
Article https://doi.org/10.1038/s41467-024-45421-w

Detection of senescence using machine
learning algorithms based on nuclear
features
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Hiromi Kudo5, Domhnall McHugh1,2, Laura Bousset 1,2,
Jose Efren Barragan Avila 3, Roberta Forlano 6, Pinelopi Manousou6,
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Cellular senescence is a stress response with broad pathophysiological impli-
cations. Senotherapies can induce senescence to treat cancer or eliminate
senescent cells to ameliorate ageing and age-related pathologies. However,
the success of senotherapies is limited by the lack of reliable ways to identify
senescence. Here, we use nuclear morphology features of senescent cells to
devisemachine-learning classifiers that accurately predict senescence induced
by diverse stressors in different cell types and tissues. As a proof-of-principle,
we use these senescence classifiers to characterise senolytics and to screen for
drugs that selectively induce senescence in cancer cells but not normal cells.
Moreover, a tissue senescence score served to assess the efficacy of senolytic
drugs and identified senescence in mouse models of liver cancer initiation,
ageing, and fibrosis, and in patients with fatty liver disease. Thus, senescence
classifiers can help to detect pathophysiological senescence and to discover
and validate potential senotherapies.

Senescence is a cellular response that limits the replication of old,
damaged, and cancerous cells. Senescent cells undergo a stable cell
cycle arrest, produce a bioactive secretome (the senescence-
associated secretory phenotype or SASP), and undergo many char-
acteristic phenotypic changes1. Amongst those changes, senescent
cells reprogram their metabolism, acquire a flat and enlarged mor-
phology, display an increase in lysosomal mass2, rearrange their
chromatin3–5, and undergo nuclear changes6–9.

Senescent cells accumulate during aging, are present in cancerous
and fibrotic lesions, and are often associated with disease10. Research

in the last decade has shown that beyond these associations, lingering
senescent cells contribute to aging and disease progression11. Conse-
quently, there is growing interest in identifying drugs that selectively
kill senescent cells, referred to as senolytics12. Clinical trials using
senolytic drugs are still in their infancy13,14 yet hold enormous poten-
tial, given the broad range of senescence-associated pathologies10.

A key requirement for the success of senolytic clinical trials, and
indeed to better understand senescence biology, is the reliable iden-
tification of senescent cells. Multiple markers to identify senescent
cells exist, such as senescence-associated β-galactosidase (SA-β-Gal)
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activity15, that reflects the increased lysosomalmass of senescent cells2.
However, non-senescent cells such as macrophages often stain posi-
tive for SA-β-Gal, and SA-β-Gal can only be detected in vivo using
cryosections, which complicates its use as a biomarker. Anotherwidely
used senescent marker is the cyclin-dependent kinase inhibitor
p16INK4a, which is induced as part of the senescence program to arrest
cells16. However, p16INK4a is oftendeleted in cancer cells and it is difficult
to detect p16Ink4a in mouse tissue sections with current antibodies.
Therefore, due to a combinationof technical issues and the complexity
and heterogeneity of senescence, there is no such thing as universal
senescencemarkers, and there is a need to rely onmultiple markers in
combination1,17.

Recently, imaging-based approaches have been developed to
identify senescence18–20. While these reports prove that image-based
classifiers can identify senescent cells, to what extent such classifiers
can be used easily by other labs, identify a variety of senescent cell
types, or be applied to other contexts and questions, is unclear.

Here, we take advantage of nuclear features to devise machine-
learning algorithms that identify senescence. We devise a family of
algorithms that detect a wide range of senescent cells, from cancer
cells to primary fibroblasts, with high accuracy. These algorithms
require less computational power than image-based deep neural net-
works and can be adapted for use with data obtained from open-
source image analysis software, which facilitates their use by others.
Finally, we took advantage of our nuclear feature-based senescence
classifiers to identify drugs that selectively induce senescence in can-
cer cells and to monitor senescence in different mouse models and
patient samples. In summary, these senescence classifiers can help to
elucidate the pathophysiological roles of senescence and assist in the
discovery and validation of senotherapies as well as to better stratify
patients.

Results
Nuclear features can be used to devise classifiers that predict
senescence in human cells
To identify nuclear features that can be used to detect senescent cells,
we induced senescence in A549 human lung adenocarcinoma cells by
treating them with the chemotherapeutic agent etoposide, a topoi-
somerase II inhibitor (Fig. 1a). In contrast with DMSO-treated cells, a
high percentage of etoposide-treated cells stained positive for
senescence-associated-β-galactosidase (SA-β-Gal) (Fig. 1b). Moreover,
most etoposide-treated cells were negative for BrdU staining, indi-
cating cell cycle arrest, had upregulated DNA damage (as assessed by
γH2AX staining), and increased levels of p53 and its target the cyclin-
dependent kinase inhibitor p21CIP1, consistent with senescence (Sup-
plementary Fig. 1a–d). To further examine senescence induction, we
took advantage of quantitative immunofluorescence (IF) and searched
for cells expressing a combination of thosemarkers (such as cells that
were BrdU negative and p21CIP1 positive, Fig. 1c and Supplementary
Fig. 1e; double p53 /p21CIP1 positive, Fig. 1d and Supplementary Fig. 1f;
and double p53 /γH2AX positive, Supplementary Fig. 1g). The above
analysis shows that most of the etoposide-treated A549 cells were
senescent.

Senescent cells are known to change chromatin architecture and
nuclear morphology4,8,9. To assess the nuclear morphology of
senescent and control A549 cells, we stained the nuclei with 4′,6-
diamidino-2-phenylindole (DAPI) and used a high-throughput auto-
mated microscopy system (IN Cell Analyzer 2500HS). Although
nuclear morphology and size were heterogeneous, a high proportion
of senescent A549 cells had bigger nuclei that were morphologically
distinct from those of control cells (Fig. 1e). We used image analysis
software (IN Carta) to examine individual nuclear features, including
nuclear area, gyration radius, compactness, chord ratio, displace-
ment, elongation, and form factor. All of these nuclear features,
except form factor, were significantly different between senescent

(etoposide-treated) and control (DMSO-treated) A549 cells (Fig. 1f
and Supplementary Fig. 2a).

As none of these nuclear features alone could distinguish senes-
cent cells from non-senescent cells, we used these features to devise
machine-learning classifiers that could predict senescence. To this
end, we developed datasets to train random forest and classification
tree-basedmachine-learning algorithms (Supplementary Fig. 2b, c and
Supplementary Table 1). Initially, we generated two senescence clas-
sificationmodels (Supplementary Table 2), termed AEM (classification
tree-based) and AERFM (random forest-based). Given that themajority
of the etoposide-treated cells were senescent (Supplementary Table 3)
and conversely the majority of the DMSO-treated cells were not
senescence, to simplify the training of these algorithms, we assumed
that all the etoposide-treated cells were senescent and all the DMSO-
treated cells were non-senescent (Fig. 1g). Analysis of the training sets
showed thatboth classifiers identified senescence inetoposide-treated
A549 cells to a similar extent as staining for SA-β-Galactosidase activity
(Fig. 1h), which we validated with test data from new samples (Fig. 1i).
Analysis of precision-recall and receiver operating characteristic (ROC)
curves, which represent sensitivity as a function of fall-out, showed
high specificity in the detection of senescent cells by both the AEMand
AERFM classifiers (Supplementary Fig. 2d, e).

To explore whether this approach could be widely adopted, we
took advantage of CellProfiler21, an open-source image analysis soft-
ware. CellProfiler allowed us to examine 17 nuclear features. Like what
we observed with In Carta, most nuclear features were significantly
different in senescent cells (Supplementary Fig. 3a). AEMCP (classifi-
cation tree-based) and AERFMCP (random forest-based) classifiers
trained using datasets produced with CellProfiler, identified senes-
cence in both training and test datasets of etoposide-treatedA549cells
to a similar extent as SA-β-Galactosidase immunostaining (Supple-
mentary Fig. 3b, c). Quality parameters further validated the classifiers
generatedwith CellProfiler data (Supplementary Fig. 3d, e).Overall, we
infer that machine-learning algorithms based on nuclear features can
identify senescent cells.

Predictors can distinguish senescent cells from those under-
going quiescence or DNA damage
One of the defining characteristics of senescent cells is their stable cell
cycle arrest1,17. Because quiescent cells are also arrested in the cell
cycle, we wanted to determine whether our classifiers can distinguish
senescent cells from quiescent cells. To this end, we compared A549
cells that were growing (10% FBS), quiescent (0.5% FBS), and senescent
(treated with 2μM etoposide, Fig. 2a). BrdU incorporation confirmed
that a significant proportion of A549 cells cultured in 10% FBS were
dividing, whereas most cells cultured in 0.5% FBS or treated with
etoposidewere arrested (Fig. 2b, c). In contrast, only etoposide-treated
A549 cellswere senescent, as shownby SA-β-Gal staining (Fig. 2b, d).As
expected, both the AEM and AERFM classifiers predicted a significant
proportion of senescent cells in the etoposide-treated cultures (Fig. 2e
and Supplementary Fig. 4a). Importantly, A549 cells cultured in 0.5%
FBS were not classified as senescent by our algorithms, even though
most cells were arrested (Supplementary Fig. 4b).Overall, these results
indicate that our senescence classifiers can accurately distinguish
senescent cells not only from growing but also from quiescent cells.

Since cell confluency can affect proliferation rates and be a con-
founding factor when staining for SA-β-Gal activity22, we assessed our
classifier on proliferating or senescent cells seeded at different den-
sities (Fig. 2f). These experiments show that our classifier was able to
accurately identify senescent cells regardless of confluency (Fig. 2g, h
and Supplementary Fig. 4c).

