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A method to estimate the contribution of
rare coding variants to complex trait
heritability

Nazia Pathan 1,2, Wei Q. Deng 3,4, Matteo Di Scipio1,5, Mohammad Khan 1,5,
Shihong Mao1, Robert W. Morton 1,2, Ricky Lali1,6, Marie Pigeyre 1,5,
Michael R. Chong1,2,7 & Guillaume Paré 1,2,6,7

It has been postulated that rare coding variants (RVs; MAF <0.01) contribute
to the “missing” heritability of complex traits. We developed a framework, the
Rare variant heritability (RARity) estimator, to assess RV heritability (h2

RV)
without assuming a particular genetic architecture. We applied RARity to 31
complex traits in the UK Biobank (n = 167,348) and showed that gene-level RV
aggregation suffers from 79% (95% CI: 68-93%) loss of h2

RV. Using unag-
gregated variants, 27 traits had h2

RV > 5%, with height having the highest h2
RV at

21.9% (95% CI: 19.0-24.8%). The total heritability, including common and rare
variants, recovered pedigree-based estimates for 11 traits. RARity can estimate
gene-level h2

RV, enabling the assessment of gene-level characteristics and
revealing 11, previously unreported, gene-phenotype relationships. Finally, we
demonstrated that in silico pathogenicity prediction (variant-level) and gene-
level annotations do not generally enrich for RVs that over-contribute to
complex trait variance, and thus, innovativemethods are needed to predict RV
functionality.

Rare protein coding variants, herein defined as those having minor
allele frequency (MAF) < 1% and referred to as RVs, represent an
important and understudied component of non-Mendelian complex
trait genetics1. Despite efforts to functionally characterize RVs, the
biological impact of roughly 400 rare, putatively disruptive mutations
carried by each individual remains largely unknown2. Classification of
RVs is challenging, and current algorithms do not always correctly
predict their pathogenic characteristics3,4. Indeed, existing tools to
classify RVs have typically been trained on conditions of Mendelian
inheritance5–7, while most human phenotypes are complex and non-
Mendelian in nature. This gives rise to anunmet need to assess existing
classifications in the context of complex traits.

Genome-wide association studies (GWAS) have been fruitful for
characterizing common variants with regards to complex traits; how-
ever, a similar approach lacks the statistical power to study rare var-
iants, unless sample sizes or effect sizes are very large7. Consequently,
to improve statistical power, RV association testing often relies on
gene-level variant aggregationmethods to perform gene-burden tests,
or variance component tests such as Sequence Kernel Association Test
(SKAT)8 and its variations (e.g., SKAT-O or “Optimal SKAT”). A limita-
tion of gene-burden tests is the assumption that all RVs influencing a
trait are homogeneous in terms of direction andmagnitude of effects7.
SKAT, on the other hand, aggregates the associations between variants
and the phenotype through a kernel matrix8, is a powerful tool for
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association testing in the presence of variants acting in opposing
directions, but can be less powerful than burden tests when most
variants are causal, and effects are in the same direction. SKAT-O
combines both burden and SKAT to overcome the limitations of SKAT
but can be slightly less powerful than burden or variance-component
tests if their assumptions are held. While SKAT and SKAT-O are solely
designed for association testing, variant aggregation in gene-burden
testing may be used in any scenario requiring a gene to be treated as a
single unit. However, the impact of RV aggregation on phenotypic
variance explained has never been empirically evaluated.

RVs are postulated to contribute significantly to the “missing
heritability”of complex traits, i.e. rare coding variants, when combined
with common variants (CVs) may help recover the difference between
current SNP-based heritability and heritability estimates from the tra-
ditional pedigree-based studies9,10, yet this hypothesis has only been
assessed for a handful of traits11–17. The RV contribution to narrow-
sense heritability, h2

RV, defined as the proportion of phenotypic var-
iance attributable to their additive genetic effects, has been estimated
in several recent studies11–17. However, these studies are limited by
either the use of genotyping array data, small sample size, or models
that make specific assumptions about the underlying genetic archi-
tecture. RV heritability estimates utilizing genotype data12,13,15,16 are
limited by the selection of rare genetic variation captured on the array,
and algorithms to imputemissing variants resulted in low accuracy for
truly rare alleles16,18. As next-generation sequencing, particularly,whole
exome sequencing (WES), arebecoming a commonplace to accurately
detect RVs11,14,17, methods to evaluate RV heritability that do not rely on
assumptions about the genomic architecture are needed.

We propose an approach to estimate RV narrow-sense heritability
(h2

RV), the Rare-variant heritability (RARity) estimator. A common
strategy to estimate heritability is by assuming a randomgenetic effect
model, whereby each (unknown) causal variant contributes to the total
phenotypic variance according to a statistical distribution that might
depend on its MAF, linkage disequilibrium (LD) with nearby variants,
and functional properties, among others. These models aim to evalu-
ate the overall contribution from a large number of variants, without
identifying variant-specific effects19. RARity, in contrast, is based on
multiple linear regression to estimate heritability, where the genetic
effects are estimated conditional on the observed genotypes, and thus
does not make any assumptions about the distribution of individual
genetic effects nor the joint distribution of genotypes. The RARity
framework simultaneously evaluates a large number of smaller regions
of the chromosomes, referred to as blocks. This step is necessary to
avoid estimation of high-dimensional linear models as the large num-
ber of rare variants would otherwise make matrix calculations
intractable even with modern computational capabilities. An impor-
tant and critical featureof RARity is the pruning of variants tominimize
inflation in heritability due to LD spillage between blocks (see
Methods).

The availability of large WES data from the UK Biobank (UKB)
provides a unique opportunity to study the overall and gene-level
contribution of RVs to complex trait heritability. We hypothesize that
the study of exome-wide and gene-level RV heritability will provide
insights into the functional characteristics of RVs. Specifically, by
estimating the contribution of rare coding variants to narrow-sense
heritability in unrelated individuals, our objectives were to (1) char-
acterize the variant-level characteristics (allele frequency, disruptive-
ness according to a variety of algorithms, and clinical pathogenicity)
that best predict phenotypic variations, (2) characterize the gene-level
properties (membership to gene sets and biological pathways, evolu-
tionary constraint, gene length) that best predict biological effects
and, (3) identify genes associated with the traits.

UsingWES data fromUK Biobank (n = 167,348), we report h2
RV for

31 complex continuous traits, including 26 biomarkers and 5 anthro-
pometric traits, and we demonstrate the utility of RARity estimator to

understand whether existing in silico pathogenicity prediction (var-
iant-level) and gene-level annotations could be enriched for RVs that
disproportionately contribute to the complex trait. This study has
major implications for our understanding of the genetic architecture
of complex traits in the context of RV functions, which we expect
would ultimately facilitate the discovery of new disease pathogenesis.

Results
Overview and testing of the RARity method
TheRARitymethod entails parallel computing of the adjusted R2 based
on an ordinary least square (OLS) multiple linear regression as an
unbiased estimator of block-wise heritability for each consecutive
genetic block. Adjusted R2 estimates are then summed over all blocks
as theoverall heritability estimate.Overviewof RARity is shown inFig. 1
and technical details provided in Methods and Supplementary Fig. 1.
The current sample size provided at least 80%power to detect 4% h2

RV,
at an empirical type-I error rate of 0.05 (Supplementary Fig. 2).
Extensive simulations were performed using real genotype data to
identify an approach for estimating heritability that is robust under
realistic scenarios. Through this endeavour, we discovered that h2

RV

could be affected by the presence of long-range LD (LRLD), occurring
at a much greater distance than what is observed for CVs20 (Supple-
mentary Fig. 3). LRLD complications were controlled by using a strin-
gent LD threshold over a large, empirically derived window size
(r2 >0.1, window size = 50Mb, step size = 500 bases). This stringent
pruningmethodwas enforced in all subsequent analyses involving RVs
to ensure a well-calibrated estimate of h2

RV. The simulation studies on
the effects of varying MAFs, heritability, proportion of causal genes or
variants indicated that RARity is largely unbiased but tends to under-
estimate when the number of causal variants or genes is low (<1%;
Supplementary Fig. 3).

