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Integrating leiomyoma genetics,
epigenomics, and single-cell transcriptomics
reveals causal genetic variants, genes, and
cell types

Kadir Buyukcelebi 1,2, Alexander J. Duval1,2, Fatih Abdula 1,2, Hoda Elkafas 1,
Fidan Seker-Polat1 & Mazhar Adli 1

Uterine fibroids (UF), that can disrupt normal uterine function and cause sig-
nificant physical and psychological health problems, are observed in nearly
70% of women of reproductive age. Although heritable genetics is a significant
risk factor, specific genetic variations and gene targets causally associatedwith
UF are poorly understood. Here, we performed a meta-analysis on existing
fibroid genome-wide association studies (GWAS) and integrated the identified
risk loci and potentially causal single nucleotide polymorphisms (SNPs) with
epigenomics, transcriptomics, 3D chromatin organization from diverse cell
types as well as primary UF patient’s samples. This integrative analysis iden-
tifies 24 UF-associated risk loci that potentially target 394 genes, of which 168
are differentially expressed in UF tumors. Critically, integrating this data with
single-cell gene expression data fromUF patients reveales the causal cell types
with aberrant expression of these target genes. Lastly, CRISPR-based epige-
netic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-
relevant cell type further refines and narrows down the potential gene targets.
Our findings and the methodological approach indicate the effectiveness of
integratingmulti-omics datawith locus-specific epigenetic editing approaches
for identifying gene- and celt type-targets of disease-relevant risk loci.

Uterine fibroids (UF), also called leiomyomas, are the most widely
observed tumors in women of reproductive age. By 50 years of age,
more than 70% of all women (70 %white and > 80% black) will develop
at least one fibroid tumor. In the majority of cases, leiomyomas are
non-malignant and asymptomatic; however, in 20 to 25% of cases, UF
tumors can disrupt normal uterine function, resulting in a wide range
of physical and health problems, including excessive uterine bleeding,
anemia, defective embryo implantation, recurrent pregnancy loss,
preterm labor and obstruction of labor1. Few medical treatments are
available forUF, andmanypatients undergo extrememeasures such as
surgical hysterectomy. However, such procedures create significant

emotional stress on patients and a substantial financial burden on
society. These practices cost between $5.9 billion and 34.4 billion USD
in the United States alone2.

The biological mechanisms leading to the development of leio-
myomas are incompletely understood. Several risk factors, including
advanced age, high body mass index, nulliparity, and the serum levels
of estradiol and progesterone hormones, have been associated with
the number and severity of leiomyomas3. At the genomic level, these
tumors have a relatively low overall mutational burden compared to
malignant cancers1,4. Whole-exome and whole-genome sequencing
efforts indicate thatnearly 70%of these tumorshave recurrent somatic
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mutations in a single gene that encodes the mediator of transcription
subunit 12 (MED12) protein4. Furthermore, recurrent alterations in
fumarate hydratase (FH), translocation inhighmobility groupAT-hook
1 and 2 (HMGA1 and HMGA2) genes, and deletion of collagen (COL4A5-
COL4A6 genes) are among the most frequently observed genetic
alteration5. More recently, inactivating mutations in members of the
SRCAP complex, which result in H2A.Z loading defects, were also
reported6. Notably, the majority of these mutations are mutually
exclusive, and integrative data analysis reveals mutation-specific dis-
tinct driver gene expression programs and biomarkers in UF6,7.
Importantly, in addition to the recurrent somatic alterations,
population-level studies indicate the presence of yet-to-be-clearly
identified heritable genetic factors that may cause the development of
leiomyoma. For example, the race and genetic background of the
individual are among the most significant risk factors8. Additionally,
the family members9 and first-degree patient relatives have 2.5-fold
greater risk of developing leiomyoma compared to the population
average10 and the concordance among monozygotic twins is almost
twice that of dizygotic twins11.

Despite this compelling evidence, identifying specific genetic
variants associated with or causal to UF development is a non-trivial
task. To this end, genome-wide association studies (GWAS) in a large
number of affected vs. non-affected individuals have been a powerful
approach. Several GWAS have been performed to identify the genetic
architecture of UF risk12–17 and have revealed numerous UF-associated
SNPs and risk loci. Although findings from these studies have sig-
nificantly expanded the number of identified heritable genetic risk
factors, several challenges remain. First, these GWAS have identified
shared andunique leadSNPs and risk loci sets.Whether the differences
between studies are due to sample size or the study population’s
genetic ancestry is yet to be understood. Second, identifying the gene
targets of lead SNPs remains challenging because greater than 90% of
disease-associated SNPs are found innon-codingor intergenic genome
regions18. Thus, they rarely create a direct alteration in a protein
product12,19. Third, due to linkage disequilibrium (LD), GWAS typically
reveals “risk loci” that contain the lead SNPs together with hundreds of
other significantly associated SNPs that may span dozens of genes.
Lastly, since GWAS samples are typically gathered from blood, it is
impossible to identify which cell types are transcriptionally affected or
causal to the phenotype.

In this study, we first performed a comprehensive analysis of the
most recentmeta GWAS of 20,406UF cases and 223,918 controls12. We
integrated the findings with epigenomic maps from the Encyclopedia
of DNA Elements (ENCODE)20 database and the Roadmap Epigenomics
Project21, as well as physical 3D chromatin organization22 and gene
expression data from the Genotype-Tissue Expression (GTEx)
database23 to identify potential gene targets of the UF risk loci. To
account for ancestry and population genetic diversity, we also inclu-
ded GWAS data from more diverse populations and comparatively
analyzed with the GWAS data from ref. 12, which is mainly from a
white/European ancestry population. We integrated the genetic risk
loci with bulk and single-cell gene expression and serum protein levels
as quantitative traits to reveal potential molecular traits downstream
of genetic risk loci. Furthermore, for select risk loci, we performed
locus-specific CRISPR-based epigenetic editing to identify functional
gene targets of these loci and their epigenetic states. Lastly, we inte-
grated these analyses with single-cell gene expression data24 in normal
and UF tissue, highlighting potentially causal cell types where the risk-
loci associated genes are most associated.

Results
The integrativemulti-omics analysis identifiesnovel risk loci and
gene targets
To identify disease-associated, potentially causal genetic variants of
UF, we started with a meta-analysis of the largest GWAS reported by