DNA damage occurs in most types of senescence and is a key
driver of senescent phenotypes23. To understand if the nuclear chan-
ges detected by our algorithm reflected alterations caused by a DNA
damage response rather than senescence, we compared how the AEM
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classifier identified cells undergoing DNA damage (DD, induced after
36 h of γ-irradiation) or senescence caused by the aurora A kinase
inhibitor MLN805424 or etoposide (Fig. 2i). While A549 cells under-
going DD or senescence with MLN8054 or etoposide were arrested
and upregulated p21CIP1 expression (Supplementary Fig. 4d, e), a sig-
nificant increase in cells showing 53BP1 foci in their nuclei, indicative of
DNA damage was only observed in irradiated cells or cells in which

senescence was induced with etoposide (Fig. 2j and Supplementary
Fig. 4f). SA-β-Gal staining confirmed that MLN8054- and etoposide-
treated, but not cells irradiated for 36 h were senescent (Fig. 2k).
Finally, the AEM classifier identifiedmost etoposide-treated A549 cells
as senescent. It also identified a proportion (less than 30%) of the
irradiated cells as senescent, suggesting that changes induced by DNA
damage (that are central to most types of senescence) might be
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detected by our classifiers. However, the fact that the AEM classifier
identified MLN8054 cells (Fig. 2l, in which we did not observe sig-
nificant amounts of DNA damage) as senescent, shows that the clas-
sifier is not just detectingDNAdamage-associated changes but rather a
combination of nuclear features associated with senescent cells.

Predictors identify senescent cells with high accuracy and
sensitivity
To better evaluate the predictive value of our classifiers, we examined
mixtures of different ratios of non-senescent (DMSO-treated) and
senescent (etoposide-treated) A549 cells (Fig. 3a, explained in Sup-
plementary Fig. 5). We treated cells with DAPI, which stains DNA and
identifies nuclei, and with 5-dodecanoylaminofluorescein di-β-D-
galactopyranoside (C12FDG), which is cleaved by β-galactosidase to
generate a fluorescent product; this allowed us to simultaneously
evaluate nuclear morphology parameters and SA-β-Gal activity,
respectively (Fig. 3b). We established a fluorescence intensity cut-off
for the identification of SA-β-Gal positive, senescent cells (Supple-
mentary Fig. 6a, b).

The percentage of cells predicted to be senescent by both the
AEMandAERFMclassifiers significantly correlatedwith thepercentage
of SA-β-Gal positive cells (Fig. 3c and Supplementary Fig. 6c). Co-
culture experiments also showed that predictions from the AEM clas-
sifier significantly correlated with the percentage of senescent cells as
defined by considering p21CIP1 positive cells (Supplementary Fig. 6d),
p21CIP1 positive/BrdU negative cells (Fig. 3d) or p21CIP1/p53 double-
positive cells (Fig. 3e).

To generate and train those classifiers, we assumed that all
etoposide-treated cells were senescent and all the DMSO-treated cells
were normal (Fig. 1g). To understand if we could improve our algo-
rithms by training them with cells that we have identified as senescent
(or non-senescent) based on senescent markers, we generated a new
classifier (that we called BAEM). We trained this classifier with senes-
cent cells (from etoposide-treated cultures) that were SA-β-
galactosidase positive, and non-senescent cells (from DMSO-treated
cultures) that were negative for SA-β-galactosidase staining (Fig. 3f).
We took a similar approach to generate new algorithms trained with
p21CIP1/p53 double-positive cells (PPEM, Supplementary Fig. 6e, f) or
with BrdU negative/ p21CIP1 positive cells (BPEM, Supplementary
Fig. 6g, h). In all cases, the percentage of cells predicted to be senes-
cent by the BAEM, PPEM, and BPEM classifiers significantly correlated
with the percentage of SA-β-Gal positive cells inmixed cultures (Fig. 3g
and Supplementary Fig. 6f, h). To confirm that these results were not
biased by the time at which we co-cultured the normal and senescent
cells in our protocol (a day before assessing senescence), we con-
ducted experiments in which normal and senescent cells were co-
cultured 4days before the assessment of senescence, obtaining similar
results (Supplementary Fig. 7).

To directly compare the assumption-based and marker-based
classifiers, we employ them to predict senescence in the same dataset

(Fig. 3h). We assessed the precision (the ratio of predicted senescent
cells to SA-β-Gal positive cells), accuracy (the ratio of true prediction,
both for senescence and non-senescent cells), and recall (howmany of
the true senescent cells were identified by the classifier) and F1 score
for the predictions (Fig. 3i). This showed us that the marker-based
algorithms had similar levels of performance to the AEM algorithm
(where we had assumed that all the etoposide-treated cells were
senescent), suggesting that training with cell populations comprised
mostly of senescent cells is sufficient to generate efficient senescent
classifiers.

A family of machine-learning algorithms accurately predict
senescence
To examine the generality of the senescence classifiers, we established
co-cultures with different ratios of non-senescent A549 cells (DMSO-
treated) and A549 cells induced to senesce by treatment with doxor-
ubicin or the aurora kinase inhibitor barasertib (Supplementary Fig. 8).
Additionally, we established mixed co-cultures of other human cell
types treated with DMSO or etoposide, including a liver adenocarci-
noma cell line (SK-HEP-1), melanoma cell line (SK-MEL-103), breast
cancer cell line (MCF7) and colon cancer cell line (HCT116, Supple-
mentary Fig. 9) or human fibroblasts (IMR90 cells, Supplementary
Fig. 10). We stained cells with C12FDG and DAPI to evaluate senescence
and nuclear parameters respectively and used the senescence classi-
fiers to predict senescence. The predictions and experimental data
correlated significantly and very highly for the different cell types
treated with etoposide (Supplementary Figs 9, 10). For most condi-
tions, the precision, accuracy, and recall of both classifiers were
comparable to etoposide-treated, senescent A549 cells (Fig. 4 and
Supplementary Fig. 11).

Next, we generated newclassifiers trainedwith data of senescence
induced in different cell types (Fig. 4a and Supplementary Tables 2, 3).
Five of the classifiers were generated using decision tree algorithms
(GM, AEM, MEM, MERFM, HERFM), three were generated using ran-
dom forest algorithms (AERFM,MERFM,HERFM) andwe also included
a voting-based consensus algorithm (VCA), whose decisions were
based on the consensus of the other eight classifiers (Fig. 4a). Seven of
the classifiers were trained using data from individual models of
senescence, but the general model (GM) classifier was trained with
data from 12 different senescence conditions (Supplementary Table 1).
We observed a significant, high correlation between the percentage of
SA-β-Gal positive cells and the percentage of cells predicted to be
senescent in our nine co-culture datasets (Fig. 4b), although
barasertib-treated A549 cells analyzedwith GM,AEM, or IEMdisplayed
a lower but still significant correlation. The accuracy and precision of
most predictions were relatively high, particularly for the GM, AEM,
and IEM classifiers (Fig. 4c and Supplementary Fig. 11a), whereas the
random forest-based-AERFM and the voting VCA classifiers had the
best recall rates (Supplementary Fig. 11b). Overall, looking at the F1
score (Fig. 4d) and other parameters, the GM classifier and the VCA

Fig. 1 | Nuclear features can be used to identify senescent cells. a Experimental
design for the induction and characterization of senescence in A549 cells treated
with 2μM etoposide for 7 days. b Quantification of SA-β-galactosidase (SA-β-Gal)
activity after DMSO or etoposide treatment (n = 3, left) and representative images
of SA-β-Gal staining (right). Scale bar, 50μm. c, d Quantification of Brdu-/p21Cip1+
cells (c) and p21/p53 double-positive cells (d) treated with DMSO or etoposide
(n = 3). e Representative images of DAPI-stained nuclei for DMSO-treated (normal)
and etoposide-treated (senescent) A549 cells. Scale bar, 20μm. f Quantification of
nuclear features for DMSO and etoposide-treated A549 cells 7 days post-treatment
(n = 1000 cells per group). Kolmogorov–Smirnov test was performed to assess
probability distribution, with D value indicated. Data of a representative experi-
ment out of 3. g Experimental design for the development of training sets for the
AEM and AERFM senescence classifiers. h Analysis of training datasets of A549 cells

treated with DMSO or etoposide. Percentage of SA-β-Gal positive cells (left, n = 3)
and percentage of predicted senescent cells using the AEM (center) and AERFM
(right) senescence classifiers. i Analysis of test datasets of A549 cells treated with
DMSO or etoposide. Percentage of SA-β-Gal positive cells by immunofluorescent
C12FDG in DMSO (normal) and etoposide-treated A549 cells (senescent) (left,n = 3).
Percentage of predicted senescent cells in the validation datasets using the AEM
(middle) and AERFM (right) classifiers. AEM and AERFM prediction was performed
on the same cells as SAβ-Gal staining. Error bars representmean ± s.d.;n represents
number of replicates except when indicated differently. All statistical significances
unless indicated differently were calculated using unpaired, two-tailed, Student’s t-
tests. AEM, A549 etoposide model; AERFM, A549 etoposide random forest model.
Source Data are provided in the Source Data File.

Article https://doi.org/10.1038/s41467-024-45421-w

Nature Communications |         (2024) 15:1041 4



classifier both performed well and consistently across datasets. Thus,
most of the classifiers tested are suitable for predicting different types
of senescence.