Comparison of gene-burden, gene-wise, and exome-wide
heritability
To estimate the amount of information lost when aggregating rare
variants within each gene, we compared h2

RV estimates using the
gene-burden approach to exome-wide estimations for 31 complex
traits using RARity. We created blocks of genotype data in the fol-
lowing manners: (1) gene-burden blocks, derived by summing the
number of rare alleles within each gene for an individual, which
produced a single block containing all gene-burden scores as pre-
dictors; (2) gene-wise blocks, consisted of un-aggregated RVs parti-
tioned by gene, such that each block contained all the variants within
a single gene; (3) exome-wide blocks were created by partitioning
RVs in each chromosome into blocks of ~5000 adjacent RVs. RV
heritability estimates were then derived from each type of block
construct using RARity. Design and applications of RARity, using
these constructs is provided in Fig. 1, and a detailed computational
pipeline is illustrated in Supplementary Fig. 1.

Our results show that the overall estimated RV heritability from
gene-burden blocks (h2

RV-burden) is on average 79.3% (95% CI:
76.5%–82.0%) less than heritability based on either gene-wise
(h2

RV-gene-tot), or exome-wide blocks (h2
RV; Fig. 2, Supplementary

Table 3). Because gene-level estimates (h2
RV-gene) are useful for sec-

ondary analyses, we further tested whether h2
RV-gene-tot could in fact

substitute forh2
RV fromexome-wide blocks. A potential caveatof using

gene-wiseheritability to determine total heritability is the possibility of
LD between variants in two or more genes inflating the total herit-
ability, as would be the case when genes overlap. We observed con-
sistent results between h2

RV-gene-tot and h2
RV (Fig. 2b and

Supplementary Table 3), with h2
RV-gene-tot being 1.5% (95% CI:

0.0%–4.0%) higher than h2
RV on average, indicating only a slight

inflation that could be due to chance. However, the advantage of gene-
level blocks is the smaller number of variants per block,whichmakes it
computationally less intensive and 3× faster to compute than h2

RV.
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RV contribution to heritability estimates for 31 complex traits
Here we utilized two genetic datasets from the UK Biobank: RVs were
derived from the WES data (UKB data field: 23155) and CVs were
extracted from the imputed genotype data (data field: 22418; v3
release). The quality control steps for each dataset are provided in
Methods. Applying RARity using the exome-blocks (MAF <0.01), we
estimated RV heritability for 31 complex traits, with 29 traits showing
meaningful contribution at a nominal significant threshold of 0.05, 27
traits showing h2

RV > 5% and height having the highest h2
RV at 21.9%

(95%CI: 19.0%–24.8%) (Table 1; Fig. 3, and Supplementary Table 3). The
lower overall heritability estimate for glucose, 1.8% (95% CI:
−1.0%–4.7%), observed in our study was most likely due to sample
collection in non-fasting states, as opposed to the fasting glucose level
used for heritability estimates in the pedigree studies21. Sex stratifica-
tion, performed on all 31 traits, showed some heterogeneity in h2

RV

between the sexes (Supplementary Fig. 4), but the apparent differ-
ences were statistically nonsignificant (p-value > 0.05).

Since RARity poses no upper restriction on the MAFs, we addi-
tionally assessed the contribution CV (h2

CV) and the combined CV and
RV (h2

tot) to these 31 traits by concatenating common and rare variants
(Methods). We observed that h2

CV estimated using RARity was

consistent with BOLT22, but higher than LDSC23 (Supplementary Fig. 5).
Although common variants contributedmore to overall heritability, as
compared to RVs (Table 1), estimated h2

RV generally increased pro-
portionally to h2

CV (Supplementary Fig. 6), except for height, alkaline
phosphatase and Lp(a). Lp(a) particularly stands out with a much
higher h2

CV in relation to h2
RV. The low concordance between CV and

RV heritability in Lp(a) may be due to the unique genetic architecture
of this trait, with most genetic variance attributed to the LPA locus
itself and the highly polymorphic kringle IV type 2 copy number var-
iation having an outsized impact on concentration24.

The estimated h2
tot for 11 of the 31 traits were consistent with

previously reported heritability from pedigree or twin-based studies
(Supplementary Data 1). The difference between h2

RV and h2
RV-

adjusted-for-h2
CV were heterogenous (Table 1), indicating that the

degree of tagging or LD between the rare and common variants can
vary by trait. For example, h2

tot (from CV and RV) was 87.8% (95% CI:
84.5–91.1%) for height and 22.5 (95% CI: 19.3–25.7%) for albumin, with
height showing a greater degree of LD between RVs and CVs, as
compared to albumin, determined by a 5.3% reduction in h2

RV for
height, but only 0.6% reduction in h2

RV for albumin following
adjustment for h2

CV (Table 1).

Gene Gene Gene… Gene 1 Gene 2 Gene n…0-5k 5-10k block

Fig. 1 | A schematic diagram illustrating the design and applications of Rare
variant heritability (RARity) estimator. Following the initial quality control steps
(Methods), the protein-altering and LoF RVs in each chromosome were LD pruned
and partitioned into consecutive regions, referred to as genotype blocks.
aDiagrammatic representation of the three genotype block constructs implemented
by RARity. Applications of RARity included: bComparison of the block constructs to
empirically test the loss of informationwhen aggregating rare variants. cRare variant

heritability estimates of complex traits using exome-wide blocks. d Gene-based RV
heritability to discover gene-phenotype associations. e Network and pathway ana-
lyses of the genes with significant RV heritability to provide insights into their bio-
logical relevance. f Enrichment of RV heritability by pathogenicity scores. Three
pathogenicity scores, CADD, M-CAP and REVEL were applied to retain progressively
more deleterious variants and tested on all 31 traits for enrichment in RV heritability.
This figure was generated using GraphPad Prism version 6.04 for Windows66.
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RV heritability to characterize pathogenicity scores
Various in silico tools have been developed to predict the effects of rare
coding variants on risk of Mendelian disorders. Whether such patho-
genicity tools are useful for prioritizing variants contributing to com-
plex trait variance in the general population remains uncertain. As such,
we tested the association between commonly used pathogenicity
scores, namely Combined Annotation-Dependent Depletion (CADD),
Mendelian Clinically Applicable Pathogenicity (MCAP), and Rare Exome
Variant Ensemble Learner (REVEL), and the fraction of trait RV herit-
ability explained, hypothesizing that variants predicted to be more
deleterious account for more trait variance explained and vice versa.

For most traits, the fraction of heritability explained by an
increasing proportion of RVs (added from the highest to the lowest
level of predicted pathogenicity), was largely uniform and indepen-
dent of pathogenicity score (sub-plot Fig. 4, and Supplementary Fig. 7),
indicating little enrichment of trait-associated RVs by pathogenicity
score. Across traits (Supplementary Fig. 7), the average RV heritability
explained by the top 25%most deleterious variants was slightly higher
than expected at 36% (CADD 34%; MCAP 36.7%; REVEL 37.2%). How-
ever, the top 50% of most deleterious variants accounted for 42.9% of
heritability explained, which is lower than the fraction of heritability
explained by the bottom 50% set of variants (54%). The magnitude of
enrichment by pathogenicity score also varied by trait, for example,
the top 25% most deleterious variants by M-CAP score explained as
little as 32.3% RV heritability for height but as much as 48.4% RV her-
itability for ApoA-I. Further, the allele frequency of variants seemed to
have very little impact on the magnitude of enrichment, as we
observed similar results across the three MAF categories (<0.001,
<0.005, <0.01; Fig. 4, Supplementary Fig. 7). The specified MAF cut-
offs were used instead of MAF-bins as the h2

RV-gene-tot in these bins

(0.01 >MAF ≥0.005, 0.005 >MAF ≥0.001, and 0.01 >MAF ≥0.001)
were <5% (Supplementary Table 4) and consequently would have
produced unreliable results when further stratified by pathogenicity
scores.

