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Capacitive tendency concept alongside
supervised machine-learning toward
classifying electrochemical behavior of
battery and pseudocapacitor materials

Siraprapha Deebansok1, Jie Deng2, Etienne Le Calvez3,4, Yachao Zhu 5,
Olivier Crosnier3,4, Thierry Brousse 3,4 & Olivier Fontaine 1,6

In recent decades, more than 100,000 scientific articles have been devoted to
the development of electrode materials for supercapacitors and batteries.
However, there is still intense debate surrounding the criteria for determining
the electrochemical behavior involved in Faradaic reactions, as the issue is
often complicated by the electrochemical signals produced by various elec-
trode materials and their different physicochemical properties. The difficulty
lies in the inability to determine which electrode type (battery vs. pseudoca-
pacitor) these materials belong to via simple binary classification. To over-
come this difficulty, we apply supervised machine learning for image
classification to electrochemical shape analysis (over 5500Cyclic Voltammetry
curves and 2900 Galvanostatic Charge-Discharge curves), with the predicted
confidence percentage reflecting the shape trend of the curve and thus
defined as amanufacturer. It’s called “capacitive tendency”. This predictor not
only transcends the limitationsof human-based classificationbut alsoprovides
statistical trends regarding electrochemical behavior. Of note, and of parti-
cular importance to the electrochemical energy storage community, which
publishes over a hundred articles per week, we have created an online tool to
easily categorize their data.

In the energy storage research field, batteries are one of the most stu-
died types of devices owing to their use in a wide range of applications
including electronic equipment, electric vehicles and for medical and
military purposes1. On the other hand, pseudocapacitive electrodes
have attracted a considerable amount of attention due to their superior
power capability2. Both of these energy storage systems are generally
composed of various types of electrode materials exhibiting electro-
chemical signals that may or may not resemble one another3.

It is common knowledge that electric double layer capacitors
(EDLCs) rely on a non-faradaic process without any electron transfer,
whereas batteries and pseudocapacitors are governed by faradaic
reactions4. The latter processes are generally depicted by peaks on
Cyclic Voltammograms (CVs) and plateaus on Galvanostatic Charge-
Discharge (GCD) curves (Fig. 1)5. However, some faradaic electrode
materials including pseudocapacitors display electrochemical signals
similar to those of EDLCs, suchas the rectangular/quasi-rectangular CV
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and the sloping GCD curves6,7, found in a variety of transition metal
oxides (RuO2

8, MnO2
9,10), conducting polymers (poly(3,4-

ethylenedioxythiophene)11,12, polyaniline13,14), and carbides (MXene)15.
Currently, owing to the vast amounts of materials studied, guidelines
for distinguishing between the two are still largely inadequate, with
some studies even contradicting the conventional definition of Con-
way et al., as later supported by Brousse et al. and other researchers in
the field7.

Indeed, electrochemical signals are numerous and complex,
varying according to the choice of electrode materials, as shown in
Fig. 1, hence the difficulty in identifying and categorizing these mate-
rials based on electrochemical signals. Recently, Fleischmann et al.16,
emphasized on the importance of a unified understanding when it
comes to the electrochemical signals found in supercapacitors and
batteries. The authors proposed the concept of the ‘continuum tran-
sition’ where the overlapping of electrochemical signals (between
battery and supercapacitor) lies in this region depending on the elec-
trolyte confinement stage. It signifies that understanding this over-
lapping transition essentially requires a clear-cut classification of
electrode material types based on their electrochemical behaviors (in
CV and GCD). Unfortunately, this qualitative concept of ‘continuum
spectrum’ is urgently required an informative transformation to obtain
the quantitative value of it. In order to complete this concept of
‘continuum spectrum’ and to provide the real quantitative value to it,
we analyze the electrochemical signals with the help of supervised
machine-learning for achieving the descriptor, “capacitive tendency”
that allows our community to quantify this important spectrum.

