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UPP1 promotes lung adenocarcinoma
progression through the induction of an
immunosuppressive microenvironment

Yin Li 1,6, Manling Jiang2,6, Ling Aye3,6, Li Luo2,6, Yong Zhang4, Fengkai Xu1,
Yongqi Wei1, Dan Peng2, Xiang He 2, Jie Gu1, Xiaofang Yu5, Guoping Li2 ,
Di Ge1 & Chunlai Lu 1

The complexity of the tumor microenvironment (TME) is a crucial factor in
lung adenocarcinoma (LUAD) progression. To gain deeper insights into
molecular mechanisms of LUAD, we perform an integrative single-cell RNA
sequencing (scRNA-seq) data analysis of 377,574 cells from 117 LUAD patient
samples. By linking scRNA-seqdatawith bulk gene expressiondata, we identify
a cluster of prognostic-related UPP1high tumor cells. These cells, primarily
situated at the invasive front of tumors, display a stronger associationwith the
immunosuppressive components in the TME. Our cytokine array analysis
reveals that the upregulation of UPP1 in tumor cells leads to the increased
release of various immunosuppressive cytokines, with TGF-β1 being particu-
larly prominent. Furthermore, this UPP1 upregulation also elevates the
expression of PD-L1 through the PI3K/AKT/mTOR pathway, which contributes
to the suppression of CD8 + T cells. Cytometry by time-of-flight (CyTOF)
analysis provides additional evidence of the role of UPP1 in shaping the
immunosuppressive nature of the TME. Using patient-derived organoids
(PDOs), wediscover that UPP1high tumors exhibit relatively increased sensitivity
to Bosutinib and Dasatinib. Collectively, our study highlights the immuno-
suppressive role of UPP1 in LUAD, and these findingsmay provide insights into
themolecular features of LUADand facilitate the development of personalized
treatment strategies.

Lung cancer remains the primary cause of cancer-related deaths
globally, with lung adenocarcinoma (LUAD) being its most dominant
histological subtype1,2. Despite considerable progress in therapeutic
approaches for LUAD, particularly with the introduction of immu-
notherapy, the prognosis remains less than favorable for a substantial
number of patients3. Challenges such as the heterogeneity of the
tumor microenvironment (TME), acquired resistance to treatments,

and discrepancies in patient responses further complicate the ther-
apeutic landscape4,5. This highlights the need for personalized treat-
ment strategies and a deeper understanding of the molecular
mechanisms to enhance patient outcomes.

The LUAD TME is a complex and multifaceted cellular environ-
ment, composed of a diverse array of cell types, including tumor cells,
immune cells like T cells, B cells, and macrophages, as well as
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endothelial cells and fibroblasts6. Within this environment, tumor cells
engage in complex interactions with surrounding immune and stromal
cells. These inter-cellular interactions are central to the initiation,
development, and eventual prognosis of the tumor, fostering an
immunosuppressive environment that inhibits the immune response
against the tumor7. This dynamic within the TME has profound impli-
cations for therapeutic strategies, especially immunotherapies,
emphasizing the importance of understanding these interactions to
enhance the efficacy of cancer treatments8,9.

Uridine phosphorylase 1 (UPP1) plays a vital role in uridine meta-
bolism, maintaining homeostasis and aiding pyrimidine salvage10. It
cleaves uridine to uracil and ribose-1-phosphate (R1P), supporting
glycolysis, especially when nutrients are limited11. In tumors with low
glucose, UPP1 utilizes ribose from uridine to sustain tumor cell meta-
bolism, enhancing their growth and survival12. Recent research on
UPP1’s role in LUAD have shown its capacity to modulate tumor cell
sensitivity to glycolysis inhibitors, thereby driving glycolytic pathways
and enhancing tumor growth13. Interestingly, evidence also suggests
that inhibiting UPP1 enhances the infiltration of anti-tumor T cells12.
Furthermore, Wang et al. uncovered a close association between UPP1
and immune checkpoints within the TME, suggesting a potential link
between UPP1 and the TME14. However, the exact role of UPP1 within
the LUAD TME and its potential influence in shaping it remain to be
elucidated.

In this work, we conduct an integrative single cell RNA sequencing
(scRNA-seq) data analysis for LUAD, uncovering a cluster of
prognostic-related UPP1high tumor cells. Using multiplex immuno-
fluorescence staining on patient samples from LUAD, we show that
UPP1high tumor cells predominantly localize at the invasive front of the
tumor. In addition, we reveal that upregulation of UPP1 in tumor cells
influences the release of immunosuppressive cytokines and the
expression of PD-L1. Further cytometry by time-of-flight (CyTOF)
analysis substantiates that upregulation of UPP1 in tumor cells con-
tributes to the shaping of an immunosuppressive TME. These findings
may provide more insights into the molecular features of LUAD and
help facilitate the development of personalized treatment strategies.

Results
Integrative single-cell RNA sequencing data analysis identifying
UPP1high tumor cells and the association of UPP1 with patient
prognosis
To investigate the tumor microenvironment (TME) features of LUAD,
we integrated five independent single-cell RNA sequencing (scRNA-
seq) datasets of LUAD (Fig. 1a, Supplementary Fig. 1a, and Supple-
mentary Data 1). After a series of data quality control measures,
including data integration, normalization, and batcheffect removal15,16,
a total of 117 patient samples and 377,574 cells were included for
subsequent analysis (Fig. 1b, and Supplementary Fig. 1b). Unbiased
dimensionality reduction and clustering of these cells led to the
identification of eight major cell populations based on the expression
of classical marker genes, including T cells, NK cells, B cells, myeloid
cells, mast cells, fibroblasts, endothelial cells, and epithelial cells
(Fig. 1c, and Supplementary Fig. 1c–g). Within the epithelial cell
population, the inferCNV algorithm17 was utilized to identify tumor
cells, resulting in a total of 49,113 tumor cells for further analysis
(Supplementary Fig. 1h).

Further dimensionality reduction and clustering were applied to
the major cell populations, and this analysis revealed distinct sub-
populationswithin themajor cell types, including 9 sub-populations of
CD4 + T cells, 6 sub-populations of CD8 +T cells, 5 sub-populations
of NK cells, 3 sub-populations of dendritic cells, 9 sub-populations of
macrophages, 2 sub-populations of mast cells, 9 sub-populations of B
cells, 8 sub-populations of fibroblasts, 6 sub-populations of endothe-
lial cells, and 20 sub-populations of tumor cells (Fig. 1d, e and Sup-
plementary Fig. 2). Cell sub-populations from different cohorts were

evenly distributed, indicating the effectiveness of data integration and
the biological representativeness of the identified cell sub-populations
(Supplementary Fig. 3, and Supplementary Data 2).

Cell-type profiles derived from scRNA-seq data can be linked with
bulk transcriptomes and can reflect cancer clinical outcomes18. To
explore the association between the identified tumor cell sub-
populations and the clinical outcomes of LUAD patients, we com-
puted the relative cell abundances of these tumor cell sub-populations
based on their specific marker genes (Log2FC > 1 and adjusted
p <0.05) using the single sample Gene Set Enrichment Analysis
(ssGSEA) algorithm19 in three independent bulk datasets (bCohort)
encompassing 1529 patients (Supplementary Data 1). We then con-
ducted a prognosis analysis correlating these tumor cell abundances
with the overall survival (OS) of the LUAD patients (Supplementary
Fig. 4a). This analysis revealed that seven cell populations exhibited a
significant correlation with poorer patient outcomes, including tumor
cell cluster 3 (highly expressing S100A2), cluster 8 (TK1), cluster 10
(PTTG1), cluster 12 (IGFBP5), cluster 13 (ISG15), cluster 16 (UPP1),
cluster 17 (IL13RA2) (Fig. 1f and Supplementary Fig. 4b). Consistent
with previous studies, the genes highly expressed in these prognostic-
related cell populations (Supplementary Fig. 5a, b) have also been
reported to be notably associated with the progression and prognosis
of LUADpatients20–24. However, it’s noteworthy that the role of UPP1 in
LUAD is relatively less studied, and its involvement in tumor progres-
sion is not yet fully elucidated. Thus, we specifically focused on the
UPP1high tumor cell population and the role of UPP1 in the context
of LUAD.

Functional enrichment analysis of the UPP1high tumor cell popu-
lation demonstrated these cells were related to cancer-related biolo-
gical processes, including Tumor_Invasiveness, PI3K/AKT/
mTOR_signaling_pathway, MYC_targets, MAPK_signaling_pathway, as
well as TGFβ_signaling_pathway. Additionally, there is a notable con-
nection with tumor immunity-related biological processes, such as
Inflammatory_Response and Regulation_of_Immune_Responses (Sup-
plementary Fig. 5c, and Supplementary Data 4). Subsequently, we
calculated the average functional enrichment score for the significant
biological processes enriched in this UPP1high tumor cell population. By
correlating this with the top 10 highly expressed genes in this group of
cells, we aimed to determinewhich genemost prominently defines the
functional characteristics of this cell group. This analysis revealed that
UPP1 exhibited the strongest correlation with the functional enrich-
ment scores of these cells, highlighting its pivotal role in the functional
attributes of this cell population (Fig. 1g).

Subsequently, utilizing our tissue microarray (TMA) cohort from
Zhongshan Hospital, which encompassed 205 LUAD patients, we
conducted immunohistochemistry staining for UPP1. The expression
of UPP1 in tumor cells was then analyzed using the AI-based software,
Aipathwell25,26. Our data indicated that elevated UPP1 expression was
inversely correlated with both overall survival (OS) and recurrence-
free survival (RFS) among LUAD patients (Fig. 1h, i, Supplementary
Fig. 5d, e, and Supplementary Data 5). Additionally, based on the
proteomic resources for LUAD patients provided by Xu et al.27, we
assessed the relationship between UPP1 expression and patient out-
comes (Supplementary Fig. 5f). In this cohort, patients with higher
UPP1 protein levels also exhibited comparatively poorer prognosis.
Notably, the expression of UPP1 also exhibited a correlation with the
histological differentiation grade of the malignancy. Taken together,
thesefindings highlight the pivotal role of UPP1 as a prognosticmarker
in LUAD.

UPP1high tumor cells are associated with the immunosuppressive
tumor microenvironment
To assess the interactions of UPP1high tumor cells with other cells in the
TME, we analyzed their co-enrichment patterns with other cell popu-
lations based on the correlation values between the frequency of
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UPP1high tumor cells and other cell populations across tumor samples28.
This analysis showed that the presence of UPP1high tumor cells was
significantly positively associated with FOXP3+ regulatory T cells
(Tregs), MMP11+ cancer-associated fibroblasts (CAFs), LAG3 +
PDCD1 +CD8+ exhausted T cells, and M2-like SPP1+ macrophages
(Supplementary Fig. 6a–e). Notably, these four cell populations are
recognized for their role in promoting tumor progression and their
close association with the immunosuppressive nature of the TME29–32.
A validation in the bulk datasets also revealed that UPP1high tumor cells
exhibited a strong correlation with these four cell groups (Supple-
mentary Fig. 6f, g). To gain a better understanding of the interactions
betweenUPP1high tumor cells and these four cell populations within the

TME, we used the CellphoneDB analysis33 for inter-cellular commu-
nication network evaluation. This analysis confirmed the mutual
interaction relationships between UPP1high tumor cells and the afore-
mentioned four cell populations (Supplementary Fig. 6h).

The CellphoneDB analysis of ligand-receptor pairs showed that
the interaction networks between UPP1high tumor cells and FOXP3+
Tregs/LAG3 + PDCD1 +CD8+T cells were involved with numerous
immune checkpoints, includingCD274/PDCD1LG2_PDCD1, FGL1_LAG3,
and NECTIN_TIGIT. Also, IL2_IL2_receptor, TGFB1_TGFbeta_receptor2/
TGFB1_TGFBR3 ligand-receptor interactions were enriched. The inter-
actions with MMP11+CAFs were associated with FGFs_FGFRs,
PDGFD_PDGFRB, VEGF_NRPs/KDR, and TGFB1_integrin_aVb6_complex.
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The interplay between UPP1high tumor cells and SPP1+ macrophages
was linked with a variety of chemokines, including CCL2_CCR2,
CCL3_CCR5, CXCL3_CXCR2, and CXCL8_CXCR1, as well as interactions
such as IL1B_IL1_receptor and TGFB1_TGFbeta_receptor1 (Supplemen-
tary Fig. 7a). These diverse intercellular interactions suggested that
UPP1high tumor cells, together with these cell groups, potentially con-
tribute to an immune-suppressive TME,which could be associatedwith
unfavorable prognosis of LUAD patients.

To further investigate the impact of UPP1high tumor cells and their
associated cell groups on the prognosis of LUAD patients, we con-
structed a UPP1-related TME module based on the marker genes of
these five cell populations (Supplementary Fig. 7b). The UPP1-related
TME module score for each patient within the bulk datasets was cal-
culated using the GSVA algorithm34,35, and its correlation with patients’
OS was analyzed. Our findings indicated a strong association between
the UPP1-related TME module and patient prognosis (Supplementary
Fig. 7b). A closer examination of the TME characteristics between high
and lowmodule scores revealed thatpatientswith a highmodule score
exhibited pronounced immune-suppressive features. This was evident
from the elevated expression of immune checkpoints, enrichment of
immune-suppressive signals, and increased CAFs and angiogenesis
activities (Supplementary Fig. 7c).

We next sought to confirm that UPP1high tumor cells were indeed
spatially related to these four cell populations mentioned through
multiplex immunofluorescence staining on LUAD patient samples
(Supplementary Fig. 7d, and Supplementary Data 5). Unbiased phe-
notypic identification and quantification using AI-based Visiopharm
software (https://visiopharm.com) demonstrated that UPP1high tumor
cells predominantly located at the invasive margins where the tumor
interfaces with immune cells and the stroma (Fig. 2). Further spatial
distance analysis revealed that UPP1high tumor cells were in closer
proximity to FOXP3+ Tregs, MMP11+ fibroblasts, LAG3 + PDCD1 +
CD8+ exhausted T cells, and SPP1+ macrophages as compared to
UPP1low tumor cells (Supplementary Fig. 8), suggesting a stronger
crosstalk between UPP1high tumor cells and these immunosuppressive
components in the TME. These findings provided substantial evidence
supporting the association of UPP1high tumor cells with the immuno-
suppressive TME.

