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Influence of microbiota-associated
metabolic reprogramming on clinical
outcome in patients with melanoma
from the randomized adjuvant dendritic
cell-based MIND-DC trial
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Tumor immunosurveillance plays a major role in melanoma, prompting the
development of immunotherapy strategies. The gut microbiota composition,
influencing peripheral and tumoral immune tonus, earned its credentials
among predictors of survival in melanoma. The MIND-DC phase III trial
(NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C mela-
noma to adjuvant treatment with autologous natural dendritic cell (nDC) or
placebo (PL). Overall, 144 patients collected serum and stool samples before
and after 2 bimonthly injections to perform metabolomics (MB) and metage-
nomics (MG) as prespecified exploratory analysis. Clinical outcomes are
reported separately. Here we show that different microbes were associated
with prognosis, with the health-related Faecalibacterium prausnitzii standing
out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at
baseline, nDC arm). Therapy coincided with major MB perturbations (acyl-
carnitines, carboxylic and fatty acids). Despite randomization, nDC arm
exhibited MG and MB bias at baseline: relative under-representation of F.
prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii
anticorrelated with BA, medium- and long-chain acylcarnitines. Combined,
theseMGandMBbiomarkersmarkedly determinedprognosis. Altogether, the
host-microbial interaction may play a role in localized melanoma. We value
systematic MG and MB profiling in randomized trials to avoid baseline dif-
ferences attributed to host-microbe interactions.

The rise in incidence of melanoma worldwide has led to an increasing
number of patients with regional positive lymphnodes (stage III) being
diagnosed each year, especially in the western world1. Over the last
decade, there has been tremendous progress in the clinical manage-
ment of stage III melanoma with the advent of adjuvant and neoadju-
vant immune checkpoint inhibitors (ICI). Before the era of (neo)

adjuvant ICI in localized melanoma, patients with operable clinically
positive nodes systematically underwent full lymphadenectomy of the
involved sites2,3. Surgery alone is insufficient to achieve a cure in most
patients with high-risk stage III melanoma. Thus, systemic adjuvant
therapy has been investigated over the last decades in patients with
high-risk melanoma. The development of effective adjuvant therapies
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for patientswith high-riskmelanomahas included ipilimumab (an anti-
CTLA-4 antibody), pembrolizumab and nivolumab (both monoclonal
antibodies against programmed death 1 [PD-1]), and combination of
BRAF and MEK inhibitors for patients whose tumors harbor a BRAF
mutation1,4–12, leading to US Food and Drug Administration approvals.
More recently, pembrolizumab and the combination of anti-CTLA-4
and PD-1 antibodies showed benefit in the neoadjuvant setting in
patients with high-risk node-positive melanoma in early phase clinical
trials13–16.

Prior to the modern era of ICI, vaccination involving dendritic
cells (DC) has been developed owing to the special properties of these
cells in coordinating innate and adaptive immune responses. The aim
of DC immunization was to induce tumor-specific effector T cells that
can exhibit a tumoricidal activity in a tumor antigen-specific manner
through induction of a protective immunological memory to cancer
antigens. Across the world, many investigators showed that DC-based
vaccines were safe and induced the expansion of circulating CD4+

T cells and CD8+ T cells that were tumor antigen-specific. Objective
clinical responses have been observed in 5–8% of patients17–21. Long
term follow-up of DC-vaccinated patients with metastatic melanoma
(MM) reported up to 19% survival rates at 11 years, comparable to
ipilimumab-treated patients. Survival significantly correlated with
intense reactivities at the dermal injection site, andwith eosinophilia22.
In the past years, DC-based immunotherapy was performed in patients
with stage IV HLA-A2.1 positive melanoma using intravenous, intra-
dermal, and intranodal routes of administration of mature DC loaded
with tumor-associated antigens (TAA) such as tyrosinase and gp100,
and keyhole limpet hemocyanin (KLH) as a control antigen. All vacci-
nated patients showed a pronounced proliferative T cell or humoral
response against KLH. TAA-specific T cell reactivities were monitored
in post-treatment delayed-type hypersensitivity (DTH) skin biopsies by
tetramer staining and functional analysis. Patients harboring peptide-
specific T cell immunity exhibited the best clinical response, with
eventually complete responses in aminority of patients withMMwhile
rIL-2 or modified TAA did not further increase vaccine efficacy23,24. A
direct correlation betweenDC-induced tumor-specific T cells detected
in DTH skin biopsies and a favorable clinical outcomewas observed in
patients with MM25,26.

The “Melanoma Patients Immunized With Natural DenDritic Cells
(MIND-DC)” trial was a randomized phase III clinical trial testing adju-
vant natural DC (nDC) therapy in high-risk stage IIImelanoma. The trial
showed that adjuvant nDC treatment generated specific immune
responses but did not translate into survival benefit27. Here, we
investigated whether nDC loaded with TAA ex vivo could modulate
fecal metagenomics (MG) and serummetabolomics (MB) profiles that
might in turn, influence clinical outcomes. Indeed, shotgun MG-based
taxonomic composition of feces at baseline was associated with
objective response rates in patients with stage IV melanoma treated
with anti-PD-1 alone or combined to anti-CTLA-4 in several indepen-
dent cohorts28–31. In a meta-analysis incorporating new cohorts,
McCulloch et al. confirmed that baseline microbiota composition was
associated with 1-year progression-free survival. Bacteria associated
with favorable response during ICI belonged to Lachnospiraceae and
Bifidobacteriaceae families including Ruminococcus spp, Mediterranei-
bacter spp., and Blautia spp.32.

Here, we show that a relative deficiency in the primary biliary acid
(BA) cholic acid or F. prausnitzii, or high levels of fatty acids (FA) and
acylcarnitines are associated with reduced recurrence-free survival
(RFS), especially in the nDC treatment arm. Moreover, the relative
abundance of beneficial F. prausnitzii in stool anti-correlatewith serum
BA and FA. Therefore, we hypothesize that the pharmacodynamic
effects of the nDCmight have been influencedby the host-microbiome
dialogue in patients harboring a deviated lipid metabolism (including
carboxylic acids, BA and acylcarnitines) and gut microbiota.

