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Two-edge-resolved three-dimensional
non-line-of-sight imaging with an
ordinary camera

Robinson Czajkowski1 & John Murray-Bruce 1

We introduce an approach for three-dimensional full-colour non-line-of-sight
imaging with an ordinary camera that relies on a complementary combination
of a new measurement acquisition strategy, scene representation model, and
tailored reconstructionmethod. From an ordinary photograph of amatte line-
of-sight surface illuminated by the hidden scene, our approach reconstructs a
three-dimensional imageof the scenehiddenbehind anoccluding structure by
exploiting two orthogonal edges of the structure for transverse resolution
along azimuth and elevation angles and an information orthogonal scene
representation for accurate range resolution. Prior demonstrations beyond
two-dimensional reconstructions used expensive, specialized optical systems
to gather information about the hidden scene. Here, we achieve accurate
three-dimensional imaging using inexpensive, and ubiquitous hardware,
without requiring a calibration image. Thus, our systemmay find use in indoor
situations like reconnaissance and search-and-rescue.

Conventional imaging and vision systems require a direct line of sight
of the scene of interest. However, in numerous applications like
search-and-rescue, reconnaissance, infrastructure evaluation, archae-
ological expeditions, andbiomedical imaging, obtaining adirect line of
sight may be unsafe, challenging, or even impossible. This has pro-
liferated in a number of research fields aiming to image through or
around obstacles, by leveraging different sensing modalities including
optical1–19, sound20,21, thermal22 and others23,24. The rapidly growing
field of non-line-of-sight (NLOS) imaging1 is one such field that aims to
resolve this challenge and extend the limits of conventional optical
systems, by decoding information in measurements of the light that
reaches the visible side after being reflected or emitted by the hidden
scene. With the ability to see around obstacles, these systems will
profoundly impact myriad applications across different fields.

Conceptualised by ref. 2, the first experimental demonstration of
3D NLOS imaging used active optical illumination of a visible surface
and time-resolved detection of the returning light after suffering three
diffuse reflection events3: from the visible surface, hidden scene sur-
faces and visible surface again, in that order. These and subsequent
active 3D NLOS imaging works, raster scan the illumination4,25, or the

time-resolved detector26,27, or both in a confocal setup6–9 over a large
2D grid of points to gather measurements containing sufficient infor-
mation about the 3D structure of the hidden scene. Most active NLOS
methods are thus, inherently limited by slow acquisition speeds due to
the requirement of raster scanning. Excluding the recent
demonstration28, active methods that use a detector array instead of
raster scanning are constrained to tracking one or twomoving hidden
scene components29,30. Impressively, ref. 28 tracks one or two moving
hidden scene components as rectangular facets and simultaneously
maps out the static background behind them from comparatively
short acquisition times, although the requirement of a long-exposure
calibrationmeasurement and inability to resolve shape, pose, or full 3D
information may limit its applicability. Moreover, active methods that
use intensity-only information are similarly limited to detecting and
roughly tracking a single NLOS object18.

Contrasting their active counterpart, passive NLOS imaging
methods do not use controlled illumination, opting instead to use
existing light arriving naturally from the hidden scene for reconstruc-
tion. Here, the detected light suffers at least one diffuse reflection event
and attenuation according to an inverse-square law, which destroys
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most information about light path directions and produces a weak
signal. Themost promising passive methods that use ordinary cameras
as detectors aim to restore directional information by exploiting the
edges of an occluding structure existing in both the hidden and visible
scenes13,31–35, or entirely in the hidden scene14–16 and are to be estimated
or assumed to be known. In a typical scenario, the illumination of the
visible surface caused by light from the hidden scene depends on its
interaction with the objects preventing a direct line of sight. Some light
paths are obstructed by the occluding objects, whereas other light
paths are unobstructed and, thus, illuminate the visible scene area. This
interactionproduces, on the surfaces of the visiblemeasurement area, a
soft shadow (or penumbra)36 that is informative about both the
occluding structure and the scene it obscures16,36.

Although significant strides have been made, notably by the class
of works based on the corner camera32 that exploit vertical edges—
such as those occurring in corridors, doorways, or at the boundaries of
buildings in urban environments—to form reconstructions of a hidden
scene33,34,37, intensity-based passive methods (including those that
exploit hidden scene occluders14–17,38) are limited to 1D and 2D recon-
structions. Bouman et al.32 reconstructed 1D videos (azimuthal trajec-
tories) ofmoving hidden scene components from a video recording of
penumbra occurring on the floor, while a subsequent work37 recon-
structed both moving and stationary hidden scene components in 1D,
from single photographs. These prior works32,37 and their
extensions28,33,34,39,40 derive high azimuthal resolution from the vertical
edge separating light path directions in azimuth. Adding a second
dimension to obtain 2D plan view reconstructions relied either on
measured travel times of ultrashort light pulses used to probe the
hidden scene area39,40, a stereo combination of corner cameras32, or on
detailed modelling and sophisticated scene priors28,33, with varying
degrees of accuracy.

In this work, we present a completely passive approach which we
dub two-edge-resolved imaging (TERI), because of its opportunistic

use of two orthogonal edges of a visible occluder structure to achieve
3D full-colour imagingof a hidden scenewith anordinary camera. Such
two-edge instances in occluders are abundant: appearing at the top of
doorways and window frames in indoor settings. The opportunistic
use of such visible edge occluders by TERI is akin to the use of vertical
edges by corner cameras32,33,37,40. In contrast, however, we propose a
new acquisition configuration (see Fig. 1) that uses the visible ceiling as
the observation plane. In our configuration, it is less likely that con-
tributions from themost interesting hidden scene components, which
typically rest on the ground plane, will be overwhelmed by bright
overhead ambient light contributions. This is because direct con-
tributions from elements of the hidden scene ceiling, which tend to be
bright illumination sources, are completely occluded by the door
frame head (see Supplementary Fig. 4). Moreover, observing the ceil-
ing plane enables the vertical and horizontal edges of the occluding
door (or window) frame structure to be simultaneously exploited for
high azimuthal and elevation angle resolution, respectively. By com-
bining sophisticated modelling, an explicit scene prior, and a theore-
tically grounded scene representation, we glean highly accurate range
information from the measured photographs—effectively recovering
the previously elusive third dimension. TERI’s proposed scene repre-
sentation also yields closed-form expressions that facilitate the effi-
cient formation of light transport matrices and estimation of full-
colour 3D imagery. Consequently, TERI achieves comparable visual
reconstruction quality to state-of-the-art active 3DNLOSmethodswith
the added benefit of a fast acquisition time.