High expression of UPP1 in tumor cells drives immunosuppres-
sion in a TGF-β1-dependent manner
To further determine whether the high expression of UPP1 in tumor
cells contributes to immunosuppression through specific ligands
such as cytokines or chemokines, we conducted an assessment of
alterations in cytokine expressions in the LUAD cell line over-
expressing UPP1 using the high-throughput 80-cytokine array
(Fig. 3a). Our findings unveiled a significant upregulation in a variety
of cytokines in UPP1-overexpressing tumor cells, including TGF-β1,
GM-CSF, IL-1β, IL-6, IGFBP-3, CXCL5, CCL20, and VEGF, with TGF-β1

being the most prominently elevated (Fig. 3b, Supplementary
Fig. 9a, b, and Supplementary Data 6). Subsequent ELISA experi-
ments confirmed that the secretion level of TGF-β1 from the tumor
cells also significantly increased following UPP1 upregulation
(Fig. 3c). Notably, TGF-β1 is the predominant form of TGF-β in TME
that contributes greatly to the formation of an immune-suppressive
microenvironment36–38. It could promote the differentiation of
CD4+ Treg cells and inhibit the cytotoxic activity of CD8 + T
cells39,40. Also, it could direct macrophages towards an immune-
suppressive M2 phenotype41,42, and facilitate the accumulation of
CAFs and deposition of extracellular matrix (ECM)43,44.

Considering the TGF-β signaling was broadly engaged in the
intercellular interactions between UPP1high tumor cells and the four
types of immune-suppressive-related cell populations mentioned
above (Supplementary Fig. 7a),wehypothesized that TGF-β1mayserve
as one of the key signaling molecules secreted by UPP1high tumor cells
and promote the conversion of these cells towards an immune-
suppressive phenotype. To validate the role of TGF-β1 in the immu-
nosuppressive effects mediated by UPP1high tumor cells, we conducted
indirect co-culturing experiments. Specifically, CD4 +T cells,
CD8 + T cells, THP-1-derived macrophages, and HFL1 fibroblasts were
co-cultured with UPP1-overexpressing tumor cells (Fig. 3d).

Our observations from the co-culture of UPP1-overexpressing
tumor cells with CD4 +T cells highlighted that UPP1 upregulation in
tumor cells significantly drove the differentiation of CD4 +T cells into
CD25 + FOXP3+Tregs. However, introducing TGF-β1 neutralizing anti-
bodies considerably curtailed this differentiation (Fig. 3e and Supple-
mentary Fig. 9c).

Similarly, the co-culturing of UPP1-overexpressing tumor cells
with CD8 +T cells facilitated the transformation of CD8 +T cells
towards a LAG3 + PDCD1+ exhausted T cell phenotype. By blocking the
release of TGF-β1 from UPP1-overexpressing tumor cells using TGF-β1
neutralizing antibodies, we observed a marked decrease in the
LAG3 + PDCD1+ exhausted T cell population (Fig. 3f and Supplemen-
tary Fig. 9d).

Furthermore, when UPP1-overexpressing tumor cells were co-
cultured withmacrophages, there was an evident upregulation of SPP1
expression in themacrophages (Fig. 3g, h). This was accompanied by a
shift towards an M2-like macrophage phenotype, characterized by
elevated expressions ofmarkers like PD-L1, CD163, and CCL20 (Fig. 3i).
Subsequently, thisM2polarization wasmitigated upon treatment with
TGF-β1 neutralizing antibodies.

Lastly, scRNA-seq analyses of fibroblasts revealed that fibroblasts
co-cultured with either UPP1-overexpressing tumor cells or control
cells exhibited distinct gene expression profiles (Fig. 3j). Fibroblasts in
the presence of UPP1-overexpressing tumor cells displayed a higher
CAF score (Fig. 3k) and increased expression of CAF markers such as
FAP and MMP11 (Fig. 3l). Based on the marker genes of previously
mentionedMMP11+ CAFs (Supplementary Fig. 7a), which we identified

Fig. 1 | Integration of LUAD scRNA-seq data and identification of prognostic-
related tumor cell populations. a scRNA-seq data from five LUADcohorts. Cohort
1 (10 samples, 88,754 cells), Cohort 2 (56 samples, 181,108 cells), Cohort 3
(17 samples, 29,109 cells), Cohort 4 (18 samples, 12,828 cells), Cohort 5 (16 samples,
65,775 cells). b 117 patient samples and 377,614 cells were included for subsequent
analysis. The Uniform Manifold approximation and Projection (UMAP) plot show-
ing the cell distribution. cTheUMAPplot showing themajor cell populations.dThe
UMAP plot displaying tumor cell clusters. 20 distinct tumor cell clusters were
identified (top). The top marker gene for each of these clusters is presented (bot-
tom). e The heatmap showing the mean expression of the top three marker genes
for the 20 tumor cell clusters. fThe prognostic (overall survival) associationof each
tumor cell cluster. The number in the heatmap representing the hazard ratio for
each tumor cell cluster. A hazard ratio greater than 1 (shown in red) suggested that
the cell cluster was associated with poor prognosis. Conversely, a hazard ratio less
than 1 (shown inblue) suggested that patientswith a relatively higher proportionof

this cell cluster tended to have a better prognosis. The asterisk (*) indicated
p <0.05. If the cell clusters consistently exhibited either an association with poor
prognosis or a trend towards a better prognosis in all three bulk cohorts, the names
of these cell clusters were highlighted: red indicating an association with poor
patient prognosis, blue suggesting a relatively better prognosis. Statistical analysis
was conducted using log-rank tests. g In Tumor_16_UPP1 tumor cell cluster, the
correlations between the expression levels of the top 10 marker genes and the
functional score of the enriched biological processes. The correlation analysis was
conducted using the two-tailed Pearson’s correlation. h Representative IHC stain-
ing images ofUPP1 inour tissuemicroarray (TMA) cohort fromZhongshanHospital
(n = 205). Scale bars = 200μm. i Kaplan–Meier overall survival and recurrence-free
survival curves of UPP1 expression in our TMA. OS analysis (n = 205). RFS analysis
(n = 189). Statistical analysis was conducted using log-rank tests. Source data are
provided as a Source Data file.
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as having a co-enrichment pattern with UPP1high tumor cells in LUAD
patient samples, we calculated the proportion of MMP11+ CAFs-like
fibroblasts in the co-cultured groups. The results showed that the
proportion of MMP11+ CAFs-like fibroblasts was significantly higher
when co-cultured with UPP1-overexpressing tumor cells than
with control cells (Fig. 3m, n). Thesefibroblasts displayed stronger pro-

tumor effects, such as enhanced collagen formation, epithelial-
mesenchymal transition (EMT), ECM remodeling, and activation of
the TGF-β signaling pathway (Fig. 3o).While the treatment with TGF-β1
neutralizing antibodies could suppress the expression levels of FAP
and MMP11 in fibroblasts when co-cultured with UPP1-overexpressing
tumor (Fig. 3p).
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Fig. 2 |Multiplex immunofluorescence staining (mIF) onLUADpatient samples
assesses the spatial correlations between UPP1 tumor cells and related cell
populations. a mIF of PanCK/UPP1 (UPP1high/low tumor cells), and CD4/FOXP3
(FOXP3+CD4 + T cells) (n = 15), representative images shown. b mIF of PanCK/
UPP1 (UPP1high/low tumor cells), and α-SMA/MMP11 (MMP11+ fibroblasts) (n = 15),
representative images shown. c mIF of PanCK/UPP1 (UPP1high/low tumor cells), and
CD8/LAG3/PD-1 (LAG3 + PD-1 +CD8 + T cells) (n = 15), representative images shown.
d mIF of PanCK/UPP1 (UPP1high/low tumor cells), and CD68/SPP1 (SPP1 + CD68+

macrophages) (n = 15), representative images shown. The image on the far left
represents a panoramic scan, with the ROIs indicating the selected areas. Scale
bars = 5mm. The image on the upper right represents a magnified portion of the
white square in the panoramic scan on the left, which is displayed as an original
image, classified image, andmerged image. Scale bars = 200μm. The images below
represent further magnified views of each antibody staining channel from the
selected area. Scale bars = 25 μm. For the ROIs of each section, the spatial distances
between the tumor cells and the immune/fibroblast cells were calculated.
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UPP1 regulates PD-L1 expression via PI3K/AKT/mTOR pathway
Immune checkpoint expression serves as a key strategy for tumor cells
to evade immune defenses45. Considering the enrichment of immune
checkpoints in the cell-cell interaction networks between UPP1high

tumor cells and T cells (Supplementary Fig. 7a), we next focused on
whether high UPP1 expression in tumor cells could lead to the upre-
gulation of immune checkpoints, thereby promoting immune evasion.
Using scRNA-seq datasets, bulk datasets, and CCLE mRNA and protein
expression datasets46,47, correlations between UPP1 and various tumor
immune checkpoints were assessed. Intriguingly, a significant corre-
lation between UPP1 and PD-L1 expression was observed across these
datasets (Fig. 4a). To validate this association, PD-L1 immunohisto-
chemical staining was also performed on our TMA cohort, revealing a
consistent and significant linkage between UPP1 and PD-L1 (Fig. 4b, c,
Supplementary Fig. 10a, and Supplementary Data 5). In addition, the
western blotting and flow cytometry analysis showed that the
expression level of UPP1 positively related with PD-L1 in tumor cells
(Fig. 4d, e).

To explore the underlying mechanism by which UPP1 modulates
PD-L1 expression in tumor cells, we conducted an enrichment analysis
on six classical signaling pathways known to regulate PD-L1 in UPP1high

tumor cells45. The results revealed that the PI3K/AKT/mTOR pathway
was the most active in UPP1high tumor cells (Fig. 4f). Previous studies
have shown that the phosphorylation of PI3K/AKT/mTOR could reg-
ulate PD-L1 expression48. Therefore, we hypothesized that UPP1 may
regulate PD-L1 expression through the PI3K/AKT/mTOR signaling
pathway. Our findings confirmed that upregulation of UPP1 led to the
activation of the PI3K/AKT/mTOR pathway (Fig. 4g). Subsequently,
upon UPP1 inhibition and subsequent treatment with SC79, an AKT
activator, the downregulation of PD-L1 induced by UPP1 suppression
was reversed via the activation of AKT/mTOR (Fig. 4h). This suggested
that high UPP1 expression in tumor cells contributed to the upregu-
lation of PD-L1 through the PI3K/AKT/mTOR pathway.

Next, we focused on whether the upregulation of PD-L1 in UPP1-
overexpressing tumor cells could affect the direct killing ability of
CD8 + T cells. UPP1 was overexpressed in LLC-OVA tumor cells, con-
sistently, the upregulation of UPP1 led to an increase in PD-L1 levels
(Supplementary Fig. 10b–d). Subsequently, UPP1-overexpressing LLC-
OVA tumor cells and control LLC-OVA cells were directly co-cultured
with OT-1 CD8 +T cells and the results showed that UPP1-
overexpressing tumor cells demonstrated a reduced susceptibility to
T cell-mediated elimination (Supplementary Fig. 10e). However, the
treatment of PD-L1 antibodies could partially alleviate the impaired
ability ofOT-1CD8+ T cells to eliminateUPP1-overexpressing LLC-OVA
tumor cells (Supplementary Fig. 10f, g). Similarly, flow cytometry
counting of alive tumor cells after co-culture revealed that PD-L1
blockade could reduce the proportion of UPP1-overexpressing LLC-
OVA tumor cells that survived the attack of OT-1 CD8 +T cells

(Supplementary Fig. 10h). Besides, the assessment of cytotoxic mar-
kers, Perforin and Granzyme B, in OT-1 CD8 +T cells showed that the
upregulation of UPP1 in tumor cells significantly reduced the cyto-
toxicity of OT-1 CD8 + T cells, while this killing ability could be partially
restored by blocking PD-L1 (Fig. 4i and Supplementary Fig. 10i). These
results supported that UPP1-induced PD-L1 expression could affect the
killing ability of CD8 +T cells.

CyTOF analysis confirming the immunosuppressive role of UPP1
in vivo
We next conducted a comparative study using both immunocompe-
tent (C57BL/6) and immunodeficient (nude) mice to confirm the
association between UPP1 and tumor immunity in vivo. UPP1-
overexpressing tumor cells, UPP1-downregulated tumor cells, and
their respective controls were subcutaneously implanted into both
C57BL/6mice and nudemice, respectively (Supplementary Fig. 11a, b).
Remarkably, UPP1-overexpressing tumors in C57BL/6mice exhibited a
growthpattern similar to that in nudemice (Supplementary Fig. 11c, d).
However, tumors without UPP1 upregulation exhibited suppressed
growth in C57BL/6 mice compared to nude mice, suggesting that
without the high expression level of UPP1, the tumor cells areunable to
sustain their growth in an active immune system, indicating a potential
relation between UPP1 and immune evasion. On the other hand, when
UPP1 expression in tumor cells was inhibited, although the down-
regulationofUPP1 led to a certain degreeof tumorgrowth suppression
in the nude mice, this inhibitory effect was significantly more pro-
nounced in the immunocompetent C57BL/6 mice (Supplementary
Fig. 11e, f). These results indicated that the high expression of UPP1
played a significant role in helping tumors evade the immune system.