Characterizing genes based on heritability estimates
To investigate gene-level characteristics of RVs, we used RARity to
determine h2

RV-gene for all genes with qualifying variants and derived
corresponding p-values for each gene using an F-test. After Bonfer-
roni correction (p-value < 2.75 × 10−6), 152 of the 18,214 genes had
significant h2

RV-gene for one or more traits (herein referred to as sig-
nificant h2

RV-gene), representing 218 distinct gene-biomarker rela-
tionships. A list of these genes with the corresponding h2

RV-gene and
p-values are presented in Supplementary Data 2. We identified many
genes that recapitulated previously reported associations and dis-
covered 11 previously unidentified gene-traits relationships. Some
examples of well-established relationships with significant h2

RV-gene

include PCSK9, which is known to regulate Apolipoprotein B (ApoB)
and Low density cholesterol (LDL); MC4R gene affecting body mass
index (BMI), and the association of LPL with Apolipoprotein A-I
(ApoA-I) levels. Some of the previously unidentified relationships
include PPARA with ApoB, TFAM with alkaline phosphatase, TMEM43
with hemoglobin A1c (HbA1c), and NR1I2 with total bilirubin. A list of
the significant heritability genes, highlighting the gene-biomarker
relationships is provided in Table 2. In addition, Manhattan plots
(Fig. 5) are included for 6 randomly selected traits: Alkaline phos-
phatase, HbA1c, Low density lipoprotein direct (LDL), Insulin like
growth-factor 1 (IGF-1), and ApoA-I.

We further investigated the role of the 152 genes contributing
significantly to trait heritability (p-value < 2.75 × 10−6) in diseases and
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Fig. 2 | Effect of aggregatingvariants onRVheritability estimates. aComparison
of RV heritability estimates derived from aggregation of variants in gene-burden
blocks, exome-wide blocks (blocks of 5000 unaggregated variants) and gene-wise
blocks with un-aggregated variants. The y-axis corresponds to the rare coding

variant contribution to percentage of heritability estimates for each trait.
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the y-axis versus exome-wide blocks, represented on the x-axis.
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biological pathways. DisGenet25 revealed 115 of the target genes
influencing 2137 disease pathways (Supplementary Data 3). A heat-
map of the diseases associated with the significant genes for ApoB is
presented in Fig. 6a. Interestingly, searching through the Drug Gene
Interaction database (DGIdb)26 revealed that 93 of the 152 of the
target genes (i.e., 61%) belong in the “druggable genome” category,
16 of which are “clinically actionable”, including APOB, FGFR3 and
LDLR (Supplementary Data 4). The target genes also appear to be
significantly overrepresented in many biologically relevant pathways
(multiple-testing correction via the g:Profiler g:SCS algorithm,
adjusted p-value < 0.05). For example, the genes contributing sig-
nificantly towards h2

RV of ApoB results in enrichment of 156 path-
ways, all of which are highly interconnected in an elaborate network
and includes well-known pathways such as the LDL receptor binding
pathways and pathways related to atherosclerosis (Fig. 6b, Supple-
mentary Data 5).

We explored whether h2
RV-gene is associated with gene-length and

evolutionary constraint, where gene length was derived from the
RefSeq transcriptswith the greatest length andgene-level evolutionary
constraint was determined using gnomAD pLoF Metrics27. For most
traits, neither gene-length (Supplementary Fig. 8, Supplementary
Table 5) nor evolutionary constraint (Supplementary Fig. 9, Supple-
mentary Table 6) was significantly associatedwith h2

RV-gene. Height was

the only trait where h2
RV-gene was significantly associated with gene-

length (0.24% variance explained, p-value = 3.3 × 10−11) and evolu-
tionary constraint (0.27% variance explained, p-value = 1.5 × 10−11).
Evolutionary constraint was suggestively associated with the h2

RV-gene

of BMI (p-value = 3.7 × 10−4) and waist-to-hip ratio (p-value = 9.4 × 10−3),
but no other significant association was observed. The highly con-
served gene cluster regions, with short repeats, such as the hox, his-
tone, protocadherin and hemoglobin gene clusters did not contribute
significantly to h2

RV (Supplementary Table 7). The overall heritability
estimates, h2

RV-gene-tot, were consistent between genes that are tran-
scribed fromeither the positive or the negative strand (Supplementary
Fig. 10), which is not surprising, considering that there are nearly equal
number of genes on either strand.

Discussion
We established amethod, the RARity estimator, to accurately estimate
the contribution of RVs to the heritability of complex quantitative
traits, and to characterize the gene-level and variant level character-
istics of RVs, as demonstrated with results from 31 continuous traits
form the UK Biobank. RARity is a versatile method, as it does notmake
any prior assumptions about the genetic architecture of the selected
variants, making it applicable to both common and rare variants.
Calibration of RV contributions was empirically confirmed using

Table 1 | Heritability estimates derived from rare coding and common variants

Traits h2
RV (%) (95% CI) h2

CV (%) (95% CI) h2
tot (%) (95% CI) h2

RV adjusted for h2
CV (%)

(95% CI)
Difference between h2

RV and h2
RV adjus-

ted for h2
CV (%)

Albumin 5.4 (2.6,8.3) 17.7 (15.5,20.0) 22.5 (19.3,25.7) 4.8 (1.7,7.8) 0.6

Alkaline phosphatase 13.8 (11.0,16.7) 36.1 (33.9,38.4) 46.8 (43.6,50.1) 10.7 (7.6,13.8) 3.1

Alanine aminotransferase 7.8 (4.9,10.6) 17.1 (14.8,19.3) 23.0 (19.7,26.2) 5.9 (2.8,9.0) 1.9

Apolipoprotein A 4.6 (1.7,7.4) 27.1 (24.8,29.4) 29.9 (26.6,33.1) 2.8 (−0.3,5.8) 1.8

Apolipoprotein B 9.6 (6.7,12.5) 38.9 (36.6,41.2) 44.0 (40.8,47.3) 5.1 (2.0,8.2) 4.5

Aspartate aminotransferase 5.9 (3.0,8.7) 19.9 (17.6,22.1) 24.0 (20.8,27.3) 4.2 (1.1,7.2) 1.7

Body mass index 9.9 (7.0,12.8) 31.8 (29.6,34.1) 39.5 (36.3,42.8) 7.7 (4.6,10.7) 2.2

Calcium 5.1 (2.2,7.9) 16.1 (13.9,18.4) 20.7 (17.5,24.0) 4.6 (1.6,7.7) 0.4

Cholesterol 7.6 (4.7,10.4) 28.9 (26.6,31.2) 32.2 (29.0,35.4) 3.3 (0.2,6.3) 4.3

Creatinine 5.9 (3.1,8.8) 28.6 (26.3,30.9) 32.6 (29.3,35.8) 3.9 (0.9,7.0) 2.0

C-reactive protein 6.6 (3.8,9.5) 27.3 (25.0,29.6) 33.7 (30.5,37.0) 6.4 (3.4,9.5) 0.2

Cystatin C 7.8 (4.9,10.7) 33.5 (31.3,35.8) 38.9 (35.7,42.2) 5.4 (2.3,8.5) 2.4

Diastolic Blood Pressure 8.6 (5.7,11.4) 26.1 (23.9,28.4) 34.6 (31.4,37.8) 8.5 (5.4,11.5) 0.1

Direct bilirubin 8.5 (5.6,11.4) 35.0 (32.7,37.3) 39.4 (36.1,42.6) 4.4 (1.3,7.4) 4.1

Gamma glutamyl transferase 7.0 (4.1,9.8) 29.4 (27.1,31.7) 35.0 (31.7,38.2) 5.6 (2.5,8.6) 1.4

Glucose 1.8 (−1.0,4.7) 9.8 (7.6,12.1) 12.5 (9.3,15.7) 2.7 (−0.4,5.7) -0.8

Height 21.9 (19.0,24.8) 71.3 (69.0,73.6) 87.8 (84.5,91.1) 16.5 (13.5,19.6) 5.4

Hemoglobin A1c 9.5 (6.7,12.4) 31.4 (29.1,33.6) 38.3 (35.1,41.6) 7.0 (3.9,10.0) 2.6

HDL cholesterol 6.6 (3.7,9.4) 31.5 (29.2,33.7) 36.2 (32.9,39.4) 4.7 (1.6,7.8) 1.9