Results
Passive NLOS imaging configuration
Edges are a common feature in many real-life settings: existing as the
boundaries of ubiquitous structures like buildings, vehicles, furniture,
doorways, window frames, and so on. Often, particularly in urban
scenarios, the object occluding the direct line-of-sight to a desired

Fig. 1 | Two-edge-resolved NLOS imaging scenario and hidden scene repre-
sentation. a Depiction of the imaging scenario and proposed projected-elevation
spherical coordinate. With the origin at the upper-left corner of the door frame, a
hidden scenepoint is identifiedby its rangeρ, azimuth θ, andprojected-elevationψ.
b Shows the projected-elevation ψ in the proposed projected-elevation spherical
coordinate system, it is the projection of the conventional elevation angle of
spherical coordinates onto the xz-plane and is such that tanðψÞ= tanðφÞ secðθÞ. (For
clarity, the z-axis is flipped from (a) to point upward.) c Elemental surface repre-
sentation resulting from 10 equal divisions of azimuth and projected-elevation axes
with fixed range, ρ. Indicated by the red dot is an example surface element whose

centre is at (ρ, θ,ψ) = (1, 11π/40, 13π/40) and angular extents equal π/20 along azi-
muth and projected-elevation. d, e Depict the changes in the observed measure-
mentdue to ahiddenpoint source (reddot)moving from its position in (d) to a new
position in (e) such that its range and projected-elevation angle are fixed and only
its azimuthal angle changes. The light from a hidden scene point is occluded by the
doorway edges to create an illuminated region of trapezoidal shape on the ceiling.
The observation in (d) has an illuminated trapezoidal region whose slanted edge is
steeper than that of (e) because the azimuthal angle of the point source increases
from (d) to (e); the heights of the illuminated trapezoid portions in (d) and (e) are
otherwise equal because the projected-elevation angle is unchanged.
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scene has edges that are visible both to the observer and the hidden
scene. Figure 1a illustrates such a scenario and the proposed acquisi-
tion configuration of TERI for passive 3D NLOS reconstructions.

Imaging the ceiling with an ordinary camera, instead of the floor
as in prior corner-camera-based demonstrations32,33,37,40,41, allows both
the vertical and horizontal edges of the occluding doorway to be
exploited for NLOS imaging with high azimuthal and elevation angle
resolution. The mechanism producing these two dimensions of high
resolution is illustrated in Fig. 1d, e. Any hidden scene point in isolation
creates a contribution, to the observation plane region enclosedby the
green dashed line in Fig. 1d and e, which comprises an unobscured
portion in the shape of a right trapezoid and an obscured portion
(shadow) due to the occluding wall and doorway head. The sharp
shadow makes the azimuthal and elevation angles of a hidden scene
point easily recoverable, because the slope of the slanted shadow edge
in the observation depends on the azimuthal angle, while the height of
the right trapezoid depends on the elevation angle component of the
hidden scene point. Hence, hidden scene points with unique azimuth
and elevation angles will produce corresponding unique right trape-
zoidal illuminations of the observation plane. The geometry of the
right trapezoid is dependent on the azimuth and elevation of the
hidden scene point. Narrated animations provided in Supplementary
Movie 1 further illustrate this dependence. This phenomenon enables
high 2D angular resolution in estimating the hidden scene from the

observed shadow. The utility of the second edge in providing high
elevation angle resolution is also demonstrated by the Cramér-Rao
Bound analyses provided in Supplementary Note 2.

Through simple geometric calculations, the azimuth and eleva-
tion angles of a hidden scene point can be estimated from the slope
and height of the illuminated right trapezoidal region of the observa-
tion. However, spatially extended hidden scenes do not create sharp
shadows. They instead produce a superposition thereof, that is
dependent on the geometry of the scene from the vantage of the
observed ceiling portion, appearing as a region of highly informative
penumbra36 (see Fig. 2a for an example photograph of penumbra). The
penumbra region encodes information about the geometry of the
hidden scene from the perspective of the ceiling, along two dimen-
sions (i.e., in azimuth and elevation angles). Efficiently extracting this
information for reconstructing a general spatially extended scene is
achievable through a computational algorithm presented later on.

While the occluding edges of the doorway enable high angular
resolution, no similar mechanisms exist to make the hidden scene
point’s radiosity and range easily recoverable with high resolution.
They must both be estimated from the subtle intensity gradations
present in the unobscured portion of the observation. To that end, we
propose a specially crafted and theoretically motivated coordinate
system and hidden scene representation, accompanied by a two-stage
computational algorithm to enable reliable estimation of both

Fig. 2 | Two-step reconstruction procedure. aMeasured penumbra photograph.
b A linear inverse problem (LIP) is solved, per colour channel, to recover the
azimuth and projected-elevation representation (i.e., the shapes) of hidden scene
objects, with the entire hidden scene assumed to be confined to a single fixed
range. c Colour visualisation of the initial angular reconstruction. d The recon-
struction is analysed for connected surface elements which most likely belong to
the same cluster. Four such clusters were identified, one for each of the three
objects and a fourth (bottom right) for spurious elements. e A non-linear inverse

problem (NLIP) is solved toestimate four ranges and four global radiosities, one for
each cluster identified in (d). f Multiple views of the 3D colour reconstruction
produced by incorporating the estimated ranges and solving a resulting total-
variation-regularisedLIP toobtain smoother estimates; a 3Dview (second column),
plan view (first column, top) and side view (first column, bottom) of the final
reconstruction. (Best viewed in colour. The reconstruction procedure is also
explained in Supplementary Movie 1).
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radiosity and range, in addition to shape (i.e., azimuthal and elevation
angle extents) of the hidden scene.

