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Tigerfish designs oligonucleotide-based in
situ hybridization probes targeting intervals
of highly repetitive DNA at the scale of
genomes

Robin Aguilar1, Conor K. Camplisson1, Qiaoyi Lin1, Karen H. Miga 2,3,
William S. Noble 1,4 & Brian J. Beliveau 1,5,6

Fluorescent in situ hybridization (FISH) is a powerful method for the targeted
visualization of nucleic acids in their native contexts. Recent technological
advances have leveraged computationally designed oligonucleotide (oligo)
probes to interrogate > 100 distinct targets in the same sample, pushing the
boundaries of FISH-based assays. However, even in the most highly multi-
plexed experiments, repetitive DNA regions are typically not included as tar-
gets, as the computational design of specific probes against such regions
presents significant technical challenges. Consequently, many open questions
remain about the organization and function of highly repetitive sequences.
Here, we introduce Tigerfish, a software tool for the genome-scale design of
oligo probes against repetitive DNA intervals. We showcase Tigerfish by
designing a panel of 24 interval-specific repeat probes specific to each of the
24 human chromosomes and imaging this panel onmetaphase spreads and in
interphase nuclei. Tigerfish extends the powerful toolkit of oligo-based FISH to
highly repetitive DNA.

Fluorescent in situ hybridization (FISH) is a powerful technique that
can reveal the spatial positioning and abundance of DNA and RNA
molecules in fixed samples with subcellular resolution. Since their
introduction in 19691, ISH and later FISH2–4 methods have been refined
to improve their detection efficiency and sensitivity5. One important
technical development has been the introduction of synthetic DNA
oligonucleotides (oligos) as a source of probe material6. Oligo-based
probes offer important advantages over more traditional probes
deriving from isolated genomic material, as oligo probes can be
designed to have specific thermodynamic properties and pro-
grammed to contain stretches of exogenous sequences that can serve
as ‘readout’ domains via the ‘secondary’ hybridization of a labeled,

complementary oligo. These advantages have led to the introduction
of a growing set of ‘spatial genomics’ and ‘spatial transcriptomics’
methods that use complex ‘probe sets’ of many distinct oligo
species7–10 in combination with iterative rounds of secondary hybridi-
zation to visualize dozens ormore genomic regions11–14 and thousands
ormoreRNA species15–17, respectively, in the same cell or tissue sample.

The rapid adoption of oligo probes as a source of FISH probe
material has also catalyzed the parallel development of computational
tools for oligo probe design. These tools—which include OligoArray18,
PROBER19, Chorus20, mathFISH21, OligoMiner22, iFISH23, ProbeDealer24,
Chorus225, and PaintSHOP26—aim to identify shortwindowsof genomic
sequence that have suitable thermodynamic and sequence properties
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to serve as FISH probes. Once identified, ‘candidate’ probes are next
screened for specificity to predict whether they will have off-target
sites in addition to their intended target. This specificity screening
typically relies on using alignment programs such as BLAST27 or
Bowtie228 to search for regions with high sequence similarity to the
candidate probes, the use of k-mer counting programs such as
Jellyfish29 to assess whether the candidate probes contain k-mers (i.e.,
substrings) with high abundance in the genome of interest, or a
combination of both approaches. After this specificity screening,
candidate probes with predicted off-target binding are filtered and a
final set of target-specific oligo probes is returned.

A key advantage of oligo probes is that they can be designed
specifically to avoid targeting repetitive sequences. Repetitive
sequences are frequent sources of unwanted background when per-
forming in situ hybridization experiments due to their high copy
number, and a set of “suppressive hybridization” methods using
unlabeled repetitive DNA from the C0t-1 fraction

30 as a blocking agent
have been introduced to abrogate this backgroundwhen using probes
derived directly from genomic material31–33. Such blocking agents are
generally not needed when using oligo probes, however, as compu-
tational oligo probe design methods either avoid discovering candi-
date probes in sequence annotated as being repetitive by tools like
RepeatMasker18–20,22,26,34 or purposefully filter candidate probes that
align many times to the genome18,20–26 or contain highly abundant k-
mers22,23,25,26. As a result, while computational oligo probe design tools
are able to operate at the scale of whole plant and mammalian gen-
omes to produce repositories of tens of millions of oligo probes23,26, a
substantial fraction of large and complex genomes remains inten-
tionally uncovered due to the presence of repetitive sequences.

Repetitive DNA accounts for ~50% of the human and mouse gen-
omes and often even higher percentages in the genomes of
plants30,35,36. Broadly, repetitive DNA falls into two categories: 1)
Interspersed repeats such as SINE, LINE, and ALU elements that often
occur as short, spatially isolated intervals within larger blocks of non-
repetitive sequence35; 2) long tandem repeat arrays such as alpha
satellite, human satellites 1–3, and the 45 S ribosomal DNA at which a
single monomer is repeated many times to form multi-megabase
intervals of repetitive sequence that are frequently located in peri-
centromeric regions and on the short arms of acrocentric
chromosomes36,37. Collectively, repetitive DNA sequences are central
to a set of diverse and essential cellular and organismal functions,
including the recruitment of the chromosome segregation machinery
during mitosis, the encoding of essential information such as the 47 S
rRNA38 and the replication-dependent histone genes39, and the pro-
tection of chromosome ends40. Moreover, repetitive sequences are an
important source of novel genic and regulatory sequences41 and are
hypothesized to be actively involved in potent evolutionary processes
such as meiotic drive and speciation42. Thus, more detailed studies of
highly repetitive DNA regions and their transcription products
through low-cost targeted assays such as FISH may help uncover the
mechanisms by which these mysterious regions exert their influence
on important biological processes. For instance, the targeted visuali-
zation of repetitive regions would allow the assessment of chromatin
compaction at the single cell level43, the quantification of mitotic
errors such as anaphase bridges44, and the investigation of the
micronucleation frequency of a given element45; as repetitive DNA
regions are frequent sources ofmitotic errors46, such experimentsmay
help define the mechanisms by which genome stability is maintained.

When desired, repetitive intervals make highly robust and effec-
tive FISH targets, as one or a few probe species can bind many times
and thus produce a very large, bright signal at low cost. Indeed, all of
the initial ISH targetswere repetitive1,47, and repetitive targets continue
tobeused routinely fordiagnostic assays such as aneuploidy detection
via interphase chromosome enumeration48. However, the deployment
of probes against repetitive targets either requires the isolation and

experimental validation of cloned genomic material or a priori
knowledge of experimentally validated oligo sequences. Computa-
tional approaches have been introduced to identify tandem repeat
regions in worm49 and plant systems50,51 to select candidate
chromosome-specific imaging oligo probes for experimental valida-
tion. However, neither these approaches nor computational tools
designed to target non-repetitive regions provide a computationally
scalable way to assess the predicted in situ behavior of oligo probes
targeting repetitive DNA in the background of large and complex
genomes.