To substantiate that UPP1 upregulation in tumor cells can pro-
mote the shaping of an immunosuppressive microenvironment
in vivo, we performed the CyTOF analysis, covering 21 TME-related
protein markers (Fig. 5a, Supplementary Fig. 12a, and Supplementary
Table 1). Based onmarker genes of immune cells, six major categories
of immune cells were identified in the tumor microenvironment,
including B cells (CD19+), CD4 +T cells (CD3e +CD4 + ), CD8+ T cells
(CD3e + CD8a + ), myeloid cells (CD11b + ), NK cells (NK1.1 + ), and a
small group of double-negative CD3 +T cells (CD3e +CD4-CD8a-)
(Fig. 5b, and Supplementary Fig. 12b, c).

Regarding CD4+ T cells, the proportion of immunosuppressive
CD25 + FOXP3+ Tregs significantly increased in the UPP1-
overexpressing group (Fig. 5c, d). Meanwhile, the CD25 + FOXP3+
Tregs in the UPP1-overexpressing group demonstrated a higher
expression level of the immunosuppressive cytokine IL-10. For
CD8 + T cells, the overexpression of UPP1 caused amarked exhaustion
of CD8 + T cells, characterized by the upregulation of various immune
checkpointmolecules, including PD-1, LAG3, TIM3, andCTLA4 (Fig. 5e,
f). Besides, the proportion of TNFα + /IFNγ+ effector CD8 +T cells was

Fig. 3 | Elevated UPP1 expression in tumor cells promotes immunosuppression
throughaTGF-β1-dependentmanner. a80-cytokine array analysis betweenUPP1-
overexpressing HCC827 tumor cells (UPP1-OE) and control cells (UPP1-OENC)
(n = 3). b Top six upregulated cytokines in HCC827 UPP1-OE tumor cells (n = 3).
c ELISA comparison of TGF-β1 expression in culture supernatants of HCC827 UPP1-
OE and UPP1-OENC tumor cells (n = 4). d Co-culture workflow, created with BioR-
ender.com. αTGF-β1, TGF-β1 neutralizing antibodies; IgG, isotype control IgG.
e Flow cytometry analysis of CD25 + FOXP3+ Tregs proportion (n = 4). f Flow
cytometry analysis of LAG3 + PDCD1+CD8+ T cells proportion (n = 4).
g Representative immunofluorescence (IF) staining of SPP1 in THP-1-derived mac-
rophages (n = 4). MFIs representmean fluorescence intensities. Scale bars = 20μm,
hWestern blot analysis of SPP1 expression in THP-1-derivedmacrophages after co-
culture (n = 3). i RT-qPCR measurement of M2 macrophage markers in THP-1-
derived macrophages post co-culture (n = 3). j scRNA-seq analysis of fibroblasts
after co-culturing with HCC827 UPP1-OE tumor cells/UPP1-OENC tumor cells. UPP1-
OE tumor cells = 7707; UPP1-OENC tumor cells = 8200. k Comparison of CAFs

scores in fibroblasts co-cultured with either UPP1-OE tumor cells or UPP1-OENC
tumor cells. l Dot plot showing the mean expression of CAFs marker genes.m The
UMAP plot displaying the distribution of theMMP11+ CAFs scores. Fibroblasts with
an MMP11+ CAFs score higher than the median value were categorized as MMP11+
CAFs-like fibroblasts, while the others were defined as MMP11- fibroblasts (Fbs).
n Comparison of the proportion of MMP11+ CAFs-like fibroblasts between the
UPP1-OE tumor cells group and theUPP1-OENC tumor cells group.oComparison of
the CAFs-related biological processes between the UPP1-OE tumor cells group and
the UPP1-OENC tumor cells group. p Western blot analysis of CAFs markers after
the treatment of TGF-β1 neutralizing antibodies (n = 3). n denotes biologically
independent samples. Data were represented as mean± SD in b, c, e–g. Data were
represented asmean± SEM in i. Two-tailed student’s t-testwas used inb, c; one-way
ANOVA with multiple comparisons in e–g, i; two-tailed Wilcoxon rank-sum test in
k and o. Two-tailed Fisher’s exact test in n. Source data are provided as a Source
Data file.
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Fig. 4 | UPP1 regulates PD-L1 expression via PI3K/AKT/mTOR pathway. a Two-
tailed Pearson correlation analysis between UPP1 and immune checkpoints across
different datasets, including the scRNA-seq dataset (cells = 49,113), bulk datasets
(bCohort1, n = 559; bCohort2, n = 398; bCohort3, n = 572), and CCLE mRNA
(n = 440) and protein expression (n = 37) datasets. *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001. b Representative images of IHC staining of UPP1 and PD-L1 in our
TMA cohort from Zhongshan Hospital (n = 205). Scale bars = 100μm. c Two-tailed
Pearson correlation between UPP1 and PD-L1 in our TMA cohort (n = 205). Data are
presented as mean± SEM. d Western blot analysis of PD-L1 expression in HCC827
tumor cells with UPP1 overexpression (OE) or UPP1 knockdown (SH). Representa-
tive images shown (n = 3). e Flow cytometry analysis of PD-L1 expression on the cell
surface of HCC827 tumor cells with UPP1 overexpression or UPP1 knockdown.
Representative flow cytometry plots are shown (n = 4). Data are presented as
mean ± SD. Statistical analysis was conducted using the two-tailed student’s t-test.
MFI, mean fluorescence intensity. f Functional enrichment analysis of six classical

signaling pathways known to regulate PD-L1 in UPP1high tumor cells. Pathways were
ranked based on ssGSEA enrichment scores. gWestern blot analysis of the levels of
PI3K, AKT, andmTOR and phosphorylated PI3K, AKT, andmTOR inHCC827 tumor
cells with UPP1 overexpression. Representative images shown (n = 3). h Western
blot analysis of the levels of phosphorylated AKT andmTOR inHCC827 tumor cells
with UPP1 knockdown and after the treatment of SC79 for 48h (20 µM). Repre-
sentative images shown (n = 3). i Flow cytometry analysis of immune effector
molecules, Perforin and Granzyme B, in OT-1 CD8 + T cells after co-cultured with
LLC-OVA UPP1-OE tumor cells, LLC-OVA UPP1-OENC tumor cells, and LLC-OVA
UPP1-OE tumor cells with the treatment of PD-L1 antibodies (αPD-L1) or isotype
control IgG. Representative flow cytometry plots shown (n = 4). Data are presented
as mean± SD. Statistical analysis was conducted using one-way ANOVA with mul-
tiple comparisons. n denotes biologically independent samples. Source data are
provided as a Source Data file.
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noticeably declined (Fig. 5g, h). In terms of myeloid cells, earlier stu-
dies have pointed out that the broad expression of PD-L1 on myeloid
cells is also an important factor contributing to the immunosuppres-
sion of the TME and closely associated with unfavorable responses to
immunotherapy49. Here, our CyTOF analysis showed a marked
increase in the global PD-L1 expression on myeloid cells (Fig. 5i, j).
Additionally, there was a significant enrichment of CD163 + PD-L1 +M2
macrophageswithin theUPP1-overexpressing group (Fig. 5j). TheseM2
macrophages concurrently exhibited elevated levels of immunosup-
pressive cytokines, IL-4 and IL-10 (Fig. 5k). Moreover, in the UPP1-

overexpressing group, therewas a noticeable decline in theproportion
of TNFα + /IFNγ+ effector NK cells and an increase in the proportion of
PD-L1+ neutrophils (Supplementary Fig. 13a, b).

In addition, flow cytometry analysis was conducted to analyzed
the fibroblasts within the TME. The UPP1-overexpressing group dis-
played a significant increase in the proportion of infiltrating fibroblasts
(Fig. 5l-m and Supplementary Fig. 14). Notably, these fibroblasts
exhibited high expression levels of FAP and MMP11 (Fig. 5n).

In summary, the CyTOF analysis substantiated that the high
expression of UPP1 in tumor cells promoted the shaping an
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immunosuppressive TME, which was characterized by increased pro-
portions of immunosuppressive Tregs and exhausted CD8+ T cells,
along with elevated PD-L1 expression in myeloid cells, enrichment of
M2 macrophages, and fibroblast infiltration.

UPP1 inhibition improved the cytotoxicity of CD8+T cells and
sensitized anti-PD-L1 immunotherapy
Cytotoxic CD8 + T cells are essential for the elimination of cancer cells,
and their activity and functionality can significantly impact the effec-
tiveness of immunotherapies50. As the upregulation of UPP1 in tumor
cells can significantly alter the functional state of CD8 +T cells, wenext
sought to determinewhether inhibitingUPP1 expression in tumor cells
could restore the cytotoxicity of CD8 +T cells and enhance the sensi-
tivity to immunotherapy.

The results showed that the control LLC cells undergoing the anti-
PD-L1 immunotherapydid not result in a significant inhibition of tumor
growth, indicating that the tumor cells were relatively resistant to anti-
PD-L1 immunotherapy. However, upon inhibiting UPP1 expression,
tumor proliferation was suppressed (Fig. 6a–d). Notably, the admin-
istration of anti-PD-L1 immunotherapy to mice with UPP1-inhibited
tumors showed a further increase in the inhibitory effects on tumor
growth, suggesting that inhibiting UPP1 expression increased the
sensitivity of tumors to anti-PD-L1 immunotherapy.

Subsequent flow cytometry analyses of the infiltrating CD8 +T
cells in tumors observed that inhibiting UPP1 expression in tumor cells
increased the proportion of tumor-infiltrating CD8 +T cells. In addi-
tion, the treatment of anti-PD-L1 immunotherapy to mice on this basis
could further enhance the infiltration of CD8+ T cells (Fig. 6e). Func-
tional assessment of these CD8 +T cells revealed that UPP1 inhibition
enhanced their cytotoxic capabilities. Remarkably, combining UPP1
inhibition with anti-PD-L1 immunotherapy could further significantly
enhance the cytotoxic capabilities of CD8 +T cells (Fig. 6f and Sup-
plementary Fig. 15a). On the other hand, we also transplanted LLC-OVA
tumor cells into OT-1 mice. Similarly, inhibiting UPP1 expression on
tumor cells significantly increased the ability of CD8 +T cells to elim-
inate tumors (Supplementary Fig. 15b–d). These findings suggested
that suppressing UPP1 in tumor cells not only improved the cytotoxi-
city of CD8 +T cells but also enhanced the sensitivity to anti-PD-L1
immunotherapy.

Bioinformatics-based screening for potential therapeutic agents
suitable for tumors with high UPP1 expression
Drug repurposing based on the molecular characteristics of patients
has been reported in numerous studies and has demonstrated its
reliability51–53. To explore if tumors with relatively higher UPP1 levels
might be more sensitive to certain existing drugs, we conducted a
bioinformatics-based screening (Supplementary Fig. 16a). Gene
expression data and associated drug response data of hundreds of
cancer cell lines from CTRP, GDSC, and PRISM pharmacogenomic

datasetswere collected (Fig. 7a). Thesedatawere thenused to infer the
drug sensitivity data for LUAD patients based on the previously
reportedmethods54,55. Next, LUADpatients were categorized intoUPP1
high expression and UPP1 low expression groups based on the UPP1
expression levels (Fig. 7b) and the drug sensitivity of the UPP1 high
expression group and the UPP1 low expression group was compared
(Fig. 7c). By integrating the results from the CTRP, GDSC, and PRISM
datasets, 11 potential drugs were identified that might be more effec-
tive for tumors with high UPP1 levels (Fig. 7d). On the other hand, we
compared the drug sensitivity differences between tumor cells with
high and low UPP1 expression across the three datasets (Fig. 7e). After
integrating the identified 11 potential drugs with the drugs that UPP1
high tumor cells were relatively sensitive to, 3 potential drugs were
selected, including Bosutinib, Dasatinib, and Erlotinib. It was worth
mentioning that a recent study by Gonçalves et al. that analyzed the
Drug-Protein associations also highlighted the correlation between
Dasatinib and UPP156.

Next, we conducted relative sensitivity experiments on these
three drugs using tumor cells with overexpressed UPP1 and their
control group cells. The results showed that tumor cellswith highUPP1
expression were relatively more sensitive to both Bosutinib and
Dasatinib (Fig. 7f). Subsequently, we established patient-derived
organoids (PDOs) from 6 LUAD patients to further assess the efficacy
of Bosutinib and Dasatinib (Fig. 7g, Supplementary Fig. 17, and Sup-
plementaryData 5). The results showed that LUADpatientswith higher
UPP1 expression levels were more responsive to Bosutinib and Dasa-
tinib (Fig. 7h). On top of this, mice experiments were further con-
ducted. We observed that both Bosutinib and Dasatinib could inhibit
tumor growth in both the UPP1-overexpression and control groups
(Supplementary Fig. 16b–f). Notably, the degree of tumor growth
inhibition was more prominent in the UPP1-overexpression group
when treated with Bosutinib and Dasatinib (Fig. 7i). In summary, both
in vitro PDO models and in vivo murine models consistently demon-
strated that tumors with high UPP1 expression were relatively more
responsive to Bosutinib and Dasatinib.

Discussion
In this study, an integrative approach that combined scRNA-seq with
bulk data analysis in LUAD led to the identification of a specific tumor
cell subpopulation characterized by elevated UPP1 expression. Nota-
bly, this subpopulation was associated with immunosuppressive TME
and poorer patient outcomes, underscoring the potential prognostic
value of UPP1 expression in LUAD.