Hidden scene representation
The hidden scene is assumed to be a collection of elemental surfaces,
each with an unknown radiosity (brightness) and unique 3D position,
to be estimated. This is the basis of the numerous analytical 3D scene
visualisation techniques in computer vision and graphics. However,
the desired representation is one that enables the most reliable
reconstruction of the hidden scene from the measured NLOS
photograph.

Here, our choice of the form and positions of the elemental sur-
faces is designed to make the unknown (positional) parameters of the
hidden scene information orthogonal42, p. 49 with respect to the Fisher
information (FI)metric. The FImetric quantifies the informativeness of
a set of measurements about a set of unknowns. Moreover, estab-
lishing Fisher information orthogonality among a set of unknown
parameters guarantees asymptotic independence of their maximum
likelihood estimates, which, crucially to the success of our approach,
implies that the asymptotic variance of the estimate of a parameter
does not depend on knowing any of the other parameters.

To achieve this property,we identify anypoint in thehidden scene
by its range ρ, azimuthal angle θ, and projected-elevation angle ψ
positions, with the origin at the apex of the vertical and horizontal
edges of the doorway, as shown in Fig. 1b. The azimuth θ is the angle
between the positive x-axis and the line segment connecting the origin
to the xy-plane projection of the hidden scene point. Analogously, the
projected-elevation ψ is the angle between the positive x-axis and the
line segment connecting the origin to the xz-plane projection of the
hidden scene point. Because ψ is the xz-plane projection of the con-
ventional elevation angle used in spherical coordinates, this system is
called projected-elevation spherical coordinates. Transforming to and
from Cartesian coordinates is achievable via a set of expressions that
are derived in Supplementary Note 1 (S1.2). Refer to Fig. 1b for a
visualisation of the projected-elevation angle in this coordinate system
and the conventional elevation angle of a spherical coordinate system.

Among all possible choices of coordinate systems, the proposed
projected-elevation spherical coordinate system leads to a natural
representation of the hidden scene where almost all parameters of the
hidden scenewill be information orthogonal. A geometric depiction of
the information orthogonality property among the angular para-
meters, θ and ψ, is provided in Fig. 1d, e, as well as in Supplementary
Movie 1. To achieve information orthogonality, the proposed coordi-
nate system is constructed such that its angular coordinates, (θ,ψ),
each pivot about one of the vertical and horizontal occluding edges of
the doorway. Much like how polar (or cylindrical) coordinates are
natural for the corner camera32 and its variants33,37,40, the projected-
elevation spherical coordinate system is natural for TERI. Because
single-edge corner cameras exploit a vertical occluding edge for
resolution, a point sourcemoving in thehidden scene changes only the
observed penumbra shape when it moves only along the azimuth
(pivoting about the vertical edge). Conversely, range-only motion
produces subtle intensity changes in the penumbra, due to radial fal-
loff effects, while the overall penumbra shape is unchanged. The
projected-elevation spherical coordinate system, therefore, represents
a combination of two orthogonal corner camera systems resulting
from two orthogonal edges of the doorframe. In this two-edge con-
figuration, a hidden scene point source will produce a sharp shadow
resembling the top and slanted edges of a right trapezoid (see example
observations shown in Fig. 1d, e). Representing the hidden scene point
in the proposed coordinate system, changes in the slope of the slanted
edge of the shadow are due exclusively to point source motion along
azimuth θ (with pivot at the vertical occluding edge). Conversely,
changes in the position of the top edge of the shadow are due exclu-
sively to source motion along the projected-elevation angle ψ (with

pivot at the horizontal occluding edge). This apparent decoupling of
how changes in θ and ψ affect the measurement ensures that errors in
any one of the angular coordinates will not impact our estimation of
the other. Because the elevation is defined in the plane containing the
azimuth, however, this phenomenon does not occur in a spherical
coordinate system.

In addition, variations in the range or radiosity of the object have
no impact on the obstructed non-illuminated portion of the observa-
tion; it only affects the brightnessof the illuminatedportion. Anoverall
brightness change in the illuminated portion of the observation plane,
with no change to the slope and height of the right trapezoidal region,
is explainable by a corresponding change in the range and/or radiosity
of the hidden scene point. This suggests that, although highly coupled
themselves, the radiosity and range parameters have no coupling with
the pair of angular parameters. Thus, errors in range or radiosity have a
negligible impact on the angular estimates. No convenient (re-)para-
meterisations exist that make the range and radiosity parameters
similarly information orthogonal. However, we alleviate the effect of
their coupling through a two-step computation that first estimates the
radiosities and scene shape (2D angular) components while assuming
that the entire scene is confined to a fixed range, and subsequently
computes ranges of the recovered hidden scene objects. Central to
this approach is the assumption that neighbouring clusters of surface
elements belong to the same object and thus have approximately
equal ranges. This results in the significantly more feasible problem of
recovering a single range for clusters of estimated surface elements, in
place of the possibly intractable one that estimates a range per
recovered surface element.

The existence of information orthogonality among the range,
azimuth, and project-elevation coordinates is crucial to the success of
our two-step reconstruction procedure. Notably, it ensures that
accurate angle estimation (i.e., shape) is achievable without knowing
the ranges of objects within the hidden scene because errors in one do
not prevent reliable reconstruction of the other. Additionally, the
proposed coordinate system also simplifies the forward modelling by
enabling closed-form expressions for incorporating occlusion. Con-
sequently, we could accurately compute the forward model matrix
without performing computationally intensive numerical integrations.
We formalise these claims and elucidate the information orthogonality
phenomenon through Fisher information analyses, and experimental
demonstrations in Supplementary Notes 2 and 3.