Predictors can assist in the characterization and discovery of
senotherapies
Drugs such as the BCL-2 family inhibitors ABT-263 and ABT-737
selectively kill senescent cells and have the potential to treat a wide
range of diseases in which senescent cells accumulate25–27. To
understand if our senescence classifiers could assist in the assess-
ment of senolytic drugs, we setup a co-culture assay using A549 GFP

senescent cells (that have been treated with etoposide) and control
A549mCherry cells (treated with DMSO). In this way, we could assess
the relative numbers of senescent and non-senescent cells by iden-
tifying the cells as GFP or Cherry positive (Fig. 5a and Supplementary
Fig. 12). We treated the co-cultures with DMSO (as a control) or
with two senolytic drugs (1μM ABT-263 or 5 μM ABT-737) and ana-
lyzed the effects after 72 h. While non-senescent cells (A549
Cherry) increased in numbers during this period (Fig. 5b, c), senes-
cent cells were selectively reduced upon treatment with both seno-
lytic drugs, as assessed by counting A549 GFP positive cells (Fig. 5d)
or using the AEM senescence classifier (Fig. 5e). This experiment

Fig. 2 | Senescence classifiers distinguish senescent cells from those under-
going quiescence or DNA damage. a Experimental design for the comparison of
growing, quiescent and senescent A549 cells. b Representative images of growing
(10% FBS), quiescent (0.5% FBS), and senescent (10% FBS, etoposide-treated) A549
cells stained with antibodies recognizing BrdU (top). SA-β-galactosidase (SA-β-Gal)
staining from the same experiment is shown at the bottom. Scale bars, 100μM.
c,d Percentage of cells incorporating BrdU (c) and staining positive for SA-β-Gal (d)
(n = 3). e Percentage of cells predicted to be senescent by the AEM senescence
classifier (n = 3). f Experimental design for assessing the impact of cell density in
senescent prediction. g Percentage of SA-β-Gal positive A549 cells treated with
either DMSO or etoposide and seeded at low (L), medium (M), and high (H) density

(n = 3 per condition). h Senescence prediction using the AEM classifier of cultures
of A549 cells treatedwith eitherDMSOor etoposide and seeded at low (L),medium
(M), and high (H) density (n = 9 for all cases except etoposide-treated cells seeded
at medium density, n = 7). i Experimental design for assessing the impact of DNA
damage in senescence prediction. j 53BP1 positive cells in cultures of growing (G),
irradiated (DD), and senescent (MLN8054 M; etoposide E) cells (n = 3).
k, l Percentage of SA-β-Gal positive (k) and AEM positive (l) cells for the different
conditions (n = 3). Error bars represent mean± s.d.; n represents independent
experiments. Statistical significance was calculated using multiple comparisons
one-way ANOVA. Source Data are provided in the Source Data File.
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shows how we could use senescent classifiers to characterize seno-
lytic drugs.

Chemotherapies must induce senescence in the tumor to achieve
a therapeutic outcome28. However,many side effects of chemotherapy
arise from off-target induction of senescence in healthy, uninvolved
tissues29. Some efforts to identify drugs inducing senescence of cancer
cells have been successful30, but screening for such drugs relies on

having trustworthy readouts for senescence in cancer cells that are
amenable to high-throughput screening.We reasoned that senescence
classifiers could serve as the basis of such a screen.

As a proof of principle, we screened a collection of 676 drugs
(selected from the Selleck Target Selective and Protein Kinase Inhi-
bitor Library II libraries) for their ability to induce senescence in A549
cancer cells but not in IMR90 normal human fibroblasts (Fig. 5f). As

Article https://doi.org/10.1038/s41467-024-45421-w

Nature Communications |         (2024) 15:1041 6



controls of the screen, we included doxorubicin, which induced
senescence in both A549 and IMR90 cells. We excluded from
the analysis drugs that were toxic (killing more than 60% of cells
when compared with the controls). Using the GM classifier, we
identified 56 drugs that were predicted to induce senescence in
either A549 and/or IMR90 cells (Fig. 5g). Amongst those drugs 27
(exemplified by the aurora kinase inhibitors MLN8054) induced
senescence only in A549 cells, 11 (e.g., the PARP1 inhibitor AG-14361)
induced senescence only in IMR90 cells and 18 drugs induced
senescence in both cells (Fig. 5h–j). Overall, the above experiments
show how our senescence classifiers can assist in identifying differ-
ent senotherapies.

Characterization of drugs that induce senescence specifically in
cancer cells
To further characterize if the drugs identified in our screen selectively
induced senescent in A549 cells, we selected a few candidates,
including the aurora kinase inhibitors MLN8054, and ZM447439, the
Eg5 inhibitor ARQ621 and the gp130 inhibitor SC144. In addition, we
treat cells with AG-14361 as an example of a drug inducing senescence
selectively in IMR90 cells and doxorubicin and niraparib, drugs indu-
cing senescence in both cell types. SA-β-Gal staining confirmed that
our 4 candidates (MLN8054, ZM447439, ARQ621, and SC144) induced
senescence in a higher percentage of A549 cells than IMR90 cells,
whereas AG-14361 had the opposite effect (Fig. 6a, b).

Fig. 3 | Classifiers identify senescence at the single-cell level. a Design of the
experiments analysing co-cultures of DMSO-treated (normal) or etoposide-treated
(senescent) A549 cells. b Representative pictures out of three independent
experiments of cells stained for SA-β-Galactosidase (SA-β-Gal) activity using
C12FDG. Scale bars, 100μM. c–e Correlation between percentage of SA-β-Gal
positive (c) (r =0.8745; p <0.0001), p21CIP1 + /BrdU- (d) (r =0.9478; p <0.0001) and
p21CIP1 + /p53+ (e) (r =0.8681; p <0.0001) cells and percentage of cells predicted to
be senescent using AEM. Pearson correlation coefficient (two-tailed, 95% CI). r
represents two-tailed nonparametric correlation probability. n = 70–96wells.Wells
are co-cultures of senescence and non-senescent cells at different ratios as
explained in methods. f Experimental design for the selection of cells to train the
BAEM classifier. g Correlation between percentage of SA-β-Gal positive cells and

cells predicted to be senescent using BAEM (r =0.9969; p <0.0001); Pearson cor-
relation coefficient (two-tailed, 95% CI). h Experimental design to compare and
validate assumption-based and marker-based classifiers by control (DMSO) and
senescent (etoposide) cell co-culture and corresponding SA-β-Gal staining.
i Heatmap of precision (Pr.), accuracy (Ac.), recall (Re.), and F1 score (F1) median
values (left to right) of BAEM, BPEM, PPEM, and AEM classifiers (top to bottom).
Measures representmedian values, calculated from n = 70–96 wells each. Wells are
co-cultures of senescence andnon-senescent cells at different ratios as explained in
methods. BAEM SA-β-Gal+ A549 etoposide model, BPEM Brdu-/p21CIP1+ etoposide
model, PPEM p53 + /p21CIP1+ etoposide model. Source Data are provided in the
Source Data File.

Fig. 4 | Comparison of the performance of different senescence classifiers.
a Experimental design for fitness assessment of different senescence classifiers in
datasets derived from co-cultures of senescent cells with non-senescent counter-
parts.b–dCorrelation (b), precision (c), and F1 score (d) of senescence classifiers (x-
axis) in the different datasets (derived from co-cultures of different types of
senescent cells with non-senescent counterparts) represented in heatmaps.

Measures representmedian values, calculated from n = 70–96 wells each. Wells are
co-cultures of senescence andnon-senescent cells at different ratios as explained in
methods. Each heatmap contains 9 algorithms (GM, AEM, AERFM, MEM, MERFM,
HEM, HERFM, and IEM) and the last column corresponds to a voting-based con-
sensus algorithm (VCA), obtained by equal weight voting system of the previous 8
algorithms. Source Data are provided in the Source Data File.
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Fig. 5 | Senescence classifiers can assist in characterizing and identifying
senotherapies. a Experimental design and timeline for assessing senolytic drugs.
b Representative images of co-cultures of senescent (GFP) and non-senescent
(mCherry) A549 cells 72 h after treatment with DMSO (top), ABT-263 (middle), and
ABT-737 (bottom). Scale bar, 200μM. c–e Quantification of mCherry positive cells
(c), GFP positive cells (d) and cells predicted to be senescent by AEM (e), before and
after treatment with the different drugs (n = 3). f Experimental design, and timeline

for the screen for drugs inducing senescence. Drugs were used at 10μM.
g Summary of the screen results. h, iDistribution of B-score results in A549 (h) and
IMR90 (i). The blue dashed line indicates the threshold (B-score> 15). Examples of
an A549-specific hit MLN8054 (blue) and an IMR90-specific AG-14361 (yellow) are
highlighted. j Venn Diagram for senescence-inducing drugs with selectivity for
IMR90 (yellow), A549 (blue) or both (green). Data represent mean ± s.d. n repre-
sents independent experiments. Source Data are provided in the Source Data File.
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Fig. 6 | Characterization of MLN8054 and ARQ621 as drugs preferentially
inducing senescence in A549 over IMR90 cells. a Images of SA-β-galactosidase
(SA-β-Gal) staining on A549 (top) and IMR90 (bottom) cells treated with the indi-
cated drugs. Representative images of one out of 3 experiments. Scale bar, 100μM.
b Percentage of SA-β-Gal positive cells after 7-day treatment with the indicated
drugs in A549 cells (left) and IMR90 (right) cells (n = 3). c, dQuantification of BrdU
(c) and p21CIP1 (d) positive cells by immunofluorescence in A549 (left) and IMR90
(right) cells after treatment with selected drugs (n = 3). e Experimental design and

timeline of the senolytic experiment quantified in (f). f Senolytic activity after
treatment with 1μM ABT-263 for 72 h in either A549 (left) or IMR90 (right) cells
treated for 7 days with the indicated drugs (n = 3). Drug concentrations used in
(c, d), f doxorubicin, 0.5μM; MLN8054, 3μM; ARQ 621, 0.1μM. Significance was
calculated with a one-way ANOVA (Tukey’s multiple comparisons test). Data
represent mean± s.d. n represents independent experiments. Source Data are
provided in the Source Data File.
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We decided to characterize in more detail the effects of ARQ621,
an Eg5 inhibitor that has not been previously linked with senescence,
andMLN8054, an auroraA kinase inhibitor previously shown to induce
senescent in tumor cells24. Treatment with doxorubicin caused cell
cycle arrest (Fig. 6c) and induced p53 and p21CIP1 in both IMR90 and
A549 cells (Fig. 6d and Supplementary Fig. 13a, b). While CDKN2A
(encoding for p16INK4a) is mutated in A549 cells31, we also observed an
upregulation of CDKN2A transcripts in IMR90 cells upon treatment
with doxorubicin (Supplementary Fig. 13c). In contrast, treatment with
MLN8054 or ARQ621 caused a significant cell cycle arrest, induction of
p53 and p21CIP1, and upregulation of SASP components in A549 but not
in IMR90 cells (Fig. 6c, d and Supplementary Fig. 13), consistent with
their differential effects on senescence induction.