ref. 12. The original association analysis of 8,662,096 SNPs identified
1172 genome-wide significant SNPs (p < 5 × 10−8), 29 lead SNPs, and 127
target gene candidates that are associated with UF. To identify target
genes that may be directly affected by UF-associated variants, we
performed an integrative analysis of this GWASdatawith severalmulti-
omics data sets, including epigenomic maps from ENCODE20 and
RoadmapEpigenomics Project21, 3D chromatin organizationmap from
Hi-C experiments22, and GTEx gene expression data23. To perform this
integrative analysis, we used FUMA, a data analysis platform that can
integrate multi-omics data with GWAS hits to annotate, prioritize,
visualize, and interpret GWAS results25. Critically, this multi-omics
analysis identified 34 lead SNPs and 172 independent significant SNPs
out of 1653 candidate SNPs (1172 with a p < 5 × 10−8 and 481 within high
LD) that encompass 24 genomic regions as candidate risk loci for UF
pathogenesis (Fig. 1a, Supplementary Data 1). Among the 34 lead SNPs
(Fig. 1b), only two were in exonic regions: rs10929757 (GREB1) and
rs16991615 (MCM8). Among the others, we observed eight intergenic
variants, 18 intronic variants, two ncRNA exonic variants, two ncRNA
intronic variants, one promoter variant, and one three-prime
untranslated region (3’ UTR) variant (Supplementary Data 1). In addi-
tion to the 18 most proximal candidate genes (Fig. 1c), the FUMA
analysis identified 394 genes as potential targets of the 34 lead SNPs
(Fig. 1d, Supplementary Data 1). These genes are linked to the GWAS
risk loci due to (i) genomic linear proximity (<10 kb), (ii) 3D genomic
organization (Hi-C contact frequency), or (iii) expression quantitative
trait loci (eQTL). Around 60% of the 127 GWAS target genes identified
in previous UF GWAS were included in the FUMA-identified candidate
gene list (Fig. 1d, Supplementary data 1). Notably, a significant portion
of the de novo candidates that we identified were due to the inclusion
of gene expression (n = 116 eQTL specific candidate genes) and 3D
chromatin interaction data (n = 147 3D genome-specific candidate
genes) (Fig. 1e), indicating the power of integrating multiple layers of
omics data to identify targets of disease-associated genetic variants.

Integrating GWAS-identified risk loci with gene expression and
chromatin state data from UF tissue. The 24 UF risk loci are hetero-
geneous in size, number of SNPs in high LD, and the number of puta-
tive target genes (Fig. 2a). The narrowest locus (lead
SNP = rs117245733) consists of a single nucleotide, whereas the widest
locus (lead SNP: rs149934734) is ~500 kb. Furthermore, the number of
significantly associated SNPs and the number of genes within or
associatedwith each locus is not directly correlatedwith the size of the
risk locus. For example, the risk locus containing the lead SNP
rs78378222 is a relativelymedium-sized genomic region (~300 kb), but
it has one of the fewest numbers of significant SNPs. Interestingly,
however, this locus contains the highest number of associated genes
through eQTL, genomic position, and 3D chromatin interaction data.

To assess whether the identified risk loci are aberrantly regulated
in a UF, we overlaid recently published (GSE128242) H3K27Ac chro-
matin state data (ChIP-Seq) and 3D chromatin interaction data (Hi-C)
fromUFs andmatched normalmyometriumof fibroid tumor (MyoF)26.
Histone H3 Lysine 27 Acetylation (H3K27ac) is a histone modification
that marks active enhancers and promoters in the genome27,28. Nota-
bly, six risk loci had differential H3K27ac signal intensities at the
associated gene promoters, but 16 of the risk loci had significantly
higher chromatin contact frequency in fibroid tissue (Fig. 2b), indi-
cating thatmany risk loci are aberrantly regulated in disease settings at
the chromatin organization levels.

The ultimate goal of GWAS is to identify altered molecular
mechanisms that can explain the disease phenotype. To this end,
linking disease variants with gene expression changes revealed many
expression quantitative trait loci (eQTL) genes. Additionally, assessing
tissue-specific protein levels and linking them to the disease risk loci
may further reveal directmolecular mechanisms of disease-associated
genetic variants. While it is challenging to quantify proteins in all
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tissues, quantitative measurements of serum proteins in large popu-
lation cohorts revealed a significant number of proteins as quantitative
trait loci (pQTL) whose levels show a significant linkage to the disease
association variant29,30. Using a recent large pQTLdataset conducted in
35,559 individuals assessing 4907 proteins in serum30, we identified 5
of our candidate UF lead SNPs within +−20 kb of a pQTL-associated
variant (Fig. 2c). We reasoned that this proximity means that the lead
SNPs and the pQTL variants are within the same risk loci. Collectively,
we identified 24 pQTL-associated variants as proximal to the risk loci
that we identified in the FUMA analysis. Interestingly, some of the lead
variants, such as rs78378222, are associated with multiple pQTL-
associated variants. Of the 7 pQTL found proximal to rs78378222,
C1QTNF1 (complement C1Q tumor necrosis factor-related protein 1)
was also found tobe significantly downregulated in leiomyomarelative
to myometrium in 2 independent UF RNA-seq datasets26,31. Notably,
although the levels of these pQTLs were measured in the serum of
normal people, several of these proteins may play a critical role in UF
pathology. For example, INHBA, amember of the TGF-β superfamily, is
highly expressed in UF and is associated with enhanced extracellular
matrix deposition and poor outcome32,33. Additionally, oxidative
stress-involved glutathione peroxidase 1(GPx1)34, autophagy regulator
ATG4 family members MAP1LC3A, MAP1LC3B and GABARAP35, and
human ribosomal protein RPS1936 are all known to be differentially
expressed and associated with UF pathology.

We next wanted to know whether the genes that our integrative
analysis identified as UF GWAS risk loci target genes are differentially
expressed in UF tumors. We analyzed differential gene expression
in two publicly available RNA-seq datasets (GSE12824226 and
GSE16925531) obtained from 15 and 6 patient UF tumors and matched

patient myometrium (MyoF) (Fig. 2d). We found that a significant
number of UF risk loci target genes were differentially expressed (168/
394 risk loci target genes, Fisher exact test, p = 6.235e-16 with an odds
ratio of 2.74 and p < 2.2e-16with anodds ratio of 3.73, for each data set,
respectively) (Fig. 2e). Of these, 87 were significantly upregulated
(FDR <0.05), and 81 of them were downregmethulated (Fig. 2f) in UF
tumors. Notably, none of the DEGs had contradictory expression
patterns across data sets.

Although the Gallagher GWAS dataset is from a large pool of
individuals, these individuals are from a relatively homogeneous
ancestral background of European descent. We, therefore, integrated
two additional GWAS data sets; the UK Biobank (over 20,000 indivi-
duals across six continental ancestry groups) and the Japan Biobank
(~260,000 individuals of mainly Japanese ancestry). It is important to
note that of the 24 risk loci identified by FUMA in the Gallagher et al.
study, six were shared with the Japan biobank study and four with the
UK biobank data set (Fig. 2g). To our surprise, only one risk locus was
found in all three datasets, indicating the significance of considering
diverse ancestral backgrounds when evaluating GWAS results.

Integrative analysis of single-cell gene expression data reveals
potential target cell types in UF. One of the challenges in GWAS is
identifying the causal cell type(s) in the heterogenous tissue con-
tributing to the disease pathogenesis. Single-cell gene expression tools
provide unprecedented power in revealing cell type-specific gene
expression programs in healthy and diseased tissues37. We queried a
single-cell RNA-Seq atlas from 5 MyoF controls and 5 MED12-mutant
fibroid tumor tissues24 for the 168 FUMA-identified genes that were
differentially expressed in UF tumors according to the bulk RNA-Seq
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Fig. 1 | Integrative analysis of uterine fibroid GWAS analysis with multi-omics
data identifies novel candidate effector genes. a Schematics show the strategy of
integrating UF GWAS hits with genomic position, gene expression, and 3D chro-
matin interaction data using the FUMA data integration platform. The major find-
ings are summarized in the box. b The Manhattan plot shows the significance
(-log10 p value) between each SNP with UF disease phenotype. c The most likely
gene targets of each genomic risk loci are shown. d The Venn diagram shows the
number of candidates for UF GWAS target genes in this study and previous studies.