The spatial distribution of these cells, as determined throughmIF
staining and AI-driven image analysis, revealed their predominant
localization at the tumor margins. Interestingly, their relative proxi-
mities to the four types of immunosuppressive-related cell compo-
nents in the TME indicated a complex interplay with various immune
and stromal components. FOXP3+ Tregs, a subset of CD4 +T cells, are

Fig. 5 | CyTOF analysis of the alterations in the characteristics of TME in UPP1-
overexpressing tumors. a Experimental flowchart, created with BioRender.com.
bUMAPplot showingmajor cell populations. c tSNEplots ofCD4 +Tcells. From left
to right: The distributionof CD4+ T cells from theUPP1-OEandUPP1-OENCgroups;
Expression of CD25 and FOXP3 in CD4 + T cells; The CD4+ T cells expressing both
CD25 and FOXP3 are labeled as CD25+ FOXP3+ Tregs; Expression of IL-10 in
CD4+ T cells. d The proportion of CD25 + FOXP3+ Tregs between the UPP1-OE and
UPP1-OENC groups (left). The expression level of IL-10 in CD25+ FOXP3+ Tregs
(right) (n = 8). e tSNE plots of CD8 +T cells. From left to right: The distribution of
CD8+ T cells from the UPP1-OE and UPP1-OENC groups; Expression of PD-1, LAG3,
TIM3, and CTLA4 in CD8 + T cells. f Immune checkpoint expression (left) and
proportion of PD1 + LAG3 + TIM3 +CTLA4+ exhausted CD8 + T cells (right) in UPP1-
OE vs. UPP1-OENC groups (n = 8). g TNFα + /IFNγ +CD8 + T cells distribution in
UPP1-OE vs. UPP1-OENC groups. h Proportion of TNFα + /IFNγ +CD8 + T cells in
UPP1-OE vs. UPP1-OENCgroups (n = 8). i tSNEplots of themyeloid cells. From left to

right: The distribution of myeloid cells from the UPP1-OE group and UPP1-OENC
group; Expression levels of PD-L1, CD163, IL-4, and IL-6 in myeloid cells. j PD-L1
expression inall CD11b+myeloid cells between theUPP1-OEandUPP1-OENCgroups
(left). The proportion of CD163 + PD-L1 +M2 macrophages between the UPP1-OE
and UPP1-OENC groups (right) (n = 8). k IL-4 and IL-10 levels in CD163 + PD-L1 +M2
macrophages between the UPP1-OE and UPP1-OENC groups (n = 8). l LLC tumor
cells (UPP1-OE or UPP1-OENC) were subcutaneously injected into C57BL/6 mice.
Tumors were then collected for flow cytometry analysis to compare changes in the
proportion of fibroblasts (n = 5). m Fibroblast infiltration proportion between the
UPP1-OE and UPP1-OENC groups (n = 5). n Fibroblast sorted from (m) for RT-qPCR
detection of FAP andMMP11 expression (n = 5). n denotes biologically independent
samples. Datawere represented asmean± SD ind, f,h, j,k, andm;mean ± SEM inn.
All Statistical analysis were conducted using the two-tailed student’s t-test. Source
data are provided as a Source Data file.
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known for their immunosuppressive roles in the TME, often inhibiting
the activity of effector T cells and promoting tumor growth57. Their
close association with the UPP1high tumor cells suggested a potential
immunosuppressive niche, which might be conducive to tumor sur-
vival and evasion from immune surveillance; Similarly, the observed
proximity of these cells to MMP11+ fibroblasts suggested a dynamic
interplay, with fibroblasts expressing high-level MMP11 playing a
pivotal role in extracellular matrix degradation58; The association of
UPP1high tumor cells with SPP1+ macrophages further added to the
complexity of the TME. SPP1 is often associated with pro-tumorigenic
roles, with macrophages expressing SPP1 promoting tumor growth,
angiogenesis, and metastasis59; Lastly the presence of exhausted

CD8 + T cells underscored a compromised anti-tumor immune
response60. These associations between UPP1high tumor cells and var-
ious immunosuppressive components in the TME highlighted the
potential role of UPP1 in shaping an immunosuppressive micro-
environment in LUAD.

UPP1 has been implicated in the salvage pathway of pyrimidine
metabolism, catalyzing the reversible phosphorylation of uridine to
uracil11. However, its role in tumorigenesis and tumor progression has
only recently come to light. In the context of LUAD, the elevated
expression of UPP1 could bolster glycolyticmetabolism in cancer cells,
potentially enhancing tumor growth and reducing their susceptibility
to glycolysis inhibitors13. Moreover, a recent study provided further
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Fig. 6 | UPP1 inhibition improved the cytotoxicity of CD8+T cells and sensi-
tized anti-PD-L1 immunotherapy. a Experimental workflow, created with BioR-
ender.com. UPP1-knockdown LLC tumor cells (sh) and control cells (shNC) were
subcutaneously implanted into C57BL/6 mice with/without the treatment of with
anti-PD-L1 antibodies (αPD-L1). b Tumors harvested from mice bearing LLC-UPP1-
shNC tumor cells, LLC-UPP1-sh tumor cells, LLC-UPP1-shNC tumor cells treatedwith
anti-PD-L1 antibody, and LLC-UPP1-sh tumor cells treated with anti-PD-L1 antibody
(n = 4). cTumor growth curves (n = 4). Statistical analysis was performed using two-
wayANOVAwithmultiple comparisons.dTumorweight atday 30 (n = 4). Statistical
analysis was performed using one-way ANOVA with multiple comparisons. e Flow

cytometry analysis of the proportion of CD8+ T cells infiltrated in the tumors
(n = 4). Statistical analysis was performed using one-way ANOVA with multiple
comparisons. f Flowcytometry analysisof immune effectormolecules, Perforin and
Granzyme B, in CD8 + T cells (n = 4). Statistical analysis was performed using one-
way ANOVA with multiple comparisons. g Flow cytometry analysis of immune
effector molecules, TNFα+ and IFNγ + , in CD8+ T cells (n = 4). Statistical analysis
was performed using one-way ANOVA with multiple comparisons. n denotes bio-
logically independent samples. Data arepresented asmean ± SD in c–g. Sourcedata
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45340-w

Nature Communications |         (2024) 15:1200 11



insights into the role of UPP1 in cancer, especially under glucose-
restricted conditions. The study found that pancreatic ductal adeno-
carcinoma (PDA) cells, when deprived of glucose, leveraged uridine-
derived ribose as an alternative fuel source12. Notably, in vivo studies
revealed that UPP1 knockout (KO) tumors showed reduced vessel
density and increased anti-tumor T cell (CD8 T cells) infiltration12.
These phenotype changes suggested that UPP1 may play a multi-
faceted role in tumorbiology, notonly influencingmetabolicpathways
but also modulating the TME and immune response. Insights from
Wang et al. highlighted the positive association of UPP1 with immune
and inflammatory responses in glioma14. Specifically, UPP1 exhibited a
strong correlation with MHC-II and LCK, signifying its relations with
antigen-presenting cells and T cells. Additionally, UPP1 was found
positively correlated with various immune checkpoint members,

underscoring its potential oncogenic role in glioma bymodulating the
tumor-related immune response.

Here, we approached from a different angle to explore the rela-
tionship between UPP1 and tumor immunity. Using the high-
throughput cytokine detection array, we observed that upregulation
of UPP1 in tumor cells resulted in a significant rise in various cytokines.
Particularly, therewas a notable upregulation of TGF-β1, GM-CSF, IL-1β,
IL-6, IGFBP-3, CXCL5, CCL20, and VEGF. TGF-β1, known for its immu-
nosuppressive properties, saw themost significant increase, hinting at
a potential pathway for tumors with high UPP1 expression to
influence immune surveillance36. Subsequently, our co-culture
experiments revealed a pivotal role for TGF-β1 in the context of
UPP1-overexpressing tumor cells. Elevated UPP1 expression drove
immune cells towards suppressive phenotypes, with CD4 +T cells
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Fig. 7 | Bioinformatics-guideddrug screening and validation. aDrug screen data
and associated transcriptomic data from three datasets (CTRP, GDSC, and PRISM)
were included. b LUAD patients were classified into UPP1 high and UPP1 low
expression groups based on the median value of UPP1. c Based on cancer cell line
data, the LUAD patients’ sensitivities to various drugs were estimated. The x-axis
represents the differences in IC50 values. The y-axis represents p-values. The red
numbers indicate the number of drugs that were identified as relatively more
sensitive in the UPP1 high-expression group. d Integration of the drugs identified
from (c). e Cancer cell lines were categorized into UPP1 high and UPP1 low
expression groups based on the median value of UPP1, differential drug analysis
was conducted. The x-axis represents the differences in IC50 values. The y-axis
represents p-values. Drugs showing increased sensitivity in the UPP1 high-
expression group are marked in red. The identified drugs were combined with 11
drugs found in (d). f HCC827 UPP1-OE and control tumor cells were separately

treatedwith Bosutinib, Dasatinib, and Erlotinib. Cell viability was assessedusing the
CCK8assay (n = 5).g EstablishmentofPDOs. LUADorganoidswerecategorized into
UPP1 high (n = 3) and UPP1 low (n = 3) groups. Images of organoids in bright field,
Scale bars = 50μm; for others, Scale bars = 20μm. Representative images shown.
h PDOs were separately treated with Bosutinib and Dasatinib. Cell viability was
assessed using the CCK8 assay (n = 3). i LLC tumor cells (UPP1-OE or UPP1-OENC)
were subcutaneously injected into C57BL/6 mice. Subsequently, the mice were
treated with Bosutinib or Dasatinib, and the degree of tumor inhibition was com-
pared (n = 5). The relative tumor growth inhibition rate was calculated based on the
reduction in tumor size after drug treatment compared to the tumor size in the
untreated UPP1-OE or UPP1-OENC groups. n denotes biologically independent
samples. Data were represented as mean ± SD in f, h, and i. Two-tailed Wilcoxon
rank-sum testwasused in c and e. two-wayANOVA in f andh. Two-tailed student’s t-
test in i. Source data are provided as a Source Data file.
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differentiating into Tregs and CD8 +T cells adopting an exhausted
state. Additionally, macrophages shifted towards an M2 phenotype,
and fibroblasts exhibited pro-tumor characteristics in the presence of
UPP1-overexpressing cells. While these phenotype changes were
notably curtailed by TGF-β1 neutralizing. These findings highlighted
the UPP1-TGF-β1 axis may as a central modulator of the TME, pre-
senting potential therapeutic implications.

In addition to the influence of TGF-β1, the upregulation of other
cytokines in UPP1-overexpressing tumor cells hints at a broader role
for UPP1 in modulating tumor immunity. For instance, GM-CSF, while
essential for granulocyte and macrophage differentiation and pro-
liferation, can foster an immunosuppressive environment in the con-
text of tumors by promoting the development of myeloid-derived
suppressor cells (MDSCs)61; Further, IL-1β, a potent pro-inflammatory
cytokine, may indirectly subvert anti-tumor immunity by fostering a
chronic inflammatory environment, leading to the recruitment and
activation of immunosuppressive cells, such as regulatory T cells and
MDSCs62; Elevated levels of CXCL5 can enhance tumor growth,
metastasis, and angiogenesis, often indicating a poor prognosis63.
Meanwhile, CCL20 can draw regulatory T cells to the tumor site, aiding
in immune evasion64; Finally, beyond its well-known role in angiogen-
esis, VEGF may also exert direct immunosuppressive effects65. It can
impede the maturation and function of dendritic cells, crucial for
initiating T-cell responses, and promote the recruitment and expan-
sion of immune-suppressive regulatory T cells andMDSCs66. However,
it is important to note that amore thoroughmechanistic exploration is
required to understand how UPP1 influences the expression of these
cytokines.

On the other hand, our findings also highlighted a regulatory
mechanism wherein UPP1 modulated the expression of the immune
checkpoint PD-L1 via the PI3K/AKT/mTOR pathway. And increased PD-
L1 levels impacted the functional activity of CD8 +T cells. This is
consistent with prior studies that have emphasized the immunosup-
pressive role of PD-L1, especially in dampening T cell-mediated anti-
tumor responses67. The ability of UPP1-overexpressing tumor cells to
resist T cell-mediated elimination, which can be partially reversed by
PD-L1 blockade in vitro, further underscored the clinical relevance of
the UPP1-PD-L1 axis. Given the current interest in immune checkpoint
blockade therapies, understanding such regulatory mechanisms may
offer potential avenues for therapeutic interventions, enhancing the
efficacy of treatments targeting the PD-L1 pathway.

Our results indicated that inhibiting UPP1 expression sig-
nificantly reduces PD-L1 expression. Intriguingly, after suppres-
sing UPP1 expression, there is an observed increase in tumor
sensitivity to PD-L1 blockade in vivo. This phenomenon might be
partly attributed to the changes in the tumor microenvironment
following the alteration in UPP1 expression. For instance, we found
that the suppression of UPP1 led to an increased infiltration of
CD8 + T cells. Previous research has indicated that a reduction in
CD8 + T cell infiltration is one of the reasons for the poor efficacy
of PD-L1 monoclonal antibodies68,69. Thus, the observed relative
increase in CD8 + T cell infiltration upon UPP1 suppression may
contribute to a heightened immunotherapeutic response. Addi-
tionally, it was also found that tumors with higher UPP1 expression
showed a significant increase in PD-L1 expression in macrophages.
Previous research has indicated that PD-L1 expression in other
immune cells such as macrophages is also crucial for the effec-
tiveness of immunotherapy70,71. The overall increase in PD-L1
expression due to elevated UPP1 may also be a contributing fac-
tor affecting the efficacy of PD-L1-targeted treatments. On the
other hand, while our study primarily focused on the association
between UPP1 and PD-L1, it is possible that UPP1 expression may
also be related to the activation and upregulation of other immune
checkpoints, such as CD276, CD70, CD47, and LGALS9. The upre-
gulation of these checkpoints can affect the efficacy of PD-1/PD-L1

immunotherapy. For instance, previous studies have shown that
combined application of CD47 with PD-1/PD-L1 blockade can result
in stronger anti-tumor effects72,73. This suggests that single
checkpoint pathway inhibition might not be sufficient. These
insights indicate that UPP1 may also be implicated in additional
critical immune escape mechanisms. Hence, our study only par-
tially explores the mechanisms by which UPP1 participates in
immune suppression. Further, more in-depth research is needed to
systematically reveal the core and complete mechanisms of UPP1
in immune invasion.