Results
Metagenomics-basedprofiles at baseline (T1) andat 4weeks (T2)
are associated with 2 year-RFS (2Y-RFS)
The MIND-DC trial (NCT02993315) randomized 148 eligible patients
with resected stage IIIB and IIIC melanoma between 2018 and 2021, of
which 144 patients were included in this translational cohort (n = 95 in
the nDC arm, versus n = 49 in the placebo (PL) arm) (Supplementary
Table 1). Five patients (all in the nDC arm) never received any injection,
three being related to tumor recurrence. One was censured (because
of a follow up inferior to 1 month). Primary and secondary clinical
outcomes are reported separately27. ShotgunMG sequencing of stools
at baseline (pre-therapy, T1) and after 4 weeks of therapy start (at the
day of the first and the third biweekly intranodal injections of nDC or
PL, T2) was undertaken, and the presence and abundance of species-
level genome bins (SGBs) was estimated33. Here, we describe a long-
itudinal follow up of the shotgun MG-based stool composition in 88
and 85 patients with stage IIIB/C melanoma at T1 and at T2, respec-
tively (Supplementary Table 2). Firstly, we correlated the microbiota
composition of the T1 (Fig. 1A) and T2 (Fig. 1B) feces samples with 2Y-
RFS. While the alpha-diversity was not associated with 2Y-RFS (p =0.2
at T1 and p =0.1 at T2, Shannon index), the beta-diversity significantly
differed between those patients prone to stay cancer-free (no recur-
rence at 2 years, 2Y-noR) versus those who will experience a 2-year
recurrence (2Y-R) at both time points (p < 0.01 at T1 and T2, Bray-
Curtis dissimilarity). We focused on differentially abundant SGBs
according to 2Y-RFS in the whole population and found a relative
overrepresentation of Faecalibacterium prausnitzii (whether con-
sidering SGB15318 or SGB15322) in patients with favorable prognosis at
T1 (Fig. 1A, Supplementary Data 1) and T2 (Fig. 1B, Supplemen-
tary Data 1).

By splitting the whole cohort into 4 groups according to treat-
ment arm and outcomes, we obtained small sample sizes (Supple-
mentary Table 2). This prevented any significant associations to pass
the FDR correction for the MG analysis (all Q-values ≥0.2). Linear
model coefficients (MaAsLin2, coefficient) for microbial SGBs that
were found associated either after arcsine square root (arcsin-sqrt)
transformation (AST) or centered-log-ratio (CLR) transformation with
2Y-Rwith p < 0.05 at T1 andT2 are detailed in Supplementary Fig. 1A–D
and Supplementary Data 2. In brief, F. prausnitzii SGB15318 was rela-
tively over-represented in 2Y-noR in the nDC arm at T1 and T2 (Sup-
plementary Fig. 1B–D, p <0.05). Of note, Ruminococcaceae SGB14899,
Streptococcus salivarius SGB8007, and Streptococcus parasanguinis
SGB8071 followed the same behavior only in the nDC arm (Supple-
mentary Fig. 1B,D, p <0.05). In addition, the prevalence and relative
abundances of distinct SGBs of F. prausnitzii tended to be reduced in
the nDC arm compared with the PL arm (Supplementary Fig. 2A, B).
TheMGbiomarker evolutionbetween the two timepointswas assessed
using two methods: paired-Wilcoxon test (Wilcoxon signed-rank test)
(Supplementary Fig. 3) and linear regression adjusted for the clinical
features treatment arm, age, gender, tumor stage (IIIB vs IIIC), Eastern
Cooperative Oncology Group performance status (ECOG-PS), and
body mass index (BMI) (Supplementary Fig. 4). Of note, the nDC
treatment barely impacted on the shift of the MG taxonomic compo-
sition, except for a few taxa (Blautia sp MSK 20 85 SGB4828, p =0.021,
and Ruminococcus torques SGB4608, p =0.024) (Supplementary
Fig. 4). Of note, these dynamics did not pass the FDR correction. We
may impute these weak associations to the small sample size (limiting
the power of the analysis) and to the lack of clear effect of the treat-
ment arm in this negative trial.

We concluded that gut microbiota composition was associated,
albeit weakly, with the prognosis of stage III melanoma, with F.
prausnitzii (SGB15318 and SGB15322), referenced for its
homeostatic34,35 and antitumor properties in MM30,36, as the most
prominent MG species (MGS) found at T1 and T2 in this cohort.
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Serum metabolic changes following the first cycle of
immunization
In parallel to MG, the mass spectrometry-based serumMB was serially
assessed at T1 and T2 in 95 patients in the nDC arm and 49 patients in

the PL arm. The Volcano plot and principal component analysis (PCA)
revealed differences between the two time points overruling those
observed between the treatment groups (Fig. 2A, B, Supplementary
Fig. 5A, Supplementary Data 4). In particular, the lipid metabolism
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Fig. 1 | Metagenomics-based profiles show taxonomic signatures associated
with recurrence at 2 years (2Y-R) in twodifferent time points. A,B Linearmodel
coefficients formicrobial SGBs associated either with 2y-R or 2y-noR, corrected for
age, gender and treatment arm at baseline (A, T1 n = 86) or after 4 weeks of therapy
start (B, T2 n = 83). Positive values indicate species-level genome bin (SGB) asso-
ciation with 2Y-R (orange), while negative values indicate a positive association for

the corresponding SGB with 2Y-noR (blue). Only associations with p ≤0.05 are
reported since no association has Benjamini-Hochberg Q <0.2. Refer to Supple-
mentary Data 1 for linear model coefficients (MaAsLin2, coefficient) for microbial
SGBs after arcsine square root (arcsin-sqrt) transformation (AST). Source data are
provided as a Source Data file.
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became perturbed at T2, with the accumulation of very long and long
chain saturated FA (such as the carboxylic acids docosanoid acid (also
called “behenic” acid), nonadecanoic acid, tetradecanedioic acid, ara-
chidonic acid, hexacosanoic acid, palmitic acid), and mono- or poly-
unsaturated FA (such as 10-nonadecenoic acid, oleic acid, linoleic acid,
linolenic acid, stearidonic acid, docosenoic acid) as well as acylcarni-
tines (glutarylcarnitine, carnitine C4:0, C4:0 (OH), C6:0, C8:1, C10:1,

C12:0, C14:2) (Fig. 2B, p <0.05, Mann–Whitney). Besides the shift in
circulating FA and in the acylcarnitine shuttle found at T2, weobserved
perturbations of polyamine biosynthesis and acetylation between T1
and T2 (N-acetylputrescine, spermidine, N1-acetylspermine) (Fig. 2B,
p <0.05, Mann–Whitney). In addition, branched-chain amino acids
(BCAAs) (valine/leucine/isoleucine), and γ-glutamyl dipeptides
involved in inflammation, oxidative stress, and glucose regulation
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were significantly increased at T2 (Fig. 2B, p <0.05, Mann–Whitney)37.
These metabolic shifts could not be explained by clinical events
between the two time points since few patients experienced flu-like
symptoms (19%) or started new medications (12%) between T1 and T2
(Supplementary Table 3).

To assess the clinical relevance of these early changes, we inves-
tigated whichmetabolic profiles were associated with 2Y-RFS using an
unsupervised hierarchical clustering across all metabolites (Fig. 2C).
We concluded that the above-mentioned medium and long chain-
acylcarnitines and FA linolenic acid (Fig. 2D, p < 0.05 Mann-Whitney),
acetylated polyamines (Supplementary Fig. 5B, p <0.05
Mann–Whitney), as well as BCAAs and γ-glutamyl dipeptides (Supple-
mentary Fig. 5C, p <0.05 Mann–Whitney) were negatively associated
with 2Y-RFS at T1 in univariate analysis. In contrast, serum levels of
ornithine, a precursor of spermidine, were higher in patients with
favorable prognosis (Supplementary Fig. 5D, p < 0.05 Mann–Whitney)
in univariate analysis.