Senolytic drugs such as ABT-263 can be used in combination with
senescence-inducing drugs to target cancer cells, inwhat is termed the
‘one-twopunch’ approach32. Todetermine if the identified compounds
can be combined with senolytics to selectively kill cancer cells, we pre-
treated A549 and IMR90 cells with these drugs for 7 days followed by
treatment with ABT-263 for 3 days (Fig. 6e). Pre-treatment with dox-
orubicin, which induced senescence in both cell lines, also sensitized
both IMR90 and A549 cells to ABT-263 (Fig. 6f). In contrast, pre-
treatment with MLN8054 or ARQ621 sensitized over 75% of A549 cells
to ABT-263 treatment, whereas less than half of the IMR90 cells
became sensitive to ABT-263 (Fig. 6f). Overall, we conclude that our
senescence classifiers can be used to discover drugs with selectivity to
induce senescence in cancer over non-oncogenic cells.

Predictors inform a tissue senescence score to detect senes-
cence during cancer initiation in vivo
Next, we aimed to adapt our strategy to detect senescence in tissue
sections.We took advantage of amodel of liver pre-neoplasia and tumor
initiation (Fig. 7a). Briefly, transposon-mediated transfer of oncogenic
NRas (NRasG12V) in hepatocytes is known to induce senescence, as
inferred from elevated levels of p16Ink4a and p21Cip1, elevated SA-β-
galactosidase activity and a senescence-associated secretory
phenotype33–35. We confirmed a significant increase in different senes-
cent markers, including p21Cip1, the SASP components uPAR36, and the
open reading frame 1 (ORF1) product of the LINE1 transposon37, speci-
fically in NRAS-positive cells of mice transduced with a transposon
expressing oncogenic NRasG12V but not on those expressing an NRasG12V,
D38A inactive mutant (Fig. 7b, c and Supplementary Fig. 14a, b).

Taking advantage of this system, we detected senescent cells in
NRasG12V-induced preneoplastic liver sections by performing immu-
nohistochemistry for p21Cip1 (Supplementary Fig. 14c, d). We then used
the slide image analysis software QuPath to measure different nuclear
features in p21-positive and p21-negative populations. p21-positive
cells displayed generally enlarged nuclei, with bigger areas, more
extreme caliper values (also known as Feret diameter), and reduced
circularity (Supplementary Fig. 14e) as observedwith senescent cells in
culture. Using a training dataset, we averaged the p21-negative popu-
lation to obtain ideal normal parameters and ranked p21-positive cells
basedon the intensity of staining, selecting the top 100 to define ‘ideal’
nuclear senescent features (Supplementary Fig. 14f). We used that
information to generate a score based on a combination of nuclear
features, able to evaluate senescence in individual cells (‘cell senes-
cence score’, CSS, Supplementary Fig. 14g): if a nucleus has features
like themodel senescent population, the score assigned would be 1; if,
on the contrary, the nuclear morphology is akin to a normal cell, the
score assigned would be 0. Cells with more extreme senescence-like
features would be assigned values > 1.

We tested this classifier using a test set of p21Cip1- stained liver
sections (Supplementary Fig. 14h). The CSS performed well in pre-
dicting senescent cells in some fields but had low consistency and
could not be used to predict senescence accurately at the cell level. To
determine if the CSS could predict senescence at the tissue level, we

analyzed the distribution of CSS scores in tissues with a relatively high
(3.394%) or low (0.552%) percentage of p21Cip1-positive cells. We ana-
lyzed the distribution of cells with high CSS values at different ranges
(summarized in Supplementary Table 4). From that analysis, we con-
clude that calculating the percentage of cells with CSS between 1 and 5
correlated well with the percentage of senescent cells (as defined by
p21-staining). This was exemplified by a higher fraction of cells with
CSS 1–5 for a tissue with a higher percentage of senescent cells (Sup-
plementary Fig. 14i–k). We subsequently adopted the percentage of
cells in a tissue with a CSS 1–5 as a ‘tissue senescence score’ (TSS, as
summarized in Fig. 7d).

To evaluate the tissue senescence score, we transduced con-
structs co-expressing GFP with oncogenic NRas (NRasG12V, referred to
as G12V) or an effector loopmutant (NRasG12V,D38A, referred to as D38A)
incapable of signaling downstream and induce senescence35 (Fig. 7a).
We performed immunohistochemistry (IHC) to detect GFP or p21Cip1 in
serial slides and stained another set of slides with hematoxylin (Sup-
plementary Fig. 15a). Both cohorts had a similar frequency of GFP
positive hepatocytes (Fig. 7e), but the frequency of p21CIP1-positive
senescent cells was higher in mice transduced with NRasG12V versus
NRasG12V,D38A (Fig. 7f). Similar results were obtainedwhenweused uPAR
(Fig. 7g) or ORF-1 (Fig. 7h) as senescent markers.

We imaged hematoxylin-stained slides and calculated their CSS.
Most cells had a higher CSS in NRasG12V liver sections compared to
NRasG12V, D38A liver sections (Fig. 7i), corresponding to a higher TSS
(Fig. 7j). We also calculated TSS scores from p21CIP1-stained slides,
which correlated with the frequency of p21CIP1-positive cells (Supple-
mentary Fig. 15b) and observed a significant correlation with the TSS
calculated in hematoxylin-stained slides, suggesting that the classifier
is consistent and antibody staining did not interfere with calculating
senescence scores (Fig. 7k).

We further validate the approach using a different cohort of mice
transduced with NRasG12V expressing constructs. We prepared serial
liver sections, staining one with hematoxylin and co-staining the other
with uPAR and p21CIP1 to define senescent cells (Supplementary
Fig. 15c). We confirmed a significant correlation between the TSS
predictor and the percentage of senescent (uPAR-positive/p21CIP1-
positive) cells (Supplementary Fig. 15d).

The tissue senescence score predicts senolytic drug efficacy
in vivo
We previously showed that treatment with senolytic drugs such as
ouabain reduced the percentage of senescent hepatocytes inmice that
had undergone transposon-mediated transfer of NRASG12V 38. To
investigate whether the TSS could reveal the effectiveness of senolytic
compounds in vivo, we treated mice transduced with NRASG12V with
vehicle (DMSO) or a senolytic drug (Fig. 8a), sectioned the liver and
performed IHC for p21CIP1 and hematoxylin staining (Fig. 8b). As
expected, the frequency of p21CIP1-positive cells was lower in mice
treated with the senolytic drug than in those treated with DMSO
(Fig. 8c). We derived CSS from the hematoxylin-stained slides and
observed lower scores for the liver sections from mice treated with
senolytic drug than with DMSO (Supplementary Fig. 16a). The TSS was
significantly lower in the senolytic-treated cohort, consistent with the
reduced frequency of senescent cells (Fig. 8d). Again, we observed a
significant correlation between the percentage of p21CIP1-positive cells
and TSS scores across the experiment (Supplementary Fig. 16b). Thus,
the TSS correlates with other senescence markers and can be used to
detect the efficacy of senolytic drugs in vivo.

The tissue classifier predicts senescence-associated with liver
fibrosis and aging in mice
Induction of senescence limits liver fibrosis39 but lingering senescent
cells accumulating in fibrotic sites can contribute to disease
progression40. To determine if our senescence classifier could identify

Article https://doi.org/10.1038/s41467-024-45421-w

Nature Communications |         (2024) 15:1041 10



senescence-associated with fibrosis, we induced liver fibrosis in a
cohort of mice by treating them with CCl4 (Fig. 8e). As expected, IHC
staining identified a significantly higher percentage of p21Cip1-positive
cells in the CCl4-treated cohort when compared with oil-treated con-
trol mice (Fig. 8f, g). Importantly, the CSS distribution and TSS were
also higher in the CCl4-treated compared to oil-treated controls
(Fig. 8h and Supplementary Fig. 16c).

To understand if our classifier could also distinguish age-related
senescence, we took advantage of cohorts of young (~90 days old)
and old (~600 days old) mice and performed p21Cip1 immunostaining
and hematoxylin staining of liver sections (Fig. 8i, j). We detected
significantly higher percentages of p21Cip1-positive cells in sections
from old mice, consistent with an accumulation of senescent cells
during aging (Fig. 8k). The CSS distribution and the TSS were also
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higher in the old versus young mice (Fig. 8l and Supplementary
Fig. 16d). Altogether, these results indicate that our classifier can
accurately predict senescence in different pathophysiological
settings.

The tissue classifier predicts levels of senescence in humanswith
non-alcoholic fatty liver disease
Senescence has been associated with fatty liver disease39–41. To inves-
tigate the applicability of our predictionmodels to patient samples, we
analyzed liver sections resected from patients with mild non-alcoholic
fatty liver disease (NAFLD, Fig. 9a). For each patient, we stained serial
sectionswith either hematoxylin and eosin (H&E) or antibodies against
p16INK4a, as a surrogate of senescence (Fig. 9b).We calculated theCSS in
H&E-stained samples and included for analysis those in which we were
able to extract data from at least 10,000 cells (n = 34 patients). A
comparison of the distribution of CSS from two samples with a rela-
tively high and a relatively low percentage of p16INK4a-positive cells
showed a similar shift in the high- p16INK4a sample as shown in the other
models (Fig. 9c). Importantly, TSS showed a significant correlation
with the percentage of p16INK4-positive senescent cells in those tissues
(Fig. 9d). Overall, our results show that the TSS can be applied to
predict senescence in human samples.