With CyTOF analysis, we further provided a deeper insight into
role of UPP1 within the TME in vivo. The UPP1-overexpressing group
manifested a pronounced immunosuppressive signature, with a
notable rise in CD25 + FOXP3+ Tregs and their associated immuno-
suppressive cytokine, IL-10. This was complemented by the evident
exhaustion of CD8 +T cells, marked by the upregulation of various
immune checkpoints. The myeloid landscape also revealed enhanced
PD-L1 expression and a rise in CD163 + PD-L1 +M2 macrophages, both
accompanied by elevated levels of immunosuppressive cytokines.
Additionally, the increased fibroblast infiltration in the UPP1-
overexpressing group hinted potential role for UPP1 in stromal
remodeling. Collectively, these findings fromCyTOF analysis provided
substantial evidence supporting UPP1’s pivotal role in shaping an
immunosuppressive TME.

Consistent with the findings of Nwosu et al., our study also
observed that inhibiting UPP1 expression led to an increased infiltra-
tion of CD8 + T cells within the tumor12. This enhanced presence of
effector T cells suggested a more active and potentially effective anti-
tumor immune response. Building on this, the administration of anti-
PD-L1 treatment further augmented the infiltration of CD8 +T cells and
bolstered the expressionof cytotoxicmolecules. This synergy between
UPP1 inhibition and PD-L1 blockade underscored the significance of
UPP1 as a modulator of the tumor immune microenvironment. The
heightened responsiveness to immunotherapy in the absence of UPP1
further emphasized its role in immune evasionmechanisms employed
by tumors. Thus, our findings highlight the potential therapeutic value
of targeting UPP1 in combination with immune checkpoint blockade,
offering a potential avenue for enhancing the efficacy of cancer
immunotherapies.

Lastly, we sought to identify whether there were certain drugs
that might be more suitable for UPP1 high tumors. Based on the
bioinformatics-based screening and validations using both in vitro
and in vivo models, we revealed a notable association between high
UPP1 expression and increased sensitivity to Bosutinib and Dasati-
nib. Bosutinib is a selective inhibitor designed to target the Src
family kinases and has been approved for the treatment of chronic
myeloid leukemia (CML) in adults74,75. Dasatinib, on the other hand,
has a broader range, inhibiting not just the Src family kinases but
also several other kinases76,77. However, their application in solid
tumors, such as LUAD, has been limited. This limitation can be
attributed to the unique molecular characteristics of solid tumors
compared to hematological malignancies and concerns about
potential off-target effects and associated toxicities of these TKIs in
solid tumors76. The Src family kinases are involved in various cel-
lular signaling pathways, including the PI3K/AKT/mTOR
pathway78,79. When activated, they can enhance the signaling
through this pathway. Given UPP1’s role in activating the PI3K/AKT/
mTOR pathway, it’s possible that inhibiting Src family kinases with
drugs like Bosutinib and Dasatinib could interfere with the signaling
initiated by UPP1. This might provide some explanations into the
observed sensitivity of UPP1 high tumors to these drugs. However,
whether these drugs can be effective clinically for patients with high
UPP1 expression requires further investigation. This analysis, while
preliminary, might offer insights for considering UPP1 in future
treatment strategies and drug development.
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Methods
Ethics
This study was approved by the ethics committee of Zhongshan
Hospital, Fudan University (B2021-128), and conducted in accordance
with the principles of the Declaration of Helsinki. All participants from
Zhongshan hospital donating surgical tissues provided written
informed consent. All diagnoses were confirmed by histological
reviews by qualified pathologists.

Single-cell RNA sequencing data collection
Weconducted a PubMed search for articles published up to 2021 using
the keywords “lung adenocarcinoma” and “single-cell RNA sequen-
cing.” Each identified article was rigorously reviewed, and only those
offering public access to either raw or processed single-cell RNA
sequencing data were selected. From this search, we incorporated five
scRNA-seq LUAD datasets (Supplementary Data 1) into our study: He
et al. (CRA001963)80, Kim et al. (GSE131907)81, Laughney et al.
(GSE123904)82, Wu et al. (GSE148071)83, and Xing et al. (HRA000154)84.
The datasets from He et al. and Xing et al. were presented as raw
FASTQ files, while the datasets from the other three studies were in the
formofpre-processed cellmatrixfiles. The Cell Ranger toolkit (version
6.1.2), provided by 10x Genomics, was used to align the reads from raw
files to the human reference genome (GRCh38) to obtain the cell
matrix files.

Single-cell RNA sequencing data processing
The cell matrix file of each sample in each single-cell dataset was
separately imported into R using the CreateSeuratObject function in
Seurat (version 4.0.5). Cells that had more than 200 genes detected
and a total transcript count exceeding 1000, but not surpassing
30,000 were chosen for further analysis28,80–82,85. Additionally, cells
with more than 20% of their transcripts coming from mitochondrial
genes were considered potentially apoptotic and thus excluded. Then,
doublets were removed using DoubletFinder with default settings for
each sample86. Moreover, a total of 1514 genes associated with mito-
chondria (50 genes), heat-shock protein (178 genes), ribosome (1253
genes), and dissociation (33 genes) were excluded to avoid unex-
pected noise and expression artifacts caused by dissociation28. After
filtering out the low-quality cells, the first round of integration and
batch-effect correction was conducted by integrating the samples
within each single-cell dataset using Harmony15. Then, all five single-
cell datasets were further integrated and batch effects were adjusted
again using Harmony. Finally, a meta single cell cohort including 117
patients and 377,614 cells was used for subsequent analysis.

Unsupervised dimensional reduction and clustering of major
cell populations
For the identification of major cell populations, the meta dataset was
firstly normalized using the NormalizeData function in Seurat (version
4.0.5)16. Then, the top 2000 variable features were selected based on
the variance stabilizing transformation (VST). Following this, data was
scaled to center each gene’s expression measurements with a mean of
zero and a standard deviation of one. This was followed by a dimen-
sionality reduction using principal component analysis (PCA). Based
on the harmonized dimensions, nearest neighborswere identified, and
cell clusters were then identified at a resolution of 0.8. The dimen-
sionality of was reduced using UMAP.

We then utilized the FindAllMarkers function in Seurat to identify
markers for each cell cluster. In parallel, we also employed singleR for
cell cluster identification87. We then made a comprehensive determi-
nation of the major cell populations by integrating the well-known
marker genes, themarker genes for each cell cluster obtained through
FindAllMarkers, and the cell clusters recognized by singleR. Well-
known marker genes include: CD3D, CD8A, CD4, FOXP3, PDCD1,
GZMB, NK7G and KLFR1 for CD8 + T, CD4 + T, and NK cells; CD79A,

CD79B, IGHG1, and JCHAIN for B cells and plasma cells; CD14, FCGR3A,
CD68, CD163, MARCO, CD1C, LAMP3, TPSAB1 for myeloid lineage
(macrophages, dendritic cells, andmast cells); ACTA2 and PECAM1 for
fibroblasts and endothelial cells; OLIG1 for oligodendrocytes; and
EPCAM for epithelial cells. Among these epithelial cells, malignant
tumor cells were further distinguished from non-malignant cells by
inferring large-scale copy-number variations (CNVs) of each cell using
inferCNV17,81.

Clustering and annotation of cell sub-populations
Next, we performed a second round of clustering of major cell popu-
lations to further characterize sub-populations. Each major cell
population was extracted and subjected to another round of normal-
ization, variable feature selection, data scaling, dimensionality reduc-
tion. For the clustering of cells, we experimented with multiple
resolution parameters ranging from 0.4 to 1.528. For each of these
parameters, we analyzed the number of cells and the UMAP distribu-
tion of cells in each cluster, aswell as the differentially expressed genes
of each cell cluster, aiming to select a resolution parameter that was
relatively stable, minimized over-clustering, and preserved the biolo-
gical significance of identified cells for further analysis. For the clus-
tering of T andNK cells, we used a parameter of 0.9.Myeloid cellswere
clustered using a parameter of 0.5, B cells with a parameter of 0.4, and
stromal cells with a parameter of 0.8. Finally, for tumor cells, we opted
for a resolution of 0.6.

As a result, we identified 9 sub-populations of CD4 + T cells, 6 sub-
populations of CD8 +T cells, 5 sub-populations of NK cells, 3 sub-
populations of dendritic cells, 9 sub-populations of macrophages, 2
sub-populations of mast cells, 9 sub-populations of B cells, 8 sub-
populations of fibroblasts, 6 sub-populations of endothelial cells, and
20 sub-populations of tumor cells. Next, we used the FindAllMarkers
function to identify differentially expressedmarker genes of these cell
sub-populations (Supplementary Data 2). For the naming of these cell
sub-populations, we adopted the “cluster_celltype_marker” format
described in previously published studies28,88,89. For cell populations
that distinctly expressed known markers, we used these markers to
represent these cells. For instance, a CD4T cell population that highly
expressed FOXP3 (a defining marker for Tregs) was named as
8_CD4T_FOXP3 (8 being the cluster number) (Refer to Supplementary
Fig. 2). Conversely, for other cell populations where the highly differ-
entially expressedgenesdid not correspond to traditional cell-defining
markers, we named them based on the top differentially expressed
gene. Cell populations presented in more than 10 tumor samples were
included for subsequent analysis28.

LUAD bulk transcriptomic data collection and processing
Bulk transcriptomic data of LUAD patients with complete overall sur-
vival information were collected from Gene Expression Omnibus
(GEO) and TGCA databases. These data were uniformly processed
based on our previously described pipelines51,90. Specifically, datasets
from GSE19188, GSE30219, GSE31210, GSE37745, and GSE50081, all
derived from the Affymetrix Human Genome U133 Plus 2.0 Array
platform,were integrated as thebulk cohort 1 (bCohort1), consistingof
559 LUAD patients. This integration involved processing the raw CEL
files of these samples in a standardized manner using the RMA algo-
rithm for normalization and background adjustment91. Following this,
probes from theAffymetrixHG-U133 Plus 2.0Arraywere linked to their
corresponding genes via the GPL570 platform. The signals from rela-
ted probe sets were then averaged to obtain a unique expression value
for every gene, compiling expression data for a total of 21,755 genes.
To ensure consistent data interpretation across datasets, batch cor-
rection was conducted using ComBat function from the sva R
package92. GSE72094, consisting of 398 patients, was designated as
bulk cohort 2 (bCohort2), and the 572 TCGA patients were defined as
bulk cohort 3 (bCohort3).
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Linking single-cell RNA sequencing data to bulk transcriptomic
data for the identification of prognostic-related tumor cell
populations
The bulk gene expression data was first subjected to a correction for
tumor purity. ESTIMATE method was used to calculate the tumor
purity of bulk data93. Then, we adjusted the gene expression data for
tumor purity using linear regression94,95. For each gene, a linear model
was fitted with gene expression as the dependent variable and tumor
purity as the independent variable. The residuals of the linear models,
which represent the differences between the observed expression
values and the fitted values predicted by the models, were calculated
for each gene. This process adjusts the gene expression data for the
confounding effects of tumor purity, allowing for more accurate
downstream analyses.

To evaluate the prognostic associations of the tumor cell sub-
populations, we used the single sample Gene Set Enrichment Analysis
(ssGSEA) method19 to quantify the relative cell abundances of these
tumor cell sub-populations based on their differentially expressed
marker genes (Log2FC > 1 and adjusted p <0.05) in each of the afore-
mentioned purity-adjusted bulk cohorts (bCohort1/2/3). The relative
abundances of these cell populations were categorized into high and
low groups using the survminer R package28,51,52,96. Subsequently, we
performed the log-rank test to compare theoverall survival differences
between the high and low groups. Tumor cell sub-populations that
showed an association a worse prognosis across all three bulk cohorts
were given priority attention.

Functional enrichment of UPP1high tumor cells
To characterize the functional features of UPP1high tumor cells, we
conducted a functional enrichment analysis on this group of cells. The
gene sets (Supplementary Data 3) used for the functional enrichment
analysis were retrieved from MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb), including the HALLMARK, KEGG, REAC-
TOME, and Chemical and Genetic Perturbations (CGP) categories97.
The AUCell method was used to calculate the (Area Under the Curve)
AUC scores of the gene sets98,99. Subsequently, a differential gene-set
analysis based on the AUC scores was conducted comparing the AUC
score differences between UPP1high tumor cells and other tumor cell
sub-populations. Multiple hypothesis testing was performed using
Bonferroni correction, and terms of interests with adjusted p-values
less than 0.05 were considered significant. The gene sets were then
ranked based on their differential Log2AUC values (Supplemen-
tary Data 4).

To validate the expression of the UPP1 is a significant character-
istic of this group of cells, we calculated the average score of the top
five gene sets that were enriched in the HALLMARK, KEGG, REAC-
TOME, and CGP categories for this group of cells. This average score
served as a representation of the general level of enrichment of the
biological processes within this UPP1high tumor cell population. Next,
we conducted the correlation analyses between the average score and
the expression of each of the top 10 most highly expressed genes in
this group of cells, aiming to determine which gene’s expression level
most closely aligns with the functional characteristics of this UPP1high

tumor cell population.

Cell-cell interaction network analysis
To investigate the potential co-enrichment patterns of UPP1high tumor
cells with other cells in the TME, we calculated the pairwise correlation
values between the frequency of UPP1high tumor cells and other cell
populations across tumor samples28. Correlation values were then
ranked, with values over 0.3 deemed as significant. This analysis
revealed that UPP1high tumor cells had significant correlations with
CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1, and Fb_MMP11 cell
clusters. The markers (Supplementary Fig. 6b) used for analyze the
features of CD4T_FOXP3 and CD8T_LAG3_PDCD1 were collected from

ref. 89. The markers (Supplementary Fig. 6c, d) used for analyze the
features of Mph_SPP1were collected from Cheng et al. and Bagaev
et al.88,100. To determine the CAFs features of Fb_MMP11, a functional
enrichment using GSVA method was conducted35. The gene sets
(Supplementary Fig. 6e) used to characterize the features of CAFs101

were collected from MSigDB database.
The relative abundances of CD4T_FOXP3, CD8T_LAG3_PDCD1,

Mph_SPP1, and Fb_MMP11 in the bulk cohorts were also calculated
based on their marker genes (adjusted p <0.05) using the ssGSEA
method, and their correlations with UPP1high tumor cell in the bulk
cohorts were also analyzed. Meanwhile, the overall survival associa-
tions of CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1, and Fb_MMP11
cell clusters in the bulk cohorts were also conducted.