Light transport model
The amount of light received by a point on the observation plane from
a hidden scene point is well-modelled by a cumulative product of
factors accounting for the radiosity of the hidden scene point, the
visibility between the observed ceiling point and scene point, the fal-
loff in intensity due to thedistancebetweenbothpoints and the effects
of foreshortening and Lambertian reflection14,43. Adopting the pro-
posed projected-elevation spherical coordinate hidden scene repre-
sentation, and retaining a Cartesian representation of the
measurement plane, the hidden scene point s = (ρ, θ,ψ) with radiosity
c, range ρ, azimuth θ, and projected-elevation ψ, produces a con-
tribution to any point p = (px, py, − h) on the visible ceiling plane h
metres above the doorway’s edge, given by:

‘ p;ρ,θ,ψð Þ = c
cos ffðp� sc,npÞ

� �
p� sc

�� ��2
2

u θ� tan�1ðpx=pyÞ
� �

u ψ� tan�1ðh=pyÞ
� �

,

ð1Þ

where sc = ðsx , sy, sz Þ is the Cartesian coordinate representation of s
with sx =ρð1 + tan2θ+ tan2ψÞ�

1
2, sy = sx tan θ, sz = sx tanψ, np is the unit

normal vector to the pointp, u(⋅) is the unit step function, ∥⋅∥2 is the ℓ2-
norm of its vector argument, and ∠(⋅,⋅) denotes the angle between its
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vector arguments. The pair of step-functions in Eq. (1) model the
occluding effects of the doorway wall.

Neglecting noise, background/visible side contributions, and
other sources of model mismatch for the moment, the measured
photograph of the visible ceiling is (approximately) proportional to
the uniformly sampled radiance of the illuminated portion of the
ceiling that is within the camera’s field-of-view. Them-th camera pixel
in an M ×M (i.e., M2 pixels) photograph, thus, measures an intensity
value ym∝ ℓ(pm, s) for each colour channel, due to a scene point s.
Here, pm represents the spatial location on the ceiling plane sampled
by the m-th pixel, while the constant of proportionality accounts for
the projected size of a camera pixel on the ceiling plane and other
global scalings introduced in the light detection pipeline of the camera
(that are immaterial to the NLOS imaging task). Further, we choose to
represent any hidden scene as a collection of angular surface elements,
each with a unique discrete position in azimuth and projected-
elevation angles and a continuous-valued range. In other words, we
discretise along the two angular axes, but not along the range axis of
our coordinate system, by dividing the hidden volume into Nθ equal
azimuths (with separation 2δθ), and Nψ equal projected-elevations
(with separation 2δψ). Within this discrete 2D angular grid, the n-th
position θn,ψn

� �
, with n = 1, 2,…,NθNψ, identifies the centre of a

potential hidden scene surface element Sn = ðρn, θ,ψÞ : θ
� 2

θn � δθ, θn + δθ

� 	
, andψ 2 ψn � δψ,ψn + δψ

h i
gwith range ρn. This gives

a total of NθNψ contiguous, non-overlapping surface elements, where
each surface element occupies an area of extent θn � δθ, θn + δθ

� 	
and

½ψn � δψ,ψn + δψ� along the azimuth and projected-elevation coordi-
nates, respectively. A surface element Sn, thus, subtends a solid angle
(at theorigin)whose size varieswith angularposition (Fig. 1c). Through
this representation, an arbitrary scene is well-represented as a collec-
tion of all possible surface elements S1,S2, . . . ,SNθNψ

n o
with corre-

sponding non-negative radiosities f 1, f 2, . . . , f NθNψ

n o
whose

contribution to the m-th pixel measurement is:

ym =
XNθNψ

n= 1

f n

Z
s2Sn

‘ðpm;ρ,θ,ψÞδðρ� ρnÞ
ρ2sec2ðθÞsec2ðψÞ

ð1 + tan2ðθÞ+ tan2ðψÞÞ
3
2

ds ð2Þ

=
XNθNψ

n = 1

f n

Z θn + δθ

θn�δθ

Z ψn + δψ

ψn�δψ

‘ðpm;ρn,θ,ψÞ
ρ2
nsec

2ðθÞsec2ðψÞ
ð1 + tan2ðθÞ+ tan2ðψÞÞ

3
2

dψdθ,

ð3Þ

where the unknown radiosity cn of the n-th surface element and the
constant of proportionality are absorbed into fn without loss of gen-
erality. (We note that fn = 0 indicates the absence of an object in the
solid angle subtended by the elemental surface Sn.) Collecting all
scaled radiosities into an NθNψ-dimensional column vector
f = ðf 1, f 2, . . . , f NθNψ

Þ> and all measured pixel values into an M2-
dimensional column vector y= y1, y2, . . . , yM2

� �> yields the discrete
model y =A(ρ)f + v +n, where the NθNψ-dimensional column vector
ρ= ðρ1,ρ2, . . . ,ρNθNψ

Þ> contains the continuous-valued ranges for each
surface element, andAðρÞ 2 RM2 ×NθNψ is a matrix whose entries follow
from evaluating the integrals in Eq. (3), see equation (17) in
Supplementary Note 1 for a closed-form expression. The vectors v
and n model visible side background and measurement noise
contributions, respectively.

Reconstruction approach
Reconstructing the hidden scene from the measured colour photo-
graph of light reaching the visible ceiling plane is equivalent to com-
puting the configuration of the vectors f and ρ for the proposed
surface element representation that best explains the photograph.
Mathematically, from a measurement y, we seek to recover f and ρ

related by the discrete model y =A(ρ)f + v +n. While the noise n is
effectively handled by adopting a white Gaussian noise model, v is
unknown. To resolve this, we assume that v =Bb is slowly varying, and
is approximately modelled as a weighted linear combination of an all-
ones vector (representing visible side far-field contribution), and a
near-field contribution bvis that is due to a point source with a ran-
domly chosen location on the visible side near the ceiling plane. Visible
side background contributions are smooth and affect all pixels in the
measurement plane, thus background contributions to the measure-
ments are more likely to be explained by B = [1,bvis] than A(ρ).
Denoting the unknown weights of the two contributors in the back-
ground by b 2 R2, we formulate the following regularised inverse
problem:

arg min
f ,ρ,bð Þ≥0

y� AðρÞf � Bb
�� ��2

2 +Rðf Þ, ð4Þ

where ∥⋅∥2 denotes the ℓ2-norm, used here to ensure consistencyof the
estimates with the observation, and Rðf Þ is a regulariser for f that is
used to enforce sparsity or smoothness of estimates bf . This optimisa-
tion in Eq. (4) is effectively tackled using the two-step approach
illustrated in Fig. 2.