Here, we introduce Tigerfish, a computational ecosystem tailored
for the design and characterization of oligo probes targeting intervals
of repetitive DNA at the genome scale. Tigerfish provides all func-
tionality needed for discovering repetitive regions de novo, designing
candidate probes, and performing deep in silico profiling of predicted
binding activity. Tigerfish is open source, freely available, supported
by extensive documentation and tutorials, and ships with a dedicated
set of utilities to make it easier for users to visualize the predicted
experimental outcomes of their designs. We showcase the utility of
Tigerfish by designing and experimentally validating at least one
interval-specific repeat probe for all 24 human chromosomes on
metaphase spreads and augment these data by performing interphase
enumeration of chromosomal copy number in human primary lym-
phocytes for all 24 human chromosomes. Finally, we provide a com-
prehensive catalog of probes and their predicted associated binding
specificities that have been discovered by Tigerfish in the fully
assembled human T2T CHM13v2 +HG002 chrY genome released by
the Telomere-to-Telomere Consortium36. As our knowledge of the
complete sequence of highly repetitive regions and how these regions
vary amongst individuals and populations continues to increase from
efforts such as the Human Pangenome Project52 and Vertebrate Gen-
omes Project53, we anticipate that Tigerfish will play a key role in a
number of applications including genome assembly variation, in situ
karyotyping, and biological discovery.

Results
Challenges associated with designing probes that target
repetitive DNA
We set out to design a computational pipeline optimized for the design
of oligo-based in situ hybridization probes against intervals of repetitive
DNA. Such intervals present unique design challenges. In order to frame
these challenges, it is helpful to first consider the general case of probe
design. In order to function effectively, in situ hybridization probes need
to maximize important criteria: 1.) Efficacy—they must bind stably to
their genomic or transcriptomic target and remain associated through-
out the duration of hybridization and wash steps; 2.) Specificity—they
must aggregate detectable (e.g., fluorescent) label at their intended
target such that on-target signal rises above the levels of noise and off-
target background labeling. While adjustments to the specified length
and %G+C content ranges are sometimes required to accommodate
repetitive intervals with skewed nucleotide compositions, in general the
design of probes with high efficacy against repetitive DNA intervals is
straightforward with any computational design program capable of
performing nearest neighbor thermodynamic54 calculations. Thus, if fed
the proper input sequence, efficacious probes targeting repetitive DNA
can be readily outputted by OligoArray18, OligoMiner22, iFISH23,
ProbeDealer24, Chorus225, PaintSHOP26, and other computational tools
focused on oligo probe design. In contrast and as explained below, the
evaluation of the specificity of probes targeting repetitive DNA intervals
is a much more involved and challenging proposition.

Existing computational probe design methods attempt to avoid
designing non-specific probes using one or more of the follow three
main approaches: 1.) Using existing genome annotations (e.g., from
repeatMasker34) to identify intervals of repetitive DNA and prohibiting
design from these intervals (Stellaris Probe Designer, Chorus20); 2.)
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Aligning efficacious probes outputted by upstream steps to the refer-
ence genome and discarding those aligning more than one or a few
times (OligoArray18, OligoMiner22, ProbeDealer24, Chorus20, Chorus225);
3.) Filtering efficacious probes outputted by upstream that contain the
presence of k-mers with many occurrences in the reference genome
(OligoMiner22, iFISH23, PROBER19, Chorus225). Collectively, these
approaches are purpose-built to avoid designing probes that contain
stretches of highly repetitive DNA, as such probes are an extremely
problematic sourceofoff-targetbackgroundwhen the intended target is
an interval of non-repetitive DNA31,32. However, if intervals of repetitive
DNAare instead the intendeddesign target, it is difficult or impossible to
adopt existing workflows because of these filtering approaches, which
are almost always hard-coded into the probe design tools. Specifically,
approach 1 precludes the design of probes against any annotated
repetitive region and thus cannot be present in any pipeline seeking to
design probes against repetitive DNA intervals. Approach 2 is likewise
problematic, as probes that target repetitive DNA by definition occur in
the genomemany times and thus would returnmany distinct alignment
sites, but most probe design tools purposely filter any probe with more
than 1 high-scoring alignment site. Finally, while approach 3 can be
tweaked in some tools (e.g., OligoMiner22) to allow probes containing
high-occurrence k-mers to be designed, they do not contain any com-
putational infrastructure to allow users to determine what proportion
the occurrences of the relevant k-mers derive from the target interval;
occurrences deriving from other genomic locations could lead to
unacceptable levels of off-target background.

In order to help focus our tool development efforts, we reasoned
that it would be helpful to start with a design test case. To this end, we
turned our focus to the human alpha satellite repeat family, as it is
present in the centromeric regionsof all human chromosomes andmost
human chromosomes contain enough unique sequence variants to
potentially allow chromosome-specific targeting37. Indeed, while
chromosome-specific targeting of alpha satellite arrays with oligo
probes has been reported for chromosome 1755, alpha satellites are
generally a challenging target for the design of interval-specific probes
targeting just a single chromosomedue to the high sequence similarities
between the arrays of distinct chromosomes56; we have observed these
challenges when using an oligo probe derived from chromosome 16
alpha satellite sequence57, with which we observe staining on ~8–10
chromosomes58,59. For our test case, we focused on the alpha satellite
arrays of chromosomes 2 (~2.4Mb), 8 (~2.1Mb), 21 (~349 kb), and
Y (~317 kb). For each of these targets, we used a modified version of
OligoMiner22,26 to discover probes both from the entire array as well as
the consensus monomers identified by Tandem Repeat Finder60

(Methods). We next modified the PaintSHOP specificity profiling
pipeline26 to evaluate the predicted binding profiles of each designed
probe (Methods).Our in silicopredictions largelymirroredourempirical
results with the chromosome 16 alpha satellite probe—of the 7897
probes we analyzed across the four targets, the vast majority had sig-
nificant amounts of binding (> 100 predicted binding sites) on the alpha
satellite arrays of other chromosomes (Supplementary Fig. 1). Further
analysis revealed that only a small proportion of the probes examined
deriving from the full arrays (chr2: 57/4392, 1.3%; chr8: 268/2599, 10.3%;
chr21: 6/600, 1.0%; chrY: 17/306, 5.6%) or consensusmonomers (chr2: 1/
14, 7.4%; chr8 1/32, 3.1%; chr21: 0/38, 0%; chrY: 0/3, 0%) only had pre-
dicted binding at their intended target (Supplementary Fig. 1).

Taken together, our analysis results suggest that for targets that
share sequence similarity with related repeat family members such as
human alpha satellites, in many cases it will be difficult to select a
specific oligo probe by chance, even if such probes do exist for a given
target. Moreover, while it is possible with an appropriate in silico
analysis pipeline to pre-screen all possible probes to identify any
specific probes for a given target, such an analysis requires consider-
able bioinformatic expertise to conduct and is computationally
expensive, with the analysis of the four chosen alpha satellite arrays

collectively taking 512.6 h of CPU time (Supplementary Fig. 1) when run
on a high-performance Linux cluster.With these results inmind, we set
out to create a tool that would 1) use computationally efficient stra-
tegies to identify the probes that are the most likely to be specific and
prioritize running those first to reduce the resource cost of the design
process and 2) be wrapped in a user-friendly framework to allow
researchers without deep expertise in bioinformatics to execute the
design process.