The significance of FA in the temporal metabolic shift and clinical
recurrence prompted us to evaluate the RFS according to the median
of the sum of the 13most relevant FA abundances. Levels above the FA
median at T2 (p = 0.025, right) and to a lesser extent at T1 (p = 0.055,
left) were associated with shorter RFS (Fig. 2E).

Attempting to ascribe these lipid profiles to the gut microbiome,
we used the MG data, and annotated the organism-specific gene hits
according to the UniRef90 (UR90)38. Based on these annotations,
metabolic pathways for each sample were then defined using the
MetaCyc hierarchy of pathway classifications39. The Linear model-
based analysis contrasting hits separating patients who recurred of
their melanoma from the ones who did not recur showed that the FA
beta-oxidation and biosynthesis pathways at T1 were associated with
overall recurrence (Supplementary Fig. 6A).

Hence, these findings suggest that time and/or therapy have
perturbed a delicate and preexisting disbalance of lipid synthesis or
degradation, at the level of the mono- and poly-unsaturated and
saturated fatty and carboxylic acid metabolism, coinciding with mel-
anoma recurrence.

Taxonomic and metabolomic differences between treatment
arms at randomization
Ourfindings indicate that the gut taxonomic composition at T1 and the
serum metabolic profile shift after only 2 injections of nDC treatment
were associated with the 2Y-RFS. Although we did not anticipate any
significant difference in clinical characteristics between the two
treatment arms at baseline given the process of randomization (Sup-
plementary Table 1), we took a deeper dive into potential pre-existing
differences in the fecal microbial ecosystem defined by shotgun MG-
based sequencing. Strikingly, while the stool compositional diversity
did not differ between the two arms (p =0.43, Shannon index), the

beta-diversity40 of the taxa present in feces from stage III melanoma
randomized to PL was significantly different from that of individuals
about to receive nDC (p = 0.02, Bray-Curtis dissimilarity). Patients
randomized in the PL arm exhibited a relative over-representativity of
health-related and immunogenic MGS F. prausnitzii SGB15322, Blautia
massiliensis SGB4826, and Dorea formicigenerans SGB4575 compared
with the nDC arm32,41 (Fig. 3A, Supplementary Data 3). Indeed, the nDC
treatment arm tended to harbor higher proportions of individuals
lacking F. prausnitzii spp. (Fig. 3B) and more specifically distinct SGBs
of F. prausnitzii or bearing lower relative abundance of these SGBs
compared to the PL arm (Supplementary Fig. 2B). The same observa-
tion could be made comparing stage IV melanoma from publicly
available databases with healthy volunteers (HV)42 (Supplemen-
tary Fig. 2A).

When we analyzed the effect of nDC (versus PL) on the RFS
according to the relative abundance of several MGS associated with
survival, using Kaplan–Meier (KM) analysis, we observed that the
presenceof higher relative abundances of commensals associatedwith
recurrence aligned in Fig. 1B and Supplementary Fig. 1B (such as
Gemmiger formicilis, p =0.270, and L. pectinoschiza, p =0.009, Log-
Rank (Mantel Cox) test) (Fig. 3C) and the absence or lowabundances of
bacteria associated with good prognosis (such as F. prausnitzii,
p =0.097, Log-Rank (Mantel Cox) test) (Fig. 3D) were associated with a
poor prognosis in the nDC arm. Of note, many other commensals
appeared irrelevant to predict RFS with or without nDC.

Next, to evaluate if this MG bias also translated into different
MB patterns between the two treatment arms at T1, we re-analyzed
themass-spectrometry-basedMB profiles of PL and DC arms using a
supervised hierarchical clustering (Fig. 4A, Supplementary Data 5).
Strikingly, there was a highly significant bias in the cluster corre-
sponding to primary conjugated biliary acids at T1 (Fig. 4B, p < 0.05
Mann–Whitney) that was confirmed at T2 (Fig. 4C, p = 0.002 and
p < 0.001 Mann–Whitney) in the nDC arm. Another cluster com-
posed of mono-unsaturated and long chain FA separated nDC from
PL groups at T1 (Fig. 4A). To identify whether these perturbations in
BA and FA translated into clinically relevant differences, we com-
pared the most significant concentration differences between 2Y-
noR and 2Y-R in PL and nDC groups for each of these metabolites
and performed RFS KM curves. High levels of acylcarnitines C12:0
and C14:1, as well as linolenic acid were markedly associated with
recurrence in the nDC arm only (Fig. 4D, p < 0.05 Mann–Whitney) in
contrast to the primary BA cholic acid, that was associated with
prolonged RFS (Fig. 4D, p < 0.05, Mann–Whitney, and Fig. 4E,
p = 0.057, Log-Rank Mantel Cox test), but not in the PL arm (Sup-
plementary Fig. 6B).

Hence, despite randomization, patients assigned to the two
treatment arms appeared to differ as to the relative representativity of
F. prausnitzii SGBs and primary BA composition.

Fig. 2 | Longitudinal metabolic patterns showing a shift in lipid metabolism
associated with recurrence at 2 years (2Y-R). A Principal component analysis
(PCA) plot representing the distributionof serummetabolomics (MB)overtime and
according to 2y-R (orange, n = 83) versus no recurrence at 2 years (2y-noR, blue,
n = 56). Circle: 2y-noR atbaseline (T1); triangle: 2y-noR after 4weeksof therapy start
(T2); Square: 2y-R at T1; Crosses: 2y-R at T2. B Volcano-plots based onMB showing
differences (p < 0.05, two-sided Mann–Whitney U-test with no adjustment)
between T1 (green dots, n = 143) and T2 (yellow dots, n = 143) with a cut-off in the
T2/T1 fold change (FC) ≥0.3. Metabolites with T2/T1 FC ≥0.3 with a p < 0.05 were
colored green. X-axis: log2 fold change of metabolites; Y-axis: fold change of
–log10. C Hierarchical clustering of MB according to 2y-noR (n = 56) versus 2y-R
(n = 83) at T1 and T2 and treatment arm. Dark gray: 2y-R at T1; Light orange: 2y-R at
T2; Light gray: 2y-noR at T1; Light blue: 2y-noR at T2. Dark blue: placebo (PL) arm
(n = 47); Dark orange: natural Dendritic Cell (nDC) arm (n = 92). Targeted MB
computed as normalized areas of identified metabolites. Heatmap illustrating the