The cell-cell communication ligand-receptor pairs between
UPP1high tumor cells and CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1,
and Fb_MMP11 cell clusters were assessed using the CellPhoneDB
analysis33. The gene expression matrix and metadata file, which
includes cell type assignments, were prepared based on the single-cell
RNA sequencing data. The cell types of interest (UPP1high tumor cells,
CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1, and Fb_MMP11 cell
clusters) were labeled in the metadata file. Then, the CellPhoneDB
method was executed, utilizing the gene expression matrix and
metadata file as input. This method conducted a statistical analysis to
identify significant receptor-ligand pairs between the cell types. The
output files generated by CellPhoneDB were used for analy-
sis (p <0.05).

UPP1-related TME module score
Themarker genes (Log2FC > 1 and adjusted p <0.05) of UPP1high tumor
cells, CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1, and Fb_MMP11 cell
clusters were combined into a gene set. We then calculated the GSVA
scores on the three bulk cohorts using this gene set, and labeled the
resulting GSVA scores as the UPP1-related TME module score. Subse-
quently, the GSVA scores were categorized into high and low groups
using the survminer R package.We thenperformed the log-rank test to
compare the overall survival differences between the high and low
groups. In addition, we compared the TME features of the high and low
groups. These features were calculated using the GSVA method with
the gene sets listed in Supplementary Data 3.

LUAD patient samples from Zhongshan Hospital
Threedifferent batches LUADsampleswere collected fromZhongshan
Hospital in the current study (Supplementary Data 5). The TMA con-
sists of 205 LUAD patients who underwent surgical resection of pul-
monary carcinoma between January 2013 and August 2013. The tumor
stages were determined based on the latest edition of the American
Joint Committee on Cancer (AJCC) TNM classification. The overall
survival and recurrence-free survival times were tracked from the day
of the resection surgery up to the day of death, relapse/metastasis, or
the last follow-up in August 2018. Tissues for this cohort were pre-
served in FFPE blocks and were sliced and fixed on microscope slides
for immunohistochemistry in this study; LUAD samples used for
multiplex immunofluorescence (mIF) analysis comprises 15 LUAD
samples collected from Zhongshan Hospital between 2021 and 2022.
The fresh samples were fixed using 4% paraformaldehyde and later
processed into paraffin blocks. Similar to the TMA cohort, tissues for
this batch were preserved in FFPE blocks. These samples were then
sliced and mounted onto microscope slides for the subsequent
immunofluorescence analysis in this study; six LUAD samples used for
the establishment of patient-derived organoids (PDOs) were collected
from Zhongshan Hospital in 2022.

Immunohistochemistry
The sections were heated at 65 °C for an hour to dissolve the embed-
ded paraffin. This was followed by a dewaxing process, which involved
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two 10-min immersions in xylene. Following dewaxing, the sections
underwent rehydration via a series of ethanol washes with declining
concentrations. For antigen retrieval, sections were immersed in
sodium citrate buffer (Servicebio, G1206) and microwaved for two
intervals of 8min each. Following antigen retrieval, the sections were
allowed to cool naturally until they reached room temperature. Sub-
sequently, the sections were treated with a 0.2% Triton X-100 solution
for 15min for permeabilization. They were then blocked using Quick-
Block™ Blocking Buffer (Beyotime, P0260) for 30min to prevent non-
specific antibody binding. The sections were incubated with primary
antibodies at 4 °C overnight. After washing three times with PBS for
5min each time, the sections were incubated with HRP-conjugated
secondary antibodies for 1 h at room temperature. Target proteins
were visualized using a diaminobenzidine (DAB) chromogen kit (Ser-
vicebio, G1212). Slides were counterstained with diluted hematoxylin
for 3–5min. Slides were scanned using PannoramicMIDI (3DHISTECH,
Hungary). For the quantification of IHC images, we used the AI-based
IHC scoring software, Aipathwell, developed by Servicebio (Wuhan,
China)25,26. This software generated four metrics: Positive Area (%),
Mean Density, Area Density, and H-score (Supplementary Data 5). We
here used the H-score for subsequent analysis. The following primary
antibodies were used for IHC in this study: anti-UPP1 (Abcam,
ab185680, 1:100) and anti-PD-L1 (Cell Signaling Technology, 13684,
1:100). The following secondary antibody was used: Anti-rabbit IgG
HRP-linked-antibody (Servicebio, GB23303, 1:200).

Cell lines
The cell lines HCC827 (CL-0094), LLC (CL-0140), HFL1 (CL-0106), and
THP-1 (CL-0233) were purchased fromWuhan Procell Life Science and
Technology Co., Ltd. (Wuhan, China). LLC-OVA cells (labeled with
mCherry) were generously provided by Professor Guangchuan Wang
(State Key Laboratory of Molecular Biology, Shanghai Institute of
Biochemistry and Cell Biology, Center for Excellence in Molecular Cell
Science, Chinese Academy of Sciences). STR authentication of cell
lines was performed by vendors, HCC827, authenticated in October
2021; LLC, authenticated in October 2023; HFL1, authenticated in
February 2023; THP-1, authenticated in February 2023, and cell lines
were regularly tested for mycoplasma. Cancer cell lines were main-
tained in RPMI 1640 medium (Gibco, C11875500BT) supplemented
with 10% fetal bovine serum (FBS) (BIOIND, 04-001-1ACS) and 1%
penicillin/streptomycin. HFL1 cells were cultured in Ham’s F-12K
medium supplemented with 10% FBS (Wuhan Procell, CM-0106) and
1% penicillin/streptomycin. THP-1 cells were cultured in RPMI 1640
mediumwith 10% FBS, 0.05mM 2-mercaptoethanol, and 1% penicillin/
streptomycin.

Multiplex immunofluorescence
To investigate the distribution of UPP1high tumor cells in TME and their
spatial relationship with CD4T_FOXP3, CD8T_LAG3_PDCD1, Mph_SPP1,
and Fb_MMP11 cells, weperformed themultiplex immunofluorescence
staining (mIF) for these five cell types. For each tumor sample, we
prepared four serial sections. Each sectionwas processed as described
above for immunohistochemistry, which included paraffindissolution,
dewaxing in xylene, rehydration through ethanol washes, antigen
retrieval, cooling, permeabilizatio, and blocking. The sections were
incubated with primary antibodies at 4 °C overnight. After washing
three times with PBS, the sections were incubated with secondary
antibodies for 1 h at room temperature. Next, a second round of pri-
mary antibodies was applied and incubated for 1 h at room tempera-
ture, followed by a second round of secondary antibodies incubated
for 1 h at room temperature. Following this, the sections were incu-
bated with FlexAble labeled primary antibodies for 2 h at room tem-
perature. The following antibodies were used for each staining:

For FOXP3 +CD4 +T cells and UPP1 tumor cells, we used anti-CD4
(Abcam, ab133616, 1:100) detected with anti-rabbit AF555 (Abcam,

ab150078, 1:1000), anti-FOXP3 (Abcam, ab191416, 1:100) detectedwith
anti-rabbit AF647 (Beyotime, A0468, 1:500), and anti-UPP1 (Pro-
teintech, 14186-1-AP, 1:100) combined with FlexAble 488 (Proteintech,
KFA001, working solution). PanCK was detected using anti-PanCK
(Proteintech, 26411-1-AP, 1:200) combined with FlexAble 750 (Pro-
teintech, KFA004, working solution).

ForMMP11+ Fibroblasts andUPP1 tumor cells, weused anti-α-SMA
(Bioss, bsm-33187m, 1:500) detected with anti-mouse AF647 (Abcam,
ab150115, 1:1000), anti-MMP11 (Abcam, ab119284, 1:100) detected with
anti-rabbit AF555 (Abcam, ab150078, 1:1000), and anti-UPP1 (Pro-
teintech, 14186-1-AP, 1:100) combined with FlexAble 488 (Proteintech,
KFA001, working solution). PanCK was detected using anti-PanCK
(Proteintech, 26411-1-AP, 1:200) combined with FlexAble 750 (Pro-
teintech, KFA004, working solution).

For LAG3 + PD-1 + CD8+ T cells and UPP1 tumor cells, we used
anti-PD-1 (CST, 86163 S, 1:100) detected with anti-rabbit AF647
(Beyotime, A0468, 1:500), anti-LAG3 (CST, 15372 S, 1:100) detected
with anti-rabbit mCherry (Absin, abs50028, working solution), anti-
CD8 (Proteintech, 66868-1-Ig, 1:200) combined with FlexAble 555
(Proteintech, KFA022, working solution), and anti-UPP1 (Proteintech,
14186-1-AP, 1:100) combined with FlexAble 488 (Proteintech, KFA001,
working solution). PanCKwas detected using anti-PanCK (Proteintech,
26411-1-AP, 1:200) combined with FlexAble 750 (Proteintech, KFA004,
working solution).

For SPP1+ Macrophages and UPP1 tumor cells, we used anti-SPP1
(Proteintech, 22952-1-AP, 1:100) detected with anti-rabbit AF647
(Beyotime, A0468, 1:500), anti-CD68 (Abcam, ab213363, 1:100)
detected with anti-rabbit AF555 (Abcam, ab150078, 1:1000), and anti-
UPP1 (Proteintech, 14186-1-AP, 1:100) combined with FlexAble 488
(Proteintech, KFA001, working solution). PanCK was detected using
anti-PanCK (Proteintech, 26411-1-AP, 1:200) combined with FlexAble
750 (Proteintech, KFA004, working solution).

After sequential reactions, slides were stained with DAPI (Servi-
cebio, G1012) and scanned using Olympus VS200 (Olympus, Japan).

Visiopharm anslysis
We used the Visiopharm software (https://visiopharm.com), which
is a leading AI-driven precision pathology software, formIF analysis.
After uploading the images into the software interface, the regions
of interest (ROIs) within the tissue sections were manually selected.
For each individual image, we reviewed the distribution patterns of
tumor cells and the corresponding stained cells and selected 3–5
areas enriched in tumor cells and their associated stained cells.
Then, the software’s AI-powered recognition algorithm was used to
segment individual cells based on the nuclear staining of DAPI
within the ROIs.

Following the segmentation process, we used the phenotype
module within Visiopharm to automatically classify cells into distinct
phenotypes. These phenotypes included UPP1high, UPP1low tumor cells,
and the associated stained cell populations, determined by the unique
expression profile of markers within each cell.

Post-classification, we analyzed the spatial distribution of these
phenotypes and calculated the spatial distances between UPP1high

tumor cells/UPP1low tumor cells and associated cell populations within
a 200μm radius within the selected ROIs. For enhanced visualization,
color-coded overlays were applied to the original images, highlighting
the location and distribution of the identified phenotypes.

Generation of stable UPP1 overexpression and knockdown
cancer cell lines
The full-length coding sequences for human UPP1 (NM_001287426)
were cloned into the vector PLVX-IRES-Puro to generate stable over-
expression cell lines. For the creation of mouse overexpression cell
lines, mouse UPP1 (NM_001159401) was cloned into the vector
pLKO.1-puro.
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Short hairpin RNAs (shRNAs) were used for the knockdown
process. Three different shRNAs for the human (human-shUPP1-1:
GCTGAAAGTCACAATGATTGC; human-shUPP1-2: GACACAATTT
CCCAGCCTTGT; human-shUPP1-3: GTGCTCCAACGTCACTATCAT)
were cloned separately into the PLVX-IRES-Puro vector. For themouse
sequence, three different shRNAs (mice-shUpp1-1: GCTTCATC-
CAACTTTCAAATC; mice-shUpp1-2: GCACTAGCACACACGATTTCC;
mice-shUpp1-3: GGAAGGAATATCCCAACATCT) were individually
cloned into the pLKO.1-puro vector.

All plasmids were verified by DNA sequencing. The lentiviruses
containing the packaged plasmids were purchased from Tongji bio-
technology company (Shanghai, China) and used to infect HCC827
(human) and LLC or LLC-OVA (mouse) cells for 48 h in the presence of
10μg/ml polybrene (MCE, HY-112735). The stably transduced cell lines
were then selected using puromycin (Beyotime, ST551). The efficiency
of overexpression and knockdown was validated using Western blot
and RT-qPCR.

Western blotting
Cells were lysed using RIPA lysis buffer (Beyotime, P0013) containing
protease and phosphatase inhibitors (Beyotime, P1050) on ice for
30min. After this, themixturewas centrifuged at 12,000g for 15min at
4 °C, and the supernatant containing the proteins was carefully col-
lected. Protein concentrations were measured using a bicinchoninic
acid (BCA) assay (Beyotime, P0012), following the manufacturer’s
instructions. Equal amounts of proteins were then denatured by boil-
ing at 100 °C in SDS-PAGE sample loading buffer (Beyotime, P0015)
for 5min.

The denatured proteins were then separated using YoungPAGE
gels (GenScript, M00930) in MOPS running buffer. Following elec-
trophoresis, the separated proteins were transferred onto PVDF
membranes (Millipore, IPVH00010) using a wet transfer system. The
membranes were then blocked using QuickBlock Blocking Buffer
(Beyotime, P0252) to prevent non-specific binding. After blocking, the
membranes were incubated overnight at 4 °Cwith primary antibodies.
The next day, the membranes were washed to remove unbound pri-
mary antibodies and incubatedwith appropriate secondary antibodies
for 1 h at room temperature. The protein bands were then visualized
using the e-BLOT imaging system (Touch Imager, China).