Oligo probe design with Tigerfish
Tigerfish is a computational pipeline composed of a collection of
Python scripts embedded in an automated Snakemake workflow61 that
chains together novel code purpose built for Tigerfish and calls to
existingbioinformatic tools that are commonly used to solveproblems
such as parallelized sequence alignment and k-mer counting. Tigerfish
is designed to be executed in a command line environment. No direct
knowledge of programming is required to run Tigerfish, and this
bioinformatic workflow can be deployed on any modern Windows,
Macintosh, or Linux system. Tigerfish is open-source, freely available
via GitHub (https://github.com/beliveau-lab/TigerFISH), and depends
on Bowtie228, NUPACK62, Jellyfish29, SamTools63, Biopython64, Scikit-
learn65, and chromoMap66. Tigerfish is also supported by extensive
documentation (https://beliveau-lab-tigerfish.readthedocs-hosted.
com). In order to run Tigerfish, users must include the full sequence
of the genome assembly in which probe design is to be performed in
FASTA format67 and also provide an accompanying ‘chrom.sizes’ file
that details the scaffolds present in the assembly and their lengths in
base pairs. Users must also edit a small configuration file in which the
locations of relevant files and scripts can be specified and parameter
choices for the probe discovery can be specified.

Tigerfish can be run in one of three execution modes; these
modes do not differ in the logic they use for designing and evaluating
probes but allow different entry points into the process depending on
what information the researcher already has in hand (Fig. 1). The first,
termed “Repeat Discovery Mode”, runs the full Tigerfish workflow end
to end and is intended for cases in which researchers do not have a
priori knowledge of where repetitive regions occur in their genome of
interest. In Repeat Discover Mode, users list genomic scaffolds where
de novo repeat discovery and probe design is to be performed in the
configuration file. Repeat Discovery Mode uses a k-mer counting
strategy to identify repetitive DNA regions de novo by identifying
intervals that contain k-mers with high abundance in the genome
(Methods). Users can tune the size of the search window and the
magnitude of the k-mer count values needed for an interval to be
flagged as repetitive, thereby controlling the nature of the repeat
regions identified. The second, termed “Probe Design Mode”, skips
repeat discovery step and runs the Tigerfish pipeline starting from the
probe design step (Fig. 1). ProbeDesignMode is intended for instances
where the genomic interval(s) a user wants to target for probe design
are already known. In this case, the user must provide an additional
BED-formatted file68 that specifies the genomic coordinates for inter-
val(s) to perform probe design against; these coordinates can refer to
the full interval or, if available, the location of a consensus monomer.
The third, termed “Probe Analysis Mode”, runs the pipeline starting at
the specificity filtering step that comes downstream of probe design
(Fig. 1). Probe AnalysisMode is provided as a way to generate a new set
of in silico binding predictions for probes contained in an existing
Tigerfish output file; this functionality may be used to predict how the
binding pattern of the input probes might change as the result of
altering the salt concentration or melting temperature of the hybridi-
zation reaction. Tutorials providing a comprehensive walkthrough of
these threemodes, alongwith anexampleof implementingTigerfish in
the human T2T CHM13v2 +HG002 chrY genome assembly on a satel-
lite repeat, can be found at https://beliveau-lab-tigerfish.readthedocs-
hosted.com.
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When using Repeat Discovery Mode or Probe Design Mode,
Tigerfish designs candidate oligo probes for each genomic interval
passed forward (Repeat Discovery Mode) or specified in the user-
provided BED (Probe Design Mode). Candidate probe discovery is
performed using a modified version of the ‘blockParse.py’ script from
OligoMiner22 that screens the provided sequences for windows with
desirable sequence and thermodynamic properties (Methods). To
maximize the chance that the optimal probe or set of probes will be
identified, Tigerfish mines the entire repeat region for candidate
probes, which can result in redundant and even duplicate candidate
probe sequences being returned. In order to minimize the amount of
downstream computation needed, duplicates are removed and the
candidate probes for each region are then rank-ordered to prioritize
candidates that contain k-merswith elevated abundance specifically in
the target interval from which they were designed (Methods), as such
candidates are more likely to have many on-target binding sites while
having minimal binding elsewhere in the genome.

In order to return a final probe set, Tigerfish begins with the top-
ranked candidate probe for each target interval and performs deep in
silico specificity profiling. The selected candidate probe is aligned to
the genome with very sensitive settings (Methods) and up to 500,000
alignments are returned. The genomic sequenceof each alignment site
is then extracted and put into a virtual test tube to simulate how likely
binding would be with the input candidate probe in FISH conditions
using NUPACK62. Finally, Tigerfish processes the result of these simu-
lations and calculates the number of predicted on- and off-target
binding sites for each candidate probe (Methods). Users can specify a
number of parameters to tune performance at this step, including the
maximum number of allowed off-target binding sites per probe, the
minimum number of required on-target binding sites per probe, and
the maximum number of probes in the final set (Methods, Supple-
mentary Note 1). If needed, Tigerfish will continue analyzing the pre-
dicted binding specificities of candidates from the rank-ordered list
until either the user-supplied criteria are met or all possible candidate
probes are considered. The final output of Tigerfish includes a text file

containing all final probes and their aggregate on- and off-target
binding predictions, a summary table that lists all target intervals for
which probes were designed and their aggregate on- and off-target
binding predictions for the probes thatmap to each interval, and a set
of auxiliary files that provide more detailed information about the
predicted binding profiles of the probes. Users can also optionally
populate chromoMap ideograms that depict the chromosomal loca-
tions of probe binding for the probe or set of probes designed against
each target interval (Fig. 1). Example input and output files for full test
runs of Tigerfish in Repeat Discovery Mode, Probe Design Mode, and
Probe Analysis Mode can be found within Supplementary Software.