Discussion
Senescent cells accumulate with age, are associated with multiple
diseases, and arepresent in cancerous and fibrotic lesions10.Moreover,
senescence is a novel therapeutic target with wide implications.
Senolytic drugs have the potential to eliminate senescent cells
involved in aging, cancer, and age-related diseases. However, a key
factor limiting the quantification of senescent cells, and thus the
identification and assessment of senolytics that induce their pre-
ferential killing, is the lack of universal and robust markers of senes-
cence. We devised a family of machine-learning algorithms that take
advantage of nuclear changes associated with senescence. These
classifiers, rather than using images to feed neural networks, are based
on a small number of interpretable nuclear parameters (that can be
extracted with image analysis software), which standardizes and sim-
plifies downstream analysis making it more amenable to be used by
others.

Senescence is a heterogeneous response, and its characteristics
might differ depending on the cell type and the stressor. Therefore, we
developed classifiers trained with different cell types and stressors.
Overall, our classifiers identified many types of senescent cells with
good accuracy, even those types not included in their respective
training sets. However, given the heterogeneity of senescence, our
classifiers performed worse in identifying some types of senescence
(e.g. in IMR90 cells or in response to barasertib treatment). In some
instances, such as senescence induced by expression of constitutively
activatedMEK42, themorphology of the nuclei is largely unchanged, so
it is unlikely that our classifiers would work on those conditions, but

our study defines a framework that could be adapted to identify most
types of senescent cells as needed.We compared several classifiers for
their ability to identify a variety of senescent cells. Specific classifiers
performed better in identifying certain types of senescence, but most
of our classifierswere sufficient topredict senescence. Several of them,
such as the GM senescence classifier, are consistent across the nine
different datasets tested.

While ideally, one would want a ‘perfect’ predictor that can
identify all senescent cells without false positives, such a toolbox
might not exist due to the complexity in which senescence can
develop. For a start, senescence is a heterogeneous and dynamic
state, and the markers that are chosen to define senescence (in our
case SA-β-galactosidase) will affect the comparisons. Importantly,
imperfect predictions can be useful: we show that senescence-
inducing drugs can be identified from predictions with not perfect
accuracy but a high recall rate. As potential use cases for our algo-
rithms, we show how they can characterize senolytic drugs (both in
vivo and in vitro) and senescence inducers. To identify drugs that
selectively induce senescence in tumors, we screened a collection of
676 drugs for their ability to induce senescence in a lung cancer cell
line (A549) versus a normal lung fibroblast cell line (IMR90). We
found a subset of drugs, including Eg5 inhibitors and multiple aurora
kinase inhibitors, that preferentially induced senescence in A549 but
not in IMR90 cells. Indeed, aurora kinase inhibitors were previously
shown to induce senescence in cancer cells32. It will be of interest to
use additional cell types in the future to elucidate the mechanisms
underlying drug selectivity.

Another key use for senescence classifiers will be to predict
senescence in tissue sections from preclinical mouse models and
patient samples. We devised a tissue senescence score (TSS) that can
identify cells undergoing oncogene-induced senescence during liver
cancer initiation, and senescence in response to fibrosis and
aging. Our TSS can also be used to assess the efficacy of senolytic
drugs in vivo. Moreover, the TSS identified senescence in liver tissue
sections of patients with mild fatty liver disease to an extent com-
parable to p16INK4a staining. While the TSS could be further
improved and might need adaptation to identify senescence in other
tissues, our results prove the utility of such classifiers to
uncover pathophysiological senescence and assess potential
senotherapies.

Neural networks were recently used to identify senescence from
cell microscopy18,19. Given that the identification of senescent cells is a
bottleneck in the field43, our work described here joins those as a
complementary and much-needed approach. Our approach starts
from the pre-existing knowledge that senescent cells undergo chro-
matin rearrangement and changes in nuclearmorphology4,8,9 to devise
machine-learning classifiers based on nuclear features. While starting
from a different point, the reasoning behind our predictors converged
with the observations of Heckenback et al.19. Moreover, open-source
software such as CellProfiler21 and Qupath44 can be used to extract the

Fig. 7 | Tissue senescence scorepredicts senescence inducedduring liver cancer
initiation. a Experimental design for analysis of senescence in the liver cancer
initiation model. b Representative images of liver sections obtained of mice
transduced with NrasG12V or NrasG12V, D38A. Liver sections were co-stained with anti-
bodies recognizing NRAS and p21Cip1 (left), uPAR (middle), and ORF1 (right). Scale
bar, 200μm in the main picture and 20μm in the insets. Yellow arrows mark
double-positive cells. c Quantification of cells positive for p21Cip1 as assessed by
immunofluorescence in mice transduced with NrasG12V-ires-GFP (n = 4) or NrasG12V,
D38A-ires-GFP (n = 5). GFP indicates NRAS-positive cells. Significance was calculated
with a one-way ANOVA (Tukey’s multiple comparisons test). Data represent
mean ± s.d. d Experimental design for the development of a nuclear feature-based
senescence scoring system in vivo. e, f Percentage of GFP (e) and p21Cip1 (f) positive
cells in the liver section of mice transduced with the NrasG12V, D38A (D38A, n = 9) or

NrasG12V (G12V, n = 6) expressing transposons. Significance was calculated using an
unpaired two-tailed t-test.g,hPercentage of uPAR (g) andORF-1 (h) positive cells in
NrasG12V/NrasG12V, D38A mice. Significance for uPAR (NrasG12V n = 4; NrasG12V,D38A n = 8)
and ORF-1 (NrasG12V n = 6; NrasG12V,D38A n = 10) was calculated using unpaired two-
tailed t-test. iDistributionof cell senescence score in two sections corresponding to
p21Cip1 high (red) and low (blue) samples of the liver cancer initiation experiment.
j Tissue senescence score calculated in hematoxylin-stained liver sections of mice
transduced with the NrasG12V, D38A (D38A, n = 9) or NrasG12V (G12V, n = 6) expressing
transposons. Statistical significance was calculated using unpaired t-test. k Pearson
correlation coefficient (two-tailed, 95% CI) between tissue senescence score cal-
culated in hematoxylin-stained and p21Cip1-stained liver sections (n = 15). p repre-
sents two-tailed nonparametric correlation probability. Data represent mean ± s.d;
n represents number of mice. Source Data are provided in the Source Data File.
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parameters needed for our classifiers, further facilitating its use by
other labs.

In summary, we generated a family of algorithms that can predict
senescence in multiple cell types and tissue sections by taking
advantage of nuclear features. We provide proofs-of-concept demon-
strating how these senescence classifiers can be used to identify and
validate distinct senotherapies. Moreover, a tissue senescence score
serves to evaluate senescence induction in tissue sections from pre-
clinical mouse models and human patients.

Methods
Ethics
This research complied with all relevant ethical regulations and was
approved and overseen by the following ethics review boards. Fully
anonymized liver biopsies from patients with non-alcoholic fatty liver
disease were obtained from the Imperial Hepatology and Gastro-
enterology Biobank which is fully REC-approved by the Oxford C
Research Ethics Committee under REC reference 16/SC/0021.
Informed written consent was provided by the donors. Mouse liver

Fig. 8 | Tissue senescence score predicts the effect of senolytic drugs and
identifies senescence in liver fibrosis and aging. a Experimental design for ana-
lyzing senescence in the senolysis experiment. b Representative images of p21Cip1

and hematoxylin staining in liver sections. Scale bars are 100μmin themain picture
and 20 μm for the insets. The insets correspond to images from the same
slides. c Percentage of p21Cip1 positive cells in the liver section of mice transduced
with a NrasG12V expressing transposon and treated with either vehicle (n = 8) or a
senolytic drug (n = 9). d Tissue senescence score calculated in p21Cip1-stained liver
sections ofmice transduced with a NrasG12V expressing transposon and treated with
either vehicle (n = 8) or a senolytic drug (n = 9). e Experimental design for assessing
senescence in the liver fibrosis model. f Representative images of p21Cip1 IHC
staining in liver sections. Red arrows mark p21Cip1-positive cells. Scale bars are

100μm in themainpicture and 20μmfor the insets.g Percentage of p21Cip1 positive
cells in the liver section ofmice treatedwith corn oil (oil) as a control (n = 6) or CCl4
(n = 7) to induce liver fibrosis. h Tissue senescence score calculated in p21Cip1-
stained liver sections ofmice treatedwith corn oil as a control (n = 6) or CCl4 (n = 7)
to induce liver fibrosis. i Experimental design for assessing senescence in liver
sections during aging. j Representative images of p21Cip1 stained in liver sections for
young (n = 13) and old (n = 7)mice. Red arrowsmarkp21Cip1- positive cells. Scale bar,
30μm. k Percentage of p21Cip1 positive cells in liver sections for young (n = 13) and
old (n = 7)mice. lTissue senescence score calculated inp21Cip1-stained liver sections
for young (n = 13) and old (n = 7) mice. Statistical significance for all comparisons
was calculated using an unpaired two-tailed t-test. Data represent mean ± s.d; n
represents the number of mice. Source Data are provided in the Source Data File.
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fibrosis experiments were performed according to German law and
with the approval of the Regierungspräsidium Karlsruhe (G139/19). All
other mouse procedures were performed under license, according to
the UK Home Office Animals (Scientific Procedures) Act 1986, ARRIVE
2.0, and approved by the Imperial College’s animal welfare and ethical
review body (aging experiments, PPL 70/8700; liver cancer initiation
and senolysis experiments, PPL 70/09080).

Cell lines
Both female (IMR90, MCF7, HEK-293T) and male (A549, SK-HEP-1,
HCT116, MRC-5) cell lines were used in this study. A549 (CCL-185),
HCT116 (CCL-247), HEK-293T (CRL-11268), SK-HEP-1 (HTB-52), SK-MEL-
103 (HTB-70),MRC-5 (CCL-171) andMCF7 (HTB-22) cells were obtained
from the American Type Culture Collection (ATCC). Early passage
IMR90 cells (ATCC CCL-186) were obtained from Coriell Institute.
IMR90 ER:RAS cells were generated by retroviral infection of IMR90
cells and have been described elsewhere45. A549, HCT116, HEK-293T,
IMR90, SK-HEP-1, SK-MEL-103, and MCF7 cells were cultured in Dul-
becco’s modified Eagle’s medium (DMEM, Gibco), supplemented with
10% fetal bovine serum (FBS, Sigma F7524) and 1% antibiotic-
antimycotic solution (Gibco). MRC-5 cells were cultured in Eagle’s
Minimum Essential Medium (EMEM), supplemented with 10% FBS and
1% antibiotic-antimycotic solution (Gibco). For inducing quiescence,
the media was replaced with 0.5% FBS in DMEM.