IGF-1 7.9 (5.1,10.8) 28.1 (25.9,30.4) 33.8 (30.5,37.0) 5.6 (2.6,8.7) 2.3

LDL direct 8.7 (5.9,11.6) 32.4 (30.2,34.7) 36.7 (33.5,39.9) 4.2 (1.2,7.3) 4.5

Lipoprotein (a) 4.1 (1.2,6.9) 61.1 (58.9,63.4) 61.6 (58.4,64.8) 0.5 (−2.6,3.5) 3.6

Phosphate 7.3 (4.5,10.2) 17.1 (14.8,19.4) 23.3 (20.1,26.6) 6.2 (3.2,9.3) 1.1

Systolic Blood Pressure 6.8 (3.9,9.6) 25.4 (23.1,27.7) 33.4 (30.2,36.7) 8.0 (5.0,11.1) −1.3

Total bilirubin 7.7 (4.8,10.6) 40.3 (38.0,42.6) 44.3 (41.1,47.6) 4.1 (1.0,7.1) 3.6

Total protein 6.9 (4.0,9.7) 23.0 (20.7,25.2) 29.4 (26.1,32.6) 6.4 (3.3,9.5) 0.4

Triglycerides 8.6 (5.8,11.5) 26.3 (24.0,28.5) 31.9 (28.6,35.1) 5.6 (2.5,8.7) 3.0

Urea 3.2 (0.4,6.1) 17.1 (14.8,19.4) 20.0 (16.8,23.2) 2.9 (−0.2,6.0) 0.3

Urate 6.0 (3.1,8.8) 28.0 (25.7,30.3) 32.5 (29.3,35.8) 4.5 (1.5,7.6) 1.4

Vitamin D 2.0 (-0.9,4.8) 13.3 (11.0,15.5) 15.0 (11.7,18.2) 1.7 (−1.4,4.7) 0.3

Waist to hip ratio 7.4 (4.5,10.2) 21.0 (18.7,23.2) 28.2 (25.0,31.5) 7.2 (4.2,10.3) 0.1

CIconfidence interval,h2
CVheritability estimates due to common variants, h2

RVheritability estimatesdue to rare coding variants,h2
totheritability estimates due tocombined rare coding andcommon

variants.
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extensive simulation studies and proved to produce robust estimates
across a wide range of analytical scenarios.

The performance of RARity for CV contributions was comparable
with BOLT. The estimated h2

CV by LDSC on the other hand was lower
than RARity for each trait. While LDSC is a powerful tool that allows
estimation h2

CV fromGWAS summary-statistics, with adequate control
for population stratification, it is prone to underestimation as dis-
cussed in several studies28–31. Comparison of the h2

CV for height and
BMI, with other SNP-heritability methods in the literature, such as
LDSC23, LDAK32, GCTA33, GRE19 and SumHer34, shows that our estimates
are on the higher end (but not the highest) of what has been histori-
cally reported in comparison studies19,30. The apparent higher h2

CV for
height and BMI using RARity may be a characteristic of the subset of
the population selected in this study. All current methods make
assumptions about the genetic architecture, such as the effect size,
variance, LD/MAF ratios, etc., since the true genetic architecture is
unknown, it remains unclear which estimates in the literature are
reliable. More importantly, none of these methods are suitable for
estimation of rare variant heritability.

It was observed that for most traits, RVs account for a noticeable
proportion of trait heritability independent of CV contribution. One of
the technical challenges in combining CV and RV contribution is the
presence of LD and its interplay with allele frequencies. The results
suggested that the amount of LD between CVs and RVs is hetero-
geneous, and consequently, their independent contribution to herit-
ability is trait dependent. Indeed, the “missing heritability” can be
almost perfectly recapitulated by incorporating RVs for 11 of the 31
traits, including height and BMI (Supplementary Data 1), reaffirming
the conclusion from a recent study that used whole genome sequen-
cing (WGS) data14. Meanwhile, the apparent lack of recovery of the
pedigree-based heritability for other traits may be due to the inherent
characteristics of the pedigree-based studies. Generally, pedigree-
based studies report higher heritability as compared to SNP-based
heritability from population studies21. This gap is most likely due to
limited sample size in the early genome-wide association studies,
variability in sample collection, population characteristics, the exclu-
sion of sex chromosomes35, rare intronic, structural and non-coding
regulatory variants, in addition to the non-additive effects which are
captured by pedigree-based analysis but not necessarily captured by
RARity, nor by the most commonly used CV heritability models.

Several methods have been used to increase the power of
detecting gene-trait associations, the most popular methods being
gene burden testing and Sequence Kernel Association Test (SKAT)8.
Since SKAT aggregates the associations between variants and the
phenotype through a kernel matrix8 it is solely designed to test the
strength of association via p-values without providing an effect size,
and thus rendering it incomparable to RARity. The variant aggregation
method used in gene-burden testing do not have such a limitation, and
consequently, we were able to examine the effect of aggregating RVs
on trait variance, which on average resulted in a 79.3% loss on the
estimated h2

RV. These results suggest that burden tests may have
limited ability to predict traits. On the other hand, the use of unag-
gregated variants in RARity, not only captures more genetic variance,
but also offers the practical advantage of characterizing genes based
on h2

RV-gene. Furthermore, with fewer variants per block, h2
RV-gene can

be computed more efficiently to obtain the total heritability and still
produce consistent results with those derived using larger blocks of
exome data (Fig. 2b).

Next, we leveraged heritability estimates to assess the perfor-
mance of RVpathogenicity algorithms in the context of complex traits.
We see very modest, if any, enrichment of h2

RV when variants are fil-
tered according to pathogenicity scores. This is likely because the
pathogenicity scores for RVs currently used (MCAP, CADD, REVEL,
etc.) are largely basedonMendeliandiseases, have amodest impact on
complex trait h2

RV, and are limited in distinguishing the variants with
any biological effects from those that do not. This affirms our con-
clusion that there is a need for alternative methods to study the
functional consequences of RVs.

One of the useful features of RARity is that it can be tailored to
identify genes significantly enriched for heritability and help with gene
discovery and characterization. We show this by identifying 152 genes
significantly enriched for heritability. To the best of our knowledge, 11
of these associations have not been previously described through
exome wide association studies or GWAS (Table 2, Supplementary
Data 2). We further demonstrate that the 152 genes with significant
h2

RV-gene across 31 traits are enriched in various biological and disease
pathways. For example, 11 significant genes contributing to heritability
of ApoB are involved in pathways ranging from abnormal arterial ste-
nosis to chylomicron, LDL and lipoprotein clearance, as well as
hyperlipidemia and coronary artery diseases (Fig. 6, Supplementary
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Fig. 3 | Estimated phenotypic variance explained by RVs across 31 complex
traits.Bar chart illustrating the exome-wide RVheritability estimates (h2

RV) +/− 95%
confidence interval. Contribution of rare coding variants on 31 complex traits were
based on n = 167,348 Caucasian individuals from the UK Biobank, as estimated

using RARity via the exome-wide block construction. Traits were standardized for
age, sex, and the first 20 genetic principal components. 95% confidence interval of
trait h2

RV is denoted with red, vertical error bars.
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Data 4 and 5). Interestingly, previous association studies did not
identify the PPARA gene as genome-wide significant, even though
PPARA significantly contributes to the h2

RV of ApoB and that both
PPARA and APOB are involved in several lipid-related pathways (Sup-
plementary Data 5), fatty liver disease, and dyslipidemias (Fig. 6), and
identified as “druggable genome” in the DGIdb database (Supple-
mentary Data 3). Notably, PPARA is also the target of the lipid-lowering
drug class known as fibrates36, making it a strong candidate for further
pharmacogenomic studies. Indeed, most of the significant genes play
important roles in disease etiology, as observed through DisGenet
analyses. Further examples include the contribution of TFAM on
alkaline phosphatase heritability and its role in hepatocerebral mito-
chondrial DNA depletion syndrome, and the contribution of TMEM43
on HbA1c heritability and macular degeneration. These results imply
that genes involved in diseases are also likely to contribute sig-
nificantly to biomarker heritability. However, whether these associa-
tions can be used as markers of pathogenic mutations or represent

causal mediations through biomarker concentrations will require fur-
ther investigations.