Probe discovery at the scale of human genomes
In order to demonstrate the scalability of Tigerfish, we set out to
perform genome-wide de novo repeat interval identification and
probe design for all 24 chromosomes in the human T2T CHM13v2 +
HG002 chrY assembly36 using Repeat Discovery Mode. In order to
showcase how users can tune parameters to optimize their design for
different types of repeat regions, weperformedour genome-scale runs
with two sets of parameter groupings: 1) a ‘conservative’ set that
prioritizes identifying large intervals of highly repetitive sequence
such as those found at pericentromeres in order to prioritize extre-
mely robust probes (> 500 target sites); 2) a ‘permissive’ set that aims
to exhaustively discover intervals of repetitive DNA that can be probed
with > 25 target sites (Supplementary Data 1). Analysis of our genome-
wide probe design runs revealed that Tigerfish was able to design
probe sets for 28 intervals using the ‘conservative’ parameter set
(Supplementary Data 2) and 263 intervals using the ‘permissive’ para-
meter set (Supplementary Data 3). As neither parameter set puts an
upper bound on the number of target sites or the size of the target
interval, the 28 intervals discovered using ‘conservative’ parameter
settings were also present discovered using the ‘permissive’ parameter
settings. We found that Tigerfish was able to generate at least one
interval-specific probe or probe set for all 24 chromosomes, promi-
nently covering the pericentromeric and subtelomeric regions ofmost
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Fig. 1 | TheTigerfishworkflow. Schematic overviewof the inputs,major processing steps, andoutputs of theTigerfish probedesignpipeline. Tigerfishmaybe run in three
distinct modes, which progress through shared steps of the pipeline identically but enter at distinct steps.
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chromosomes. The Tigerfish probes mostly fell into regions not
already covered by existing PaintSHOP probes26 designed with non-
repetitive intervals in mind (Fig. 2a) and predominantly mapped to
annotated tandemand interspersed repeat families (Fig. 2b).We found
that the repeat intervals identified spanned a broad range of sizes
ranging from 411 bp to 34.3Mb (median: 3.6 kb) for the group identi-
fied using the ‘permissive’ settings and from 37.6 kb to 34.2Mb
(median: 2.7Mb) for the group identified using the ‘conservative’ set-
tings (Fig. 2c).Collectively, theseprobes andprobe sets cover 164.5Mb
of the human T2T CHM13v2 +HG002 chrY assembly after accounting
for any differences between the size of the interval inputted for design
and the effective size of the interval covered by the output probes
(Supplementary Fig. 2).

Our in silico specificity profiling also revealed a broad distribution
of the aggregate number of predicted on-target binding sites for the
probes or probe sets covering the 263 intervals, ranging from 25 to
30,972 target sites in the ‘permissive’ group (median: 236.9 target sites)
and 500–30,972 targets sites in the ‘conservative group (median:
20,165.2 target sites) (Fig. 2d). When factoring in the size of the target
intervals, we observed target site densities of 0.017–798.6 target sites
per kb (median: 47.9 target sites per kb) for the ‘permissive’ group and
0.64–475.9 target sites per kb (median: 6.4 target sites per kb) for the
‘conservative’group (Fig. 2e). Thus, themajorityof theprobe setsmeet if
not greatly exceed the threshold of ~200 target sites that in our
experience leads to reliably robust DNA FISH; importantly, as this
threshold is enforced by the efficiency of probe hybridization rather
than absolute signal strength, we have observed that >200 probes is
optimal even if signal amplification approaches such as Rolling Circle
Amplification (RCA)69, Hybridization Chain Reaction (HCR)70, or Signal
Amplification by Exchange Reaction (SABER)71 are employed. Moreover,
due to the reiterated nature of the target intervals, hundreds tomany of
thousands of target sites can be labeled by just one or a few probes,
greatly reducing the cost of the FISH relative to experiments that target
non-repetitive DNA with sets of hundreds to thousands of oligo probes.
Thus, while Tigerfish is theoretically capable of designing probes against
input intervals of any size, we recommend targeting intervals greater
than 10 kb in length tomaximize the chance of experimental success by
providing > 200 binding sites for non-overlapping 40–50 nt probes;
such regions are mostly to occur as tandem repeats and appear less
frequently as interspersed repeats (Fig. 2b). On the level of the pro-
bes themselves, as we allowed a broad range of permissible lengths
(25–50 nt), %G+C content (20–80%), and formamide-adjusting melting
temperatures (42–52 °C), we observed a broad distribution of probe
lengths (Fig. 2f) and formamide-adjustedmelting temperatures (Fig. 2g),
indicating that when Tigerfish is run with flexible probe parameter
choices genome-wide it is able to design probes suitable for the variable
nucleotide compositions found at it repetitive targets.

Validating Tigerfish probes in situ
In order to evaluate how effectively the in silico design approach of
Tigerfish translates to performance in situ, we designed and con-
ducted a series of FISH experiments. Specifically, we set out to inves-
tigate whether Tigerfish was able to generate a panel of FISH probes
targeting repetitive DNA intervals specific to each of the 24 human
chromosomes, as such a panel would have utility in diagnostic and
chromosomal enumeration assays. In order to showcase the versatility
of the different Tigerfish run modes, our panel consisted of a mix of
probes designed against regions identified using “Repeat Discovery
Mode” and regions selected manually based on their RepeatMasker34

annotations using “Probe Design Mode” (Supplementary Data 4 and
Supplementary Data 5). The panel spanned a range of target sizes
(10 kb–4.5Mb, mean= 1.3Mb) and predicted on-target binding activ-
ities (477.5–7228, mean = 2418.1) and includes a mix of tandem and
interspersed repeat targets (Table 1). Of the tandem repeats,
chromosome-specific alpha satellite probes were designed for

chromosomes 2–12, 17–18, 20, and X (Table 1). In order to verify that
our Tigerfish probes were binding to their intended genomic targets,
we implemented an experimental scheme in which the Tigerfish probe
set targeting a given interval was co-hybridized with a set of 1000
probes designed by PaintSHOP26 that targeted a 200 kb non-repetitive
interval on the target chromosome, with the Tigerfish and PaintSHOP
probe sets being labeled with spectrally distinct fluorophores (Fig. 3a,
SupplementaryData 5).We used this experimental design to perform a
series of 24 two-color FISH experiments on 46, XY human primary
metaphase chromosome spreads (Fig. 3b). Using this approach, we
confirmed that our metaphase FISH produced the predicted staining
patterns for all 24 combinations of Tigerfish and PaintSHOP probe sets
(Fig. 3c, Supplementary Figs. 3–6). In order to augment ourmetaphase
data with a sample type that provides a means to visually inspect that
we were achieving the correct staining pattern with a larger sample
size, we also performed a series of 24 interphase FISH experiments on
46, XY primary human lymphoblasts using the same Tigerfish and
PaintSHOP probe set combinations as a means to visually enumerate
chromosomal copy number (Fig. 4a). Specifically, we imaged > 40 cells
for each experiment and quantified the number of observed Tigerfish
and PaintSHOP foci in the 3D volume of the nucleus (Fig. 4b, Supple-
mentary Fig. 7–10). Our analysis of the resulting data revealed a strong
agreement between the two types of probe set (78.4% concordance,
n = 1061), with both approaches predominantly displaying 2 foci per
nucleus (PaintSHOP: 781/1061, 73.6%; Tigerfish: 922/1061, 86.9%) and
identifying a range of foci (1–4) per nucleus consistent with our pre-
vious studies using oligo-based probes for enumeration10,22,72 (Fig. 4c).
We also noted that we consistently identified more Tigerfish foci than
PaintSHOP foci. Although we cannot formally rule out differences in
the underlying copy number of the target loci or frequency of sister
chromatid separation as the two probe set types target distinct chro-
mosomal regions, we believe the most likely explanation for this
observation is that the PaintSHOP probes required three rounds of
hybridization (primary oligo library, secondary PER-extended “bridge”
oligos, tertiary fluorescently labeled “imager” oligos), while the
Tigerfish probes only required two (primary PER-extended probe oli-
gos, secondary imager oligos). We and others have observed reduced
labeling efficiency due to the additional hybridization round required
to use bridge oligos12–14,73, and further support for this observation
comes from the higher frequency of nuclei with no detectable Paint-
SHOP foci relative to the number with no detectable Tigerfish foci
(Tigerfish: 13/1061, 1.2%; PaintSHOP: 48/1061, 4.5%; two-sided Fisher’s
exact p-value = 5.7 × 10−6). Taken together, our metaphase and inter-
phase FISH experiments demonstrate the specificity and utility of
Tigerfish for visualizing the positioning and abundance of highly
repetitive DNA intervals in situ.