To date, computing techniques have been used as somewhat
satisfactory tools toward ascertaining the charge storage mechanism
behind various electrochemical signatures17–20. Recently, text-mining
algorithms have been developed to efficiently extract various specific
information of the materials from the article such as BatteryDataEx-
tractor using bidirectional-encoder representations from transformers
(BERT)21, and Li-ion battery annotated corpus (LIBAC) based on
Machine Learning (ML), natural language processing (NLP), Named
Entity Recognition (NER)22–24. However, the direct interpretation of the
image data from figures remain difficult using the above method of
data-mining from image. Machine learning has been used to predict
the electrochemicalmechanism involved in the reaction that expresses
through a cyclic voltammogram (CV). Deep learning has also been
used to distinguish the mechanism of the electrochemical reaction
from CV based on residual neural network (ResNet) architecture and

focused on analytical or fundamental electrochemistry. However, the
application of machine learning to analyze electrochemical signals in
the field of energy storage is still in its early stages.

This study presents that electrochemical signal analysis (CV and
GCD) has been performed using a machine learning (ML) approach
based on image classification. This approach is well-suited for unla-
beled data, noise-tolerant, and capable of handling complex data.
Ultimately, this led to the determination of the capacitive behavior of
electrode materials from thousands of scientific papers. The crux of
this work lies in its use of machine learning (ML) to quickly and accu-
rately interpret electrochemical signal images and transformthem into
accurate values. This is made possible by the large database of elec-
trochemical energy storage images that is available to the ML model.
This approach overcomes the limitations of human ability to interpret
data, which can be too complicated in most cases (Fig. 1). So, by this
approach, we propose the definition call “capacitive tendency” based
on the percentage confidenceof the classification betweenbox shaped
and peak shaped CV, implying the capacitive behavior of electrode
materials. In addition to this, we provide an online tool kit which uses
supervisedmachine-learning to easily classifymaterials. Our work thus
serves to put forward a new concept toward understanding and
labeling the various electrochemical signatures of energy storage
devices.

Image recognition is used in many fields, such as facial recogni-
tion, cancer detection and autonomous cars. All these models have
been trained using a supervised or semi-supervised deep learning
approach, in order to teach the model, the pattern best suited to the
situation. The difference between the techniques lies in the choice of
neural network, whichmust be adapted to the specific problem. In our
case, the main difficulty was to differentiate the figures representing a
CV and a GCD from the other graphs.

Overview of our study is shown in Fig. 2. In this study, these CVs
and GCDs were analyzed via supervised ML trained with datasets
extracted from over 4000 scientific papers. In the following section,
various Convolutional Neural Network architectures are validated and
selected based on the evaluations explained in the experimental sec-
tion, by applying the theoretical CV and GCD curves.

Although the application of machine learning in scientific
research was not uncommon before, the analysis of the shape of
electrochemical signals has never appeared before. For example,
Puthongkham et al. wrote a mini-review summarizing the latest
applications of machine learning and experimental design in
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electroanalytical chemistry25. Khosravinia et al. used machine learning
to select the best precursor to predict the specific capacitance26. But
none of these papers focused on shape changes in electrochemical
signals. The innovation of this work is to explore the shape changes
between curves with the assistance of artificial intelligence, so as to
find the change rules between electrochemical signals.

In comparison to other studies, the capacitive tendency analyses
the shape of the electrochemical signal. Unfortunately, the capacitive
tendency doesn’t provide the surface contribution or the diffusional
contribution inside the cyclic voltammetry.

Dataset construction
In the present paper, all datasets are in the form of images extracted
using PyMuPDF library in Python language from >3300 scientific
papers. The first dataset, or Output 1, was obtained by figures
extracting using OpenCV which provides (2979) GCD, (5598) CV and
other images such as crystal structure image (whichwill not be used in
the further classification steps). In the training process of GCD (pro-
cess 2) and CV (process 3) classification, CV and GCD images were
firstly labeled as belonging to one of two classes, namely battery or
pseudocapacitor following the criteria of non-ambiguous signal shape
(which can be put into four categories: (1) Box shaped CV, (2) Peak
shaped CV, (3) Triangular GCD, and (4) Plateau GCD) for 80% of total
data, where 20% of total data was used as testing data. These training
processes is based on binary classification of electrochemical signal,
such as the box vs peak shaped CV, and the triangular vs plateau
shaped GCD, as represented in Supplementary Fig. 6, where all image
datasets used are available on Github27.