changes in metabolite abundances according to the median of each metabolite in
the two subgroups of opposite prognosis, highlighting the fatty acids (FA). Rows
are samples, columns are metabolites. Heatmap data are log2 normalized and
centered around the average abundance computed from all the samples for each
metabolite. Red/blue colors are ion signal higher/lower than average and gray are
missing values. Samples are sorted following biological conditions andmetabolites
clustered following the ward.D2 algorithm, with euclidean distance. D Relative
abundance of Carnitine C14:2 (left panel) and Linolenic acid (right panel) in 2y-noR
(blue: n = 56) and 2y-R (orange: n = 83 at T1). Boxplots indicates the interquartile
range Q1 to Q3 with Q2 (median) in the center. The range of outliers is depicted by
whiskers. The p value are related to the group comparison using the two-sided
Mann–WhitneyU-test withno adjustment. ERecurrence-free survival (RFS) analysis
using the Kaplan–Meier estimator (Log-Rank (Mantel Cox) test) to assess low FA
versus high FA (calculated based on the sum of relative abundances of 13 most
significant FA or carboxylic acids) at T1 (left panel) and at T2 (right panel).
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Dynamic and integrative pathways
Using the XGBoost algorithm, coupled to a model explainer based
on SHapley Additive exPlanations (SHAP) values for model

interpretability43, we corroborated that patients assigned to nDC arm
differed from patients in the PL arm as to primary BA and polyamines
(Supplementary Fig. 7).
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Fig. 3 | Significant differences in the microbiota taxonomic profiles at rando-
mization. A Linear model coefficients for microbial SGBs differentially abundant
either in the natural dendritic cell (nDC, n = 56) or placebo (PL, n = 31) arms, cor-
rected for age and gender. Positive values indicate species-level genome bin (SGB)
association with nDC (orange), while negative values indicate a positive association
for the corresponding SGB with PL (blue). Only associations with p ≤ 0.05 are
reported since no association has Benjamini-Hochberg Q <0.2. Refer to Supple-
mentary Data 3 for linear model coefficients (MaAsLin2, coefficient) for microbial
SGBs after arcsine square root (arcsin-sqrt) transformation (AST). Source data are
provided as a Source Data file. B Prevalence of Faecalibacterium prausnitzii, i.e.,
proportion of individuals with its absence between healthy volunteers (HV,

n = 5345), patients into PL arm (n = 31), all patients with melanoma into MIND-DC
trial (MEL, n = 88) and nDC arm (n = 57). The p values are related to the group
comparison using the Chi-square test (p <0.0001). Recurrence-free survival (RFS)
analysis using the Kaplan–Meier estimator (Log-Rank (Mantel Cox) test) to assess
the predictive value of Gemmiger formicilis (C, left panel) and Lachnospira pecti-
noschiza (C, right panel) and F. prausnitzii (D) using relative abundances at T1. The
two groups of patients were defined by reference values of relative abundances
(MetaPhlAn 4) from publicly available HV cohort: high if ≥ median and low if
<median of the metagenomic species’ relative abundance from HV. The numbers
per group are depicted under the plots.
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Fig. 4 | Significant differences inmetabolomics (MB) profiles at randomization.
A Hierarchical clustering of metabolites according to the randomization arm: pla-
cebo (PL, n = 49) versus natural Dendritic Cell (nDC, n = 94) at baseline (T1)). Tar-
geted MB data on serum samples computed as normalized areas of identified
metabolites. Heatmap illustrating the changes inmetabolite abundances according
to the median of each metabolite in the two arms. Rows are samples, columns are
metabolites. Heatmap data are log2 normalized and centered around the average
abundance computed from all the samples for each metabolite. Red/green colors
are ion signal higher/lower than average and missing values are displayed as gray.
Samples and metabolites are cluterized following the ward.D2 algorithm, with
euclidean distance. B Volcano-plots based on metabolomic data showing sig-
nificant (p <0.05) differences between PL (blue dots, n = 49) and nDC (orangedots,
n = 94) with a cut -off in the fold change (FC (DC/Placebo))≥0.5. X-axis: log2 fold
change ofmetabolites; Y-axis: fold changeof –log10. The p valuedeterminedby the
two-sided Mann–Whitney U-test with no adjustment. C Relative abundances of key

metabolites (glycoconjugated primary bile acids) from significant perturbations
detected in (B). between nDC (orange, n = 94) and PL (blue, n = 49) arms at T1 and
T2. Boxplots indicates the interquartile range Q1 to Q3 with Q2 (median) in the
center. The range of outliers is depicted by whiskers. The p value are related to the
group comparison using the two-sided Mann–Whitney U-test with no adjustment.
The exact p values are reported in Supplementary Data 5.DVolcano-plots basedon
metabolite significant differences in the nDC arm at T1 (n = 95) associated with
recurrence (R) (orange, left) versus no recurrence (noR) (blue, right). Metabolites
with FC (R-nDC/noR-nDC)) ≥0.5 and p <0.05 were colored in red dots, while those
with FC (R-nDC /noR-DC) < 0.5 and p <0.05were colored in green dots. X-axis: log2
fold change ofmetabolites; Y-axis: fold change of –log10 P value determined by the
two-sided Mann–Whitney U-test with no adjustment. E Recurrence-free survival
(RFS) analysis using the Kaplan–Meier estimator (Log-Rank (Mantel Cox) test) to
assess the predictive value of Cholic acid abundance at T1.
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Next, we re-analyzed the clinical relevance of all biological and
clinical features to reduce dimension and allow prediction of 2Y-R
taking into account their interactions and their slope of evolution
overtime. We corroborated that primary BA, FA, polyamines and
acylcarnitines as well as a few pathways meaningful in other studies
including tryptophan metabolism, vitamin B3 (trigonelline, 1-methyl-
nicotinamide)were predictors of 2Y-RFS at T1 (Fig. 5A, AUC=0.74; 95%
CI: 0.74–0.77). We confirmed the prognostic and independent impact
of F. prausnitzii SGB15318 atT1 (Fig. 5A). Next, themetabolite evolution
between the two timepoints (T2-T1/T1)was added to the baseline value
(T1) to identify if biomarker drifts could improve the prediction of the
2Y-RFS and if treatment arms influenced this evolution (Supplemen-
tary Fig. 8A–B). The SHAP analysis indicated that the increase of FA
(oleic acid) and acetylated polyamines and the decrease of ornithine
(upstream of the polyamine pathway) and primary BA (glyco-cholic
acid, chenodeoxycholic acid) were associated with an increased risk of
2Y-R (Supplementary Fig. 8A, T2-T1/T1: AUC=0.72 (95%CI: 0.66–0.78).
Even if the trajectory of BA and polyamines was associated with the
prognosis of stage III melanoma, we could not conclude that nDC
significantly alter their levels overtime (Supplementary Fig. 8B,
p =0.088 and p =0.064 respectively). We applied the same analysis
integrating MG and clinical features at T1, but obtaining better pre-
diction at T2 for 2Y-RFS (Fig. 5B, AUC=0.79 (95%CI: 0.71; 0.79)). The
multi-omics integrative model depicted in the circosplot highlights
positive correlations between many of these parameters of dismal
prognosis and anticorrelations between tumor stage and factors
associated with better prognosis such as cholic acid, polyamines and
Ruminococcaceae bacterium SGB14899 at T1 (Fig. 5C).