As an application of the gene-wise blocks, we observed that for
most traits, longer genes do not explain higher trait variance, this is
likely because the relative paucity of larger genes obscuring any
underlying relationship16. Our observations also show a modest
increase in h2

RV-gene with higher RV evolutionary constraint (indicated
by lower LOEUF scores27) for only a few traits, and from this, we can
conclude that RVs contributing to the variance in complex traits are
likelywell-tolerated and are not selected against in general population.

This study has several limitations. First, exclusion of non-coding,
singleton, and doubleton variants, as well as LD pruning of potentially
functional variants, may lead to an underestimate of the h2

RV.
Although, numerous studies have shown that rare coding variants have
major functional impacts in direct way37, it is quite possible that some
of the observed h2

RV is due to the coding RVs being in LDwith the non-
coding variants that are not represented in WES. On the other hand,
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very little is known about the rare non-coding regions, which are dif-
ficult to define and even more difficult to assess functionality38, con-
sequently there is no direct comparison of the contribution of rare-
coding vs. non-coding variants in the literature. This is indeed a
question of high importance and may be answered with WGS. We
anticipate that RARity can be applied toWGSwith further calibrations,
to study effects of other variants not discussed here. One of the
challenges of WGS data analysis is that there is no natural biological
unit available in the intergenic regions. With RARity, there is no need
for defining the biological units, as the estimates can be based on
blocks that are agnostic of genetic borders.

Currently, the RARity model is fitted for to continuous traits. For
dichotomous trait heritability, the model will require slight adjust-
ments to transform the observed heritability to a liability scale

heritability to account for the case-control imbalance in population
study39. We did not find any significant difference in the RV heritability
between males and females across the 31 quantitative traits studied
(Supplementary Fig. 4). In contrast, SNP-based studies showed slight
differences in heritability of selected traits between the sexes40–42.
Since the analysis using RVs was limited by the reduced power, further
researchof larger sample sizes is required to better understand the sex
effect on RV heritability. We have only explored a fraction of the
pathogenicity scores and further research will benefit from using
RARity as a tool to evaluate the algorithms to distinguish functional vs.
non-functional variants. In addition, heritability describes the pheno-
typic variance at the population level, and thus cannot be generalized
to a different population, and nor does it inform the prediction of
phenotypic variations of an individual. Therefore,methods to estimate

Table 2 | Genes with significant heritability estimates for each trait

Trait Genes with significant RV heritability estimates Not reported in exome-wide
associations in UKB**

Not reported in GWAS
Catalogue

Albumin ALB; FCGRT; TBC1D2B

Alkaline phosphatase ALDH5A1; ALPL; ASGR1; GBGT1; GPLD1; HSPG2; NBPF3; TDP2; TFAM;
ZNF800

TFAM TFAM

Alanine aminotransferase GPT; MFSD3 MFSD3

Apolipoprotein A-I ABCA1; ADH1B; ANGPTL3; APOA1; APOC3; CETP; LCAT; LIPC; LIPG; LPL;
PLA2G12A; SCARB1

CETP

Apolipoprotein B APOB; APOE; BCAM; CEACAM20; CLASRP; LDLR; NECTIN2; NKPD1;
PCSK9; PPARA; ZNF229

PPARA PPARA

Aspartate aminotransferase ANO5; GOT1

BMI MC4R

Calcium ALB; CASR; FCGRT

Cholesterol ABCA1; ABCG5; ANGPTL3; APOB; FGB; JAK2; KHDRBS2; LDLR; LIPG;
NECTIN2; NKPD1; PCSK9; ZNF229

KHDRBS2; ZNF229 KHDRBS2

Creatinine LRP2; SLC22A2; SLC22A7

C-reactive protein ABCA1; APCS; CRP; JAK1; TMED8 TMED8 TMED8

Cystatin C CGNL1; CST3; SH2B3

Direct bilirubin ATG16L1; DGKD; DNAJB3; HJURP; MROH2A; NR1I2; SAG; SLCO1B1;
SLCO1B3; SLCO1B3-SLCO1B7; TRPM8; UGT1A1; UGT1A10; UGT1A3;
UGT1A4; UGT1A5; UGT1A6; UGT1A7; UGT1A8; UGT1A9; USP40

NR1I2; SLCO1B3-SLCO1B7

Gamma glutamyl
transferase

A1CF; GGT1; LRRC75B; RORC; SYNJ2

Glucose G6PC2; GCK

Hemoglobin A1c ADGRE5; APEH; CTU2; G6PC2; GCK; JAK2; PFKL; PFKM; PIEZO1; RHAG;
SPTB; TMC8; TMEM43

ADGRE5; TMEM43 ADGRE5; APEH;
JAK2;TMEM43

HDL cholesterol ABCA1; APOA1; APOA5; APOC3; CETP; LCAT; LIPC; LIPG; LPL; NR1H3;
PLA2G12A; SCARB1

Height CRISPLD2; DDR2; FGF2; FGFR3; GH1; GHRH; GRAMD2A; HAPLN3; IHH;
NPR2; NPR3; SCMH1; STC2; ZFAT

GH1; GHRH

IGF-1 GH1; IGFALS; IGFBP3; PARPBP; ZNF12

Low-density lipoprotein ABCG5; ANGPTL3; APOB; APOE; LDLR; NECTIN2; NKPD1; PCSK9;
ZNF229

Lipoprotein(a) ACAT2; AGPAT4; ARID1B; EZR; FNDC1; IGF2R; LPA; MAP3K4; MAS1;
MRPL18; PLG; PNLDC1; SLC22A1; SLC22A2; SLC22A3; SOD2; SYNJ2;
SYTL3; TMEM181; TULP4; WTAP

ACAT2; ARID1B;EZR;
SYNJ2; TULP4

EZR; TMEM181

Phosphate ALPL; CDR2; ENPP1; HLA-DPA1; TTK CDR2; HLA-DPA1; TTK CDR2; HLA-DPA1; TTK

Total bilirubin ATG16L1; DGKD; DNAJB3; HJURP; MROH2A; NR1I2; SAG; SLCO1B1;
SLCO1B3; SLCO1B3-SLCO1B7; TRPM8; UGT1A1; UGT1A10; UGT1A3;
UGT1A4; UGT1A5; UGT1A6; UGT1A7; UGT1A8; UGT1A9; USP40

NR1I2; SLCO1B3-SLCO1B7 NR1I2

Total protein FCGR2B; FCGRT; SNX8; TNFRSF13B

Triglycerides ANGPTL3; APOA5; APOB; APOC3; LPL; PLA2G12A; SIK3; ZPR1

Urate LGALS13; PDZK1; SLC22A11; SLC22A12; SLC2A9; WDR1

Urea RBM47; CYP2R1; HAL; PDE3B

Vitamin D CYP2R1; HAL; PDE3B

Systolic blood pressure, diastolic bloodpressure andwaist-to-hip ratio did not have significanth2
RV-gene. Bolded font indicates gene-trait relationships unidentified in previous studies. **Wang,Q. et

al.64 and Backman, J.D. et al. 65.
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RV heritability, such as RARity, are not intended to replace RV asso-
ciation methods, but rather to complement.

Together, these results confirmed that (1) RVs can account for
a significant portion of the complex trait heritability, (2) gene-level
RV aggregation (gene burden) leads to a substantial loss of infor-
mation, (3) identification of genes significantly enriched for h2

RV-

gene can help with gene discovery, and (4) innovative methods are
needed to predict variant-level functionality. In conclusion, the
high trait variance explained by RVs makes it imperative to con-
tinue to invest in the study of RVs and understand their impact on
health and diseases. As such, future studies extending the meth-
odology to analysis of dichotomous traits, particularly disease
status, are in a pressing need.