FromProcess 3, Output 3wasobtained and categorized into three
types of training sets: 100% battery, 50% battery/pseudocapacitor, and
100% pseudocapacitor. This output was then further refined in Pro-
cesses 4 and 5, as illustrated in Fig. 3b. We used three data sources for
their study of CV and GCD images. The first source was a large dataset
of over 5500CVs and 2900GCDs extracted from scientific papers. The
second source was theoretical CVs and GCDs generated using elec-
trochemical equations. The third source was experimental CVs and

GCDs fromco-authors.Moreover, cross-validationwasperformedwith
the experts in the field to generate the different training datasets for
the optimizing of the classification performance.

However, text-mining was not used in this present study since we
would like to propose the simple alternative tool focusing image
classification of electrochemical signals.

Validation of classification architectures
In this work, Convolutional Neural Networks (CNNs) were selected for
use as the image classification architectures28. Benchmarking was
conducted on five different CNN models, including ResNet5029,
MobileNetV230, VGG1631, Xception32 and 8-Layer CNN28 (see Supple-
mentary Figs. 1, 2), to compare model performance. It was carried out
based on five metrics, including: Accuracy, Sensitivity, Specificity,
Precision, and F-Score33 (see Supplementary Fig. 3 and Supplementary
Eqs. 1–5). During themodel training cycles, the number of training and
validation iterations can impact the accuracy of the prediction since
this is related to the experience gained over time by the ML model.
Moreover, binary cross entropy (BCE) loss34, calculated from the pre-
diction error as shown in Eq. 1, was minimized along the number of
training iterations to optimize predictor performance.

LBCE = � 1
n

Xn
i= 1

yi � log byi� �
yi � log byi� �

+ 1� yi
� � � log 1� byi� � !

ð1Þ

Where yi is the ground truth label (0 or 1, in this case battery or
pseudocapacitor), ŷ is the predicted value, and n is the output size34.

Machine-learning for CV/GCD classification
procedures
The ML architecture displaying the best performance after the vali-
dation step (further explained in the Results and Discussion section)
was selected for use in this work as will be supervised during classifi-
cation processes. ResNet50was exploited in different steps denoted as
Processes 1, 2, 3, 4, and 5 (as summarized in Fig. 3c) according to the
types of inputs and outputs. All the images extracted from scientific
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papers were then categorized by Process 1 (ResNet50 model) which
yielded Output 1, comprising GCDs, CVs and other images (such as
optical image). GCDs fromOutput 1 were then classified using Process
2, and CVs were separately classified by Process 3, thereby providing
the resulting prediction (Output 2: classified GCDs, and Output 3:
classified CVs) of either battery or pseudocapacitor with a percentage
confidence rating of 0–100%, while the errors were monitored and
minimized to improve the prediction. Here, the capacitive tendency
(0–100%) was first defined by the percentage confidence value, indi-
cating the probability of CV shape as peak (0% capacitive tendency)
and box shape (100% capacitive tendency). In the final step (Fig. 3b),
the classified CVs (in Output 3) were labeled according to four per-
centage confidence classes—100% battery, 50% battery, 50% pseudo-
capacitor and 100%pseudocapacitor—before being furthermodeled in
Processes 4 and 5 to provide the capacitive tendency based on a per-
centage confidence of 0–100%.

An alternative way to understand the definition of capacitive
tendency is to analyse it as the deviation from the ideal of the purely
capacitive signal (is easy to recognize). When the trained model is
confident that the curve is close to a rectangle (for CV) or a triangle (for
GCD), then this implies that the curve is close to an ideal capacitive
signal. On the contrary, a curvewhose confidence value is close to zero
means that the curve has a different contribution. Basically, the
capacitive tendency reflects the analysis of the signal shape. It is

information based on a geometric shape. Of course, alternatives could
beused.However, the useof the classical formalism, as indicated in the
“ideal CVs” area in Fig. 1a, is impossible when the shape of the elec-
trochemical signal deviates from this ideal. In the purely mathematical
domain, the possibility of adding a rectangle to a closed geometric
shape (a CV is a closed geometric shape) is a complex mathematical
situation. Thus, our data science-driven by supervised deep learning
approach is a suitable alternative.

Results and discussion
This section explains how the models for CV and GCD classification
were established for this specific dataset through the validation of
different CNN architectures. The selection was based on well-known
parameters including Accuracy, Sensitivity, Specificity, Accuracy, and
F-Score. Moreover, the most accurate model was developed for use as
the descriptor in order to determine the capacitive tendency of the
various electrochemical behaviors, by applying the experimental data
of various electrode materials. Ultimately, the selected model is des-
tined for use by electrochemists as a tool for determining the nature of
their materials.