Computational requirements to run Tigerfish
In order to evaluate the computational resources required to run
Tigerfish at the scale of mammalian genomes, we collected a series of
benchmarking data during our probe design runs on the full human
T2T CHM13v2 +HG002 chrY assembly using the ‘permissive’ and
‘conservative’ parameter settings. Our analyses focused on four key
usage metrics: 1) the “wall clock” run time, which reflects the overall
duration of the run from start to finish; 2) the amount of active CPU
processing time needed to complete the run; 3) themaximum amount
of virtual memory used, which represents the sum total of physical
(RAM) and swap (hard disk) memory allocations; 4) the maximum
amount of physical memory used, which reflects the RAM component
of the virtual memory pool. As Tigerfish uses Snakemake61 for paral-
lelization, we were able to record data about these four metrics on a
per-interval basis for all 263 intervals identified collectively by the
‘permissive’ and ‘conservative’ parameter settings. In line with the
broad range of observed target interval sizes and target site numbers
of the 263 intervals (Fig. 2f–h), we also found a wide distribution of
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Fig. 2 | Genome-scale probe design with Tigerfish. a Schematic visualization of
intervals for which Tigerfish probe sets were identified using conservative (pink) or
permissive (teal) parameters and intervals covered by existing PaintSHOP probes
designed using parameters suitable for non-repetitive targets (lilac). b The dis-
tribution of RepeatMasker annotations for intervals identified and processed by
Tigerfish using conservative and permissive settings. c Length distributions of the
regions identified and targeted by Tigerfish using conservative and permissive
parameters. d The aggregate number on-target binding predictions for probe sets
designed by Tigerfish using conservative and permissive parameters. e The

aggregate number on-target binding predictions per kilobase for probe sets
designed by Tigerfish using conservative and permissive parameters. f The dis-
tributionof the lengths of theprobes discoveredusing conservative andpermissive
parameters. g The distribution of the melting temperatures of the probes dis-
covered using conservative and permissive parameters. The sample sizes for (c–e)
are n = 263 intervals for the Permissive dataset and n = 28 intervals for the Con-
servative dataset. The sample sizes for (f, g) are n = 1954 probes for the Permissive
dataset and n = 286 probes for the Conservative dataset.
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resource usage values. Our analyses revealed that probedesign against
themajority of target intervalsfinished quickly, with amedian run time
of 6.9min (range: 1.8min–50.2 h) and a median CPU time of 5.2min
(range: 0.6min–4.9 h) (Fig. 5a, b). Moreover, Tigerfish generally
required onlymodest amounts ofmemory for software designed to be
run on a computing cluster, with a median max virtual memory allo-
cation of 24.8 GB (range 12.3–44.8 GB) and a median max physical
memory allocation of 20.3 GB (range 8.2–40.8GB) (Fig. 5c, d). Given
the observed spread in the resource usage values, we hypothesized
that the resource requirements might vary as a function of the size of
the target interval. Indeed, stratifying the benchmarking data into
three groups based on span of the target interval revealed that the
group of intervals less than 100 kb in span had a median run time of
5.8min (range: 1.8min–43.8min, n = 211) and the group of intervals
between 100 kband 1Mbhad run amedian run timeof 21.6min (range:
6min–59.4min, n = 20), with the group of intervals >1Mb in span
having a considerably longer median run time of 4.6 h (range:
16.2min–50.1 h, n = 32) (Supplementary Fig. 11). We did not observe a
similar trend with virtual memory or physical memory usage, as all
three length groups had nearly identical memory requirements (Sup-
plementary Fig. 11). As large genomic targets often will contain many
possible candidate probes, itmay take Tigerfish some time to arrive on
one or more suitable probes that satisfy the user-specified require-
ments for the aggregate on-target binding while only including probes
with lowpredicted off-target binding activity at such targets.While 1–2
day compute runs are often standard for genome-scale probe design
tasks in large and complex genomes22,26, users may still attempt to
reduce the processing time for problematic intervals by adjusting the
parameters used for the rank-ordering of candidate probes or relaxing
the probe design requirements (Supplementary Note). Collectively,
our benchmarking results indicate that Tigerfish can readily be
deployed on computing clusters or powerful individual computers to
identify repetitive intervals and design probes specific to these inter-
vals at the scale of genomes.

Discussion
Tigerfish is a freely available computational platform that facilitates
the design of oligo-based FISH probes against intervals of repetitive
DNA at the scale of genomes. The Tigerfish pipeline establishes a
paradigm for the deep specificity analysis of probes targeting repeti-
tive sequences, which in turn enables users to establish criteria by
which to select and empirically evaluate the effectiveness of oligos
targeting such regions. Once designed, Tigerfish probes can readily be
augmented with any of the powerful toolkits available for oligo-based
FISH, including signal amplification approaches such as SABER71,
HCR70, and RCA69 and multiplexing approaches such as DNA
MERFISH74 andDNA seqFISH14. Moreover, Tigerfish offers users a great
number of tunable parameters, providing flexibility to tailor the probe
design process for different types of repetitive intervals and different
genome compositions and complexities. We have demonstrated the
efficacy of Tigerfish by performing genome-scale probe discovery in a
fully assembled human genome and provided extensive experimental
validation on both spreadmetaphase chromosomes and in interphase
nuclei for the specificity of Tigerfish probes. Tigerfish is supported by
extensive documentation and tutorials and can perform complex
probe discovery tasks against the most challenging intervals of geno-
mic DNA using only modest computational resources.