eTheVenndiagram showshow the 394genes in this studyweremapped (i.e., linear
genomic position, eQTL or 3D chromatin interaction) as a potential candidate
target for theUFGWAS. For the Fig. 1b, c, the P values from summary statistics were
originally calculated using Linkage Disequlibrium Score Regression (LDSR) and
thresholded at a locus-wide significance of P < 1e10^-5 (Bonferroni correction).
Gene annotation P values are shown with a P < 2.524e-6 Bonferroni correction
threshold marked in red.
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datasets. Our re-analysis of the scRNA-Seq atlas of MyoF and Leio-
myoma tissues by ref. 24 revealed 6394 cells divided into 18 distinct
cell clusters in MyoF and 41,864 cells divided into 17 clusters in UF
tumor tissue (see methods for the QC steps)24. These cell types can be
broadly grouped into smooth muscle cells (SMC), fibroblast, endo-
thelial, lymphoid, and myeloid cell clusters (Fig. 3a). These cell types
were identified using the same marker genes used by Goad et al.:
MYH11 for SMCs, DCN for fibroblasts, PECAM1 for endothelial cells,
CD3D for lymphoid cells, andCD14 formyeloid cells, as well as GO term
analyses using the top enriched markers for every cluster (Supple-
mentary Figs. 1 and 2). The single-cell data also allows for examining
how the overall tissue architecture and cellular composition change
between a normal and disease state. Critically, in line with known
disease pathology1,38, we noted a drastic increase in the percentage of
SMC cells in UF tumors (from ~14% in myometrium to ~65% in
Fibroids) (Fig. 3b).

We next aimed to identify potentially causal cell types where
GWAS-identified targets are most highly expressed. Significantly, the
SMC, the cell type of origin for UF tumors, contain the highest number
of highly expressed GWAS target genes in the leiomyoma samples.
Around 40% of GWAS-targets genes that are differentially expressed in
leiomyoma tumors (33/82) are highly expressed selectively in the SMC
cluster (Fig. 3c). Other clusters contained a substantially smaller
number of highly expressed genes, but each has its own module of
enriched candidate genes. For example, the KANK1 gene, a UF risk
locus target gene upregulated in UF tumors12 and involved in actin
polymerization and cytoskeleton organization, is explicitly expressed
predominantly in SMC (Fig. 3d). Conversely, VCAN, an upregulated

gene in UF tissue26 and codes for sulfate proteoglycan, a major com-
ponent of the extracellular matrix, is expressed specifically in fibro-
blast cells, which is another critical cell type that cooperates with
mutant SMC to drive leiomyoma pathogenesis39 (Fig. 3d).We have also
noted that a set of GWAS targets is specifically expressed in other cell
types. For example, the C1QC and C1QA genes, which code for the
complement C1Q C and A chains, are highly expressed predominantly
in lymphoid cells in the leiomyoma tissue, indicating a potential link
between the immune system and UF pathogenesis40 (Fig. 3d). Impor-
tantly, many of these genes are detected in a larger proportion of the
respective cell types, stressing their cell type specificity (Supplemen-
tary Fig. 3).

Locus-specific epigenetic editing tomap risk loci target genes. The
integrative multi-omics analysis substantially expanded the number of
putative risk loci target genes. It is plausible that some of these target
genes may be false positives. To experimentally validate the target
genes, we utilized the CRSPR-based locus-specific epigenetic editing
tools to functionally link GWAS risk loci with the target genes. By uti-
lizing the catalytically inactive CRISPR/Cas9 (dCas9)41,42, we aimed to
recruit the repressive KRAB domain that leads to the accumulation of
repressive Histone H3 Lysine 9methylation and gene repression at the
target locus. Therefore, we designed multiple lead SNP targeting
sgRNAs and control sgRNAs that target genomic regions distal to any
of the GWAS SNPs and that are not regulatory elements (i.e., no
H3K27ac mark). We utilized the hTERT-immortalized myometrium
SMC line43, a UF-relevant cell type that retains certain aspects of human
myometrial function44. To identify the relevance of these loci under
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target genes that are differentially expressed in uterine fibroid tumors.
a Horizontal bar graphs show genomic loci, size, number of SNPs, number of
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b Horizontal bar graphs show the relative intensity of H3K27ac ChIP-Seq signal
intensity and Hi-C chromatin contact frequency in primary uterine fibroid tumors
and matched MyoF tissue samples. c The horizontal bar plots indicate the number
of pQTL-associated variants that are proximal to each locus. The names of each
pQTL protein are indicated. d The heatmaps show the number of differentially
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that are common between the differentially expressed genes from the indicated
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investigation, we also performed H3K27ac ChIP-Seq analysis in these
cells tomappotential active enhancers and promoters in this cell type.

We initially targeted the rs58415480 lead SNP locus (Fig. 4a), a
well-established UF risk locus consistently identified inmultiple GWAS
studies in UF, breast cancer45, and osteoporosis phenotype46,47.

Notably, the lead SNP and multiple other SNPs in high LD (r2 > 0.8) are
located in a regulatory element in the SYNE1 gene body. This likely
enhancer element is marked with the H3K27ac, which is further
enhanced in UF fibroids compared to themyometrium, indicating that
this regulatory element is further activated in UF. SYNE1 encodes a
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spectrin repeat-containing protein that localizes to the nuclear mem-
brane and is highly expressed in skeletal and SMCs. Mutations in this
gene have been associated with spinocerebellar ataxia and bipolar
disorder48,49. Whether or not the rs58415480 risk locus contributes to
UF pathogenesis due to altered expression of SYNE1 is currently
unknown. Notably, the plausible causal gene candidate in this risk
locus is ESR1, the most proximal gene to SYNE1. ESR1 encodes for
estrogen receptor, a ligand-activated transcription factor. Estrogen
hormone and its receptor are known regulators of UF
pathogenesis3,50–52, and ESR1 is significantly upregulated in UF in both
of theRNA-seq datasets thatwe analyzed. Significantly, Hi-C chromatin
interaction maps in myometrium show substantial 3D genomic inter-
action between the lead SNP-containing genomic region in the SYNE1
gene and ESR1 gene (Fig. 4a), highlighting the interaction between
these proximal genes.We, therefore, initially assessed the efficiency of
our targeted epigenetic editing on the ESR1 gene itself by using dox-
ycycline (dox)-inducible dCas9-KRAB (Fig. 4b). After recruiting dCas9-
KRAB to the ESR1 promoter with a sgRNA, we observed a significant
repression of ESR1 after two weeks of Dox treatment and dCas9-KRAB
expression (Fig. 4c). As a negative control, we utilized a control sgRNA
that targets a non-regulatory region ~80 kb away from the ESR1 pro-
moter. Significantly, among other genes tested, we only observed
significant repression of SYNE1, indicating potential interaction
between these two promoters. which aremore than 900 kb away from
each other (Fig. 4d).