Senescence induction
The following drugs were used to induce senescence in different cell
lines after culturing cells in 96-well (Nunc, Thermo Fisher) or 100mm

dishes (Corning, 430167): A549, 2μM etoposide (Eto, Sigma–Aldrich,
E1383), 0.2μM doxorubicin (Doxo, Selleck chemicals, E2516), 2μM
alisertib (Ali, Selleck chemicals, S1133), 1μM barasertib (Bara, Selleck
chemicals, S1147); SK-MEL-103, 0.25μM Eto, 0.1μMDoxo, 0.25μMAli,
0.5μM Bara; SK-HEP-1, 0.25μM Eto, 0.1μM Doxo, 0.1μM Ali, 0.5μM
Bara; MCF7, 1.5μM Eto, 0.1μMDoxo. HCT116, 2μM Eto, 0.5μMDoxo.
IMR90, 50μM Eto, 2μMDoxo (washed and media replaced 24 h post-
treatment). Cell culture media with or without drugs was changed
every 72 h. Senescence was assessed after 7 days of drug treatment
unless otherwise stated.

Screen for drugs inducing senescence
676 drugs from the Target selective library (Selleck Chemicals) and
Protein Kinase Inhibitor Library II (EMDCalbiochem®, Cat. No. 539745)
were used to screen for drugs inducing senescence selectively in
cancer cells. Drugs (at 10μM) were added 24 h after seeding cells. Cell
media was changed 72 h after and cells were fixed 5 days after cells
were seeded. Cellswere then fixed in4% PFA, DAPI-stained, and images
acquired (seeHighThroughputMicroscopy).We screened thedrugs in
A549 lung adenocarcinoma and IMR90 fibroblasts in parallel, with
biological triplicates per cell line. The percentage of senescent cells
was calculated using the GM algorithm. A toxicity threshold was
established against the viability of the positive controls. Sampleswith a
lower cell count than 40% of that of the positive control were con-
sidered toxic and were excluded from analysis. This filtering excluded
69 drugs and data from cells treatedwith the remaining 607 drugswas
taken forward for normalization. B-score normalization of the pre-
dictions of senescence induction was carried out (see B-score

Fig. 9 | Tissue senescence scores identify senescence in patients with non-
alcoholic fatty liver disease (NAFLD). a Schematic for the analysis of liver sections
from patients with mild fatty liver disease. b Representative images of p16INK4a and
H&E-stained liver sections in normal and fatty liver (out of 34) patients. Scale bar,
50μm in the main image, 20μm for the zoomed section. c Distribution of cell
senescence score in two sections corresponding to samples with a high

(p16 = 9.0876%) and low (p16 =0.2233%) percentage of p16INK4a positive cells.
d Correlation between tissue senescence scores and percentage of p16INK4a positive
cells (n = 34 patients). Pearson correlation coefficient (two-tailed, 95% CI) was used
(r =0.3862; p =0.024). p represents two-tailed nonparametric correlation prob-
ability. (n = 34 liver sections from different patients). Source Data are provided in
the Source Data File.
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normalization analysis). For a drug to be considered a hit, at least 2 of
the 3 replicates would need to have a B-score >15. Drug candidates
were then classified based on the predicted capacity to induce senes-
cence in the cell lines tested based on the established threshold.
Senescent B scores for all screened drugs have been included in the
source data.

For follow-up studies (described in Fig. 6 and Supplementary
Fig. 13), we used the following drug concentrations: doxorubicin,
0.5μM; MLN8054 (Selleck Chemicals, S1100), 3μM; ZM447439 (Sell-
eck chemicals, S1103), 2μM; SC144 (Selleck chemicals, S7124), 1μM;
ARQ 621 (Selleck chemicals, S7355); 0.1μM; Niraparib tosylate (MK-
4827, Selleck chemicals, S7625), 10μM; AG-14361 (Selleck chemicals,
S2178), 10μM. Drug stocks (10mM) were prepared in dimethylsulf-
oxide (DMSO) and stored at −20 °C.

B-score normalization analysis
To analyze the drug screen, senescence prediction was normalized by
B-score using the R package CellHTS2 (https://doi.org/10.18129/B9.
bioc.cellHTS2)46. Value normalization was performed using the plate-
averaging method and on separate batches for A549 and IMR90 cells.

Antibodies
The following antibodies were used for the immunofluorescent and
immunohistochemistry experiments: mouse monoclonal anti-
bromodeoxyuridine (BrdU) (3D4; BD Biosciences, 555627) 1:2000;
rabbit polyclonal anti-53BP1 antibody (Novus Biologicals, NB100-304)
1:1000; goat polyclonal anti-uPAR (Novus Biologicals, AF534), 1:200;
mouse monoclonal anti-Nras (Santa Cruz, sc-31), 1:500; rabbit mono-
clonal anti-LINE-1 ORF1p (Abcam, ab216324) 1:500; mousemonoclonal
anti-phospho-Histone H2A.X (Ser139) (Sigma–Aldrich, 05-636) 1:250;
rabbit polyclonal anti-p21 (2947 S; Cell Signaling) 1:2000; mouse
monoclonal anti-p53 (DO-1, Santa Cruz, sc-126) 1:100; rabbit mono-
clonal anti-p21 (EPR18021, Abcam) 1:700; rabbit recombinant mono-
clonal anti-GFP antibody [EPR14104] (ab183734) 1:500; Alexa Fluor
488/594 conjugated, (Thermo Fisher Scientific, A11029/A11032) goat
anti-mouse IgG (H + L), 1:2000; Alexa Fluor 488/594 conjugated,
(Thermo Fisher Scientific, A11034A11037) goat anti-rabbit IgG (H + L),
1:2000; Alexa Fluor 488/594 conjugated, (Thermo Fisher Scientific,
A11055/A11058) donkey anti-goat IgG (H+ L), 1:2000.

Vectors
LentiGuide-Puro (Addgene, #52963) was used to express GFP, and
pBabe puro IRES-mCherry (Addgene, #128038) for mCherry expres-
sion. Cells were FACS sorted and expanded. Cells expressing the
construct were selected in 2μg/mL of puromycin and kept under
selection in 0.5μg/mL of puromycin.

Immunofluorescent staining of cells
Cells were grown in 96-well plates (NuncTM MicroWellTM, 167008,
Thermo Fisher Scientific), fixed with 4% PFA (w/v) for 20min, and then
permeabilized in Triton X-100 0.2% diluted in PBS for 10min. Cells
were then blocked with 1% bovine serum albumin (BSA) (w/v) for
25min. Cells were incubated with the primary antibody diluted in a
blocking solution for 1 h and washed thrice in PBS. Cells were incu-
bated with the secondary antibody (Invitrogen, Alexa FluorTM) diluted
in blocking solution for 30min and after washing thrice on PBS,
1μgml−1 of DAPI was added for 12min and washed with PBS thrice.

Cytochemical SA-β-galactosidase assay
Cells were grown on 6-well (NuncTM, 140675) or 96-well plates and
fixed with 0.5% glutaraldehyde (w/v) (Sigma–Aldrich) for 15min, then
washed with 1mM MgCl2/PBS at pH 6.0 and incubated in X-Gal solu-
tion (5mM K3(Fe(CN)6), 5mM K4(Fe(CN)6) and 1mgml−1 of X-Gal by
Thermo Scientific) for 6 h and 8 h in cancer cells and fibroblasts
respectively, at 37 °C. Brightfield images were acquired using DP20

digital camera attached to an Olympus CKX41 inverted light micro-
scope, at 4x and 10x magnification.

Senolytic assay
Drugs were diluted to the required concentration in DMSO and stored
at −20 °C. Cells were induced to senesce for 7 days and then cultured
with 1μMABT-263 (SelleckChemicals; S1001) or 5μMABT-737 (Selleck
Chemicals; S1002) for 72 h. Cells were then fixed in 4%PFA (w/v) for
20min and stained with DAPI for 12min. Cells were then washed
thrice in PBS.

Irradiation-induced DNA damage
To induce DNA damage cells cultured in 96-well or 6-well plates were
exposed to ionizing radiation (15 Gy). Media was changed 24 h later,
andDNAdamagewasassessedby immunofluorescenceat the required
time point.

Fluorescent SA-β-galactosidase assay
Cells grown in 96-well plates were washed in phosphate-buffered sal-
ine (PBS) and incubatedwith 33μMC12FDG (Abcam, ab273642) diluted
in DMSO for 1 h. Cells were then fixedwith 4% paraformaldehyde (PFA)
for 15min, washed thrice in PBS, and stained with 1μgml−1 of DAPI.
Images were taken using a high-throughput fluorescentmicroscope IN
Cell Analyzer 2500HS (Cytiva) with a 10× objective for quantification.
The percentage of SA-β-galactosidase positive cells was calculated
using IN CartaTM Image Analysis Software (version 1.14) based on cel-
lular fluorescence intensity using an arbitrary threshold to define
positive cells.