First, because the vertical and horizontal edges enable high azi-
muthal and projected-elevation resolution, respectively, and absent a
similar mechanism for range resolution, we make the initial assump-
tion that the entire hidden scene is confined to a fixed a priori chosen
range ρ0, and estimate the shape (angular elemental surface) repre-
sentation of the hidden scene by solving the sparsity-constrained

minimisation problem: ðbf , bbÞ= argminf ≥0,b ≥0 y� Aðρ0Þf � Bb
�� ��2

2 +

λ f
�� ��

1, ∥ ⋅ ∥1 denotes the ℓ1-norm regulariser, used here to enforce

sparsity of the estimate bf , and λ is a non-negative scalar parameter
controlling the trade-off between data consistency and sparsity. Sol-
ving the optimisation separately for each R-, G-, and B-colour channel

in themeasurement, we obtain corresponding estimatesbfR,bfG, andbfB.
Together these reconstructions yield a colour estimate of the projec-
tion of the hidden scene onto a surface of constant radius, with respect
to the origin, defined by our projected-elevation spherical coordinate
system. A 3D visualisation of this surface is shown in Supplementary

Movie 2. Thus, as shown in Fig. 2b, c, visualisingbfR,bfG,bfB with ρ0 in the
proposed hidden scene representation reveals the shapes—from the
vantage of the origin—of the hidden scene components placed at the
same, and likely incorrect, range ρ0. The first step concludes by iden-
tifying clusters of surface elements that likely constitute an object (see
Fig. 2d). To that end, we form the binary vector fbin =1 bfR +bfG +bfB > γ

n o,
where the indicator function 1 x > γf g returns a binary vector whose

entries are one where corresponding entries of x are larger than γ or
are zero where corresponding entries of x are less than or equal to γ.
We subsequently assign surface elements to the same cluster, if their
corresponding non-zero entries in fbin share an edge or vertex when it
is viewed as a 2D photograph. In practice, we set a maximum number
Jmax of desired clusters, and order the recovered J clusters based on
their relative contributions to the measurement. The first Jmax � 1
clusters are retained while the rest are combined into a large super-
cluster containing mostly spurious, possibly disjoint, background
surface elements of low radiosities. We found this variation to bemore
robust in high noise and high visible side illumination scenarios.

The second step of the reconstruction approach aims to fit a new
accurate range for each identified cluster, shown in Fig. 2d, by oper-
ating on greyscale mappings of the RGB observations and radiosities

estimated in the first step. Assuming J = Jmax clusters Cj
n oJ

j = 1
are
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computed, for each cluster j we form a greyscale radiosity vector bfCjgrey
by setting to zero entries in bfgrey = ðbfR +bfG +bfBÞ corresponding to sur-
face elements not present in cluster Cj, with j = 1, 2,…, J. (See the
Supplementary Note 4 (S4.1) for more details on this step.) With their
angular extents fixed, the clusters collectively produce a contribution
to the measured photograph that depends non-linearly on their
respective unknown ranges ρCj and constituent surface elements (i.e.
Sn 2 Cj). The greyscale photograph ygrey computed as the sum of the
three colour channels is related to the unknown cluster scalar ranges

ρCj and the estimated vector of radiosities bfCjgrey by:
ygrey,m =

XJ

j = 1

wj

XNθNψ

n= 1

f̂
Cj
grey,n

Z ψn + δψ

ψn�δψ

Z θn + δθ

θn�δθ

‘ðpm;ρ
Cj , θ,ψÞ

ðρCj Þ2sec2ðθÞsec2ðψÞ
ð1 + tan2ðθÞ+ tan2ðψÞÞ

3
2

dθdψ+ vm +nm,

ð5Þ

with matrix-vector form ygrey =DðρCÞwþ Bbþ n, where the weighting
factorswj’s allow the radiosity of each cluster to vary correspondingly
when estimating their unknown continuous-valued ranges arranged

into the J-dimensional vector ρC = ρC1 ,ρC2 , . . . ,ρCJ
� �>, w= w1,w2, . . . ,

�
wJÞ>, and DðρCÞ 2 RM × J is a matrix whose (m, j)-entry models the
contribution of cluster j to measurement pixel m. The vectors v, n, b
and matrix B are defined as before. We estimate the ranges

of all J clusters by solving the optimisation problem ðcρC, bw, bbÞ=
argmin ρC ,w,bð Þ≥0 ygrey �DðρCÞw� Bb

��� ���2
2
, using an accelerated pro-

jected gradient algorithm which is detailed in Supplementary Note 4
(S4.1). As confirmed by our FI analyses detailed in Supplementary

Note 2, choosing to estimate a single range for each cluster Cj leads to a
better-conditioned inverse problem because J≪NθNψ, compared to
the alternative approach that attempts to recover a range for every

surface element. Using the estimated ranges cρC, visualised in Fig. 2e

with the corresponding clusters, to construct the forwardmodelAðcρCÞ,
the final 3D full-colour reconstruction (depicted in Fig. 2f) of the
hidden scene is computed by solving the total variation regularised

problem: ðbfTV,bbTVÞ= argminf ≥0,b≥0 y�
�� AðcρCÞf � Bbk22 + λTV

f
�� ��

TV for

each of the three colour channels. The total variation seminorm
denoted as �k kTV is used here to encourage piecewise smooth
solutions, while λ

TV
>0 controls the trade-off between data consistency

and piecewise smoothness. One may bypass the total-variation-
constrained reconstruction anddirectly combine the recovered ranges
with the initial full-colour shape reconstructions (in Fig. 2c) to obtain
the fully 3D colour reconstruction of the hidden scene. This simplified
variant of TERI which achieves impressive results at comparably lower
computational complexity and three alternative reconstruction
approaches are investigated in Supplementary Note 6. A narrated
overview of the reconstruction procedure is provided in Supplemen-
tary Movie 1.