Validation of architectures
To select theConvolutionalNeural Network architecturebest suited to
our datasets, the validation of a total of five models (ResNet50,
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MobileNetV2, VGG16, Xception, and 8-Layer CNN) was first performed
using Processes 2 and 3 with different types of input and output
(Table 1). These architectures were chosen based on the reported
accuracy ranking ascribed to themodels’ performance from ImageNet
validation35,36. In this step, the prediction was governed by binary
classification toobtainonly twodifferent outputs, namely (i) batteryor

(ii) pseudocapacitor, since themodel had been trained and supervised
with CV and GCD datasets without ambiguity. ResNet50 was found to
be the most accurate and precise one out of all the models (Table 1,
Supplementary Figs. 7–11) and was thus selected to further prediction
in the next step. Moreover, ResNet50 ismore adapted to the variety of
data that will be input by the users, for example, plot with different
frame and font styles and different color curves.

To demonstrate the efficiency of the model, 5598 CVs and 2979
GCDs were randomly selected and entered the classifier according to
Processes 2 and 3. Supplementary Fig. 12 clearly demonstrates that the
majority of predicted datasets showed a 100% confidence rating,
which would suggest that our ML model displays a high level of pre-
cision and reliability with a negligible risk of error.

Validation of theoretical CVs and GCDs
In this part, the simulations of CV and GCD images were done using
basic equations from theoretical electrochemistry including Faradaic
process with peak-shaped CV37, and EDLC with box-shaped CV which
relies on Eqs. 2 and 3. The simulated images were then classified by the
trained model (process 4–5). The equation for CVs showing redox
peaks is given as follows:

i
imax

=
e

F
R�T� E�E0

peak

� �

1 + e
F
R�T� E�E0

peak

� �� �2 ð2Þ

where i
imax

is the normalized current of the peak current function, F is
the Faraday constant, R is the gas constant, T is the temperature, E is

Table 1 | Performance of different architectures for
classification

CNN-model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Precision
(%)

F1-
Score
(%)

GCD Classification

ResNet50 94.22 93.84 94.45 94.16 93.99

MobileNetV2 93.11 92.56 93.07 93.12 92.82

VVG16 92.22 92.24 94.61 91.78 91.99

Xception 93.77 93.98 96.49 93.33 93.60

8-Layer CNN 94.00 93.73 94.77 93.82 93.78

CV Classification

ResNet50 95.80 93.52 96.74 94.65 94.07

MobileNetV2 94.64 92.62 96.42 93.24 92.92

VVG16 94.36 93.12 97.13 91.53 92.28

Xception 93.04 88.87 94.35 91.31 90.00

8-Layer CNN 93.65 89.08 94.26 92.77 90.74

GCD and CV classification comparison based on evaluation values obtained from five different
architectures: ResNet50, MobileNetV2, VGG16, Xception, and 8-Layer CNN.

Fig. 4 | Theoretical calculations and capacitive tendency of CV andGCD curves.
The illustration of (a) classified theoretical CVswith Gaussian and box shapes as the
components, and (b) classified theoretical galvanostatic charge (I) and discharge

(II) curves obtained by using Eq. 4. with a varying M parameter. The color of each
curve is related to the probability of being battery (purple gradient bar) or capa-
citive material (blue gradient bar).
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the applied potential and E0
peak is the peak potential. The box-shaped

EDLC current function is given by:

i
imax

= 1� e�
t

R�C ð3Þ

where C is the capacitance, R is the resistance and t is the charging
period38. It was shown that capacitive behavior is more pronounced
the further the CV shape deviates from peaked to rectangular (Fig. 4a).

Furthermore, simulating number of theoretical GCD images with
the transition in curvature from straight to plateau feature could be
applied with the classification model (process 2) in order to see the
region of ambiguity. Using Eq. 4 by varying M parameter:

E =M � R � T
n � F

� �
log

ffiffiffi
τ

p � ffiffi
t

p
ffiffi
t

p
� �

+ Eτ=4 ð4Þ

where E is the potential, n is the number of electron transfers, t is the
charging/discharging time, τ is the time constant, Eτ/4 is the quarter-
wave potential and M is the mathematical factor permitting the
manipulation of the galvanostatic curve to show either a plateau
feature (as found inbatterymaterialmeasurements) or straight line (as
in supercapacitormaterialmeasurements), the continuumGCD curves
were obtained, as shown in Fig. 4b (blue, gray, and purple lines).

