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Acoustic-driven magnetic skyrmion motion

Yang Yang 1,6, Le Zhao 2,6, Di Yi3,6, Teng Xu2, Yahong Chai1, Chenye Zhang1,
Dingsong Jiang1, Yahui Ji1, Dazhi Hou 4,5, Wanjun Jiang 2 , Jianshi Tang 1,
Pu Yu 2, Huaqiang Wu 1 & Tianxiang Nan 1

Magnetic skyrmions have great potential for developing novel spintronic
devices. The electricalmanipulation of skyrmions hasmainly relied on current-
induced spin-orbit torques. Recently, it was suggested that the skyrmions
could be more efficiently manipulated by surface acoustic waves (SAWs), an
elastic wave that can couple with magnetic moment via the magnetoelastic
effect. Here, by designing on-chip piezoelectric transducers that produce
propagating SAW pulses, we experimentally demonstrate the directional
motion of Néel-type skyrmions in Ta/CoFeB/MgO/Ta multilayers. We find that
the shear horizontal wave effectively drives the motion of skyrmions, whereas
the elastic wave with longitudinal and shear vertical displacements (Rayleigh
wave) cannot produce the motion of skyrmions. A longitudinal motion along
the SAW propagation direction and a transverse motion due to topological
charge are simultaneously observed and further confirmed by our micro-
magnetic simulations. This work demonstrates that acoustic waves could be
another promising approach for manipulating skyrmions, which could offer
new opportunities for ultra-low power skyrmionics.

Using magnetic skyrmions, the particle-like spin textures, as con-
trollable information carriers offer potentials for high density and low
power spintronic memory and logic applications1–8. To develop
skyrmion-based devices, e.g. skyrmion racetrack memory, efficient
manipulation of skyrmions is crucial. Electric current manipulation of
skyrmions has been previously demonstrated in asymmetric magnetic
multilayers bymeans of current-induced spin-orbit torques or thermal
gradients, amongmany others9–20. On the other hand, the electric-field
control of skyrmions via magnetoelectric or magnetoelastic effect
couldprovidemore energy-efficient approacheswith an extremely low
Joule heating and hence low power consumption21,22. Such control
means can be achieved, for example, by the static strain modification
of magnetic anisotropy and Dzyaloshinskii-Moriya (DM)
interaction23–25, or by dynamic strains using acoustic waves through
strong magnon-phonon coupling26,27. In particular, surface acoustic
waves (SAWs) are long-range carriers (wave propagating over milli-

meter distances through ferromagnets) for dynamic strains28–36, which
have been used as an efficient source for generating skyrmions by the
SAW-induced spatiotemporally varying strains and inhomogeneous
effective torques37. A recent theoretical model also suggested the
skyrmion motion driven by counter-propagating SAWs38. Yet the
electric-field induced static strain or acoustic wave control of
the skyrmion motion has not been experimentally demonstrated.
Although SAWs have been used as a noncontact and controllable
method to manipulate nano/microparticles39,40, electrons41, and
qubits42, the associated efficiency seemsnot high enough to induce the
motion of magnetic skyrmions.

Here, we experimentally study the SAW-driven directional
motions of Néel-type magnetic skyrmions due to the strong magne-
toelastic coupling in magnetic multilayers integrated with on-chip
piezoelectric transducers. By controlling the relative orientation
between the propagation of acoustic wave and crystal orientation of
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the piezoelectric materials, we generate both Rayleigh waves (with
shear vertical and longitudinal displacements) and shear horizontal
(SH) waves (with only shear horizontal displacements) that can be
applied to skyrmions at the same sample area. We find that the Ray-
leigh wave can generate but not move the skyrmions due to its
dominant vertical displacement (Fig. 1a), which is consistent with the
early report37. By contrast, the SHwave can efficientlymove skyrmions
as a result of the strong magnetoelastic coupling induced by the in-
plane strain gradients. The observed directional motion shows a
longitudinal component along the wave propagation direction, and
transverse components with their signs depending on the topological
charges, in analogy to the skyrmionHall effect12,43. These experimental
observations are further confirmed by ourmicromagnetic simulations.
Our results not only provide an efficient approach to drive the sky-
rmion motion by electric field-induced strain wave, but also demon-
strates the SAW alone could serve as another versatile platform to
explore the skyrmion dynamics.