Like all tools, Tigerfish has limitations and avenues for future
development. For instance, the command-line nature of Tigerfish and
its optimization for cluster-based computingmay prove to be a barrier
to entry for some users. Future work to implement a graphical user
interface and to provide a cloud-based platform for running Tigerfish
may help to make it accessible to a broader set of researchers. Tiger-
fish’s ability to design probes against specific intervals of highly
repetitiveDNA is alsohighly dependent on thequality of input genome
assembly, and to date there are only a few fully polished telomere to
telomere assemblies optimal for Tigerfish deployment. Nevertheless,
we anticipate Tigerfish will play a key role in the experimental valida-
tion and biological investigation of repetitive DNA intervals as more

Table 1 | Description of the 24-target Tigerfish probe set panel

Imaging Coordinates On-target Off-target Imaging Repeat Length (Mb) Annotation

chr1:134680000–134800000 7228.4 191.2 0.12 Satellite (hsat2)

chr2:92330000–94670000 3174.8 243.0 2.34 Satellite (alpha)

chr3:91730000–92590000 505.4 161.4 0.86 Satellite (alpha)

chr4:52140000–53070000 1074.6 51.0 0.93 Satellite (alpha)

chr5:47650000–48150000 1675.0 352.1 0.5 Satellite (alpha)

chr6:58540000–61060000 2356.1 73.6 2.52 Satellite (alpha)

chr7:60410000–63720000 4977.8 251.6 3.31 Satellite (alpha)

chr8:44250000–46320000 1964.4 933.4 2.07 Satellite (alpha)

chr9:44960000–47230000 2049.0 261.9 2.27 Satellite (alpha)

chr10:39640000–40710000 1637.4 25.3 1.07 Satellite (alpha)

chr11:51040000–54420000 3908.9 110.8 3.38 Satellite (alpha)

chr12:34780000–37060000 2022.9 108.8 2.28 Satellite (alpha)

chr13:111520000–111570000 927.9 644.1 0.05 Novel

chr14:99470000–99490000 477.5 1188.7 0.02 Novel

chr15:8550000–8680000 4162.8 1608.9 0.13 Satellite (hsat3)

chr16:48950000–48980000 3812.7 807.1 0.03 Satellite (hsat2)

chr17:23890000–27420000 3912.9 512.0 3.53 Satellite (alpha)

chr18:15970000–20430000 4576.7 3319.3 4.46 Satellite (alpha)

chr19:21000000–21060000 1408.6 261.4 0.06 Satellite (centromeric)

chr20:27580000–27630000 950.1 174.9 0.05 Satellite (alpha)

chr21:44760000–44780000 761.1 440.1 0.02 Complex (LINE, SINE, DNA transposons)

chr22:18540000–18550000 1347.7 295.7 0.01 Complex (Simple Repeat, SINE)

chrX:58910000–59080000 1518.8 146.5 0.17 Satellite (alpha)

chrY:20960000–21230000 1603.9 175.5 0.27 Satellite (centromeric)
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fully assembled human, vertebrate, plant, and other model organism
genomes continue to be introduced.

Methods
Data collection
Nikon Elements AR 5.20.00was used to acquiremicroscopy images on
the Nikon Ti-2 system.

Data analysis
Tigerfish probe design was performed with open source code hosted
here: https://github.com/beliveau-lab/TigerFISH. Tigerfish is written in
Python 3.7.8 with dependencies that include Biopython 1.77, Bowtie
2.3.5.1, NUPACK 4.0, BEDtools 2.29.2, Numpy 1.18.5, Pandas 1.0.5, pip

20.1.1, pybedtools 0.8.1, sam2pairwise 1.0.0, samtools 1.9, scikit-learn
0.23.1, scipy 1.5.0, zip 3.0, matplotlib 3.3.4, seaborn 0.11.1, pytest 6.2,
and Jellyfish 2.2.10. All Tigerfish probe collections were generated
using a pipeline implemented with Snakemake 7.19.

Genome sequences used for probe set design
The CHM13 genome assembly versions 1.0, 1.1, and 2 ( +HG002 chrY)
were downloaded without repeatmasking from the T2T consortium at
https://github.com/marbl/CHM13.

Design and analysis of human alpha satellite probes
Sequence annotations for the locations of the alpha satellite arrays
located on human chromosomes 2, 8, 21, and Y was obtained from the

200 kb PaintSHOP target

Tigerfish target

chr1 chr2 chr3 chr4

chr5 chr6 chr7 chr8

chr9 chr10 chr11 chr12

chr13 chr14 chr15 chr16

chr17 chr18 chr19 chr20

chr21 chr22 chrX chrY

i

ii

i

ii

chr16

90°

a b

c

Fig. 3 | In situ validation of Tigerfish probes. a Schematic overview of the
experimental design used to validate Tigerfish probe sets on metaphase chromo-
some spreads also labeled with probe sets targeting non-repetitive DNA designed
by PaintSHOP. b Representative full field of view (left) and zoomed insets (right)
showing Tigerfish (magenta) and PaintSHOP (yellow) probe sets targeting chr16.
cZoomed crops depicting Tigerfish (magenta) and PaintSHOPprobes targeting the
indicated chromosomes. For the autosomes, each image pair was obtained from

the samemetaphase spread. The X and Y chromosome images were obtained from
separate 46, XY spreads and thus only have one chromosome each. Please see
Supplementary Figs. 3–6 for the full spread images. Images are maximum intensity
projections in Z. Scale bars, 5 µm (zoomed crops) or 20 µm (fields of view). Each
staining pattern was visualized in three independent samples and yielded similar
results.
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T2T consortium at https://github.com/marbl/CHM13 in CHM13v2.0
coordinates. Consensus monomers were identified using Tandem
Repeat Finder 4.09 using the following command string: “trf input.fa 2
5 7 80 10 50 2000”. Oligo probe sequences were discovered using a
modified version of the OligoMiner “blockParse.py” script22,26 with the
parameters “-l 25, -L 50, -t 42 -T 52”. Predicted binding profiles were
generated by aligning probe sequences to the T2T CHM13v2 +HG002
chrY using Bowtie228 with the parameters “–local -N 1 -R 3 -D 20 -i C,4
–score-min G,1,4, -L 15, k 500000”. The genomic sequences of the
alignment sites returned by Bowtie2 was extracted by sam2pairwise
and evaluated for tested for thermodynamic stability with the input
probe sequence using NUPACK62,75 with the parameters “materi-
al=’dna’, celsius=69.5, sodium=0.39, magnesium=0.0, ensemble = ‘

stacking’”. Alignments and their associated thermodynamic binding
predictions were mapped back to alpha satellite arrays using
BEDtools76. Resource tracking was performed using Snakemake61.

Pipeline construction and implementation
Tigerfish is written in Python 3.7.8 with dependencies that include
Biopython 1.7764, Bowtie 2.3.5.128, NUPACK 4.062,75, BEDtools 2.29.276,
Numpy 1.18.577, Pandas 1.0.578, pip 20.1.1, pybedtools 0.8.176,79, sam2-
pairwise 1.0.080, samtools 1.963, scikit-learn 0.23.165, scipy 1.5.081, zip
3.0, matplotlib 3.3.482, seaborn 0.11.183, pytest 6.284, and Jellyfish
2.2.1029. All Tigerfishprobe collectionswere generated using a pipeline
implemented with Snakemake 7.1961. Dependencies that implement
Python libraries can be found via the tigerfish.yml, snakema-
ke_env.yml, and chromomap_env.yml files that are used to execute
Tigerfish as a Snakemake61 pipeline. These scripts and their depen-
dencies are documented on Tigerfish’s GitHub repository. These
environments are also available in the Supplementary Software.
Scripts were executed locally in an OS X Anaconda Python 3.785

environment or in a CentOS Linux environment on the Department of
Genome Science ‘Grid’ Cluster at the University of Washington.