We next performed Pearson correlations (Supplementary
Fig. 9A–D) between fecal relative abundance of F. prausnitzii
(SGB15318 and SGB15322) and serum MB at T1 and T2 in each treat-
ment arm. The significant metabolites correlating with F. prausnitzii
SGBs were analyzed by metabolic pathway-enrichment analysis per-
formed in MetaboAnalyst using a KEGG database44 (Supplementary
Fig. 9E). Both F. prausnitzii SGBs markedly anticorrelated with many
acylcarnitines, most specifically with medium chain (C6:0, C8:0,
C10:0) and long chain saturated (C14:1) acylcarnitines, as well as
many fatty and carboxylic acids (linoleic and linolenic acids) at T1
and/or T2, mainly in the nDC arm (Supplementary Fig. 9A-D). The 13
serum FA abundance were clinically relevant after 2 injections of
treatment. Indeed, levels above the median at T2 were associated
with earlier recurrence in the nDC arm (p = 0.013, Log-Rank (Mantel
Cox) test) but not in the PL arm (p = 0.640, Log-Rank (Mantel Cox)
test) (Fig. 6A). Low levels of acylcarnitines, i.e., lauroyl-L-carnitine
(C12:0) or myristoylcarnitine (C14:1) at T1 were associated with pro-
longed RFS in the PL arm (Fig. 6B left, p = 0.049 and Fig. 6B right,
p = 0.099, Log-Rank (Mantel Cox) test), with no significant effect in
the nDC arm (Fig. 6B). In fact, taking into account both F. prausnitzii
relative abundance and acylcarnitine estimates, we could identify a
subgroup of nDC-treated patients with improved RFS. Patients in the
nDC arm harboring high relative abundance of F. prausnitzii (F.
prausnitziihigh) and low levels of acylcarnitines (either carnitine
C12:0low or C14:1low) representing up to 37% (22/60) of the nDC arm
exhibited a prolonged RFS (Fig. 6C left, p = 0.011 and Fig. 6C right,
p = 0.034, Log-Rank (Mantel Cox) test). The survival advantage of this
subgroup of individuals based on these two biomarkers could be
generalized to all patients (Supplementary Fig. 10A, B). Supplemen-
tary Fig. 10C, D depicts the effects of distinct SGBs of F. prausnitzii
(SGB15316 and SGB15318 being the most impactful ones).

We conclude that miscellaneous serum soluble biomarkers inde-
pendent of clinical parameters impacted the survival of this cohort of
stage III melanoma, that may not be directly inferred to the nDC
treatment, including F. prausnitzii strains, FA, acylcarnitines, BA and
polyamines.

Discussion
This ancillary prospective study attempted to infer a prognostic
impact of serum biomarkers analyzed at two time points in the treat-
ment efficacy of nDC vaccination. Due to treatment failure and to
relatively small subgroup of patients, it aims at drawing new hypoth-
esis on how systemic pathological deviations in the host-microbiome
interaction may be clinically relevant. We conclude that, despite the
randomization process, a bias was inadvertently introduced in the
MIND-DC trial with the nDC treatment arm skewed at baseline towards
a relative under-representation of health-associated commensals,
dominated by but not limited to distinct SGBs of F. prausnitzii32,45. This
bias also translated into a relative increase of the conjugated primary
BA in the nDC arm (comparedwith the PL arm), likely at the expenseof
the unconjugated BA (namely cholic acid harboring a favorable prog-
nostic value). Interestingly, the F. prausnitzii SGBs anticorrelated with
fatty and carboxylic acids, as well as acylcarnitines, especially in the
nDC arm. Last but not least, both F. prausnitzii and FA metabolites
(acylcarnitines) cooperated to predict RFS in the whole cohort, iden-
tifying a subset of patients with better prognosis in the nDC arm.

This unexpected randomization bias was not due to artefactual
deviations in serum sample storage or freezing troubleshooting with
center of enrollment (Zwolle versus Nijmegen) effects or co-
medications to the best of our appreciation. F. prausnitzii is one of
themainmembersof the Faecalibacteriumgenuswithin the Firmicutes
phylum, described as a health-related gut homeostatic bacterium46.
Defects in the relative abundance of F. prausnitzii have also been
associated with an increased risk of post-operative recurrence of
Crohn disease47. F. prausnitzii exerts anti-inflammatory effects both
in vitro and in vivo in specific pathogen-free and gnotobiotic mice
subjected to experimental acute colitis34,48–50. The health-beneficial
effects of F. prausnitzii stem from various mechanisms affecting the
epithelial barrier, the local and systemic metabolism, and the immune
system. F. prausnitzii can stimulate goblet cells to produce mucus
glycans, dampens the activation of the NF-κB pathway through the
secretion of a 15 kDa soluble microbial anti-inflammatory molecule51,
as well as several metabolites (including short-chain fatty acids52,53, 4-
Hydroxy-butyrate54, the anti-inflammatory shikimic and salicylic acids,
and the osmoprotective raffinose54). Importantly, the human colonic
mucosa contains F. prausnitzii-specific regulatory type 1-like IL-10-
secreting and Foxp3-negative T cells that are characterizedby a double
expression of CD4 and CD8α (DP8α) endowed with potent anti-
inflammatory functions55. The adoptive transfer of a HLA-DR*0401-
restricted DP8α Treg clone combined with F. prausnitzii oral supple-
mentation conferred a protective effect against acute colitis in HLA-
DR*0401 transgenic NSG model55. F. prausnitzii directly acted on
antigen presenting cells (APC), inducing DC to express anti-
inflammatory mediators (such as IL-10, IL-27, CD39, IDO-1, and PDL-
1) reducing overt TLR4 signaling35. We surmise that these homeostasis-
promoting effects of F. prausnitzii are seminal to prevent or compen-
sate for the cancer-associated stress ileopathy observed in patients
diagnosed with solid tumors56. Indeed, the β2 adrenergic receptor-
dependent ileal atrophy described in tumor-bearingmice and patients
culminates in intestinal dysbiosis (dominated by the Enterocloster
genus) that contributes to tumor incidence and severity56.

Besides maintaining homeostasis, F. prausnitzii was correlated
with the immunostimulatory effects of ICI, increasing blood
ICOS+CD4+ T cells and sCD25 serum levels aswell as reprogramming of
the tumormicroenvironment28,30. Of note, F. prausnitzii could increase
α-ketoglutarate release54 that in turn, was shown to induce PDL-1 and
to synergize with anti-PD-1 antibody57. F. prausnitzii might also exert
direct cytostatic activity on tumor cells in vitro. Its supernatant could
inhibit the autocrine secretionof IL-6 and thephosphorylationof JAK2/
STAT3 in the breast cancer cell lineMCF-758. This effectwas ascribed to
F. prausnitzii metabolites. In a study comparing stool MG and serum
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Fig. 5 | Machine learning (ML, XGBoost) algorithm to identify biomarkers and
their interaction predicting recurrence in patients with stage III melanoma.
A ML model summary. Features are clinical parameters and metabolomics (MB) +
metagenomics (MG) monitored in serum and feces, respectively, at T1 (n = 88
patients). SHapley Additive exPlanations (SHAP) values for each feature per patient
are positive when the value of the feature increases the prediction of recurrence,
negative otherwise. Each dot represents one patient and the color represents the
value of each feature. The importanceof the feature is depictedwith the number on

the left column. BML performance using Boruta feature selection algorithm based
on XGboost for 2Y-R prediction. Representation of the Area Under the ROC Curve
(AUC) values for each treatment arm and feature (clinical, MB or MGS parameters)
according to T1, T2 and T2-T1 slope of the trajectory. ROC: receiver operating
characteristic. C Circosplot indicating correlations between common features
described in (A, B), thickness of lines indicating an increasing positive (pink) or
negative (blue) correlation.