Methods
Study population
The UK Biobank (UKB) study is a prospective cohort comprising of
approximately 500,000 participants (ages 40–69 years) with exten-
sive genotypic and phenotypic data from consenting individuals43. All
UKB data included in our analyses were accessed as part of our
approved application #15255. Here we utilized two main genetic
datasets from theUK Biobank. First, our primary source of RVs was the
WES data with 17,975,236 variants on 200,643 participants (UKB data
field: 23155). Second, CVs were extracted from imputed genotype data
on 488,264 individuals (data field: 22418; v3 release). The acquisition
and primary quality control (QC) of both genetic data are described
elsewhere44. Briefly, out of the 200,643 samples with WES data,

Apolipoprotein A

Height

Insulin-like Growth Factor 1

Alkaline phosphatase

Hemoglobin A1c

Low-density lipoprotein

Fig. 5 | Manhattan plot illustrating genes with significant heritability for
selected traits. RARity was used to determine h2

RV-gene for all geneswith qualifying
RVs. Each dot represents a single gene, with genes ordered on the x-axis according
to their genomic position. The y-axis represents the significance of h2

RV-gene

measured as -log10 transformed p-values, where the p-values were derived using F-
test. Red, horizontal dashed lines mark the Bonferroni’s p-value significance
threshold corrected for 18,214 genes (p-value < 2.75 × 10−6). Genes with significant
h2

RV-gene are labelled.
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individuals were excluded based on: consent withdrawal (n = 11), call
rates less than 99% (n = 2), discordance between genetic and repor-
ted sex (n = 18), a departure from putative ancestorial clusters based
on the first two genetic principal components (n = 3), assigned clus-
ter membership to a continental population with less than
5000 samples (n = 12,765, of which, South Asian = 3395; African =
3168; Other = 6202), and 3rd degree or closer relatedness
(n = 14,156). In the remaining 173,688 individuals, an additional 6340
were removed following QC of biomarker data (as described below).
We focused on the 167,348 unrelated Caucasian participants to
estimate narrow-sense heritability contributed by CVs, RVs, or the
combined CV and RVs.

Biomarker and anthropometric data
The blood biomarkers in UKB represent clinical diagnostic measures
and established risk factors for diseases. For example, HbA1c is used in
the diagnosis of diabetes and lipids are needed for risk stratification of
cardiovascular diseases. Besides the standard QC steps implemented
by theUKB study team45, we applied additional steps to curate the final
list of 26 biomarkers and 5 anthropometric traits (height, body mass
index [BMI], waist-to-hip ratio, and systolic and diastolic blood pres-
suremeasured automatically) (Supplementary Table 1, Supplementary
Fig. 1). Briefly, sex-specific biomarkers, such as sex hormone binding
globulin (SHBG) and testosterone, as well as those biomarkers with
>80% missingness (e.g. oestradiol and rheumatoid factors) were
excluded from the analyses. Next, we winsorized values that were
either above or below the detectable range, using the reportability
fields for each biomarker. Out of the 173,688 participants with WES
data, we removed 598 individuals with missing values for all 26 bio-
markers. Since many of the examined biomarkers can be altered by
specificmedications including blood glucose, HbA1c, lipids, and blood
pressure, we applied corrections for medication status (Supplemen-
tary Table 2). As a result, 5,742 individuals on glucose-lowering drugs
were removed, meanwhile, individuals on statins had their baseline
low-density lipoprotein cholesterol (LDL-C) and ApoB values adjusted
by dividing by 0.7, their total cholesterol adjusted by dividing by 0.8,
and their ApoA-I and high-density lipoprotein (HDL) cholesterol
adjusted by dividing by 1.06 and 1.05, respectively46–49. Blood pressure-
lowering medications were adjusted by adding 10mmHg and
15mmHg to their diastolic blood pressure (DBP) and systolic blood
pressure (SBP), respectively50,51. Further, missing biomarker or trait
values were imputed by theirmean values. All traits were then quantile
transformed to resemble a standard normal distribution and further
adjusted for age, sex, and the first 20 genetic principal components
(PCs) to account for any effects of sub-population structure within
UKB52, and finally standardized to have mean 0 and variance 1. Bio-
marker treatment for sex-stratified analysis was performed in an
identical manner.

Genotype data quality control
Rare coding variants. Genetic variants were called from WES data
following the Functional Equivalent pipeline53. All monomorphic var-
iants (m = 83,700), variants with missing genotypes in more than 10%
samples (m = 369,215), and those deviating significantly from Hardy-
Weinberg Equilibrium (p-value < 5 × 10−6; m = 35,317) were removed.
Remaining variants were annotated with predicted pathogenicity
scores, and amino-acid changes using ANNOVAR geneanno pipeline
with the refGene database54. Variants were annotated with MAF based
on the UKB samples, as well as the five major ancestries identified in
the Genome aggregation database (gnomAD 2.11): Latino, non-Finnish
European, African/African American, East Asian, South Asian27. Quali-
fying RVs were defined as variants that were nonsynonymous single
nucleotide variants, frameshift deletions or insertions, in-frame dele-
tions or insertions, stop-gain, stop-loss and start-loss variants, with a
minor allele count (MAC, the number of minor alleles at each locus in

the population being studied) >2 and MAF below the cut-off (<1%,
<0.5% or <0.1%) in all gnomAD subpopulations, and locally in the UKB
samples. Within these variants, the stop gain/loss variants and frame-
shift variants were defined as the LoF variants, and the rest are referred
to as protein-altering variants. RVs were also subset into MAF bins
(MAF = 0.01–0.005, 0.005–0.001 or 0.01–0.001) to examine the con-
tribution of different MAF categories to h2

RV.
To reduce the influence of long-range LD between variants that

would otherwise inflate the overall heritability estimate, as we show in
subsequent simulations (“Calibrating RARity”), highly correlated RVs
were removed using PLINK1.955, by LD pruning with a Pearson’s r2

threshold > 0.1within awindowof 50Mb thatwas shifted by 500bases
at the end of each step. Next, individuals on glucose-lowering medi-
cationswere removed and aMACfilterwas appliedoncemore to retain
RVswithMAC> 2, leading to afinal analytical dataset including 167,348
individuals and 1,592,257 variants with MAF < 1% in 18,213 genes. All
other analyses were based on this analytical dataset. Individual level
genotypes were extracted with PLINK1.9, assuming an additive model
for all variants, and thus allotting a score of 2 for rare allele homo-
zygous variants, 1 for heterozygous variants, and 0 otherwise. Multi-
allelic variants were treated as bi-allelic by considering the presence or
absence of (any) rare variant.While RVswithmissing genotype in >10%
samples were removed during the early QC steps, mean imputation
was employed to fill in the missing genotypes in the remaining sam-
ples. Finally, genotypes were standardized to have mean 0 and var-
iance 1. The genotype and phenotype data processing steps are
illustrated schematically in Supplementary Fig. 1.

Common variants. CVs originated from the third release of the UK
Biobank genotype data in 2017. The imputed genotypes are based on
the Genome Reference Consortium Human Build 37 (GRCH37), and
furtherfiltered to retainCVswith imputationquality score greater than
0.7, those with no significant deviation from Hardy-Weinberg equili-
brium (p-value > 1 × 10–10). We further filtered genotype data by LD
pruning with r2 > 0.9 and a rolling window of 1Mb, that were shifted in
steps of 500 bases, leaving 1,030,594 CVs in 159,058 participants, for
whomwe also hadWES data. These pruning parameters were selected
based on simulations using a very similar approach, using 325,989
participants in the UKB by Di Scipio and Khan et al.31. For compatibility
with RVs, the CVs were lifted to the GRCH38 assembly using UCSC
LiftOver56. Similar to RVs, individual level genotypes were extracted
with PLINK1.9, assuming an additivemodel, mean imputation was also
employed to fill in the missing genotypes (in <10% samples), followed
by standardized to have mean 0 and variance 1.

Combined common and rare coding variants. We concatenated the
derived RVs and CVs, and then LD pruned once again with the same
parameters as CVs (r2 > 0.9, window size = 1Mb, step size = 500 bases).
We already implemented a more stringent LD pruning schema for RVs
(r2 > 0.1, window size = 50Mb, step size = 500 bases), conversely, an
overly stringent LD pruning schema applied to CVs would remove
most of the variants, and thus, for the combined CV +RV we imple-
mented the more relaxed LD pruning similar to that for CV (r 2 > 0.9,
window size = 1Mb, step size = 500 bases) and blocks of 20,000 var-
iants were constructed to enable distribution of both CVs and RVs
within each block.