Figure 4b(I) shows that a battery-type signature was found to
apply for anM value rangeof between 1.6and7 (purple zone,with a 90-
100% confidence rating), whereas the prediction point to a
pseudocapacitor-type forM values of between 7.1 and 19.6 (blue zone,
with a 70-100% confidence rating). Similarly, this result was also
observed for theoretical discharging profiles, as shown in Fig. 4b(II).
However, in the gray zonewhenM is around 7.0 during charge and 9.4
during discharge, respectively, the predictor was hesitant to define the

signal type, suggesting that a certain ambiguity occurs when the cur-
vature of the GCD signal is somewhere between a straight line and a
plateau, as has already been observed and which is consistent with
experimental measurements related to pseudocapacitive materials
(Fig. 5c). The most pertinent conclusion that can be drawn from this
calculation is that our model demonstrated the transition region of
GCD signals in accordance with the continuum transition concept as
proposed by Fleischmann et al.16. Our model clearly demonstrates the
source of the confusion for both humans and computers, which stems
from the fact that these behaviors all originate from faradaic processes
where electron transfer is the elementary step. This explains why the
results of theoretical studies only hold true for basic scenarios. More
complex behaviors, however, are frequently observed in experimental
measurements and account for vast amounts of data.

Revealing the nature of electrode materials through supervised
machine-learning
In accordancewith themainpurpose of this study, namely overcoming
human limitations when it comes to understanding electrochemical
signals, the objective in this section concerned clarifying the behavior
of faradaic electrode materials. To this end, experimental CVs from
Fig. 1 were applied to the model to predict the capacitive tendency
behavior of various electrode materials that conventionally can be
calculated from dQ/dV = constant in only simple cases such as super-
capacitor materials but could be too complex to apply for pseudoca-
pacitors. Well-known pseudocapacitive and batterymaterials from the
literature, such asMnO2 andNMC, were compared not only to separate
the signals produced by Processes 2 and 3 according to the conven-
tional binary classification, but also to establish a new standard that we
called capacitive tendency. Processes 4 and 5 broadened the classifi-
cation range to create a statistical tendency representing an inter-
pretable value: in the range of 0% denoting a battery, to 100% being a
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Fig. 5 | Prediction of capacitive behavior of various electrode materials. The
capacitive tendency prediction of experimental voltammograms of (a) the well-
known pseudocapacitor and battery electrode materials MnO2

49, and NMC50,

compared with the ambiguous CVs of Ag1-3xLax□2xNbO3
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43. The
predicted (b) CVs and (c) GCDs of other electrode materials from the literature, as
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pseudocapacitor. Finally, we were able to predict the capacitive
behavior of various electrode materials from experimental data, as
demonstrated in Fig. 5.

As previously mentioned, the exemplary rectangular and peak
shapes are unfortunately not often present when it comes to sys-
tems exhibiting fast charge/discharge behavior or when pseudoca-
pacitive materials are investigated. Electrochemists thus find it
difficult to analyze the voltammograms correctly in the face of such
a variety of shapes, with even the CVs of V2C, Nb2O5 and nano-MoS2
electrodematerials (Fig. 5b) displaying a similar capacitive tendency
of around 52–53%. This finding served to emphasize the necessity of
using machine-learning as a decisive tool for interpreting CV signals
displaying a complexity that is beyond human discernment. The
understanding of the origin of the electrochemical behavior is the
key point for the deep knowledge and for the future development of
the electrode materials. TB robots have been used to study the
physicochemical features of a variety of electrode materials,
including carbon electrodes, MOFs, COFs, graphite, NMC, and
MXenes materials, determining the capacitive tendency of the CV in
‘continuum region from the recent papers (as shown in Supple-
mentary Fig. 21).