Whole genome probe discovery
Genome assemblies in FASTA format without repeat masking were
used when building Jellyfish29

files and Bowtie228 indices, and were
used as input files for probe discovery. Jellyfish hash size was set to
approximate the size of the genome assembly so that files were gen-
erated using the command, “jellyfish count -s 3300M -m 18”.

Identification of k-mer enriched sequences
Tigerfish identifies repeat regions in Repeat Identification mode by
using a sliding window of a specified size (window, W) flagging all
counts exceeding a user-specified value (threshold, T). The sum of the
counts within the sliding window are divided by the length of the
window so that as long as the user-specified composition score
(composition, C) is exceeded, Tigerfish will identify windows of the
genome where k-mer counts which map to abundantly repetitive
sequences. Here, users may also specify at what base position they
wish to start searching for repeats, which is described as a file_start
parameter. Alternatively, if the user provides coordinates of target
regions (i.e., defined_coords=True and repeat_discovery=False), then
the user must also provide the name of the scaffold. In this case,
Tigerfish skips the ‘repeat_ID.py’ script entirely to proceed with oligo
probe design. For whole genomemining in the T2TCHM13v2 +HG002
chrY assembly, the sliding window was implemented with parameters
described in Supplementary Data 1.

Designing oligo probes
Tigerfish implements logic as described in theOligoMiner22 framework
for probe design using the bed file generated during Repeat Identifi-
cation mode or from a user-provided BED file. Here, a FASTA file
containing all regions of interest is used to design valid probe
sequences using parameters values for probe length, percent G +C
content (GC%) and adjusted melting temperature Tm calculated using
nearest neighbor thermodynamics22. The modified blockParse script
described in OligoMiner was used tomine probe candidates ranging in
length from (min_length, max_length) 25–50 nt and Tm (min_temp,
max_temp) between 42 and 52 °C.

Predicting probe specificity
The k-mer binding proportion (enrich_score, Kb) was determined by
obtaining the proportion of two computed values, copy_num and
total_genome_binding. The aggregate count of all k-mers for any given
probe sequence within its respective repeat target is described as
copy_num, or Rm. The aggregate count of all k-mers for any given probe
within the entire queried genome is described as total_genome_bind-
ing, or (Hm). Thus, the k-mer binding proportion was computed as Rm/
Hm. Probes with shared k-mer composition similarity above the mer_-
cutoff proportion are omitted from downstream filtering. Probes are
ranked in descending order within each repeat region by Normalized

Fig. 4 | Chromosome enumeration in interphase nuclei. a Schematic overview of
the experimental design used to perform chromosome enumeration using Tiger-
fish probe sets in 46, XY interphase nuclei also labeled with probe sets targeting
non-repetitive DNA designed by PaintSHOP. b Representative images of nuclei
labeled with Tigerfish probe sets (magenta) and PaintSHOP probe sets (yellow)
targeting intervals on chr22 (top row) or chrX (bottom row). cHeatmap displaying
the observed distribution of Tigerfish and PaintSHOP puncta per nucleus. The data
presented are aggregated over all the 24 chromosomes targeted. Nuclei with >2
punctamost likely contain replicated sister chromatids that have separated. Images
are maximum intensity projections in Z. Scale bars, 10μm. Each staining pattern
was visualized in three independent samples and yielded similar results.
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Fig. 5 | Resource requirements for genome-scale Tigerfish probe design.
a Distribution (left) and empirical cumulative distribution (right) of the wall-clock
runtime recorded for running the 263 conservative and permissive intervals.
b Distribution (left) and empirical cumulative distribution (right) of the CPU run-
time recorded for running the 263 conservative and permissive intervals.
c Distribution (left) and empirical cumulative distribution (right) of the maximum

recorded virtual memory allocation for running the 263 conservative and permis-
sive intervals. d Distribution (left) and empirical cumulative distribution (right) of
the maximum recorded physical memory allocation for running the 263 con-
servative and permissive intervals. Vertical dashed lines in the cumulative dis-
tribution plots correspond to the median values.
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Rank (Nr) = (Rm/(max(Rm)*c1)) + (Kb/(max(Kb)*c2)), where c1 (c1_val)
and c2 (c2_val) areuser-specified constants.. Themer_cutoffproportion
is determined by storing k-mers of ranked probes and profiling all
consecutive candidate probes to see if the proportion of their k-mer
composition exceeds that of the mer_cutoff. Users may modify
enrich_score, copy_num, c1_val, c2_val, and mer_cutoff within the con-
fig.ymlfile. Theparameters chosen for the conservative andpermissive
datasets are reported in Supplementary Data 1.

Computing in silico binding predictions
Bowtie2 was run on each probe sequence against the human genome
using the following parameters (–local -N 1 -R 3 -D 20 -i C,4 –score-min
G,1,4, -L 15, k 500000). The parameters -L (seed_length) and -k (bt2_a-
lignment) may be modified by users within the Tigerfish config.yml.
Probe alignments are returned as a BAM file for each probe sequence,
which is then processed from the resulting SAM file using SAMtools63.
Using this SAM file, sam2pairwise80 is used to return derived alignment
sequences. With these provided pairs of probe sequence and derived
alignment sequence, NUPACK 4.062 computes the predicted thermo-
dynamic likelihood that each alignment pair will form duplexes under
FISH conditions22. The NUPACK model summarizing these conditions
is described as (material=’dna’, celsius=69.5, sodium=0.39, magne-
sium=0.0, ensemble = ‘stacking’). Candidate probes are only added to
the final probe set if they do not sharepredicted probe binding greater
than the value max_pdups_binding, which is defined as the maximum
predicted binding probability between a given candidate and any
probes already selected for the target interval.

The on-target alignment score (OnT) is determined by taking the
sum of all predicted duplexing scores for derived alignments that are
found within the repeat target. Off-target alignment scores are com-
puted by taking the aggregate sum of all predicted duplexing scores
from derived alignments that are found outside the repeat target
(OffT). The predicted in silico on-target binding proportion (binding_-
prop) for eacholigo is then computed asOnT/(OnT+OffT). Genomebins
(genome_windows) are generated using BEDtools makewindows, and
BEDtools intersect is applied to all reported sam2pairwise genome
alignments to identify potential off-target binding signals. All pre-
dicted duplexing scores are aggregated over windows, which are
binarized to map binding signals to the repeat target and all other
genomic regions where binding events are predicted. Probes with an
aggregate OffT over any given non-target genome bin that exceeds the
parameter off_bin_thresh are culled from the candidate probe set. Users
may modify the parameters seed_length, bt2_alignment, genome_-
windows, binding_prop, and off_bin_thresh. There are additional
parameters that may be used to control permissiveness of filtering in
the alignment_filter.py script. Users may control the desired aggregate
on-target sum for any set of probes designed against a repeat region
(target_sum), the minimum on-target value for any desired candidate
probe (min_on_target), and maximum desired candidate probes to be
returned in any target repeat region (max_probe_return). Parameters
chosen for conservative and permissive datasets may be viewed in
Supplementary Data 5.