Article https://doi.org/10.1038/s41467-024-45357-1

Nature Communications |         (2024) 15:1633 9



MB in 50 patients diagnosed with breast malignant or benign nodules,
the authors showeda significant reduction in the relative abundanceof
F. prausnitzii in the breast cancer group. The MB profiles of patients
with breast cancer differed from that of controls in the linoleic acid
metabolism, and biosynthesis of unsaturated FA58. F. prausnitzii was
also negatively correlated with the levels of phospholipid metabolites,
such as 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine, 1-Oleoyl-
sn-glycero-3-phosphocholine and sphingomyelin.

In fact, accumulating evidence points to a role of F. prausnitzii in
regulating lipidmetabolism. FA are involved in energymetabolism and
cell membrane structural components involved in wound healing and
cancer cellmetabolism59. In tumor tissues, free FA areesterified to fatty

acyl-CoAs and then transported into themitochondria by the carnitine
shuttling, while in normal tissue, they undergo beta-oxidation as fatty
acyl-CoAs to feed into the TCA cycle60,61. Patients with Nonalcoholic
fatty liver disease (NAFLD) exhibit a decreased relative abundance or
prevalence of F. prausnitzii compared with HV62. Approximately
20–80% of NAFLD patients have dyslipidemia63. Treatment with dis-
tinct F. prausnitzii strains reversed dyslipidemia symptoms in NAFLD
mice53. Oral gavage with F. prausnitzii in high fat diet-treated mice
appeared to increase FA oxidation and adiponectin signaling in liver
and increased adiponectin expression in visceral adipose tissue64. Gas
chromatography analysis of hepatic lipid classes revealed a drop in
several FA (such as stearic acid, arachidonic acid, eicosapentaenoic
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Fig. 6 | Patient recurrence-free survival (RFS) according to Faecalibacterium
prausnitzii and fatty acids. A RFS analysis using the Kaplan–Meier (KM) estimator
(Log-Rank (Mantel Cox) test) to assess the predictive value of low abundance of
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nitzii at T1. The numbers per group are depicted under the KM plots.
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acid, and docosahexanoic acid) in F. prausnitzii-treated mice64. Our
findings highlight the potential critical impact of lipid metabolism in
melanoma aggressiveness65,66. The contribution of adipose tissue and
lipid metabolism, in particular glycerophospholipids, sphingolipids,
sterols and eicosanoids in melanoma plasticity has been reviewed67.
There is a de novo synthesis (of cholesterol, glycerophospholipids,
sphingolipids, droplets of neutral lipids), an elongation and desatura-
tion of FA cells as well as importation of FA from neighboring adipo-
cytes that can fuel FA β-oxidation in mitochondria of melanoma cells.
De novo lipogenesis together with hypoxia and driver mutations
cooperate in melanoma cells to meet their energetic demands. In
addition to cell intrinsic pathways, melanoma cells secrete the immu-
nosuppressive PGE2 and the S1P lipids to escape cancer immuno-
surveillance. Lipid metabolites have a major impact on APC and
macrophages. Macrophages are a rich source of bioactive lipids,
including FA and their oxygenated forms, oxylipins, following incor-
poration of lipoproteins or non-esterified FA bound to albumin as well
as phagocytosis and efferocytosis. Saturated FA and oxylipins strongly
contribute to type 1 inflammation by macrophages (associated with
their tumoricidal and proinflammatory phenotype) while IL-4 -medi-
ated M2 polarization tends to dampen FA and oxylipin synthesis68.
Inhibition of FA synthesis by DC, albeit reducing their differentiation,
enhanced their T cell stimulatory capacities, inducing an endoplasmic
reticulum stress response associated with MHC class II, costimulatory
molecule and cytokine expression69. Further, blockade of FA synthesis
increased the DC/NK cell cross-talk leading to IFNγ secretion69. Two
other studies demonstrated that saturated FA activated TLR4, whereas
n-3 and n-6 polyunsaturated FA inhibited LPS activation, resulting in
altered DC surface molecule expression of CD40 and reduced TNF-α
or IL-12p40 release70,71. Finally, the liver could also be a source of FA
and account for BA deregulation. In addition to absorbing circulating
FA, hepatocytes synthesize FA from dietary carbohydrates that reach
the hepatocytes via the portal vein72. The enterohepatic recirculation
of BA exerts important regulatory effects onmany hepatic, biliary, and
intestinal functions. Dysbiosis can modulate biliary salt composition,
leading to a downregulation of MAdCAM-1 and the exodus of immu-
nosuppressive enterotropic T cells promoting tumor growth73.

Hence, our findings allow to postulate that patients with stage III
melanoma of dismal prognosis harbored major deviations in lipid
metabolism at diagnosis, likely originating from a diseased enter-
ohepatic axis, that corrupted the immunostimulatory potential and/or
exacerbated the tolerogenic functions of autologous nDC in certain
patients. These data support the use of distinct biomarkers belonging
to specific pathways (listed in the circosplot Fig. 5C) for patient stra-
tification. Prospective trials assessing immunotherapy strategies in
melanoma patients should validate the clinical relevance of these
biomarkers.

Methods
The MIND-DC trial (NCT02993315) complies with all relevant ethical
regulations (Dutch Central Committee on Research Involving Human
Subjects).

Ethics approval and consent to participate
The study design and conduct complied with all relevant regulations
regarding the use of human study participants and was conducted in
accordance with the criteria set by the Declaration of Helsinki. Written
informed consent was obtained from all patients. Consent to publish
clinical information potentially identifying individuals was obtained
(age and gender).

Medical centers
The MIND-DC trial (NCT02993315) was performed in 2 centers in the
Netherlands (Radboud University Medical Center, Nijmegen and Isala,
Zwolle).

Trial design
Double-blind, randomized, placebo-controlled phase III clinical trial.
Patients with resected stage IIIB and IIIC cutaneous melanoma were
randomized in a 2:1 ratio to nDC or PL. Patients received either intra-
nodal injections of nDC (3–8 × 106/injection) or PL every
2 weeks (biweekly) for 3 doses (one cycle), repeated after 6 and
12 months. The primary endpoint was the 2Y-RFS. One patient was
excluded due to insufficient follow-up to avoid censoring bias using
binary classifiers. Treatment was stopped in case of disease recurrence
(including both loco-regional and distant metastases), unacceptable
toxicity, or withdrawn from the study. Details are described in a
separate manuscript27. Of note, dietary habits and life style -related
pieces of information were not collected at the time of protocol con-
ception, restraining some important correlations with MG and MB
results.