The limitation of the binary classification battery vs.
pseudocapacitor
During this phase of our research, numerous scientific articles con-
taining the keyword “battery” (2011 articles) or “pseudocapacitor”
(1346 articles) were analyzed using our supervised ML model to pro-
vide a statistical analysis of thenumber of papers containing a keyword
that was in contradiction to their signals (used articles outside the
training dataset). Briefly, the articles were randomly selected and their
relevant CV and GCD signals were extracted and then simply classified
into either battery or pseudocapacitive type using only Processes 2

and 3. The outputs in Fig. 6 depict that around 67%of the paperswith a
“pseudocapacitor” keyword are consistent with their experimental
observations. Unexpectedly, however, nearly 50% of the articles with a
“battery” keyword displayed contradicting signals. These results serve
to reinforce the fact that human-based interpretation could greatly
benefit from being replaced with computing techniques such as ML.
Apparently, our machine-learning classification technique showed the
significant portion of the articles using binary keywords (battery or
pseudocapacitor) that contradict (mismatched) with their electro-
chemical signal (Supplementary Information).

This result shows perfectly the limit of the binary approach in the
field. Because analysing a binary classification leads to this mis-
classification by the authors. Our approach, using capacitive tendency,
allows a unification of the measurements, by including them in a
“spectrum” as proposed by Fleischmann et al.16.

Online tool kit for CV/GCD classification
In order to facilitate the task of users worldwide when it comes to
classifying the electrochemical behaviors (battery or pseudocapacitor)
of their experimental data (CVs andGCDs), we have launched anonline
tool for analyzing these signals and providing an output in the form of
a capacitive trend (or percentage confidence rating). It is publicly
available at http://supercapacitor-battery-artificialintelligence.vistec.
ac.th, and details are also provided in the Supplementary Information
part 8---the website description.

The training database boundary is fixed using only scientific data
with the pseudocapacitor or battery keywords associated. It is
recommended for reader to use the present model to compare signal
associated to EDLC, pseudocapacitor and Metal-ion battery. The pre-
sent model isn’t adapted to redox flow battery, and fuel-cells. More-
over, the presentmodel doesn’t provide any performance predictions.
The typical useful application is to compare the same family of
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Fig. 6 | Comparison of paper definitions and predicted results. a The metho-
dology behind the title classification of papers as either a battery or pseudocapa-
citor, followed by b CV and GCD extraction and then c the matched/mismatched

outputs using our classifiers (Processes 1, 2 and 3). The percentage correlation
between titles for pseudocapacitor andbatterymaterials vs. correctly classifiedCVs
and GCDs.
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materials (i.e, MOF, NMC, MXene) but presenting a different electro-
chemical behavior. That is the generality and universality of this study.

The research presented herein has successfully managed to
resolve the decades-old conundrum concerning the interpretation of
electrochemical signals from CVs and GCDs by making full use of
advanced computing technology in order to classify the behavior of
materials as battery-like or pseudocapacitor-like. Specifically, we
demonstrated that supervised ML is a powerful and accurate way to
distinguish between these often complex signals. Our study also
highlights the recurrent issue of the titles of scientific papers often
contradicting the results of their owndata, especially when it comes to
those articles with “battery” in the title. This demonstrates the super-
iority of machine learning over human-based analysis for the inter-
pretation of electrochemical signal images.Machine-learning is able to
quickly and accurately transform the shape information of images into
predicted values, while human-based analysis is far slower and more
subjective. This is due to the fact thatmachine learning algorithms are
able to learn from large datasets of images and extract patterns that
arenot visible to the human eye. As a result,machine learning is amore
reliable and objective approach to the analysis of electrochemical
signal images. As a major contribution to our peers in the electro-
chemical energy storage community, we are delighted to announce a
first online tool based on ourmodel toward simple CV and GCD image
classification via our precise marker, called capacitance tendency
(quantitative information presented in percentage), affording them
thepossibility of a quick and easy standard to refer towhen attempting
to determine the nature of their new materials. Using the present
program, all experimental user will be able to correlate chemical
information to capacitive tendencies, as the scan rate, the current
density. However, a potential drawback of the current classifier is that
it can only predict the resistive tendency of electrochemical signals
based on CV/GCD image data. A more comprehensive classifier by
featuring text-mining of material information of a hidden information
such as labels, scan rate, electrolytes in the figure could be an ultimate
strategy for future perspectives on artificial intelligence for energy
storage technology.

Data availability
The figures, tables and literatures data of capacitive performance
generated in this study are provided in the Supplementary
Information.

Code availability
Machine-learning models and datasets are made publicly available at
GitHub repository27. The instruction is provided in both supporting
information and on Github repository.
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