Experimental reconstructions
Our reconstruction approachwas assessed on several indoor scenes of
varying complexities, containing multiple components with a variety
of ranges, sizes, shapes, colours, rotation angles, and albedos. The
hidden area was constructed from black foamboards framed using a
rigid metal structure. These 1-in.-by-1-in. thick metal frames also
formed the vertical and horizontal edges of the doorway, which devi-
ates from the usual thin-edged occluders commonly used in some
corner-camera-based demonstrations28,33,39. Several objects were then
placed within the hidden region to obtain a variety of scenes.

The hidden scene was illuminated with an overhead light source
attached adjacent to the hidden scene ceiling behind the doorway
head. A digital camera focused on the visible ceiling plane was used to
capture a photograph of the penumbra created on the ceiling plane.
Figure 3 shows multiple views of the results of our reconstruction
method for three example scenes. A collection of additional recon-
structions for a variety of scenes and conditions is provided in Sup-
plementary Notes 5 and 7.

Ground truth line-of-sight photographs of the hidden scenes are
shown for visual comparison with their corresponding reconstruc-
tions. Approximate measurements of the ranges of hidden scene ele-
ments obtained by a laser distance metre (or tape measure) are
reported in Table 1 along with corresponding range estimates for
quantitative comparisons. Note that most scene objects occupy mul-
tiple ranges measured from the origin; we thus, report the ranges to
the centres of each object. In each tested scene configuration, all
objects constituting the hidden scene are accurately reconstructed,
with visual inspection confirming correct shapes, positions, orienta-
tions, and colour reconstruction fidelity.

The backrest of the chair and the curvature of the basketball in
Fig. 3b do not point toward the origin, hence, they deviate from our
proposed projected-elevation spherical coordinate scene representa-
tionmodel. Regardless, they are recovered with great fidelity: The seat
and backrest components of the chair are clearly identifiable, though
the legs are not recovered since they are almost completely occluded
by the seat from the measurement plane’s perspective. Additionally,
the backrest of the chair is dimmer than the seat. This is likely due to
the backrest being perpendicular to the observation plane and nearly
perpendicular to the hidden scene illumination.

The planar ‘USF’ characters (in Fig. 3c) are mostly legible. The
ground truth ‘U’ which is stylised in a form resembling the horns of a
bull has pointy tips that are even identifiable in the reconstruction.
Observe also their recovered orientations. In particular, the yaw
(rotation directionparallel to the groundplane) of the ‘U’, aswell as the
pitch of the ‘SF’ are also preserved in the reconstruction. However,
the horizontal strokes of the ‘F’ are seemingly foreshortened in the
reconstructions. This is explained by its deep placement (in azimuth)
into the scene and orientation relative to the ceiling plane. This fore-
shortening effect is more exaggerated in the reconstruction of the
celebratingmannequin standing on the ground (in the ‘USF’ scene): Its
relative orientation to the ceiling plane is, therefore almost plan-view.
Surprisingly, however, though much smaller, distant, and severely
foreshortened, this fourth hidden scene component is correctly
detected in the reconstruction. Its constituent colours are visible, and
its range is accurately estimated.

Objects of varying range and size in the same scene are also
evaluated (Fig. 3a). The pose, colour, and range of the small and close
mannequin object are almost perfectly estimated; note the accuracyof
its range estimate (reported in Table 1), which is likely due to its
proximity to the origin. The colourful doughnut-shaped swimming
tube (the largest and farthest hidden scene component) is recovered
with surprisingly high fidelity, and relative sizes and positions of the
different colours arewell-preserved in the reconstruction. Notably, the
large patches of blue on either side and the much smaller orange-
coloured patches at the top and bottom of the doughnut are present.
The reconstructed range and colours of the medium-sized and fairly
distant volleyball object are comparably less accurate, likely due to the
low reflectivity of the dark-blue stripes and distant spatial location.

Spanning the broadest continuumof range values from theorigin,
and composed of several large planar surfaces, many of which are
orthogonal to themeasurement surface, the shelf is by far the greatest
exception toour hidden scene representation.However, the recovered
shape is strikingly accurate when assimilated with care. First, we note
that by being close to the origin, the top of the shelf occupies a larger
subset of azimuthal angles compared to its farthest part (the base).
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Fig. 3 | Colour 3D reconstructions of three hidden scenes. a Play scene. b Work
scene. cUSF scene. For each scene, the first column shows the NLOSmeasurement
photograph (top), and a line-of-sight photograph of the true scene (bottom); the

second column shows the 3D full-colour reconstruction; and the last column shows
the side (top) and plan (bottom) views of the 3D reconstruction. The reconstruc-
tions shown here were obtained with Jmax = 4 for (a) and (b), and Jmax = 5 for (c).

Article https://doi.org/10.1038/s41467-024-45397-7

Nature Communications |         (2024) 15:1162 7



Most objects on the shelves also appear in the reconstructions.
Looking closely, near the topof the shelf are twoneighbouring patches
of yellow (left) and green (right) representing the two basketballs in
the topmost cubby. Following beneath is a vibrant pink area corre-
sponding to the surface of the mostly empty second cubby hole. The
final hole shows subtle patches corresponding to the pink and dark
blue basketballs. Because the shelf is sodetailedwith different colours,
the total variation prior smears out smaller details, such as the objects
on top of the shelf. However, in Supplementary Note 4, we provide a
less smoothed reconstruction performed without the total variation
constraint (see Supplementary Fig. 13) that shows more details of
the shelf.