Statistical model to estimate RV heritability using RARity
We developed a method, RARity, to compute heritability estimates
based on aggregating linear regression models over large genetic
regions including up to thousands of variants. Themethod is based on
a multivariate linear regression model:

Y =GβG + ϵ, ð1Þ
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The RARity method entails computing the multiple linear regression
solutions using an ordinary least square (OLS) for each of the non-
overlapping genetic blocks (1, . . . ,k, . . . ,K) in parallel under the
condition that n is much larger than the number of genetic variants
(pk) in the k th block, while ensuring the between block correlation,
due to linkage disequilibrium (LD) spillage between blocks, is
minimized. In other words, RARity approximates the linear solution
toβG by setting theobserved G0G

� � 2 Rm×m to a blockdiagonalmatrix,
where m=

P
pk ≫n: Given the observed quantitative trait y, the OLS

estimate of the genetic effects vector for the k th block Gk is:

β̂Gk
= G0

kGk

� ��1G0
ky, ð2Þ

and the fitted value, denoted by ŷ, can be computed as:

ŷ=Gk β̂Gk
: ð3Þ

The estimated heritability associated with the G matrix is simply the
amount of variance explained by the fitted value:

R2
Gk

=by0by=y0y: ð4Þ

SinceR2
Gk

increases as the number of predictors increase, the adjusted
R2, denoted by �R

2
, is used as our estimate for the proportion of var-

iance explained. Total RV heritability of the trait is estimated by the
sum of �Rk

2
over all K blocks:

ĥ
2
=
XK

k = 1

�R
2
Gk

=
XK

k = 1

1� 1� R2
Gk

� �
n� 1ð Þ= n� pk � 1

� �h i
: ð5Þ

The 95% confidence interval (CI) of R2
Gk

can be approximated for each
block using the asymptotic properties described by Algina57 using the
Wald’s method, where the variance of R2

Gk
is given by:

dVar R2
Gk

� �
=
4R2

Gk
1� R2

Gk

� �2
n� k � 1ð Þ2

ðn2 � 1Þ ðn+3Þ
ð6Þ

The 95% CI for the adjusted R2 of a single block can then be derived
accordingly:

�R
2
Gk

± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVar �R

2
Gk

� �r

, ð7Þ
where

dVar �R
2
Gk

� �
=

n� 1
n� pk � 1

� �2
dVarðR2

Gk
Þ: ð8Þ

To estimate the 95% CI for ĥ
2
, we approximated the asymptotic var-

iance by the sum of the individual sampling variance, dVarð�R2
Gk
Þ for

each block, assuming each block is roughly uncorrelated of others
after controlling for LD spillage:

dVar ĥ
2

� �
=
XK

k = 1

n� 1
n� pk � 1

� �2
dVar R2

Gi

� �
, ð9Þ

which then translates to a Wald’s 95% CI for the ĥ
2
:

ĥ
2
± 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dVar ĥ
2

� �s

: ð10Þ

Since the model is conditional on the observed genotype matrix,
RARity requires no parametrization nor assumptions regarding the
genetic architecture of traits analyzed (such as polygenicity of effects
or relationships between MAF/LD and effect size). The only

assumption of block-wise independence was addressed by a stringent
LD pruning to avoid long-range LD. The main computational burden
for biobank scale datasets is the inversion of theG0Gmatrix, which is of
size m × m, but the matrix calculation becomes quite manageable for
blocks ofG, where each block contains pk = 5000–10,000 variants and
n ~ 200,000 in a standard high-performance computing environment.
For example, for a typical analysis of 5000 RVs and 167,348 samples,
the heritability estimation took approximately 7minutes for all 31
traits, running on a single core and 7.3Gb memory. All statistical
analyseswereperformedusing the statisticalprogramming languageR
(version 3.6.0)58.

Statistical power
Statistical power ofh2

RVwasestimated empirically from the varianceof
10,000 simulated h2

RV ðdVarðĥ
2ÞÞ, under 230 conditions of sample sizes

and true set h2
RV. Non-central F-distributionswere used to simulate the

observed genetic effects at each genotype block, and exome-wide h2
RV

wasderived asdescribed above. The true seth2
RV ranged from2 to 25%,

with increments of 5%. Sample size was varied from 25,000 to 250,000
individuals by increments of 10,000. For each condition, the statistical
power was calculated as the proportion of observed p-values less than
0.05 out of the 10,000 simulations.

Calibrating RARity
Rarity can be used with both common and rare variants. The effect of
LD on over-estimation of heritability is well-known for common
variants20 and can be minimized by choosing a suitable set of pruning
parameters. In our preliminary analyses, we also observed over-
estimation of h2

RV, which occurs when rare variants in different blocks
are in LD, thus, it was necessary to perform pruning and calibrate the
pruning parameters to empirically minimize bias.

Here we conducted simulation studies using observed geno-
types to identify the most suitable LD pruning parameters, including
the Pearson’s r2 coefficient threshold, the window size, and the step
size, to reduce bias in estimating heritability. To this end, RVs on
each chromosome, with MAF <0.01, were LD pruned under 7 dif-
ferent scenarios that varied in window sizes (ws) and LD r2 threshold
in the following combinations (ws = 1Mb with r2 > 0.9, 0.5 or 0.1;
ws = 20Mb with r2 > 0.1; ws = 50 with r2 > 0.9, 0.5 or 0.1), with a fixed
step size of 500 bases. Pruned variants in each scenario were then
partitioned into exome-wide blocks, with 5000 variants per block.
We assumed that a random subset of 20% of the RVs in each block
had an independent effect associated with the simulated trait of
interest and their contribution to true set h2

RV was 0.05 for the
whole exome. The unobserved genetic effects were simulated
from a standard normal distribution while the errors were sampled
independently from a normal distribution with mean 0 and
variance 0.95.

The simulated phenotype (Ysim) was then computed as:

Y sim =GβG + ϵ ð11Þ

We generated 20 phenotypes (Ysim) under each of the 7 scenar-
ios to assess the overall impact of LD pruning parameters on RARity
estimates and proceeded to estimating exome-wide h2

RV as descri-
bed in the section “Statistical model to estimate RV heritability
using RARity”. In addition, the calibration was repeated with the
assumption that the true h2

RV originated from 10%of RVs within 5% of
the genes, instead of homogeneous distribution of h2

RV across all
blocks.

To test whether the more relaxed LD pruning for CVs (r2 > 0.9,
ws = 1Mb, step size = 500 bases) would impact the estimation of h2

CV,
we benchmarked RARity against alternative methods designed for
CVs, namely BOLT22 and LDSC23.
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Testing the effects of genetic architecture
To assess whether RARity is sensitive to MAF thresholds, values of
true h2

RV, or varying fractions of causal variants or genes, we further
tested RARity with simulations utilizing real genotype data, pruned
with the default LD pruning threshold (r2 > 0.1 within a window size of
50Mb). For each simulation, exome-wide h2

RV was estimated forYsim.
A total of 20 simulations were carried out for each scenario as fol-
lows. The effect of varying MAF was tested by assuming that 10% of
variants within 5% of genes are causal in each of the MAF categories
(MAF < 0.001, <0.005 and <0.01). The effect of varying h2

RV was
tested for MAF < 0.01 with the true h2

RV set to either 2, 5, 10, 20 or
25%. Next, keeping a consistent MAF < 0.01 and true h2

RV at 10%, the
effect of varying fractions of causal genes (0.01, 0.05, 0.1 and 0.2)
was tested with 10% of RVs with true effects. Finally, keeping a con-
sistent MAF < 0.01, and true set h2

RV at 10%, we tested the effect of
varying fractions of causal variants (0.001, 0.05, 0.1 and 0.2) in 5% of
randomly selected genes.