We next designed two sgRNAs targeting rs58415480 and mea-
sured the expression of all six genes in this particular risk loci. Notably,

the only gene that significantly downregulated when the lead SNP
region was targeted was CCDC170, which encodes for a coiled-coil
domain-containing protein. These results indicate thatCCDC170might
be a gene directly linked to the GWAS target loci. Although little is
known about the role ofCCDC170 in UF, it is recurrently fusedwith the
ESR1 gene in ~14 % of ER+ breast cancers, and patients with such fusion
have worse clinical outcomes53. Studies in breast cancer cell lines have
implicated CCDC170 in cell migration through the alteration of the
Golgi-associatedmicrotubule network54. Given the lack of evidence for
the role of CCDC170 in fibroid pathogenesis, we used CRISPR to knock
out this gene and study its phenotype (Fig. 4e). Using the Incucyte live
cell imaging platform, we noted that CCDC170 depleted cells (using
multiple sgRNAs) proliferated significantly less compared to control
sgRNA-expressing cells (Fig. 4f). Notably, we observed a comparable
rate of cell death (Supplementary Fig. 4), indicating that CCDC170 is a
critical regulator of cell proliferation in myometrium SMCs. To our
surprise, ESR1 expressiondidnot changewhen the leadSNP regionwas
targeted, indicating that, at least in the hTERT-SMC we used, ESR1 is
not directly regulated by the lead SNP-containing regulatory element.

We next targeted lead SNP, rs10815466, which resides in a reg-
ulatory element within the KANK1 gene and is further activated in UF,
as evidenced byhigherH3K27ac levels andmore frequent Hi-C contact
frequencies (Fig. 5a). Our H3K27ac ChIP-seq data in the hTERT-SMC
cells shows that this regulatory element is also active in this cell line.
We designed two independent lead SNP targeting sgRNAs and a con-
trol sgRNA to epigenetically silence this regulatory element by
recruiting dCas9-KRAB to these regions. We initially checked the level

Day 0 Day 30

KRAB

dCas9
Doxycycline 

induced
Repression

+ Dox 
30 days)

mRNA
Expression
by RT-qPCR

sgRNA

c

d

b

SNP target loci

P
ro

lif
er

at
io

n 
ra

te

42
36

30

24
18

12

6

0

0 10 20 30 40 50 60 70 80 90

CCDC170-sg1

CCDC170-sg2

sg-Controlf

Time (Hours)

0.0

0.5

1.0

1.5

2.0

E
S

R
1 

m
R

N
A

 le
ve

ls

Control
sgRNA

ESR1 Prom.
   sgRNA

ns p=0.004

ESR1 SYNE1 CCDC170 MYCT1 VIP ARMT1
0.0

0.5

1.0

1.5

2.0

2.5 ESR1 prom. sgRNAsgRNA-1 sgRNA-2Control sgRNA

R
el

.m
R

N
A

 le
ve

ls

p
=

0.
01

0.0003 0.001
0.02 ns

ns

ns

e

sg
-C

on
tro

l

C
C

D
C

17
0-

sg
1

sg
-C

on
tro

l

C
C

D
C

17
0-

sg
2

82kDa CCDC170

36kDa

Non-specific69kDa

GAPDH

0
5
10
15
20
25
30

ARMT1

CCDC170

ESR1
SYNE1 MYCT1

VIP

151600K 151800K 152000K 152200K 152400K 152600K 152800K

rs58415480chr:6

Control-sgRNASNP-targeting 
   sgRNAs

Promoter-targetted 
       sgRNA

Leiomyoma

Myometrium

Leiomyoma

Myometrium
H

3K
27

A
c 

C
hI

P
-S

eq

 hTERT-HM

H
i-C

 c
hr

om
at

in
 c

on
ta

ct
s

-l
o
g

1
0
 P

-v
a
lu

e

Top lead SNP

Lead SNPs

Independent 
significant SNPs

1
0.9
0.7
0.5
0.3
0.1

r2

a

Fig. 4 | Locus-specific epigenetic editing to identify lead SNP region
target genes. a The dot plot shows the significance of SNP in the rs584154480 lead
SNP risk loci. ChIP-Seq track shows the signal intensity of H3K27ac and arc plots
show the intensity of Hi-C measured chromatin contact frequency in the same
genomic region for UF tissue and MyoF patient samples. b Schematics show locus-
specific recruitment of repressive dCas9-KRAB protein strategy and assessment of
gene expression changes. c The bar plot shows ESR1 mRNA levels in dCas9-KRAB
expressing smooth muscle cells with control sgRNA and ESR1 promoter targeting
sgRNA. d The plots show mRNA levels of indicated genes in dCas9-KRAB-

expressing smooth muscle cells with indicated sgRNAs. e Western Blot shows
protein levels of CCDC170 in cells expressing control and CCDC170 targeting
sgRNAs. Uncropped rawmembrane is shown in theSupplementary Fig. 6. fTheplot
shows relative cell proliferation rate in cells expressing control sgRNA and
CCDC170 targeting sgRNA as measured by Incucyte live-cell imaging platform.
Two-tailed student t tests were used for all statistical comparisons. Error bars in
Fig. 4c, d, f indicate the standard error of themean of three independent biological
replicates (n = 3).

Article https://doi.org/10.1038/s41467-024-45382-0

Nature Communications |         (2024) 15:1169 6



of epigenetic repression by assessing the H3K27ac levels at the control
and the SNP targeting sgRNA regions (regions A and B in Fig. 5a).
Chromatin immunoprecipitation and qPCR (ChIP-qPCR) analyses
showed significant enrichment ofH3K27ac levels at both regions A and
B compared to the control region at the basal level. More importantly,
after two weeks of doxycycline-inducible dCas9-KRAB expression, we
observed a significant reduction of H3K27ac levels at both positive
control regions exclusively with the lead-SNP-targeting sgRNA but not
with the control sgRNA. This indicates that our locus-specific epige-
netic repression strategy works specifically and robustly (Fig. 5b). We
then performed RNA-Seq (with sgRNA1, which led to more robust
repression) to ensure that the target region is differentially expressed.
As shown in (Fig. 5c), we observed substantial repression of KANK1
gene based on normalized RNA-Seq bigwig tracks.

Encouraged by these results, we assessed gene expression chan-
ges in all other genes proximal to the KANK1 risk loci using more
sensitive RT-qPCR as several neighboring genes were below detection
based on the depth of RNA-Seq (~15million reads). Notably, in addition
to KANK1 itself, we observed significant repression of DMRT2 and
DMRT3, which are 470 kb and 585 kb away from the target site,
respectively (Fig. 5d). Conversely, we did not see any change in the
expression of the two most distal genes (SMARCA2 and WASHC1). To
our surprise, we also observed significant upregulation of genes that
are the most proximal to the lead SNP target site, including DMRT1,
FOXD4, CBWD1, andDOCK8. Thesefindings highlight the complexity of
this regulatory element and indicate that the activation of this lead-
SNP-containing regulatory element is positively regulating the
expression of KANK1, DMRT2, and DMRT3 while simultaneously nega-
tively regulating the activity of 4 other genes that aremoreproximal to

the regulatory element containing lead SNP. Comparable results were
obtained using the second sgRNA targeting the risk loci (Supplemen-
tary Fig. 5).