The following primary antibodies were used for western blotting
in this study: anti-human-UPP1 (Abcam, ab128854, 1:1000), anti-PD-L1
(Cell Signaling Technology, 13684, 1:1000), anti-β-Actin (Proteintech,
HRP-60008, 1:2000), anti-SPP1 (Proteintech, 22952-1-AP, 1:1000), anti-
GAPDH (Proteintech, HRP-60004, 1:5000), anti-MMP11 (Abcam,
ab119284, 1:1000), anti-FAP (Abcam, ab207178, 1:1000), anti-PI3K (Cell
Signaling Technology, 4257 S, 1:1000), anti-AKT (Cell Signaling Tech-
nology, 9272 S, 1:1000), anti-mTOR (Cell Signaling Technology, 2972 S,
1:1000), anti-PI3K p85 (phospho Y458) + PI3 Kinase p55 (phospho
Y199) (Abcam, ab278545, 1:1000), anti-p-mTOR (phospho S2448)
(Abcam, ab109268, 1:1000), anti-p-AKT (Santa Cruz, sc-293125, 1:200).
The following secondary antibody was used: anti-rabbit-HRP (Cell
Signaling, 7074 S, 1:2000) and anti-mouse-HRP (Jackson Immunor-
esearch, 115-035-003E, 1:10000).

Quantitative real-time PCR (RT-qPCR)
The procedure for extracting total RNA from cells was conducted
using the total RNA isolation kit (Vazyme, RC112-01), per the manu-
facturer’s instructions. NanoDropwas utilized to assess the quality and
concentrations of RNA in the samples. Next, each sample’s total RNA,
amounting to 1 ng, was converted into cDNA.

The removal of genomic DNA was carried out with a 4 × gDNA
wiper Mix (Vazyme, R233-01-AB). The mixture, consisting of 12μl of
RNA andDNase/RNase-free ddH2O, alongwith 4μl of gDNAwiperMix,
was incubated at 42 °C for 2min. Subsequently, 4μl of 5 × qRT
SuperMix (Vazyme, R233-01-AC) was added to the mixture and

incubated at 50 °C for 15min. The reaction was terminated by heating
at 85 °C for 5 s.

The RT-qPCRmixture, totaling 10μl, included 5μl of 2 × Taq SYBR
Green qPCR Mix (Vazyme, SQ101), 1μl of primers, and 4μl of diluted
cDNA. Thequantification of gene expressionwasexecutedusing a BIO-
RAD Real-time PCR System. The data was computed using the 2 -ΔΔCT
method, with GAPDH serving as the internal reference gene. The pri-
mers were synthesized by Tsingke Biotechnology Co., Ltd (Beijing,
China). The primer sequences are provided in Supplementary Table 2.

PCR
DNA was extracted from LLC-OVA cell lines utilizing the FastPure Cell/
Tissue DNA Isolation Mini Kit (Vazyme, DC102-01). PCR amplifications
were then conducted using specific primers, ensuring equivalent DNA
quantities in each PCR reaction.

A 10μl PCR mixture was prepared, comprising 1μl of genomic
DNA, 0.5μl of each primer, 5μl of 2 × Taq Master Mix (Vazyme, P112-
01), and 3.5μl of DNase/RNase-free ddH2O. The PCR parameters were
set as follows: initial denaturation at 94 °C for 3min, followed by 35
cycles of denaturation at 94 °C for 30 s, annealing at 60 °C for 35 s, and
extension at 72 °C for 35 s. The reaction was concluded with a final
extension at 72 °C for 5min.

Following amplification, the PCR products were subjected to
electrophoresis on a 1.0% agarose gel stained with Ultra GelRed
(Vazyme, GR501-01) and visualized under ultraviolet light. TheDL5000
DNAmarker (Vazyme,MD102-01)wasused todetermine themolecular
weight of the PCR products. The primers of OVA257-264102 were syn-
thesized by Tsingke Biotechnology Co., Ltd (Beijing, China). The
sequences of the primers are listed in Supplementary Table 2.

Cytokine-array analysis
The RayBio C-Series Human Cytokine Antibody Array C5 (RayBiotech,
AAH-CYT-5-8) was used to assess the changes of 80 cytokines between
UPP1 overexpressing tumor cells and control cells. A total of 1×107 cells
were collected and subsequently lysedusing the lysis buffer containing
protease and phosphatase inhibitors on ice for 30min. Following this,
the samples were centrifuged at 14,000 g for 20min, after which the
supernatant was collected for further analysis.

The Antibody Arrays were removed from the plastic packaging
and eachmembranewas placed into a well of the incubation tray. Each
well was filled with 2ml of Blocking Buffer and incubated for 30min at
room temperature, after which the blocking buffer was aspirated from
each well. Each well was then filled with 1ml of the sample and incu-
bated overnight at 4 °C, then aspirated. The wells were then filled with
2ml of 1XWash Buffer I and incubated for 5min at room temperature,
a process repeated three times. This was followed by the addition of
2ml of 1XWashBuffer II into eachwell and incubated for 5min at room
temperature.

1ml of the prepared Biotinylated Antibody Cocktail was then
added to each well and incubated for 2 h at room temperature, after
which theBiotinylatedAntibodyCocktailwas aspirated fromeachwell.
The membranes were then washed again. After that, 2ml of 1X HRP-
Streptavidin was added to each well and incubated for 2 h at room
temperature. The membranes were then washed again.

The membranes were then transferred onto a sheet of chroma-
tography paper. After that, equal volumes of Detection Buffer C and
Detection Buffer D were mixed, and 500 µl of the Detection Buffer
mixture was gently pipetted onto each membrane and incubated for
2min at room temperature. Finally, the membranes were scanned
using the e-BLOT imaging system (Touch Imager, China) and analyzed
using the ImageQuant software (GE, USA).

ELISA
Supernatants from UPP1-overexpressing tumor cells and control cells
were analyzed using the human TGF-β1 ELISA kit (Proteintech,
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KE00002), per themanufacturer’s instructions. TheTGF-β1 levelswere
detected using the SpectraMax ABS Plusmicroplate reader (MD, USA).

Co-culture of UPP1-overexpressing tumors with CD4+T cells,
CD8+T cells, THP-1-derivedmacrophages, and HFL1 fibroblasts
Peripheral Blood Mononuclear Cells (PBMCs) were isolated from
blood samples of healthy volunteers using a density gradient cen-
trifugation method with Ficoll-Paque Plus cell separation media
(Cytiva, 17144003). CD4 +T cells were isolated from PBMCs using the
CD4 + T Cell Isolation Kit (Miltenyi Biotec, 130-094-131) according to
the manufacturer’s instructions. The purity of CD4 +T cells was vali-
dated using flow cytometry; Untouched CD8 +T cells were purchased
from iXCells Biotechnologies (10HU-024N); CD4 + T cells or
CD8 + T cells were cultured in ImmunoCult T Cell Expansion Medium
(STEMCELL, 10981) supplemented with 50 U/ml IL-2 (Peprotech, 200-
02-50) and ImmunoCult CD3/CD28/CD2 T cell Activator (STEMCELL,
10970). The cells were maintained in the culture medium for 2 days
before co-culture; THP-1 cells weredifferentiated intomacrophages by
treatment with PMA (100nM) for 48 h.

A Transwell chamber with a 0.4 μm pore size permeable mem-
brane (Corning, 3450) was utilized for the co-culture assays. 2.5 × 105

HCC827 tumor cells (UPP1-OE or UPP1-OENC) were placed in the top
insert of the Transwell and co-cultured with CD4 +T cells,
CD8 + T cells, THP-1-derived macrophages, and HFL1 fibroblasts,
respectively. The number of cells in the lower chamberwere as follows:
5 × 105 CD4 +T cells, 5 × 105 CD8+ T cells, 5 × 105 THP-1-derived mac-
rophages, and 2.5 × 105 HFL1 fibroblasts. On the second day of co-
culture, 10 µg/ml of TGF-β neutralizing antibody (BioXcell, BE0057) or
isotype IgGwas added to the upper chamber. The culturemediumwas
replaced once at the midpoint of the co-culture period. For
CD4 + T cells and CD8 +T cells, the co-culture continued for a total
period of seven days. For THP-1-derived macrophages and HFL1
fibroblasts, the co-culture period was five days. CD4 +T cells and
CD8 + T cells were analyzed using flow cytometry, THP-1-derived
macrophages were analyzed using immunofluorescence, western
blotting and RT-qPCR; fibroblasts were examined using both single-
cell analysis and western blotting tests.

For the immunofluorescence of THP-1-derived macrophages, the
cells were first fixed with 4% paraformaldehyde for 30min. They were
then permeabilized with PBS containing 0.2% Triton X-100 for 15min
at room temperature. The slides were blocked using QuickBlock™
Blocking Buffer (Beyotime, P0260) for 30min at room temperature,
followed by incubationwith anti-SPP1 (Proteintech, 22952-1-AP) at 4 °C
overnight. Goat Anti-Rabbit IgG H&L (Alexa Fluor 555) (Abcam,
ab150078) was used to bind the primary antibodies at room tem-
perature for 1 h. Following the staining of primary and secondary
antibodies, DAPI (Servicebio, G1012) was used to stain the nuclei. The
slides were then observed using CSU-W1 confocal microscopy
(OLYMPUS, Tokyo, Japan) and analyzed with the Cell-Sens Application
Suite Software.

Flow cytometry
Flow cytometry was conducted using MA900 Multi-Application Cell
Sorter (SONY, Japan). For flow cytometry analysis of cell samples,
single-cell suspensions were prepared in PBS and blocked using
Human TruStain Fc (Fc Receptor Blocking Solution) (Biolegend,
422302, working solution) or Mouse TruStain Fc PLUS (anti-mouse
CD16/32) Antibody (Biolegend, 156604, working solution). For mem-
brane antibody staining, the antibody mixture was added into the cell
suspension and incubated at room temperature for 30min. The cells
were thenwashedwith cold PBS and 5 µl of 7-AAD (Biolegend, 420403,
working solution) was added. These prepared samples were then
subjected to flow cytometry analysis.

For intracellular staining, surface marker staining was first per-
formed at room temperature for 30min. Subsequently, the cells were

fixed and permeabilized using the FIX & PERM Cell Permeabilization
Kit (Invitrogen, GAS003). Then, intracellular antibody staining was
conducted at room temperature for 2 h. The cells were then washed
with cold PBS and subjected to flow cytometry analysis. For
Foxp3 stainingof Tregs, weused the eBioscienceFoxp3 / Transcription
Factor Staining Buffer Set (Invitrogen, 00-5523-00).

For flow cytometry analysis of mouse tumor tissue samples, the
harvested tumors were first minced. Next, they were digested using
RPMI 1640 medium supplemented with 1mg/ml collagenase IV (Wor-
thington, LS004188, for immune cell analysis) or collagenase II (Wor-
thington, LS004176, for fibroblast analysis), and 10 ug/ml DNase I
(Roche, 11284932001), at 37 °C on a shaking platform operating at
120 rpm. Then, the cell suspensions were passed through 70μm cell
strainers to prepare single-cell suspensions in PBS. They were then
blocked using Mouse TruStain Fc PLUS (anti-mouse CD16/32) Anti-
body (Biolegend, 156604, working solution), and the staining process
was conducted as per the aforementioned procedure. The antibodies
used are as follows:

For CD4 +CD25 + FOXP3+ Tregs analysis, Anti-CD4-FITC (Invitro-
gen, 11-0048-42, 1:100), Anti-FOXP3-PE (Invitrogen, 12-4776-42, 1:20),
and Anti-CD25-APC (Invitrogen, 17-0257-42, 1:20) antibodies
were used.

For the analysis of exhausted CD8+ T cells, the antibodies used
were Anti-CD8-PE (Biolegend, 344705, 1:100), Anti-LAG3-APC (Biole-
gend, 369211, 1:20), Anti-PD-1-FITC (Invitrogen, 11-9969-42, 1:20), and
7AAD (Biolegend, 420403, working solution).

For analyzing PD-L1 expression, the PE CD274 (PD-L1, B7-H1)
(Invitrogen, 12-5983-42, 1:200) was used.

For evaluating the immune effector molecules of OT-1
CD8 + T cells against LLC-OVA tumor cells, the antibodies used were
Anti-CD8-APC (Biolegend, 140410, 1:100), Anti-Perforin-PE (Invitrogen,
12-9392-80, 1:20), and Anti-Granzyme B-FITC (Biolegend,
372206, 1:20).

For the study of fibroblasts in tumors, the antibodies used were
Anti-CD45-FITC (Invitrogen, 11-0451-81, 1:100), Anti-CD140-PE (Biole-
gend, 135905, 1:100), Anti-CD31-APC (Biolegend, 102410, 1:100), and
7AAD (Biolegend, 420403, working solution)103.

For assessing the immune effector molecules of CD8 + T cells in
tumors, the antibodies used were Anti-CD45-BV421 (Biolegend,
103134, 1:100), Anti-CD3-APC (Biolegend, 100326, 1:100), Anti-CD8-
BV711 (Invitrogen, 407-0081-82, 1:100), Anti-IFN-γ-BV510 (Biolegend,
505841, 1:20), Anti-TNF-α-BV605 (Biolegend, 506329, 1:50), Anti-
Perforin-PE (Invitrogen, 12-9392-80, 1:20), and Anti-Granzyme B-FITC
(Biolegend, 372206, 1:20).

Single-cell RNA sequencing of fibroblasts co-cultured with
tumor cells
HFL1 fibroblasts co-cultured with HCC827 tumor cells (UPP1-OE or
UPP1-OENC) were collected for single-cell RNA sequencing. The
fibroblasts were digested using trypsin (Gibco, 25200072) and then
passed through a 70-um strainer (Falcon, 352350) to obtain the single-
cell suspensions. The cell suspensions were subjected to Chromium
Next GEM Single Cell 5’ Reagent Kits v2 with a cell recovery target of
10,000, following the manufacturer’s instructions (10X Genomics).
Libraries were sequenced on an Illumina NextSeq 2000 platform. The
single-cell RNA sequencing raw data were processed based on the
pipelines mentioned above.