Application to UKB data
WeestimatedRV, CV (h2

CV) and combinedCV andRVheritability (h2
tot)

of 31 complex traits, including 26 biomarkers and 5 anthropometric
traits in 167,348 UKB samples. For RV heritability, we additionally
examined the influence of block construction on the final heritability
estimate. The qualifying RVs were arranged in three different ways to
create blocks of genotype data that were used to estimate heritability:
(1) gene-burden blocks were derived by summing the number of rare
alleles within each gene for an individual, which produced a single
block containing all gene-burden scores as predictors. Heritability
estimates from this type of block is denoted with h2

RV-burden; (2) gene-
wise blocks, consisted of un-aggregated RVs partitioned by gene, such
that each block contained all the variants within a single gene. In other
words, there were as many blocks as the number of genes. Gene her-
itability from this type of block is referred to as h2

RV-gene, and the total
trait heritability based on all genes is denoted as h2

RV-gene-tot;
(3) exome-wide blocks, were created by partitioning RVs in each
chromosome into blocks of ~5000 adjacent RVs. This type of construct
results in blocks that are gene-agnostic, i.e., independent of gene
borders with varying number of genes per block, for example, the
number of genes ranged from 17–170 per exome-wide block when
protein altering and LoF variants (<0.01 MAF) were selected. The total
heritability estimates from exome-wide blocks are denoted with h2

RV.
In each case, LD spillage was minimized through pruning prior to
creating the blocks (as described above, in the “Genotype data quality
control” section).

The impact of block size on h2
RV was tested using the first 4 blocks

of ~5000 protein altering and LoF RVs (MAF<0.01) from chromosome
22, where 2 consecutive blocks were combined to create blocks of
~10,000RVs and all four blocks were combined to form a single block of
~20,000RVs. Since the size of blocks did not impact the accuracy of h2

RV

(Supplementary Fig. 11), the choice of 5000 RVs per block in an exome-
wide block construct was motivated by computational efficiency.

Enrichment analysis (pathogenicity and gene set)
Identification of significant genes. For each trait, we assessed 18,214
genes for their contribution to the total heritability and prioritized
those with significant contribution for functional enrichment. A sta-
tistically significant contribution was determined by an F-test for
regression models, against the null hypothesis that the gene-level
heritability was zero, at a Bonferroni corrected gene-wide significance
threshold of α = 0.05/18,214 = 2.75 × 10−6.

Pathogenicity scores. We evaluated three well-known pathogenicity
scores to classify deleterious RVs59, namely, Combined Annotation
Dependent Depletion (CADD) scores (v.1.6)6, Mendelian Clinically
Applicable Pathogenicity (M-CAP 1.3) scores60, and rare exome

variant ensemble learner (REVEL)5. We created subsets of RVs based
on the default thresholds indicative of deleteriousness (CADD > 20,
M-CAP > 0.025, and REVEL > 0.55,6,60), as well as decreasing propor-
tion of variants, by increasing the pathogenicity scores every 5th

percentile. This was repeated for all threeMAF cut-offs (<1%, <0.5% or
<0.1%), and thus creating 63 subsets of RVs (21 pathogenicity cut-offs
× 3 MAF thresholds) for each class of pathogenicity score. To derive
an independent set of deleterious variants, we applied LD-clumping
(Pearson’s r2 > 0.1, window size = 50Mb) within each subset and
retained themore pathogenic, independent variants with the highest
score. We then constructed gene-wise blocks and derived h2

RV-gene-

tot, to efficiently estimate the total heritability for each subset of RVs.
The proportion of h2

RV-gene-tot was measured in relation to all protein
altering and LoF variants within eachMAF categories. The proportion
of h2

RV-gene-tot explained as a function of incorporating increasingly
“deleterious” genetic variants was used to measure the performance
of pathogenicity scores to identify sets of functional RVs.

Network and pathway analyses. The g:ProfileR61 web tool for func-
tional profiling, g:GOST, was used to test the enrichment of the genes
with significant heritability (h2

RV-gene p-value < 2.75 × 10−6), against
gene-sets in common databases. The significant heritability genes for
each trait were treated as separate gene lists for independent query,
and statistical tests were conducted within a domain scope of only
annotated genes, considering theGObiological process, GOmolecular
function, GO cellular component, KEGG, Reactome, TRANSFAC,
miRNA, CORUM, HP, HPA, and WikiPathways data sources, and
removing electronic GO annotations. This analysis resulted in a list of
statistically significant enriched terms for each gene list, adjusted for
multiple testing using g:SCS (set counts and sizes) p-value < 0.05,
integral to the g:Profiler server. An Enrichment Map was then created
with the results from g:Profiler, using Cytoscape version 3.10.162, with
an FDR q-value cut-off value set to 0.001, and medium connectivity,
producing networks where the nodes represent enriched pathways,
and the edges represent all pairwise connections. These threshold
values were chosen to ensure that we captured highly enriched path-
ways while being able to observe structure in the network. Next, we
clustered the nodes to distinguish the major theme in the enriched
pathways for each trait. DisGeNET25 was used to retrieve and explore
the gene-disease associations for the significant list of genes, resulting
in a disease-heat-map for each trait. In addition, we ran a query of the
target genes in the Drug-Gene Interaction database (DGIdb)26 to
identify potentially druggable and clinically actionable genes.

Heritability estimates in relation to sex and gene-level
annotations
Sex-stratified analyses were performed using gene-wise blocks
including RVs with MAF < 0.01, including 92,963 females and 74,385
males. Differences in the heritability estimates between the genetic
sexes was determined with t-test. In order to investigate the influence
of gene length and evolutionary constraint on RV heritability, we
tested the association between these independent predictors and
heritability contribution from each gene towards RV trait h2 (h2

RV-

gene). The predictors included (1) gene-level evolutionary constraint,
which was determined using gnomAD pLoF Metrics (v2.1.1)27; and (2)
gene length, which was based on the curated RefSeq transcripts
obtained via the UCSC genome browser. For each gene, the tran-
script with the longest transcript length was selected to represent the
length of the gene. Since the distribution of the gene lengths are
skewed, with some genes beingmuch longer than others, the lengths
of all genes were log transformed. Heritability estimates for both
analyses were calculated using the same set of 1,592,257 RVs
with MAF < 1%.

To examine the enrichment of h2
RV in highly conserved regions,

we estimated the h2
RV-gene-tot of height originating from the conserved
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gene clusters, such as the hox, histone, protocadherin, and the
hemoglobin gene clusters. The list of genes in these clusters was
obtained from the HUGO Gene Nomenclature Committee (HGCN)
database (www.genenames.org) and cross-listed with the genes car-
rying RVs in the UKB. The impact of gene orientation on h2

RV was
examined by comparing the h2

RV-gene-tot contribution of the genes
transcribed from the positive vs. negative strand, where the strand of
each gene was annotated using the RefGene database in the UCSC
genome browser56, with roughly equal number of genes present on
either strand.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual genetic and phenotypic data were obtained from the UK
Biobank (http://www.ukbiobank.ac.uk/), under application#15255. The
UK Biobank study received approval from the National Health Service
National ResearchEthics ServiceNorthWest. Access to theUKBiobank
individual-level data is not publicly available and must be obtained via
an application (https://www.ukbiobank.ac.uk/register-apply/). UCSC
genome browser (https://genome.ucsc.edu/) was utilized to access
LiftOver for the conversion of Genome Reference Consortium Human
Build 37 (GRCH37) to Genome Reference Consortium Human Build 38
built, and to obtain additional gene-level annotations such as gene-
length, strand orientation and the gnomAD pLoF Metrics. Databases
for gene-disease associations (DisGeNet, https://www.disgenet.org/),
Drug Gene Interaction database (DGIdb, version 4.2.0, https://www.
dgidb.org/) and HUGO Gene Nomenclature Committee (HGCN,
https://www.genenames.org/) were utilized to inform on the impor-
tance of the target genes. Variant level annotations and pathogenicity
scores, such asMendelian Clinically Applicable Pathogenicity (M-CAP)
Score, and Rare exome variant ensemble learner (REVEL) were
obtained using ANNOVAR or downloaded directly from theweb-based
platform, such as the Combined Annotation Dependent Depletion
(CADD) scores. Source data for all main and supplemental figures are
provided with this paper.

Code availability
All customcode and relevant documentation to run RARity is available
in a public GitHub repository (https://zenodo.org/records/
10426710)63.
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