Gene expression analysis
Total RNA was extracted using RNeasy® Minikit (Qiagen). cDNA was
produced using Superscript II reverse transcriptase (Invitrogen) and
RandomHexamers (Invitrogen). Quantitative real-time PCR (RT-qPCR)
was performed using SYBRTM Green PCR master mix (Applied Biosys-
tems) in a CFX96 RT-PCR system C1000 Touch (Bio-Rad). For data
normalization, GAPDHexpressionwasused. Theprimer pairs used are:

GAPDH: GAAGGTGAAGGTCGGAGTC; TTGAGGTCAATGAAGGGG
CDKN1A: CGTGTCACTGTCTTGTACCCT; GCGTTTGGAGTGGTAG

AAATCT
CDKN2A: CGGTCGGAGGCCGATCCAG; GCGCCGTGGAGCAGCAG

CAGCT
IL1A: AGTGCTGCTGAAGGAGATGCCTGA; CCCCTGCCAAGCACAC

CCAGTA
IL1B: TGCACGCTCCGGGACTCACA; CATGGAGAACACCACTTGTT

GCTCC

High-throughput microscopy
Cells were cultured in 96-Well Flat-Bottom plates (Thermo Fisher) and
CellCarrier-96 Ultra Microplates (Perkin Elmer) were used. Plates were
analyzed using IN Cell Analyzer 2500HS high content analysis (HCA)
imaging at a magnification of 20× or 40×, with a binning of 1 × 1. TIF
files obtained in HCA were analyzed using IN CartaTM Image Analysis
Software (Cytiva, version 1.14). The acquired images had the following
characteristics: width and length of 663.005 μm (2040 pixels), at a
3.0769 pixels per μm resolution (20×); width and length of 331.5μm
(1020 pixels), at a 0.3250024 pixels per μm resolution (40x). The fol-
lowingnuclear featureswere extracted using the InCarta software (See
“Software” section): Area (in μm2), form factor (object roundness),
elongation (object short axis/object long axis), compactness (average
radius of the object), chord ratio (object min. chord ratio/object max.
chord length), gyration radius (average radius of the shape), dis-
placement (distance between the nucleus center of gravity and the cell
center of gravity, normalized by the gyration radius of the nucleus).
Whereprotein expression signalwas analyzed intensitymeasures were
also acquired.
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To capture nuclear morphology parameter measurements, ima-
ges were thresholded based on DAPI, primary objects identified, and
measurements performed (see “Software” section). For quality control
and to exclude artifacts, the cell segmentation pipeline performed a
noise removal step, excluding shapes when image contrast was low. A
sensitivity threshold was also established to accurately detect true
nuclei events and a typical diameter of a nucleus was also established,
to further exclude non-conforming structures. Overexposed targets
were eliminated establishing a minimum DAPI intensity threshold and
objects touching edges were excluded from the analysis to avoid
partially acquired nuclei.

Libraries of nuclear parameters of senescent and normal cells in
culture
To develop the algorithm training sets (summarized in Supplementary
Table 1), the indicated cells were seeded in 96-well plates and cultured
and treated with the indicated drugs or DMSO as a control. Seven days
after treatment, cells were fixed, and stained with DAPI for imaging.
Each plate contained 30 wells with cells treated with the senescence
inducer and 30 wells treated with DMSO (as a control). Datasets for
each cell line and senescence induction containeddata derived fromat
least three plates, resulting in a total of between 0.1 × 106 and 0.9 × 106

cells per condition (see Supplementary Table 1 for details). Training
datasets (as indicated in Supplementary Table 1) were then generated
by randomly selecting 10,000normal cells and 10,000 treated cells for
each training set. For the General Model, randomized samples from all
training datasets (3 cell lines, A549, SK-MEL-103, SK-HEP-1; 4 condi-
tions: Etoposide, Doxorubicin, Alisertib, Barasertib) were taken to
develop the classifier, as noted in Supplementary Table 1. Independent
training sets (with different randomizations of the same libraries) were
constructed for the classification tree and random forest algorithms.

Software
The following packages were utilized for classification trees, random
forest building, and related analysis. For Classification tree (CT) and
random forest (RF) algorithms python version 3.7.7 was used. The
following packages were also utilized: scikit-learn and derived
packages;47, pandas, numpy, matplotlib. pyplot, seaborn, and csv.
Area, Form Factor, Elongation, Compactness, Chord Ratio, Gyration,
and Displacement were used as nuclear features. Analysis of public
software CellProfiler (version 4.2.4)21 was performed using a nucleus
detectionworkflow. ForHighContentAnalysis (HCA), InCarta software
(Molecular Devices, version 1.14) was used. For B-score analysis R
(version 4.3.1) and packages BiocManager (version 1.30.22) and
cellHTS2 (version 2.64) were used.

Generation of classifiers to identify senescence in cell culture
For classification tree (CT)-based classifiers, preliminary classifica-
tion trees were built using sklearn, providing 30% of the training set
as test size. After assessing initial accuracy, AUC, and ROC curves,
cost complexity pruning was performed to avoid overfitting. The
optimal value of alpha was calculated and applied to develop the
classification trees. Obtained classification tree branches were
eliminated where redundancy occurred. For random forest (RF)--
based classifiers, the test size was set at 0.5. For CT classifiers the
classes were established in a binary manner, where 0 equalled
growing, normal cells and 1 represented senescent (treated) cells. For
RF classifiers senescence probability was estimated and values > 0.5
were considered as senescent. Classifiers were ultimately tested on
new experiments (test data) and the accuracy of prediction was
assessed. For the Voting-Based Clustering Algorithm (VCA), the input
from all algorithms described in Supplementary Table 2 (except the
CellProfiler-based classifiers) was considered. Relabeling of parti-
tions was avoided and opted for a democratic vote systemwith equal
weight per classifier algorithm.

Algorithm performance metrics
Algorithm accuracy on the test data was measured by area under the
curve (AUC) and receiver operating characteristic (ROC) curve (True
Positive Rate vs False Positive Rate) assessment and posterior testing
onnewdata notbelonging to the trainingdatasets. Algorithmaccuracy
was also measured using the following metrics in a dataset of co-
cultures of senescence and normal cells:

Accuracy =
TN+TP

TN+TP+FP+FN
ð1Þ

Precision=
TP

TP+FP
ð2Þ

Recall =
TP

TP+FN
ð3Þ

F1 Score =
Precision x 2Recall
Precision+Recall

ð4Þ

TP true positive; TN true negative; FP false positive; FN false
negative.

Co-cultures of senescent and non-senescent cells
The setup of these experiments is described indetail in Supplementary
Fig. 5. Briefly, 105 cells (for DMSO) and 106 cells (for treatment) were
seeded in 100mm dishes. 24 h after plate seeding media was washed
once with PBS (GibcoTM, Thermo Fisher, 10010023), and DMSO or
senescence-inducing drug was added to the media (DMEM, 10% FBS,
1% antibiotic-antimycotic). Media (with drug or DMSO) was replaced
every 72 h. 6 days post-treatment, senescent and control cells were
trypsinized and counted using a Guava Muse Cell Analyzer. DMSO-
treated and drug-treated cells were seeded in separate master plates
(96-well Round (U) Bottom Plate, Thermo Fisher, 163320) as indicated
in Supplementary Fig. 5c. Those master plates were used to generate
the co-cultureplate. After 24morehours, cells were cultured inC12FDG
(33μM, diluted in DMSO) for 30min, fixed in 4% PFA for 15min, and
stained with DAPI.

Senescence classifiers based on CellProfiler data
To develop algorithms utilizing CellProfiler (version 4.2.4)21, we pro-
duced a new training set consisting of 4 plates of DMSO-treated and
etoposide-treated A549 cells. 7 days after treatment cells were fixed,
stained with DAPI, and imaged using an INCell Analyzer 2500HS. The
acquired TIF files were then analyzed utilizing a bespoke nuclear
workflow CellProfiler protocol (Dapi_CellProfiler.cpproj, see “Code
Availability” section). The following features were considered for CT
and RF algorithm development: Area, Bounding Box Area, Compact-
ness, Convex Area, Eccentricity, Equivalent Diameter, Extent, Form
Factor, Major Axis Length, Maximum Feret Diameter, Maximum
Radius, Mean Radius, Median Radius, Minimum Feret Diameter, Minor
Axis Length, Perimeter, and Solidity. To capture nuclear morphology
parameter measurements, images were thresholded based on DAPI,
primary objects identified, and measurements performed. From the
resulting parameter files, cells were grouped by treatment, and ran-
domized, and 10,000 cells were extracted per condition, following the
same procedure to develop CT- (AECP) and RF-based (AERFCP)
classifiers.

Mouse experiments
Mice were kept on a 12-h light/dark cycle and between 21–23 °C tem-
perature and 45–65% humidity levels under specific pathogen-free
barrier conditions within individually ventilated cages with ad libitum
access to standard chow food (SDS RM1/3 [E] LBS Serving Bio-
technology) and water. C57BL/6 J littermate mice were used unless
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otherwise specified. As sex is not a factor in the scope of the study
design, liver sections of both male and female mice were used (as
detailed below) for different experiments. Animal welfare was mon-
itored and euthanasia practices were performed according to the
requirements of the aforementioned practice licenses and regulatory
frameworks.

Liver fibrosis
Eight-week-old male C57BL6/J mice were treated twice a week with
either corn oil (n = 6) or carbon tetrachloride CCl4 (0.5mL/kg) (n = 7)
by intraperitoneal injection for 6 weeks to induce liver fibrosis as
described before48. Mice were sacrificed at the indicated time points
and analyzed for senescence.

Aging experiment
Male C57BL/6 J littermates were used. Mice that were 90 days old
(n = 13) were used for the young cohort and 600 days old mice (n = 7)
for the old cohort. Mice were sacrificed at the indicated time points
and analyzed for senescence.

Liver cancer initiation and senolysis experiments
Hydrodynamic tail vein injection (HDTVI) was carried out in female
C57BL/6 J (Charles River UK) mice aged 5–6 weeks using 25μg of a
transposon expressing NrasG12V or NrasG12V, D38A along with 5μg of SB13
transposase-expressing plasmid. All plasmids were prepared with
GenElute HP Endotoxin-Free Maxiprep kit (Sigma). For HDTVI, vectors
were diluted in normal saline to a final volume of 10% body weight.
HDTVI was performed within 7–8 s.

For liver cancer initiation experiments, mice transduced with
transposon vectors co-expressing GFP and either NrasG12V (n = 6) or
NrasG12V, D38A (n = 9) were used.