Generally, ambient light sources illuminating the visible area will
attenuate the informative penumbra, therefore decreasing the fidelity
of our measured photographs and making accurate reconstructions
even more challenging. We evaluate the limits of our approach in this
scenario by introducing increasing levels of visible side illumination.
Results of our evaluation are summarised in Fig. 4. Overall recon-
struction performance degrades uniformly with increasing illumina-
tion strength. The reconstruction inmediumambient light (Fig. 4c) has
a large smeared artefact (likely attempting to fit the extraneous
background contributions). Generally, despite the discolorations and
erroneous clutter introduced, the reconstructions retain impressively
accurate visual information about the scene: even as the penumbra
becomes imperceptible by the human eye (Fig. 4c, d), the recon-
struction is still recognisable as having two objects with fairly accurate
poses and positions. Specifically, the red-green mannequin in the
T-pose appears with surprisingly accurate colour, however, the white
mannequin appears fainter and discoloured. The beige-coloured arms
and legs of the red-green T-pose mannequin are visible and distin-
guishable from the red andgreenparts of themannequin inall ambient
illumination levels. Additional experiments to evaluate the range
estimation accuracy of the system are presented in Supplementary
Note 5 (see Supplementary Table 1).

Our approach and demonstration of accurate full-colour 3D
imaging of hidden scenes from ordinary photographs of penumbra
formed on a visible ceiling surface represent a significant advance in
passive NLOS imaging. Prior to our work, intensity-based passive
approaches were limited to computing one- or two-dimensional plan
view reconstructions of small-scale scenes, with coarse range esti-
mates. Here, TERI achieves high-resolution 3D reconstructions of
medium- to large-scale scenes by exploiting a two-edge acquisition
configuration and an efficient and accurate reconstruction approach.
The approach is inspired by a theoretically-motivated and computa-
tionally efficient hidden scene representation. Our reconstruction

resolution and quality are comparable to active 3D NLOS methods
while using substantially cheaper and more ubiquitous equipment
(that does not require a specialist operator). In addition, our hidden
scene representation using elemental surfaces of continuous-valued
ranges is more memory-efficient than complete hidden scene vox-
elisation, which also discretises the range coordinate and therefore
scales cubically with the desired scene reconstruction resolution.

Discussion
Despite the successful demonstrations of TERI shown here, certain
aspects could be improved. Our modelling and reconstruction
approaches do not incorporate self-occlusion among multiple hidden
scene objects. This may cause penumbrae in the measurements that
are not explainable by the forward model, and thus could potentially
be a significant source of model mismatch, depending on the obser-
vation FOV. However, our closed-form expressions for hidden scene
elements could facilitate efficient modelling of self-occlusions in the
style of ref. 39 and the development of an accompanying reconstruc-
tion technique.

Moreover, extending TERI to allow the estimation of multiple
ranges per cluster, instead of confining them to a single range, could
produce better reconstructions and visualisations for scenarios with
objects that span a large continuum of ranges. A suitable deprojection
postprocessing step could map the estimated projected-elevation
spherical coordinates surface elements to planar surfaces in Cartesian
coordinates; one would also need to compute the orientations of the
deprojection planes for each object. An alternative approach is to
recursively segment the object into smaller portions in a multi-
resolution approach while simultaneously recomputing a range esti-
mate for each sub-segment. Additionally, when objects positioned at
different ranges occupy overlapping or contiguous solid angles, our
current algorithm may incorrectly reconstruct them as being at one
range. This results in possibly biased range and radiosity estimates for
all objects. Preliminary demonstrations presented in Supplementary
Note 7 suggest that a recursive segmentation scheme can feasibly
alleviate incorrect clustering of surface elements, hence opening up an
opportunity for more thorough future explorations. Nevertheless, our
successful use of a simple algorithm to identify clusters of surface
elements was motivated by simplicity and low computational com-
plexity while also being effective for various scenarios. A more
sophisticated clustering approach, based on cluster compactness,
smoothness, colours, local pixel similarities, or mixtures thereof, or
even a trained neural network approach, could yield improvements in
clustering accuracy and further facilitate the removal of spurious
surface elements arising from noise, model mismatch, and visible-side
contributions.

TERI could also be combined with other active techniques that
similarly exploit edges28,39. In particular, our acquisition approach and
modelling could also be incorporated into the recent active corner
camera28 for fully 3Dobject reconstructions and simultaneous tracking
and scene mapping. In general, active approaches demonstrate sig-
nificant robustness under ambient illumination; thus, a synergistic
combination may enable a technique that has reduced acquisition
times relative to active NLOS imaging techniques while also being
more robust to ambient light contributions.

Our reported experiments focussed on reconstructing a single
octant, i.e. the recoverable portion of the room contained within
θ∈ [0,π/2] and ψ∈ [0,π/2]. However, extending the approach to
additionally image a second octant, wherein the entire recoverable
portion of the room is θ∈ [0,π], is possible with fairly minor algo-
rithmic modifications. The developed representation model and the-
ory still apply in both cases. However, the thickness of the occluding
wall would need to be modelled. Furthermore, we considered scenes
that fit inside a roughly 1.2 × 1.2 × 1.2m3 room. However, we speculate
that the current setup would succeed for typical rooms of around

Table 1 | Experimentally measured and estimated ranges of
hidden scene components shown in Fig. 3

Scene Object Measured
range [m]

Estimated
range [m]

