-
mula: A= cov Xð Þ×W × covðWT ×X Þ�1

, where A is the reconstructed
activation pattern, cov Xð Þ is the covariance matrix of individual data,
W is the SUITAS predictive weights, and covðWT ×X Þ is the covariance
matrix of the latent factors. Structure coefficients map individual
voxels to the overall multivariate model prediction from backward
model to forward model and the significant brain regions were
determined by one-sample t-test (FDR q <0.05, one-sided) on the
within-individual encoding maps where the voxel-wise activity corre-
lates with the model prediction. The conjunction (FDR q < 0.05, one-
sided, preserving positive values) of the thresholded second-level
within-individual model weight map (one-sample t-test) and model
encoding map (one-sample t-test) was considered as the core system
map. The regions were moreover mapped onto the results from a
recent meta-analysis on uncertainty-induced threat anticipation that
included categorical comparisons of fMRI activation between unpre-
dictable threat and safe anticipation in healthy individuals33.

Testing the specificity of the SUITAS against pain, anticipation,
and arousal
To examine whether the SUITAS specifically captures anxious feelings,
we evaluated the extent to which the SUITAS was sensitive to pain
experience, general positive/negative anticipation and unspecific
negative emotional arousal involved in the paradigm by testing the
SUITAS on four independent datasets (Study 6, n = 33 from previous
studies using a thermal pain paradigm53,112; available at https://figshare.
com/articles/dataset/bmrk3_6levels_pain_dataset_mat/6933119; Study
7, n = 100 from an ongoing study using a monetary gain/loss antici-
pation paradigm - MID task113- to measure reward processing, https://
zib.fudan.edu.cn; Study 8, n = 48 from an ongoing study using an
emotional pictureparadigmandwasa subsample fromStudy 3, Fig. 1d;
Study 9, n = 65 from Study 2 and 3 in which the skin conductance data
was recorded; see also Supplementary Methods and Supplementary
Table 1 for details), respectively. For Study 6, we used the SUIAS to
predict the pain ratings by computing the signature responses using a
dot product of the SUIAS weight map with each vectorized activation
map, and the statistical inferencewas determined using a permutation
testwith 5000 random shuffles.We further used the SUITAS to classify
the pain stimulation periods corresponding to high (5 and 6) versus
low (1 and 2) pain ratings after each trial. For Study 7, we applied the
SUITAS to distinguish anticipation of monetary gain versus neutral
condition andmonetary loss versus neutral condition where signature
responses were compared for two conditions. For Study 8, we applied
the SUITAS to classify exposure towards pre-selected high-arousing
disgust versus low-arousing neutral pictures that were presented in an
event-related design during fMRI acquisition (details see Supplemen-
tary Methods). Classification accuracy was calculated from receiver
operating characteristic curves using forced-choice classificationandP
values were calculated using two-sided independent binomial tests for
Study 6–8. Moreover, we tested whether the SUITAS could specifically
predict subjective anxious feelings rather than its concomitant skin
conductance levels using subsamples of Study 2 (n = 22) and Study 3
(n = 43) who had complete skin conductance data (Study 9, details see
Supplementary Methods and Supplementary Table 1).

Comparing the SUITASwith predictivemodels of subjective fear
and negative affect
To test whether or to which extent The SUITAS was distinct from
neural representations of fear exposure and negative affect, we com-
pared the functional and spatial similarity of the SUITAS with the
subjective fear signature VIFS from our previous study (Study 10,
n = 67; details see ref. 21) and the subjective negative affect signature
PINES from Chang et al. (Study 11, n = 121; details see ref. 52) (Fig. 1d,
see also Supplementary Methods for details). Specifically, we (1)
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applied the SUITAS to the datasets of VIFS and PINES, and vice versa
(i.e., applied the VIFS or PINES to the datasets of SUITAS) to examine
the prediction performance, and (2) compared the spatial topography
of the SUITAS, VIFS and PINES patterns by calculating the spatial cor-
relation among these predicted weights (unthresholded and thre-
sholded at uncorrected P < 0.001) and computed cosine similarity
between these signatures and predefined ROIs documented in pre-
vious studies as regions showing preferential activation to anxiety33,
fear67 and negative affect68. To exclude the visual processing effect, we
retrained thesemodels excluding the occipital lobe and compared the
performance of SUITAS with VIFS and PINES (see Supplementary
Results and Supplementary Fig. 9).

Models using features from local regions or networks
To examine whether the subjective anxious experience was reducible
to activation patterns in any single brain region or network, we re-
trained SVR models (10 × 10-fold cross-validated) restricted to local
brain regions (e.g., ACC, aINS, thalamus, BNST, etc.) andnetworks (e.g.,
seven large-scale resting-state function networks73, salience network72

and consciousness network18) which have been previously suggested
to be associated with anxious anticipation. Anatomical parcellations
and the corresponding atlases used to select ROIs are detailed in
Supplementary Table 3.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that has been used to develop and evaluate the SUITAS are
available on the Open Science Framework (https://osf.io/a8gcb/). The
meta-analyticmapcomparing uncertain threat versus safe anticipation
in healthy individuals33 is available at https://neurovault.org/images/
384665/. Source data are provided with this paper.

Code availability
The custom code that supports the findings of this study is available at
https://github.com/lucyliu666/Anxiety_decoder and https://osf.io/
a8gcb/, and the CanlabCore Tools are available at https://github.
com/canlab/CanlabCore. Zenodo, https://zenodo.org/records/
10409502, (2023)114.
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