Visualizing candidate probe in silico binding
Bowtie2 alignments are derived for individual or pools of probes
against a repeat region where predicted thermodynamic binding is
computed over a given size of genomic bins generated by BEDtools
(thresh_windows). These predicted thermodynamic binding events are
summarized by scaffolds and are used to determine the size of the
imaging target window for bins containing binding events that are
greater than the parameter within the repeat region target (align_-
thresh). The sum of predicted duplexing values are aggregated over
computed genomic bins and normalized using the MinMaxScalar
function of scikit-learn86, where the range of values is mapped from 0
to 255 to summarize predicted binding over genomic bins.

chromoMap87 in R is used to generate summary ideograms of probe
target signals as an optional step in Probe Analysis Mode.

Read the Docs
A Read the Docs web page (https://beliveau-lab-tigerfish.readthedocs-
hosted.com) was created to provide detailed documentation of our
tool. The intention of hosting our work on Read the Docs was to
provide sufficient background and resources for individuals from all
computational backgrounds to be able to leverage Tigerfish for their
own work. Here we provide installation information, simple tutorials
for testing the Tigerfish install, a glossary of all parameters thatmay be
modified by users, summaries of our default parameters, and fre-
quently asked questions.

Computational benchmarking
Speed calculations were computed using the Snakemake benchmark
feature. Each scaffold in the T2TCHM13v2 +HG002 chrY assemblywas
run as its own individual cluster job in parallel for the repeat discovery
steps, and the resulting intervals identified for probe design were also
processed in parallel. Benchmarking was performed on a Dell Power-
Edge R840 server node equipped with 4 Intel Xeon Gold 6252 2.1GHz
24-core CPUs (192 total job threads) and 1.5 TB of DDR4 PC4-23400
2933 Mhz ECC RAM running CentOS 7.9 Linux.

PER concatemerization
100μl Primer Exchange Reactions were prepared for both Tigerfish
probes and PaintSHOP bridge sequences with a final concentration of
1x PBS, 10mM MgSO4, 400–1000U/ml Bst DNA Polymerase (large
fragment), 120,000 units/ml (NEB M0275M), 100 nM Clean G hairpin,
50 nM–1μM hairpin and water to 90μl. After incubation for 15min at
37 °C, 10μMoligoprobe(s)were added and the reactionwas incubated
for another 2 h with another 20min at 80 °C to heat-inactivate the
polymerase. PER extension solutions were directly diluted into FISH
solutions. Lengths of the concatemerswere evaluatedbydiluting6.7μl
of the in vitro reaction with 3.3μl 6X TriTrack. Samples were then run
on a 10% TBE-Urea denaturation gel (ThermoFisher EC68755BOX) for
10min alongside 1 kb Plus DNA Ladder to estimate length and imaged
with SYBR Gold channel and then imaged after a 15min incubation.

DNA-SABER-FISH on spread metaphase chromosomes and
interphase nuclei
PaintSHOP bridge oligos and Tigerfish primary probes were extended
using the PER as previously described71 and described above in “PER
concatemerization”. Dry microscope slides containing human 46,XY
metaphase spreads and intact lymphoblastoid nuclei (Applied Genet-
ics Laboratories, catalog #s HFM and HMM) and intact interphase
nuclei were immersed in 2× SSCT + 70% (vol/vol) formamide at 70 °C
and incubated for 90 s in Coplin jars. Slides were then transferred and
incubated in ice-cold 70% (vol/vol) ethanol, ice-cold 90% (vol/vol)
ethanol, and ice-cold 100% (vol/vol) for 5min each. Slideswere then air
dried after incubation in 100% ethanol. A hybridization solution con-
sisting of 2X SSCT, 50% formamide, 10% (wt/vol) dextran sulfate,
40 ng/µL RNase A (EN0531; Thermo Fisher), and resuspended PER-
extended PaintSHOP bridge oligos (20 pmol total), amplified ssDNA
primaryprobes (25 pmol total), andPaintSHOPbridge library (60pmol
total) which were dried at 60 °C for 30min using a SpeedVac con-
centrator. The solution was sealed using a 22 × 22mm #1.5 coverslip
using rubber cement. Samples hybridized overnight at 45 °C in a
humidified chamber. Samples were then washed for 15min in 2X SSCT
at 60 °C and then twice for 5min with room temperature 2X SSCT.
Samples were then incubated in a secondary hybridization containing
5X PBST, 10% dextran sulfate, 10 µM fluorescent oligos for 1 h at 37 °C.
Slides were then washed three times with 1X PBST at 37 °C. After air
drying slides, samples were mounted with SlowFade Gold + DAPI and
sealed beneath a 22 × 30mm #1.5 coverslip using nail polish.
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Microscopy
Microscopy was performed using a Yokogawa CSU-W1 SoRa spinning
disc confocal unit attached to a Nikon Eclipse Ti-2 chassis. Excitation
light was emitted at 30% of maximal intensity from 405 nm, 488 nm,
561 nm, or 640nm lasers housed inside of a commercial Nikon LUNF
405/488/561/640NM launch. Laser excitation was delivered via a
single-mode optical fiber into the CSU-W1 SoRa unit. Excitation light
was then directed through a microlens array disc and a ‘SoRa’ disc
containing 50 µm pinholes and directed to the rear aperture of a 100x
N.A. 1.49 Apo TIRF oil immersion objective lens by a prism in the base
of the Ti2. Emission light was collected by the same objective and
passed via a prism in the base of the Ti2 back into the SoRa unit, where
it was relayed by a 1x lens through the pinhole disc and directed into
the emission path by a quad-band dichroic mirror (Semrock Di01-
T405/488/568/647-13x15x0.5). Emission light was then spectrally fil-
tered byoneof four singlebandpassfilters (DAPI: ChromaET455/50M;
ATTO 488: Chroma ET525/36M; ATTO 565: 27 Chroma ET605/50M;
Alexa Fluor 647: Chroma ET705/72M) and focused by a 1x relay lens
onto an Andor Sona 4.2B-11 camera with a physical pixel size of 11 µm,
resulting in an effective pixel size of 110 nm. The Sona was operated in
30 16-bit mode with rolling shutter readout and exposure times of
300ms. Images were processed in ImageJ and Fiji88,89 and Adobe
Photoshop.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The primary bioinformatic data can be accessed via the Source Data
file that accompanies thismanuscript. Primarymicroscopy data will be
made available upon request. The CHM13 genome assembly versions
1.0, 1.1, and 2 ( +HG002 chrY) can be downloaded without repeat
masking from the T2T consortium at https://github.com/marbl/
CHM13. Source data are provided with this paper.

Code availability
The Tigerfish source code is available under a MIT license at https://
github.com/beliveau-lab/TigerFISH.
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