The above findings support the utility of locus-specific epigenetic
repression to study potential gene targets. However, such an approach
may not be helpful if the lead SNPs containing regulatory element is
inactive in the cell type of choice. In such cases, we hypothesized that
locus-specific epigenetic activation could be used tomap the potential
gene targets. To demonstrate a proof of principle, we used a dCas9-
based strategy to recruit P300 histone acetyltransferase (dCas9-
P300)55,56 to specifically deposit the H3 lysine 27 (H3K27ac) histone
modification, an epigeneticmark associatedwith active enhancers and
promoters27,28, to an inactive locus. We chose to target the lead SNP
rs78378222, located at the end of the TP53 5’-UTR region with some
enhancer activity based on H3K27ac levels in patient samples but is
inactive in the hTERT-SMC cells we used (Fig. 6a). The 3DHi-C contact
frequencies indicate that the risk locus contains 3D chromatin con-
tacts, specifically in leiomyoma patient samples compared to MyoF
(Fig. 6a). Several of these 3D contacts are between the TP53 promoter
region and the distal genes, such as TNFSF12, EIF4A1, and ATP1B2
genes, which are the genes that were identified by FUMA as putative
targets of this risk loci. We recruited dCas9-P300 with two indepen-
dent sgRNAs targeting the SNP region and assessed the enrichment of
the local H3K27ac levels (ChIP-qPCR) compared to a control sgRNA,
targeting Luciferase gene. As expected, the recruitment of P300
resulted inmore than 15-fold enrichment of H3K27ac levels at the SNP
target site (Fig. 6b). After observing this robust activation, we also
performed RNA-Seq and observed substantial upregulation of the
target locus when dCas9-P300 was recruited with one of the sgRNAs
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(Fig. 6c). Encouraged by these findings, we then measured the gene
expression changes in the five FUMA-identified putative target genes,
including the TNFSF12 gene, located ~120 kb away from the target site,
using a more sensitive RT-qPCR assay. Critically, all five genes show
variable and significant upregulation upon recruitment of dCas9-P300
(Fig. 6d), validating that the transcriptional activity of these genes is
regulated distally by the epigenetic state of the GWAS risk loci.

Discussion
UFs affect ~70% of women. In 15–30 % of these patients, these tumors
interfere with normal uterine functions and cause a significant emo-
tional and financial burden on the individual and society at large.
Notably, relatively few recurrent somatic mutations have been
observed in UF tumors compared with other cancers. Nearly 70% of all
UF tumors are driven by recurrent somatic mutations in the MED12
gene, encoding the MED124. Other recurrent somatic alterations are
translocations in the HMGA 1&2 genes, loss of FH, deletion of the
COL4A5-COL4A6 gene and mutations of SRCAP complex that leads to
defective deposition of H2AZ histone variant5,6. Critically, in addition
to these recurrent somaticmutations in select genes, heritable genetic
variations are believed to contribute to UF pathogenesis significantly.
Several GWAS have identified specific germline genetic variants and
genomic loci significantly associatedwith UF12–17. How andwhether the
recurrent somatic mutations cooperate with the existing germline
variants are currently unknown and should be an area of active
investigation in the future.

In this study, we utilized the FUMA data integration platform25 to
re-analyze the largest UF-specific GWAS data by ref. 12. Our findings
have significantly expanded the number of genes potentially regulated
by the germline genetic variations called risk loci. Previous GWAS had
implicated 127 genes as UF-specific GWAS risk loci targets. In contrast,
our integrative analysis of multi-omics data, including 3D chromatin
interaction data, has greatly expanded the number of putative gene
targets to 394. Even though this is likely an overestimation, the fact
that more than 40% of these genes are differentially expressed
between MyoF and fibroid tumor tissue indicates that a substantial
number of these genes could be the direct target of risk loci and
contribute to the disease pathology.

Our study aimed to address several challenges in GWAS. First, a
vast majority of the GWAS-identified lead SNPs and independently
significant SNPs are not located within protein-coding regions of
genes but rather in the non-coding regulatory elements. Second,
GWAS risk loci can spanmulti-megabase genomic regions, creating a
formidable challenge to directly link GWAS loci to a specific gene
target and fine-map the causal gene targets of the genetic variation.
The third challenge is to infer the cell types within which the GWAS-
identified risk loci target genes manifest and may cause disease
progression57–59.

We integrated multi-omics data with the largest UF-associated
GWAS analysis to address the first and second challenges. This has
significantly expanded the gene targets associated with the risk loci.
Although the integrative analysis significantly expanded the number
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Fig. 6 | Locus-specific epigenetic editing to upregulate rs78378222 risk locus to
validate the target genes linked to the risk locus. a The dot plot shows the
significanceof SNPs in the rs78378222 leadSNP risk locus. ChIP-Seq track shows the
signal intensity of H3K27ac and arc plots show the intensity of Hi-C measured
chromatin contact frequency in the same genomic region for UF tissue and MyoF
patient samples. Track heights are normalized to read depth. b The bar plot shows
qPCR measured enrichment of H3K27ac chromatin immunoprecipitation levels at
the target locus after recruitment of dCas9-fused P300 histone acetyltransferase
with control sgRNA (sgRNA-targeting another chromosome) and lead SNP

targeting sgRNA. c RNA-Seq bigwig tracks show relative expression at TP53 locus
after recruitment of dCas9-P300 epigenetic activator with control and TP53 locus
targeting sgRNA-1. Tracks heights are normalized to read depth. d Bar plots show
RT-qPCR measured mRNA levels of indicated genes with and without recruitment
of dCas9-P300 to the lead SNP target region. Two-tailed student t-tests were used
for statistical comparisons. Error bars indicate the standard error of themean. Error
bars in Fig. 6b, d indicate the standard error of the mean of three independent
biological replicates (n = 3).
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of target genes, figuring out which of these genes are directly
regulated by the risk loci and are causal to the disease phenotype
remained a significant challenge. In order to narrow down this list of
genes, we utilized locus-specific epigenetic editing to manipulate
the epigenetic state of the target loci and measure the gene
expression changes of any target genes associated with the loci.
Significantly, this approach revealed complex regulatory networks
at three distinct GWAS loci in fibroid tumors. For example, we found
that the epigenetic manipulation of the ESR1 gene promoter directly
affects the expression of the SYNE1 gene, which is nearly 900 kb
away from the ESR1 promoter. Notably, when the SYNE1 risk locus
was epigenetically perturbed, ESR1 did not change, but we observed
a significant change in the expression of CCDC170, indicating, at
least in this cell line, that CCDC170 is a critical risk loci target gene,
although it is not an eQTL gene. Notably, recent detailed analysis
indicates that eQTL loci explain only a small fraction of GWAS loci
because these two variants are systematically different from each
other60, highlighting the limitation of relying exclusively on eQTLs
to explain GWAS risk loci targets and the significance of functional
perturbations to map GWAS targets genes.

Toovercome the thirdchallenge,weexploited the single-cell gene
expression analysis of MyoF and UF tumors to identify potential cell
types impacted by the differential expression of GWAS target genes.
Despite the sparsity of gene expression data in scRNA-seq, our inte-
grative analysis revealed several interesting observations. We found
that the SMC, the causal cell of origin for thedisease progression, show
the highest number of highly expressed putative GWAS risk loci target
genes. Furthermore, the data indicates that almost all cell types com-
posing the UF tumor tissue contain distinct modules of genes highly
expressed in a cell type-dependent manner. For example, while KANK1
is substantially upregulated predominantly in SMCs, VCAN is highly
expressed selectively infibroblasts infibroid tumors.Whether andhow
differential expression of these genes is associatedwith fibroid tumors
is yet to be understood.