Dendritic cell isolation and vaccine preparation
Patients in the nDC arm were vaccinated with autologous nDC loaded
with tumor peptides and overlapping peptide pools. Cells were har-
vested by apheresis and conventional and serumcytoid DC were iso-
lated with the fully automated and enclosed immunomagnetic
CliniMACS Prodigy® isolation system (Miltenyi Biotec). nDC were
pulsed with MACS® GMP-grade PepTivators®, overlapping peptide
pools of theCTAMAGE-A3 andNY-ESO-1 (Miltenyi Biotec) covering the
sequence of the entire antigen, and a mix of fourteen peptides of TAA
gp100 and tyrosinase and CTA MAGE-C2, MAGE-A3 and NY-ESO-1 (all
Leiden University Medical Center, Leiden, the Netherlands) and
matured with protamine/mRNA (Meda Pharma, Amstelveen, the
Netherlands and Universitätsklinikum Erlangen, Erlangen, Germany).

Collection of stool and blood samples
Stool samples were prospectively collected at different time points: at
the day of the first (T1) and the third (T2) injection (first cycle) at each
center following the International Human Microbiome Standards
(IHMS) guidelines. Both T1 and T2 samples were considered for this
analysis. Blood samples were collected at the same timepoints.

Metagenomics analysis of patient stools
Overall, 185 fecal samples from93patients were sequencedwithwhole
genome sequencing technology. Aliquots of stool sampleswere stored
with DNA/RNA Shield Buffer (Zymo) at –20 °C until use. DNA was
extracted from aliquots of fecal samples using the DNeasy PowerSoil
ProKit (Qiagen) following themanufacturer’s instructions. Sequencing
libraries were prepared using the Illumina® DNA Prep, (M) Tagmenta-
tion kit (Illumina), following the manufacturer’s guidelines. A cleaning
step on the pool with 0.7x Agencourt AMPure XP beads was imple-
mented. Sequencing was performed on a NovaSeq 6000 S4 flow cell
(Illumina) at the internal sequencing facility at University of Trento,
Trento, Italy. Raw sequenced reads were QCed using the pipeline
available at https://github.com/SegataLab/preprocessing. Briefly, low-
quality reads (Q < 20), short reads (< 75 bp), and reads with at least 2
ambiguous bases were discarded. Then, host DNA contaminants were
removed (hg19 and phiX174 Illumina spike-in). We then obtained an
average of 48 million reads per sample. Twelve samples did not pass
internal control and were excluded from the analysis. For each meta-
genome we profiled the taxonomic and functional potential compo-
sitions with MetaPhlAn 4(database vJan21)33 and HUMAnN 3.674,
respectively. For alpha and beta-diversity, we computed the per-
sample Shannon index75 and the between-samples Bray-Curtis dis-
similarities using the implementation available in the Vegan R
package76. Differences in the distributions of alpha and beta diversity
for samples collected at diagnosiswith respect to recurrence at 2 years
were then evaluated using Wilcoxon rank sum test77. To test for dif-
ferential abundanceaccording to recurrence, recurrence at 2 years and
treatment, we fitted a generalized linear model for each microbiome
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feature via the MaAsLin2 R package78. Microbial features are first AST
or CLR transformed. Adjusted P-values (Q) are computed via the
Benjamini-Hochberg procedure to control for False Discovery Rate
(FDR). Prevalence threshold in the differential abundance analysis was
set in order to guarantee a minimum number of positive samples in
each comparison. In particular, when testing for 2yR and treatment at
baseline, we considered a prevalence threshold of 10%, while 30% was
used when testing for 2yR, considering each treatment arm indepen-
dently. We tested for differential abundance SGBs between T1 and T2
via a Wilcoxon signed-rank test considering each treatment arm and
2y-noR/2y-R combination independently. Only SGBs that were present
in at least 10 samples in one of the time points are considered in this
analysis.

Metabolomics analysis
Serum sample preparation and widely targeted detection by LC-MS.
Fifty (50) µl of collected sera were mixed with 500 µl of ice-cold
extraction mixture (methanol/water, 9/1, −20 °C, with labeled internal
standard). To facilitate endogenous metabolites extraction, samples
were then completely homogenized (vortexed 5min at 2500 rpm) and
then centrifuged (10min at 15,000g, 4 °C). Supernatants were col-
lected and several fractions were split to be analyzed by different
Liquid chromatography coupled with mass spectrometers (LC/MS)79.
Polyamines and biliary acids analysis were performed by LC-MS/MS
with a 1290 UHPLC (Ultra-High Performance Liquid Chromatography)
(Agilent Technologies) coupled to aQQQ6470 (Agilent Technologies).
Regarding polyamines analysis, gas temperaturewas set to 350°Cwith
a gas flowof 12 l/min. The capillary voltagewas set to 2.5 kV. Ten (10)μl
of sample were injected on a Column Kinetex C18 (150 mm × 2.1 mm
particle size 2.6 µm) from Phenomenex, protected by a guard column
C18 (5 mm × 2.1 mm) and heated at 40°C by a Pelletier oven. The
gradient mobile phase consisted of water with 0.1% of Hepta-
fluorobutyric acid (HFBA, Sigma-Aldrich) (A) and acetonitrile with 0.1%
of HFBA (B) freshly made. The flow rate was set to 0.4 ml/min, and
gradient as follows: initial condition was 95% phase A and 5% phase B.
Molecules were then eluted using a gradient from 5% to 30% phase B
over 7 min. The column was washed using 90% mobile phase B for
2.25 minutes and equilibrated using 5% mobile phase B for 4 min. The
autosampler was kept at 4 °C. Regarding biliary acids analysis, gas
temperature was set to 310 °C with a gas flow of 9 L/min. Capillary
voltage was set to 4.5 kV. Ten (10) μl of sample were injected on
a Column Poroshell 120 EC-C8 1200bars (P/N 981758-902, 100 mm ×
2.1 mm particle size 1.9 µm) from Agilent technologies, protected by a
guard column XDB-C18 (5 mm × 2.1 mm particle size 1.8 μm)
and heated at 40°C by a Pelletier oven. Gradient mobile phase con-
sisted of water with 0.2% of formic acid (A) and acetonitrile/iso-
propanol (1/1; v/v) (B) freshly made. Flow rate was set to 0.5 mL/min,
and gradient as follow: initial condition was 70% phase A and 30%
phase B, changing to 38% phase B over 2 minutes. Phases proportion
was still over 2 minutes, then molecules were eluted using a gradient
from38% to60%phase Bover half aminute. Columnwaswashed using
98% mobile phase B for 2 minutes and equilibrated using 30% mobile
phase B for 1.5 min. Autosampler was kept at 4 °C. Pseudo-targeted
analysis by UHPLC-HRAM (Ultra-High Performance Liquid Chromato-
graphy—High Resolution Accurate Mass) was performed on a U3000
(Dionex)/Orbitrap q-Exactive (Thermo) coupling, previously
described80,81. All targeted treated data were merged and cleaned with
a dedicated R (version 4.0) package (@Github/Kroemerlab/GRMeta).