To analyze the transformation of fibroblasts co-cultured with
UPP1-OE into CAFs, we calculated the CAFs score for fibroblasts co-
cultured with either UPP1-OE or UPP1-OENC using the AddModule-
Score function in Seurat based on the canonical genes of CAFs (Sup-
plementary Data 3). Subsequently, based on the marker genes of
MMP11+ CAFs identified in Supplementary Fig. 6a, we calculated the
MMP11+ CAFs scores for the co-cultured fibroblasts using also the
AddModuleScore function in Seurat. Fibroblasts with anMMP11+ CAFs
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score higher than themedian valuewere categorized asMMP11+ CAFs-
like fibroblasts, while those scoring below the median were defined as
MMP11- fibroblasts (Fbs).

Mice
Six-week-old female C57BL/6 and BALB/c nude mice were purchased
from SPF Biotechnology Co., Ltd. (Beijing, China). Six-week-old female
OT-1 mice were purchased from Cyagen Biosciences (Guangzhou,
China). The mice were maintained in a specific-pathogen-free (SPF)
environment. Previous research has indicated that there are no sig-
nificant differences between male and female mice in the LLC cell
tumor model104. During our preliminary experiments, we observed
that male mice tended to engage in aggressive behavior post-trans-
plantation, leading to the disruption of tumor growth due to fighting-
related injuries. Female mice generally exhibit reduced fighting beha-
viors, which facilitates group housing and randomization105, and helps
in generating more consistent results, so we used female mice. In
accordance with the guidelines and approvals granted by our ethics
committee, the maximum allowable tumor size and burden for this
study were set at a length and width not exceeding 2 cm and a volume
limit of 2000mm³. Tumor growth in the mice was monitored every
three days. In accordance with the Institutional Animal Care and Use
Committee (IACUC) guidelines, we employed the carbon dioxide
(CO2) inhalation method for the euthanasia of mice used in our study.
Following the loss of consciousness, we confirmed the euthanasia with
a secondary physical method, specifically cervical dislocation, to
ensure a humane andethical treatment of the animals asper the IACUC
standards. All experimental procedures involving animals were
approved by the Ethics Committee of Zhongshan Hospital, Fudan
University.

OT-1 CD8+T cells killing assay
OT-1 splenic lymphocytes were isolated using the splenic lymphocytes
isolation kit (Solarbio, P8860), following the manufacturer’s instruc-
tions. After that, splenic lymphocytes were stained with Anti-CD3-APC
(Biolegend, 100326) and Anti-CD8-BV711 (Invitrogen, 407-0081-82).
Then,OT-1CD8 +Tcellswere sorted andcollectedusingMA900Multi-
Application Cell Sorter (SONY, Japan). The sorted cells were then
expanded and activated for five days in RPMI 1640 containing 10% FBS,
5ug/ml IL-2 (Peprotech, 200-02-50), and 1ug/ml OVA257-264 peptide
(Genscript, RP10611)106. After activation, the purity of CD8 +T cells was
tested. Then, OT-1 CD8 + T cells and LLC-OVA target cells were co-
culture at a 2:1 ratio overnight.

After the co-culture, the suspended CD8 +T cells and apoptotic
unattached cells were gently washed away using PBS. Afterward, the
surviving adherent tumor cells were fixed and stained with crystal
violet solution (Beyotime, C0121). Images were captured and quanti-
fication was performed using Image J software. In addition, a flow
cytometric analysis was carried out on the cells after the co-culture to
determine the number and proportion of surviving tumor cells. DAPI
was used to identify dead cells, and the surviving tumor cells were
counted by identifying cells with negative DAPI staining and positive
mCherry expression.

Mice procedures
In all animal implantation experiments, a consistent quantity of 5 × 105

tumor cells was used. The cells were suspended in 50 µl of PBS and
thoroughly mixed with 50 µl of Matrigel (Beyotime, C0383).

To evaluate the influence of UPP1 expression changes on the
host’s tumor immune regulation, a comparative experiment was first
conducted. Four distinct cell groups - UPP1-overexpressing LLC tumor
cells, UPP1-downregulated LLC tumor cells, and their respective con-
trols - were prepared. These cells were subcutaneously implanted into
C57BL/6 mice and nude mice (n = 5 per group).

For the CyTOF and fibroblast flow cytometry animal experiments,
UPP1-overexpressing LLC tumor cells and control cells were sub-
cutaneously implanted into C57BL/6mice (n = 8 per group for CyTOF;
n = 5 per group for fibroblasts).

In the anti-PD-L1 treatment animal experiment, UPP1-
downregulated LLC tumor cells and control cells were implanted
into C57BL/6mice (n = 4 per group).Once tumors reached a volume of
100mm3, InVivoMab Anti-mouse PD-L1 antibodies (BioXcell, BE0101,
200μg/mouse) were administered via intraperitoneal injection three
times per week for three weeks.

For the OT-1 mouse experiment, UPP1-overexpressing LLC-OVA
tumor cells, UPP1-downregulated LLC-OVA tumor cells, and their
respective controls were subcutaneously implanted into adult OT-1
mice (n = 5 per group).

For the drug treatment experiment, UPP1-overexpressing LLC
tumor cells and their control cells were subcutaneously injected into
C57BL/6 mice. When the tumor volumes reached 100mm3, mice were
administered either Bosutinib (MCE, HY-10158, at a dosage of 100mg/
kg)107, Dasatinib (MCE, HY-10181, at a dosage of 15mg/kg)108, or DMSO
as a control. These treatments were delivered via oral gavage using
feeding needles, directly into the stomach.

CyTOF sample preparation and data acquisition
Antibodies for mass cytometry were obtained in two ways: either
directly acquired from Fluidigm or created in-house. For the in-house
production, commercially available purified antibodies were con-
jugated with the suitable metal isotope using the MaxPar X8 Polymer
kits from Fluidigm, as detailed in Supplementary Table 1. The con-
jugation process was carried out according to the manufacturer’s
instructions.

The harvested tumor samples were prepared into a single-cell
suspension as described above. Subsequently, 3 × 106 cells were
transferred to the Cell Staining Buffer. Staining was performed
sequentially, starting with membrane antibodies (Fluidigm, 400276),
followed by intracellular staining (Fluidigm, 400279), and finally
nuclear staining (Fluidigm, 400277), all in accordance with the man-
ufacturer’s instructions. Upon completion of the staining process, the
cells were fixed using 1.6% formaldehyde at room temperature for
10min. Subsequently, theywere incubatedwith 125 nMof Intercalator-
Iridium (Fluidigm) and incubated overnight at 4°.

Samples were washed twice with Cell Staining Buffer (Fluidigm)
and Cell Acquisition Solution Plus (Fluidigm) and then kept on the
Carousel while awaiting acquisition. Acquisition was performed on a
CyTOF XT system, using the pelleted mode for sample loading. Cali-
bration was carried out using EQ 6 element calibration beads (Flui-
digm). The samples were run at a rate that did not exceed 400 events
per second, continuing until we obtained 250,000 events. Normal-
ization of the data was accomplished using the CyTOF software, which
generated FCS files that we utilized in the subsequent data
analysis phase.

CyTOF data analysis
CyTOF data was first analyzed using Cytobank (http://www.cytobank.
cn) for quality control109, involving the removal of beads (140_beads),
dead cells (cisplatin), doublets (191Ir), as well as adjustments for resi-
dual, width, center, offset, and event length. Then, the normalized data
obtained from Cytobank were used for subsequent analysis following
the CyTOF workflow110.

In silico drug screening
Human cancer cell lines’ drug screening data were obtained from three
pharmacogenomic datasets, including Cancer Therapeutics Response
Portal (CTRPv.2.0, https://portals.broadinstitute.org/ctrp), Genomics of
Drug Sensitivity in Cancer (GDSC1&2, https://www.cancerrxgene.org/),
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and PRISM (19Q4, https://depmap.org/portal/prism/). The data were
pre-processed based on our previously described pipelines52. 632 cancer
cell lines and 408 drugs from CTRP, 741 cancer cell lines and 282 drugs
from GDSC, and 440 cancer cell lines and 1291 drugs from PRISM were
enrolled in this study.

The ridge regressionmodel in pRRophetic R package was applied
to estimate the drug sensitivity of LUAD patients55. This model was
firstly trained on the expression data and drug response data of cancer
cell lines, then, based on the expression data of cancer cell lines and
the expression data of patients, the predicted drug response data of
LUAD patients were estimated. After obtaining the predicted drug
response data, differential analysis was conducted between the UPP1
high and UPP1 low groups. Meanwhile, we classified cancer cell lines
into UPP1 high or UPP1 low cell groups and conducted differential
analysis, we then integrated the predicted drug response data of LUAD
patients with the cancer cell lines’ drug sensitivity data and obtained
three agents that were correlated with UPP1 expression.

Organoids
The LUAD clinical samples were minced into small pieces and were
subjected to enzymatic digestion in 5ml of Advanced DMEM/F-12
(Gibco, 12634010) supplemented with 5mg/ml collagenase II (Gibco,
17101015), 100μg/ml DNase I (Roche, 11284932001), and 10uM
Y-27632 (Abmole, M1817) for 1 h at 37 °C on a shaking platform
(120 rpm). Then, samples were centrifuged at 400× g for 5min. After
removing the supernatant, the tissueswere incubated in 5mlof TrypLE
Express (Gibco, 12605010) + 10μM Y-27632 for 10min at 37 °C. This
stepwas followedby addingAdvancedDMEM/F-12 supplementedwith
10% FBS to neutralize the TrypLE Express. Cells were pipetted up and
down to dissociate tissue fragments. Cell suspensions were passed
through 70μm cell strainers, mixed with Matrigel (Corning, 356231),
and 40,000 cells in 50μl droplets weredispensed into pre-warmed 24-
well plates. Plates were put upside down in the incubator for 10min,
and then the organoid culture medium was added (Jiayuan Bio-
technology, WM-H-10)111.

After 2-3 weeks of culture, organoids were harvested from the
culture medium for passaging. The Matrigel domes containing the
organoidswere carefully scraped using a pre-wetted P1000pipette tip.
Theseorganoidswere then transferred to a 15mL tube and centrifuged
at 200 × g for 5min at 4 °C. The supernatant was discarded, and the
organoids within the Matrigel were digested using 2mL of TrypLE
Express supplemented with 10uM Y-27632. This digestion was con-
ducted at 37 °C on a shaking platform set to 60 rpm for approximately
5min. Then, 4mL of cold Advanced DMEM/F-12 supplemented with
20% FBS was added. Following another centrifugation step, the
supernatant was discarded, and the cell pellet was washed with 10mL
of cold Advanced DMEM/F-12. The organoids were then dissociated
into smaller clusters using a pre-wetted 10mL pipet in cold Advanced
DMEM/F-12. Finally, the dissociated cells were re-seeded in fresh
organoid culture medium. After three passages, these organoids are
suitable for subsequent analysis.

For histological processing of organoids, organoids were har-
vested by scraping off the Matrigel domes. After centrifugation at
200 × g for 5min, they were washed in cold Advanced DMEM/F-12 and
shaken to dissolve any residual Matrigel. The organoids were then
fixed in 10% neutral-buffered formalin for 2 h. After fixation, they were
resuspended in PBS. To embed the organoids, a 2% agarose solution
was prepared and cooled to about 50 °C. The organoids were gently
mixed with this agarose solution and then pipetted onto parafilm,
allowing the agarose to form a dome structure as it solidified. This
agarose-embedded organoid structure was processed similarly to
regular tissue samples for subsequent histological analysis111,112. The
tumor purity of organoids was validated using TTF-1 (Maixin biotech,
MAB-0677, 1:100), CK5 (Proteintech, 66727-1-Ig, 1:100), andp63 IHCkit
(Proteintech, KHC0086, working solution).

Validating the drugs using cell lines and organoids
The established UPP1-OE and UPP1-OENC tumor cells were used to
validate whether the difference inUPP1 expressionwas correlatedwith
different drug sensitivities in vitro. The cells were cultured with the
presence of Bosutinib (MCE, HY-10158), Dasatinib (MCE, HY-10181), or
Erlotinib (MCE, HY-50896) for 48 h. Then, the cell viability was asses-
sed using the CCK8 assay (Beyotime, C0038).

For organoid validation, the drug sensitivity assay was conducted
by seeding 2000 cells/well in 96-well plates in a complete organoid
culture medium containing 5% Matrigel113,114. The organoid medium
containing different concentrations of each drug was added. The cell
viability was measured using the CCK8 assay.

Statistical analysis
All results were repeated at least three independent times. RT-qPCR
data are expressed asmean ± SEM, while other results are presented
as mean ± SD. Survival analysis was performed using the log-rank
test. Data were evaluated using a two-tailed Student’s t-test or the
Wilcoxon rank-sum test, and comparisons across multiple groups
were made using one-way or two-way ANOVA. The Pearson corre-
lation coefficient was employed for correlation analyses. A Chi-
square test was used to identify differences in category proportions
between two group variables. Statistical significance was deter-
mined at p < 0.05. All statistical analyses were conducted using R or
GraphPad Prism Software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The LUAD scRNA-seq publicly available data used in this study are
available in the GSA database under accession code CRA00196380 and
HRA00015484, and GEO database under accession code GSE13190781,
GSE12390482, and GSE14807183. The LUAD bulk publicly available data
used in this study are available in the GEO database under accession
code GSE19188115, GSE30219116, GSE31210117, GSE37745118, GSE50081119,
and GSE72094120. The TCGA publicly available data used in this study
are available in the Xena database (Batch effects normalized mRNA
data, Pan-Cancer Atlas Hub) (https://xenabrowser.net)121. The scRNA-
seq data generated in this study have been deposited in the GSA
database under accession code HRA003967. The remaining data are
availablewithin theArticle, Supplementary InformationorSourceData
file. Source data are provided with this paper.
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