Our study has some limitations. Firstly, we have focused most of
our efforts on studying the risk loci identified in one GWAS study. We
find that the GWAS-identified risk loci are highly dependent on the
genetic ancestry of the population under study. Therefore, further
studies are needed to comprehensively integrate and study the gene
targets of multiple GWAS data that represent diverse populations.
Secondly, although our analysis substantially expanded the number of
target genes, confirming that these genes are directly linked to the
GWAS-risk loci requires experimental validation including precise
genome editing of the alternative alleles. Such experimental systems
should ideally capture the complexity of in vivo tissue. However, most
in vitro systems fall short of this ideal. We perturbed the epigenetic
state of the threeGWAS risk loci in a SMC line,whichmaynot represent
the complex regulatory network of a GWAS loci in vivo. However, if the
regulatory elements (promoters and enhancers) in a particular locus
have high activity in the tissue of interest, the dCas9-KRAB approach
couldbeused todownregulate the target locus and study gene targets.
Conversely, if the lead SNP target site is inactive in the model cell line,
then dCas9-P300-like epigenetic activation approaches could be used
to map potential target genes linked to the target site’s epigenetic
state. In an ideal world, such perturbations should be performed in a
model system representing the disease state. However, there is a lack
of tractable model systems that recapitulate UF disease phenotypes.
To address this, we recently utilized CRISPR to engineer UF-specific
genetic mutations in the MED12 gene. These engineered cells repre-
sent a new in vitro model for UF research by recapitulating critical
transcriptional and metabolic programs of UF tumors38. High
throughput single-cell genetic and epigenetic manipulations such as
Perturb-Seq61,62 in such model systems should allow us to better map
and validateGWAS risk loci targets and study their relevance to disease
biology.

Methods
Uterine Leiomyoma GWAS summary statistics
Summary data of UF GWAS were downloaded from the NHGRI-EBI
GWAS Catalog63 for study GCST00915812 downloaded on 06/05/2020.
11,464,556SNPswereused for post-ULGWASanalyses anduploaded to
FUMA (version 1.3.6)25. Round 2 UK Biobank GWAS summary statistics
were downloaded from theNeale lab/UKBiobankwebsite: http://www.
nealelab.is/uk-biobank on 05/18/2023. Japan Biobank GWAS summary
statistics were downloaded from the Japan Biobank website: https://
biobankjp.org/en/ https://pheweb.jp/ on 06/12/23. Both UK Biobank
and Japan Biobank GWAS summary statistics were uploaded to FUMA
(version 1.3.6) and analyzed using the same settings as the Gallagher
et al. data (see below).

Identification of candidate genes using FUMA
Independent significant SNPs are defined as all SNPs in GWAS summary
data that have P value < 5e-8 and are independent each other at r2 < 0.8.
Among independent significant SNPs, Lead SNPs were defined as SNPs
that are distanced from each other at r2 <0.1. Independent significant
SNPs that are dependent upon one another at r2≥0.1 participate in the
same genomic risk loci and LD blocks closer than 250 kb merge into
samegenomic risk loci. CandidateSNPsare all theSNPs that are in theLD
of any independent significant SNPs (r2 >0.8). To calculate r2, MAF
(minor allele frequency) and conduct LD analyses, European population
genetic data in 1000G phase364 were selected for reference panel. Also,
MAGMA gene and gene-set analyses were performed for the GWAS
summary statistics. (MAGMA v1.07, 0 kb window)

Three methods were used to identify candidate genes (positional
mapping, expression qualitative trait loci mapping and 3D chromatin
interactionmapping) and every annotation reference dataset available
on FUMA was used. First, for positional mapping, candidate genes
were identified that are within 10 kb of candidate SNPs. Then, for eQTL
mapping, the genes are selected based on if SNPs in genomic risk loci
significantly affect (FDR <0.05) the gene’s expression in all eQTL
databases available in FUMA. 3D chromatin interaction mapping was
performed using all HI-C datasets in FUMA and significant interactions
were chosen using a FDR < 1e-6. Interactions were chosen only
between SNPs which overlap with enhancer regions and genes pro-
moter regions as defined by the default parameters of FUMA (250 bp
upstream and 500 bp downstream of TSS). All FUMA-available epi-
genome datasets were selected to annotate enhancer/promoter
regions. FUMA uses eQTL datasets of more than 44 tissue types and
uses HI-C data sets of 21 tissue/cell types for genome interaction
mapping. The original FUMA25 publication is referred for details on all
databases, depositories, and methods.

pQTL analysis: pQTL summary statistics were downloaded from
https://www.decode.com/summarydata/. pQTL-associated variants
that were within a 40 kb (+/−20 kb) window of each lead SNP in the
Gallagher GWAS were identified in R.

Cell lines
Thehumanmyometrial SMC linemyo-hTERTCells were kindly provided
by Dr. Jian-Jun Wei (Northwestern University) and are described by
Carneyet al.43. The cell line is listed in theCellosaurusdatabaseunder the
accession number CVCL_9Z20. The cells weremaintained in DMEM/F-12
(Gibco, Invitrogen 11320033) with 10% Fetal Bovine Serum (Fisher sci-
entific, SH3091003) and 1% Penicillin–streptomycin (Life
Technologies,15140–122). Cells were cultured and incubated at 37 °C in a
humidified atmosphere of 5% CO2 and 95% air.

Locus-specific epigenetic editing by dCas9-KRABor dCas9-P300
All sgRNAswere cloned into amodified sgRNA scaffold backbone from
the GeCKO human library. BsmB1 digestion was used for cloning. And
pHAGE TRE dCas9-KRAB (Addgene, Plasmid #50917) was used to
generate doxycycline inducible dCAS9-KRAB human myometrial
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hTERT cells. All sgRNA sequences and their oligos are listed in Sup-
plementary data 2. Newly synthesized constructs were confirmed with
Sanger sequencing before transfection.

For viral production, HEK293T cells were seeded onto 10 cm
plates 1 day before transfection. 1 µg pMD2.G (Addgene, Plasmid
#12259), 2 psPAX2 (Addgene, Plasmid #12260) and 4 µg of the guide
plasmid were co-transfected into HEK293T cells using 21 µg of poly-
ethylenimine (PEI). Media was refreshed 12 h after transfection. The
virus was collected 24 and 48 h after the first media refreshment, fil-
tered through 0.45mm filter, and stored at –80 °C. For viral trans-
duction, cells were incubated with virus solution diluted in media and
supplemented with 0.01mg/mL polybrene for 24 h. Human myo-
metrial hTERT cells were transduced with lentivirus carrying the LV-
dCAS9-KRAB plasmid and were selected with G418 (400 µg/mL) until
non-transduced control cells were all dead (~5 days). Then, dCAS9-
KRAB hTERT cells were transduced with lentivirus carrying the LV-
sgRNA plasmid and were selected with Zeocin (100 µg/mL) until non-
transduced control cells were all dead. After selection, cells were
induced with doxycycline (2 µg/mL) to activate dCAS9-KRAB.

For dCas9 P300, the human myometrial hTERT cells were trans-
ducedwith lentivirus carrying the LV-sgRNAplasmid targeting the lead
SNP and Luciferase (control sgRNA) and selected with Zeocin (100 µg/
mL) until non-transduced control cells were dead. Lastly, LV-sgRNA
plasmid targeting the lead SNP and Luciferase (control sgRNA) cells
were transduced with lentivirus carrying the LV-EF1a-dCas9-P300-
PuroR (Addgene, Plasmid #83889) plasmid and selected with Pur-
omycin (2.5 µg/mL) until non-transduced control cells were dead.