For the experiment described in Supplementary Fig 15c, d an
additional cohort of mice transduced with transposon vectors co-
expressing GFP and NrasG12V (n = 12) was used, Mice were culled 9 days
(after HDTVI) and livers were collected for paraffin embedding.

For senolysis experiments, a transposon vector co-expressing
NrasG12V and Gaussia luciferase (Gluc) was used. On day 5 after HDTVI
mice were given either a senolytic drug (n = 9) or vehicle (n = 8)
intraperitoneally (i.p.) daily for 4 days. 24 h after the last drug injection
mice were culled and livers collected for paraffin embedding.

Immunohistochemical staining of tissue sections
Mouse liver tissue sections were deparaffinized in HistoclearTM (Sci-
entific laboratory supplies) for 5min, and washed in decreasing con-
centrations of ethanol, until a final 5min wash in dH2O Heat-induced
epitope retrieval (HIER) was then performed in a pressure cooker for
20min in citrate-based at pH 6.0 (VectorLab, H-3300-250) or tris-
based at pH 9.0 (VectorLab, H-3301-250), following the antibody
manufacturer’s instructions. For intracellular expression stains and
sections were washed in Triton X-100 0.2% in PBS for 10min and
washed in PBS for 5min. Slides were then incubated in BLOXALL
blocking solution (VectorLab, SP-6000), washed in PBS, and exposed
to Animal-Serum Free serum (Cell Signaling, 15019 L) diluted in dH2O
for 30min. Slides were then incubated with primary antibody over-
night in a humidified chamber at 4 °C. Slides werewashed twice in PBS
for 5min and incubated with secondary antibody SignalStain® Boost
IHCdetection reagentMouse/Rabbit, HRP (Cell Signalling Technology,
8125) for 30min. After, slides were washed in PBS and incubated in
SignalStain DAB (CST, 8059) for 5min or until the HRP signal was
visible and the reaction stopped in dH2O. Cells were then stained for
Hematoxylin (DAKO, Mayer’s Hematoxylin, S3309) for 30 s and
washed in dH2O.When necessary, slideswere further stained in EosinY
(Sigma–Aldrich, HT110132-1L). Slides were, dehydrated in 75% ethanol
for 1min and 100% ethanol for 5min, washed in Histoclear for 5min,
and mounted in DPX (Sigma–Aldrich).

Immunofluorescence staining of tissue sections
For Immunofluorescence staining, deparaffinization, and antigen
retrieval were performed as described previously (see “Immunohis-
tochemical staining of tissue” sections). Mouse liver samples were
incubated overnight in the primary antibody previously diluted in
antibody diluent (Dako). Samples were washed in PBS three times for
5min. Samples were then incubated in secondary antibody Signal-
Stain® Boost detection reagent (Cell Signalling Technology, 8125) for
45min. The signal was then amplified using Thermo Fisher
AlexaFluorTM 488/647 Tyramide SuperBoostTM Kit (B40958) following
the manufacturer’s instructions. To perform double staining, samples
were incubated in HCl 0.02N for 20min after the first antibody signal
amplification step. Samples were then washed in PBS for 5min and
peroxidase blocking was reapplied for 20min. Samples were then
incubated in Animal-Serum Free blocking solution (Cell Signaling,
15019 L) diluted in H20 for 1 h and the second primary antibody incu-
bation was performed overnight. The signal was then amplified using a
different wavelength-reactive SuperBoostTM Kit, using antibodies
raised in different hosts to avoid cross-reactivity. Samples were then
washed three times in PBS for 5min and incubatedwith DAPI (1μgml−1

in PBS) for 5min. Samples were washed thrice in PBS for 5min and
mounted in 50% glycerol in PBS.

Slide image acquisition and analysis
Slides containing preclinical and clinical liver samples were acquired
using 40x brightfield objective on a Zeiss AxioScan Z.1 or Leica Aperio
AT2 slide scanner and analysis was performed using QuPath version
0.3.0, adjusting the built-in cell acquisition parameters to immuno-
fluorescent and immunohistochemical samples to maximize the
accuracy of cell and nuclear detection for feature extraction and signal
quantification. A pixel sizeof 0.5μmwas established, and to accurately
detect nuclei and avoid artifacts a background andmedian filter radius
was established, together with a Gaussian filter to reduce noise and a
minimum nuclear area. To further ensure accurate detection, an
intensity threshold and amaximumbackground intensity were set. For
immunofluorescence nuclear detection, DAPI was used as a detection
channel and the same artifact filters were incorporated into the pipe-
line. The following features were extracted: centroids X and Y (coor-
dinates in μm, for single cell positioning in the slide), nucleus area,
nucleus perimeter, nucleus circularity, nucleus max caliper, nucleus
min caliper, and nucleus eccentricity. Where immunohistochemical
staining was performed, DAB optical density (OD)mean and total DAB
were also acquired (nuclear of cellular, corresponding to protein
expression localization). The indicated data were then extracted and
analyzed. For human patient samples, a circularity threshold (nuclei
superior to 0.7) was established to ensure that captured nuclei
belonged predominantly to hepatocytes and not to fibroblasts or
immune cells. The number of cells per sample (as evaluated by
acquired nuclei) varied between 7 × 104 and 1 × 105. Samples with less
than 10,000 cells were excluded from the analysis.

Senescence scoring system in tissue sections
Toassess senescence in liver tissue sections,we took advantageof liver
sections ofmice transducedwith NrasG12V using hydrodynamic tail vein
injection (HDTVI), stained with anti-p21Cip1 antibodies, and counter-
stained with Hematoxylin. 4 slides were scanned and analyzed using
QuPath. Cells were classified as p21Cip1-positive or -negative based on
DAB nuclear mean intensity (>0.2 for p21Cip1-positive cells and <0.2 for
p21Cip1-negative cells). Nuclear features (area, perimeter, maximum
caliper, minimum caliper, eccentricity, and circularity) were extracted
for p21Cip1-positive and p21Cip1-negative cells (see “Slide image acquisi-
tion and analysis” section). Data from 4.32 × 105 p21Cip1-negative cells
was used to obtain average measurements, which defined the ideal
normal (non-senescent) cell. p21Cip1-positive cells were ranked based
on the p21CIP1 staining intensity. The average parameters of the top one
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hundred p21Cip1-positive cells were selected to define the ideal senes-
cent cell. Therefore, for each nuclear feature, an ideal parameter value
for normal cells (PN) and an ideal value for senescent cells (PS) were
defined (shown in Supplementary Table 5).

For each cell, we performed the following operation:

Pn

i =0

p�PN

ðPS�PN Þ �
PN
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� 1
n

0

@

1

A
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Where:
n = number or features
p = acquired parameter value
PN = ideal parameter value for normal cells
PS = ideal parameter value for senescent cells
T = summation of absolute values of differences from acquired

parameters
Consequently, individual features from single nuclei obtained a

feature score, which was then corrected by the weighted effect of
each feature in the summation of the absolute values of the differ-
ences (ΣT), which allows to proportionalise the effect of the features.
Individual feature scores were then aggregated to provide a single
value (that we termed the cell senescence score, CSS) for each cell.
To calculate the tissue senescence score (TSS), for each tissue sec-
tion, we plotted curves showing the distribution of individual cell
senescence scores for all the cells present in that section. Thus, the
TSS from a given tissue sample relies upon the distribution of its
individual CSS values. To obtain the TSS value, that describes
senescence presence in the sample, we scored the sections based on
the percentage of CSS values between 1 and 5 (CSS values associated
with nuclear senescent features), thus obtaining a unique metric for
the tissue section.We evaluated other ranges of CSS values (as shown
in Supplementary Table 4) and chose 1–5 as the one better corre-
lating with the percentage of senescent cells present in the tissues.
Importantly, the same operation and metrics to calculate CSS/TSS
values (without adjusting or changing any of the parameters for
subsequent experiments) were applied to all preclinical and clinical
liver models used in this study.

Senescence assessment in samples from patients withmild fatty
liver disease
Human liver biopsies were fully anonymized and acquired from the
Imperial Hepatology and Gastroenterology Biobank, therefore no
regard for sex and gender was considered. Sections were depar-
affinized, and hydrated, and then heat-mediated antigen retrieval was
performed in citrate-based pH 6.0 solution. The endogenous perox-
idase was quenched with 3% hydrogen peroxide. The sections were
incubated with mouse monoclonal to p16INK4a (CINtec, 9511, clone
E6H4), followed by rabbit anti-mouse IgG. The sections were subse-
quently incubated with anti-rabbit IgG conjugated with polymeric
horseradish peroxidase linker (Leica Bond Polymer Refine Detection,
DS9800). DAB was used as the chromogen and the sections were then
counterstained with hematoxylin and mounted with DPX. IHC was
performed on Leica BOND III. Serial sections were stained with H&E
and used to calculate tissue senescence scores. Slides were scanned
with NanoZoomer 2.0HT (Hamamatsu, Japan). NDP.scan 3.2.12 soft-
ware was used for digital image acquisition and NDP.view2 software
was used for image viewing. 36 samples were processed and imaged,
but 2 samples with less than 10,000 cells were excluded from the
analysis.

Statistical analysis
We used GraphPad Prism (Version 9.4.0) for statistical analysis. Two-
tailed, unpaired Student’s t-tests were used to estimate statistically

significant differences between groups, as well as one-way ANOVA
when required. Pearson correlation analysis was performed utilizing a
two-tailed option, with a 95% confidence interval. Simple linear
regressionwas also performed to display the corresponding fit line. To
study the cumulative distributions between treated and control
nuclear featuresweperformed theKolmogorov-Smirnov (K-S) test and
detailed the maximum absolute difference (D) and the associated
P value.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper.

Code availability
Custom code and training sets can be found at: https://github.com/
Sen-Lab-LMS/Senescence_nuclear_features 49, which is archived in
Zenodowith the identifier [https://doi.org/10.5281/zenodo.10499895].
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