Data processing and statistical analysis. Raw data were pre-
processed and analyzed with R using the GRMeta package (@Github/
Kroemerlab/GRMeta). This software included statistical analysis using
a multivariate method approach, as PCA, Heatmap and data visuali-
zation, as volcano plots. Area intensity levels were corrected with a
quality control pooled sample-based algorithm and normalized area
were then log2-transformed prior to heatmaps, boxplots and volcano

plots visualizations. A total of 152metabolites were finally analyzed for
serum samples at T1 and at T2. The best significant metabolites were
presented with boxplots with metabolite levels log scaled.
Mann–Whitney U-test with no adjustment were conducted on data
gathered by two groups on processed data with R. In cases when data
treatments were performed on more than two groups of patients,
Kruskal-Wallis test followed by a Dunn’s test with no adjustment were
used on processed data. Pearson correlation analysis was applied on
log2 transformed data from metabolite normalized profiles and rela-
tive abundances of F. prausnitzii SGB15318 and SGB15322. Relevant
metabolites correlating with F. prausnitzii SGBs were selected and
analyzed by enrichment functional analysis with Metaboanalyst
(https://www.metaboanalyst.ca) using the KEGG Database44 for sig-
nificant metabolites annotation and visualization.

Statistical analysis
Data analyseswere performedwith the Prism 10 (GraphPad, SanDiego,
CA, USA) and the R software. Prism always reports p-values to four
decimal places. The prevalence of MGS was calculated usingmicrobial
relative abundances (MetaPhlAn 4) and considered absent if relative
abundance equal to 0 and present if relative abundance superior to 0.
Chi-square test was used for comparison of unpaired groups, con-
sidered significant at p < 0.05. For MGS, two groups of patients were
definedby reference values of relative abundances (MetaPhlAn4) from
publicly available HV cohort42: high if ≥median and low if <median of
theMGS relative abundance fromHV. For keymetabolites, two groups
of patients were defined by its abundancemedian in the overall MIND-
DC cohort: high if ≥ median and low if <median. RFS analysis were
performed using KM estimator. As the analysis of compositional data
can lead tomisleading results due to spurious correlation, we used the
CLR transform to project the MGS relative abundances from the sim-
plex to the more usual Euclidean space using the clr function of the
compositions R package.

Longitudinal analysis. The analysis of the metabolite or CLR
transformed microbial SGB evolution between T1, MT1, and T2, MT2,
was performed using the following linear regression adjusted for the
clinical covariables X (age, sex, BMI, stage, and ECOG-PS), considering
MT2 as response and MT1 as offset: MT2 =MT1 + β0 +βDC +βX . The
intercept β0 represents evolution ofM (MT2 �MT1) in the PL arm, and
βDC represents the impact of the nDC (i.e., the difference of the evo-
lution between the two arms). The Wald test p values of β0 and βDC

were provided and considered as statistically significantwhenp <0.05.
The evolution in the nDC arm was estimated by β0 reversing the arm
reference (i.e., from the model MT2 =MT1 +β0 +βPL +βX).

Machine Learning. AllMLmodelsweredevelopedusingR. Feature
selection and prediction were based alternatively on two different
outcomes: the 2Y-R and treatment arm (nDC versus PL arms). For each
type of outcome, three datasets per omic (clinical features only, MB,
MG,orMBandMG)were defined from the timepoint thatwas used: T1,
T2, and T2-T1/T1 (pre treatment + evolution until T2 i.e., T2-T1) and a
third dataset constructed by joining T2-T1 and T1 values. For each
model, clinical features were always included in both feature selection
and prediction phases. The ML pipeline is based on a first step of
feature selection using Boruta feature selection algorithm based on
eXtreme Gradient Boosting (XGboost) algorithm82 to identify most
relevant features among clinical and biological markers (both in MB
and/or MG). A second step consisted in re-training themodel from the
subset of selected features re-including clinical variables in order to
control potential confounding bias. A last fit of the model using
selected biomarkers was applied on our training data, enabling the
model to prepare for future label predictions on new data. For the
multi-omics model, we performed a second step of feature selection
from the metabolites and MGS selected in each omics in the first step
(+clinical variables) to obtain our final model. Missing values of
metabolites were imputed using the multiple imputation by chained
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equations (MICE) method using the mice R package83. We performed
50 imputations with 50 iterations to capture the uncertainty of the
imputation procedure. The feature selection procedure described
above was repeated using the 50 imputed datasets, and the metabo-
lites selected in more than 75% of these 50 iterations were retained for
the final step (assuming that they are robust to the randomness of the
imputation). A single last imputation was performed to retrain the
model in the final step. The model explainer of the different final
model was based on the Shapley Additive exPlanations (SHAP) analy-
sis, which is a visualization tool based on the following construction:
SHAP values are weights associated to features for each patient,
positive when the value of a marker for this patient tends to increase
the prediction as class 1 (2Y-R), negative otherwise (2Y-noR). Themore
the absolute value of SHAP value increases, the more the feature is
likely to impact the prediction (as class 1 if SHAP_value > 0, class 0
otherwise). SHAP values are thus positive or negative continuous
values.

Correlations betweenbiomarkerswereanalyzed via themixOmics
package in R84, using the DIABLO multiblock sPLS-DA method to dis-
play explanatory relationship between pathways and then displayed
into a circosplot. The prediction performance of the whole model
pipeline (feature selection to model fitting) was evaluated using the
bootstrap optimism corrected area under the receiver operating
characteristic (AUROC) curve. Due to the lack of external validation
cohort, the optimism of the AUROC was corrected using the 0.632+
bootstrap method85. The confidence interval of these optimism cor-
rected AUROC was obtained using two-stage bootstrap methods
proposed by ref. 86 (50 internal samples, 500 external samples). The
0.632+ estimators are displayed on each figure.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheMetagenomics data generated in this study have been deposited
in the European Nucleotide Archive (ENA) database under accession
code PRJEB66197. The Metabolomics data generated in this study
have been deposited in theMendeley Data database under accession
code DOI 10.17632/nzb653783h.1 [https://data.mendeley.com/
datasets/nzb653783h/1]87. Further individual participant clinical
trial data are available under restricted access for privacy and ethical
restrictions, access can be obtained by contacting the corresponding
author of the companion paper27 (Dr. I. Jolanda M. de Vries, e-mail
address Jolanda.deVries@radboudumc.nl). Data requests will be
reviewed by the principal investigators of the trial. Any data and
materials that can be shared will require approval from the Institu-
tional Review Board and a data or material transfer agreement. The
remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.
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