Incucyte live cell imaging
Incucyte Live cell imaging system (Sartorius) was used for tracking
cell proliferation. The system took a photo of cell plates every two
hours in different image channels (Phase and Red). For cell nucleus
counting, 1 µM SiR-DNA nuclear dye was used (Cytoskeleton,
#SC007) and images were captured using the red channel. At the
end of the experiment, proliferation data were analyzed using the
Incucyte analysis tool and p values were calculated using the Incu-
cyte raw data. Relative proliferation was normalized to the starting
time. For the Apoptosis assay, cells were seeded into 96-well plates
at a density of 1.5 × 103 cells/well. The following day, 1:1000 diluted
Caspase 3/7 dye (10403, Biotum) was added. Then, cells were
monitored using the Incucyte live cell imaging system using phase
and green channels. The apoptosis rate was determined using the
green integrated intensity/confluency values, and the results were
plotted using the Incucyte.

Western blotting
Cells were lysed using 1X RIPA buffer, and protein concentrations were
determined using the BCA assay (23225, Thermo). 1 µg/ul protein was
mixedwith 4X sample buffer with reducing agent and boiled at 95 °C for
10min. Next, 20 µg of boiled protein was loaded onto a NuPAGE 4–12%,
Bis-Tris gradient gel (#NP0335, Thermo) and samples were run at 130V
for about 1.5 h. Proteins were transferred to nitrocellulose membrane
using iBlot dry transfer system (Program 4/10min). Next, membranes
were blocked using 5% milk dissolved in TBS-T (20mM Tris, 150mM
NaCl, 0.1% Tween 20; pH 7.6) for 1 h, rocking at room temperature (RT).
After blocking, membranes were incubated with primary antibody
(1:1000 dilution) (Genetex CCDC170 antibody (#GTX107144), Cell Sig-
naling Technology GAPDH (14C10) antibody (#2118) prepared in block-
ingbuffer overnight at 4 °C. Thenext day,membraneswerewashedwith
TBS-T 3 times for 5min. Then, they were incubated with secondary
antibodies (1:10,000) (Anti-Rabbit IgG (H+L) (Promega,# W4011) dilu-
ted in blocking buffer for 1 h at RT. After the incubation, membranes
were again washed 3 times for 10min. Lastly, membranes were covered
with western blot detection reagents (37074, Thermo Fisher) and
visualized using the iBright imaging system.

ChIP-Seq and qPCR
To cross link histones to DNA, formaldehyde (37%) was added to the
culture media of a 150mm× 25mm plate (at ~80% confluency) to a
final concentration of 1% and incubated for 15min at 37 °C with
intermittent agitation. Cross-linking was quenched by adding 50 µL
2.5M Glycine per 1mL media and incubating for 5min at 37 °C. Next,
the plate was aspirated, removing as much media as possible and the
cells were washed twice with ice cold PBS containing protease inhi-
bitors (50mL 1X PBS with 1 complete protease inhibitor tablet
(Thermo Scientific, cat. # A32965) by adding 8mL PBS/PI at a time.
Aspirated PBS/PI and add 8mL PBS/PI. The fixed cells were scraped
using a plastic cell scraper and collected in a 50mL conical tube.
Cells were centrifuged at 4 °C for 10min at 845 × g. The supernatant
was next aspirated and discarded being careful not to disturb the cell
pellet. The cell pellet was resuspended in SDS Lysis Buffer with 1X
Halt™ Protease and Phosphatase Inhibitor Single-Use Cocktail
(Thermo Scientific, cat. # 78442) (SDS Lysis Buffer: 1% SDS, 10mM
EDTA, 50mM Tris-HCl, pH 8.1) at a ratio of 1mL for every 2 × 10 cells.
The cell pellet was next incubated on ice for 10min. After redis-
tributing the cell pellet into Bioruptor Pico 1.5mL tubes
(cat#C30010016) so that each tube contained no more than 200 µL,
the cell pellet was sonicated (Bioruptor Pico sonication machine, cat.
# B01080010, 10 cycles 30 s on/30 s off) to fragment sizes of
200−500 bp at 4 °C. The tubes were kept in a water/ice bath during
sonication to prevent denaturation of the DNA. The tubes were then
centrifuged at 24 °C for 10min at max speed on an Eppendorf
tabletop microcentrifuge. After centrifugation, the supernatant was
collected from all the tubes and re-pooled into a 50mL conical tube.
ChIP Dilution Buffer (0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA,
16.7mM Tris-HCl, pH 8.1, 167mM NaCl) and 1X Halt™ Protease and
Phosphatase Inhibitor Single-Use Cocktail (Thermo Scientific, cat. #
78442) were then added at a ratio of 5mL buffer per 1mL sonicated
supernatant. The tube was inverted several times to ensure adequate
mixing. Samples were always kept on ice during these steps. 250 µL of
the diluted sample was collected as a whole cell extract (WCE) con-
trol and stored at 4 °C until the reverse cross-linking step, at which
point 10 µL of 5MNaCl, 25 µL 10% SDS and 1.25 µl 1 M DTTwere added
and the WCE was treated the same as the sample. 1 µL of antibody
(Anti-Histone H3 acetyl K27 antibody - ChIP Grade, 1mg/mL, Abcam,
cat. #ab4729) per 1mL buffer was added to the diluted sample and
the sample was incubated overnight at 4 °C on a rotator. 15 µL of
washed Dynabeads Protein G (Thermo Scientific, cat. # 10003D) or
15 µl Dynabeads Protein A (Thermo Scientific, cat. # 10001D) were
mixed 30 µL of the slurry was added per sample. This mixture was
allowed to incubate overnight at 4 °C on a rotator for 2 h. The
Dynabeads were removed from solution using a magnetic tube
holder and the supernatant was discarded. The beads were re-
suspended with the DNA-histone-antibody complex in 1mL of Low
Salt Immune Complex Wash Buffer (0.1% SDS, 1% Triton X-100, 2mM
EDTA, 20mM Tris-HCl, pH 8.1, 150mM NaCl) and were incubated for
5min at 4 °C in rotator. After incubation, the beads were again
insolubilized using the magnet. These wash steps were performed
twice each and repeated using 1mL of LiCl Immune Complex Wash
Buffer (0.25M LiCl, 1% NP40, 1% deoxycholate, 1mM EDTA, 10mM
Tris-HCl, pH 8.1) and then 1mL of 1X TE Buffer pH 8.0 (10mM Tris-
HCl, 1mM EDTA, pH 8.0). Finally, the bead pellet was re-suspended in
125 µl of elution buffer with DTT (Thermo Scientific, cat. # P2325) (1X
TE, pH 8.0, 1% SDS, 150mM NaCl, 5mM DTT added just before use).
The beads were allowed to elute at 65 °C for 10min. The beads were
then separated, and the supernatant was collected in a separate tube.
The elution step was repeated once more and both elutions were
pooled to a total volume of 25 µL. Cross-links reversed by incubating
the sample at 65 °C overnight. The next day, the sample was allowed
to cool to room temperature before adding Proteinase K (Thermo
Scientific, cat. # EO0491) (5 µL Proteinase K, ~20mg/ml and 245 µL
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elution buffer) and incubating at 52°–55 °C for 2 h. After the Protei-
nase K treatment, nucleic acid was extracted from the sample using
the phenol/chloroform extraction method and the concentration
was quantified using a Qubit Fluorometer.