Doughnut 1.32 1.10

Play scene Mannequin 0.58 0.65

Volleyball 1.14 0.97

Shelf 1.12 1.04

Work scene Basketball 0.99 1.03

Chair 1.02 1.03

U 0.64 0.63

USF scene S 1.12 0.99

F 1.07 1.01

Mannequin 1.09 1.23

The average range reconstruction error is roughly 9.3 cm, demonstrating surprisingly accurate
range estimation.
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3 × 3 × 2m3 containing human-sized occupants, with little degradation
in performance (especially when there is little to no additional visible
side ambient illumination and the roomwalls areminimally reflective).
We base this on the surprising reconstructions obtained in ambient
illumination shown in Fig. 4, aswell as the detection and fairly accurate
ranging of the small volleyball in Fig. 3a. These reconstructions are
computed from low-signal situations, aswould be similarly observed in
larger-scale scenes. Indeed, as the actual scene sizes increase further,
accurate imaging typically becomes harder because (i) the irradiance
of the illuminated ceiling patch caused by the hidden scene objects
reduces, becoming nearly constant at far-field, and this makes ranging
harder; and (ii) the produced penumbra becomes less pronounced,
making shape reconstruction more challenging. Using more intense
illumination of the hidden scene, detectors with greater sensitivity,
dynamic range, resolution, and lower noise floor, and increasing the

measurement FOV are possible mechanisms for enabling accurate
reconstructions in these more challenging conditions.

When scenes have large, flat, and highly reflective backgrounds—
such as a room with a white floor and white walls—our algorithm
produces 3D reconstructions that accurately indicate all solid angles
containing reflective surface elements and can even reveal hidden
scene shadows (see additional experiments presented in Supplemen-
tary Figs. 24 and 25). Despite this, it is challenging to intuit the scene
configuration from the 3D visualisations, especiallywhen a foreground
object exists and takes the same colour as the backgroundwalls. In this
scenario, our clustering algorithm cannot distinguish foreground
surface elements from background surface elements because they are
angularly contiguous. Contributions from such large, planar surfaces
may also dominate informative penumbra cast by smaller hidden-
scene components.

Fig. 4 | Reconstructions under increasing levels of visible side illumination.
a Photograph of the hidden scene with two mannequins striking different poses: A
red-green mannequin in a T pose and a white mannequin in a marching pose
measured at 0.86m and 1.04m, respectively, from the origin. b With visible side
illumination turned off, the ranges of the mannequins are estimated to be 0.86m
for the T pose mannequin and 1.10m for the marching mannequin. c Moderate
amount of visible side illumination introduced; here, the ranges of themannequins

are to be 0.85m for the T posemannequin and 1.10m for themarchingmannequin.
d High amount of visible side illumination introduced; the T pose mannequin is
reconstructed as two disjoint clusters of elemental surfaces (representing upper
and lower halves of the mannequin) with estimated ranges of 0.90m and 0.92m,
and the marching mannequin is estimated to be at 0.98m from the origin. The
reconstructions shown here were obtained with Jmax = 3. Best viewed in colour.
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Methods
Equipment
The observation photographs were obtained using a Kiralux® CMOS
compact scientific camera with 2048×2448 resolution (5 Megapixels)
by Thorlabs (part number: CS505CU), equipped with a 25mm, f/1.8
aperture, 2/3 in. format lens (Thorlabs part number: MVL25TM23).
ThorLabs’ThorCam™ Software for Scientific andCompactUSBCameras
installed on an MSI 2019 laptop (Intel Core i7-10510U with 32 GB mem-
ory) computer was used to control the camera. Data processing and
simulationswereperformedusing the laptopaboveand, additionally, on
an AppleMacBook Pro 2017 (3.1 GHzQuad-Core Intel Core i7 with 16 GB
memory) with MATLAB. Twelve 48-inch-long structural rails each with a
thickness of 1-in.-by-1-in. (Thorlabs part number: XE25L48) were used to
create the cubic hidden scene (length 48 in.). The floor and sides were
covered using a combination of black foam boards and black weaved
nylon fabric with polyurethane coating (Thorlabs part number: BK5). To
create the ceiling plane, white foam bards were supported ~0.29m
above the top face of the cube using black foamboards (to form the
doorway head). This created a hidden scene area whose height was
1.51m above the ground, with a square base of length 1.22m. The
structural rails thus formed both edges of the occluding doorway walls.

Experimental details and observation pre-processing
The camera, positioned at a height of 0.4572m above the floor plane
using a tripod stand,waspointeddirectly upwards and focussedon the
ceiling plane. Hence, the distance between the camera’s sensor plane
and the observation surface was roughly 1.07m. The camera orienta-
tion was such that the lower limit of its FOV of the visible part of the
ceiling plane was coincident with the intersection between the ceiling
and the wall separating the visible and hidden regions, while the right
boundary of the camera’s FOV aligned with the vertical edge of the
occluding wall. This made the bottom right corner of the captured
photograph the origin of the xy-plane. Although the camera has a
maximum exposure time of 7331ms, for each tested hidden scene
configuration, the exposure time used wasmanually adjusted to avoid
saturation while approximately using the full dynamic range of the
camera. For reducedmeasurement noise, 50 snapshotswere taken and
averaged to obtain a single photograph. Each photograph was then
resized and cropped to have an equal number of horizontal and ver-
tical pixels and was subsequently downsampled in preprocessing
using amedian filter to produce a final 125 × 125-pixel colour (i.e., RBG)
photograph, over a FOV of size 0.46m-by-0.46m. Additional visible
side ambient light was introduced for the two-mannequins test scene,
by using the flashlight of a smartphone (Apple iPhone 8) at increasing
levels to illuminate white foam boards arranged vertically and hor-
izontally, as well as the white floor and wall surfaces in the visible side
of the room (see Supplementary Fig. 16).

Data availability
The raw penumbra measurement data used to produce the results
reported in the manuscript and supplementary information (Figs. 3
and 4, Table 1, as well as Supplementary Figs. 6, 10, 11, 12, and Sup-
plementary Table 1) are available on GitHub at https://github.com/
iscilab2020/TERI-3DNLOS, and Zenodo44.

Code availability
Code used to produce all experimental and simulation-based figures in
the manuscript and supplementary information (Figs. 3 and 4, Table 1,
as well as Supplementary Figs. 6, 10, 11, 12, and Supplementary Table 1)
are available on GitHub at https://github.com/iscilab2020/TERI-
3DNLOS, and Zenodo44.
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