For library preparation, NEBNext Ultra™ II DNA Library Prep Kit
for Illumina (cat. # E7645S), NEBNext® Multiplex Oligos for Illumina
(cat. # E7335S) and AMPure XP beads (Beckman Coulter, cat. #A63881)
were used according tomanufacturer’s instructions using 10–11 cycles
of PCR amplification. Single-end sequencing of all ChIP libraries was
performed on the 2 × 150 HiSeq. Quality of FastQ files was confirmed
using FastQC (www.bioinformatics.babraham.ac.uk). Reads were then
aligned to the GRCh38 human genome assembly using bowtie2
(2.4.1)65 and sorted using samtools (v 1.6). Then Picard (2.21.4) (https://
broadinstitute.github.io/picard/) was used for deduplication of the
BAM\ files and Deeptools was used to convert the BAM files to Bigwig
files (bamcoverage tool (RPGC normalized)).

RNA seq and the analysis
Total RNA was isolated using the Zymo research Quick RNA miniprep
kit utilizing the on-column DNAse treatment according to the manu-
facturer’s instructions (R1054). The overall RNA purity was assessed by
absorbanceat 260and280and thepotential degradationwas assessed
by running on the agarose gel. Samples with (A260/A280 ratio ~2 and
28S and 18S band intensity ratio greater than 2 were accepted as pure
and non-degraded and processed for qPCR and RNA-Seq analysis. RNA
was prepared for sequencing using the NEBNext® Poly(A) mRNA
Magnetic Isolation Module (NEBNext, E7490) and NEBNext® Ultra™
Directional RNA Library Prep Kit (NEBNext, E7420) according to the
manufacturer’s instructions. Paired-end sequencing of all RNA libraries
was performed on the Illumina NextSeq 500 Platform.

The quality of FastQ files of the RNA seq data was checked using
FastQC (www.bioinformatics.babraham.ac.uk). RNA-seq reads were
aligned to theGRCh38humangenome assembly (Ensembl release 102)
using the STAR aligner (v1.9.0) with default settings. BAM files de-
duplicated using Picard (v2.6.0) and were converted into bigwig files
using bam coverage/DeepTools (v3.5.1) (bin size 1, normalized RPKM).

Leiomyoma and myometrium RNA-Seq, H3K27ac and Hi-C data
analysis
All leiomyoma and myometrium H3K27Ac-ChIP, HI-C-Seq and the
Moyo et al. RNA-seq results were downloaded from NCBI-GEO data
repository via accession GSE12824226. Paul et al. RNA-seq results were
downloaded from NCBI-GEO data repository via accession GSE169255.
Bigwig files were uploaded to the UCSC genome browser (GRCh38/
hg38) for visualization. H3K27Ac-ChIP intensity scores around hg38-
human-tss (-10 kb/+10 kb) were obtained using the DeepTools (com-
puteMatrix tool)66. refTSS-human-hg38 (v3.1)67 bed file and H3K27Ac-
ChIPbigwigfiles (PT886, PT916, PT967, PT1063, PT848) of leiomyoma/
myometrium were used with DeepTools. TSS-H3K27Ac intensity
scores in genomic risk loci were obtained in R (cran.r-project.org)
using Genomic Ranges (1.40.0). Differential intensity scores of leio-
myoma/myometrium peaks were calculated using a two-sided stu-
dent’s t test in R.

HI-C-seq FAST-q files (PT886, PT916, PT967, PT1063) of leio-
myoma/myometrium were downloaded and follow original publica-
tion data processing steps26. HI-C contact strength scores in genomic
risk loci of leiomyoma/myometrium were obtained using the CHi-
CAGOpipeline68 with default settings and differential contact strength
scores were calculated using a two-sided student’s t test in R. WashU
genome browser69 was used for visualization. The RNA-seq data of
leiomyoma/myometrium (n = 15 patients) were downloaded and the
original publication data processing steps were followed26. We ana-
lyzed the data using the cut-off values (FDR <0.05). The RNA-seq
datasets were analyzed in R using DESeq2 (version 1.30.1). The

heatmaps of differentially expressed genes were drawn in R using
pheatmaps.

RT-qPCR for gene expression of dCAS9-KRAB and dCas9-P300
human myometrial hTERT cells
RNA was isolated with TRIzol Reagent Protocol67,70 (Invitrogen, cat #
15596018) and treated with DNase I (Nebnext, cat#M0303S). Next, the
cDNAwas convertedwith theHigh-Capacity RNA-to-cDNA™Kit (Fisher
scientific, cat# 4387406). We performed qPCR using the QuantStudio-
3 (ThermoFisher) and Quanti Fast SYBR Green PCR Kit (Qiagen, cat #
204056), following manufacturer’s instructions. 5 ng cDNA, 400 nMF
and 400 nMR primers were used per reaction. Relative gene expres-
sion was calculated with the delta-delta CT method. Normalizations
were made to the GAPDH gene as an endogenous control. For the
CHIP-qPCR analysis, the ZNF333 gene was used as the negative control
and theRPL10 genewasused as the positive control.Multiple unpaired
student t-tests were used for the statistical analyses. All primer
sequences are listed in Supplementary data 2.

The single-cell RNA-seq data analysis
Single cell data of MyoF, and MED12 positive leiomyoma were down-
loaded from the GEO database under the accession number
GSE162122. The data was then analyzed using the R package Seurat
(version 4.3.0.1)68,71 . Before the data integration step, quality control
steps were performed. Cells with fewer than 200 or greater than 2500
feature counts, and more than 7% mitochondrial RNA content, >1%
HBA1/HBA2/HBB (erythrocytes), and detectable EPCAM/KRT18
expression (endometrioid cells) were filtered out to remove low-
quality cells. After the data was transformed using the SCTransform
function of Seurat, the patient samples were integrated into a single
object using FindIntegrationAnchors and IntegrateData functions
according to their tissue types.

Cell clustering, visualization, and cell-type annotation
Principal component analysis (PCA) was performed with 20 principal
components (PCs, determined by Elbow plot), followed by Uniform
Manifold Approximation and Projection (UMAP) using the same
number of PCs. Next, the cells were clustered using the FindCluster
function of Seurat with a resolution of 0.5. To identify the cell type of
each cluster, first, the marker genes described originally in the Goad
et al. publication were plotted using Seurat’s FeaturePlot function. In
order to confirm these cell types, marker genes of every cluster were
identified using the Wilcoxon rank-sum test option of the FindAll-
Markers function. The top markers for each cluster were next sub-
mitted to the Gene Ontology website Enrichr and the top cell type was
identified by the Descartes 2021 cell type database63,72. Clusters were
then manually annotated according to these criteria. Average expres-
sion of candidate genes was calculated using the FetchData function in
Seurat, and average expression was plotted using pheatmaps and the
scale = “row” argument in order to get z-scoresby row.The columnand
row order of the heatmap was manually set. Lastly the top cell-type-
specific genes were chosen and shown using both the calculated
z-scores as well as the percentage of cells expressing.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All GWAS data analyzed in this manuscript are available in the refer-
ences provided. Publicly available data sets were accessed via theGene
Expression Omnibus (GEO), accessions GSE128242, GSE169255, and
GSE162122. The sourcedata for allfigures,when applicable, is provided
in the Source Data file. Source data are provided with this paper.
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Code availability
All code used to generate figures can be accessed at https://github.com/
AdliLab/Fibroid-GWAS-Manuscript. (https://doi.org/10.5281/zenodo.
10412871).
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