Results
The difference of the skyrmion motion driven by Rayleigh and SH
waves can be captured by the micromagnetic simulations, which can
be done by considering magnetoelastic coupling, exchange coupling
and DM interaction (seeMethod and Supplementary Information note
2 for detail). Figures 1b and 1e show the simulated spatial distribution
of the normalized out-of-plane magnetization component mz, mag-
netoelastic energy density and total energy density for skyrmions that
were driven by Rayleigh and SHwaves, respectively. We observe that a
skyrmion does not exhibit significant movement under the action of a

Rayleigh wave. The amplitude of the shear vertical displacement is
usually larger than that of the longitudinal displacement in a Rayleigh
wave. The magnetoelastic energy density distribution of a skyrmion
strongly depends on the relative size of the skyrmion in comparison to
the wavelength of the SAW. When the size of the skyrmion is com-
parablewith the wavelength of a SAW, the strain gradient induced by a
SAW becomes non-uniform across the skyrmion, resulting in an
asymmetric magnetoelastic energy density distribution. The magne-
toelastic energy density distribution of a skyrmion under a shear ver-
tical wave shows a left-right asymmetry that is different from that
under an SH wave including both left-right and up-down asymmetry
due to the different displacement modes. The total energy density of
the skyrmion (including the magnetoelastic energy, anisotropy
energy, magnetostatic energy, exchange and DM energy) illustrates a
symmetric distribution under a shear vertical wave, while an asym-
metric distribution along the diagonal axis under an SH wave which
causes the skyrmion to move towards the lower energy density
direction. When we set the wavelength of a SAWmuch larger than the
diameter of the skyrmion, the strain gradient induced by a SAW can be
considered to be uniform across the skyrmion. In this case, the mag-
netoelastic force density distribution of a skyrmion is nearly sym-
metric. And the net magnetoelastic force on a skyrmion approaches
zero. This has also been predicted by the analytical model in the early
report38.

We study the skyrmions motion driven by SAWs in Ta (5 nm)/
Co20Fe60B20 (CoFeB, 1 nm)/MgO (1 nm)/Ta (2 nm)multilayers, because
the multilayers show a weaker pinning effect than that in Pt/Co/Ta
multilayers10,20. This is due to the fact that the amorphous CoFeB has a
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Fig. 1 | Concept of skyrmionmotiondriven by SAWs and the device schematics.
a Schematic diagram of skyrmion dynamics driven by a Rayleigh wave or a shear
horizontal (SH) wave. b Simulated skyrmion pinning under an elastic wave with
periodic shear vertical displacements. Due to the limitation of the computational
capacity, the diameter of the simulated skyrmion is set as 30nm. Thewavelength is
240 nmwhich is eight times as large as the simulated skyrmion size. The color scale
represents the normalized (out-of-plane) magnetization component mz. c the

magnetoelastic energy density,dThe total energy density of the skyrmionunder an
elastic wave with periodic shear vertical displacements. e Simulated skyrmion
motion driven by an SH wave. The arrow denotes the trajectory of motion. f The
magnetoelastic energy density, g the total energy density of the skyrmion under an
SH wave. h Schematic of the SAW delay line device configuration. i Transmission
spectrums (S12) of the SH wave and the Rayleigh wave. The wavelength of SAWs is
8 μm.
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strong magnetoelastic coupling and a low damping parameter44. The
magnetic properties of the multilayers on a LiNbO3 substrate were
characterized by a polar magneto-optic Kerr effect (MOKE) magneto-
metry (Supplementary Fig. S1a). The average diameter of skyrmions
generated by magnetic field pulses is estimated to be around 1 μm
(Supplementary Fig. S1c). The multilayers and interdigital transducers
(IDTs)were integratedona 64°Y-cut LiNbO3 piezoelectric substrate, as
shown in Fig. 1h (optical image of the fabricated devices is shown in
Supplementary Fig. S1d). By controlling the angle between the SAW
propagation direction and the orientation of the piezoelectric sub-
strate, the piezoelectric constant matrix can be transformed (see
Supplementary Information Note 2), and thus the SH wave or Rayleigh
wave can be generated independently with the wave propagation
along the x or y direction, respectively (Fig. 1d). Figure 1i shows a
transmission spectrum (S12) between two IDTs, which is obtained by
using a vector network analyzer where the resonance frequencies of
the SH wave mode and the Rayleigh wave mode are 486MHz and
451MHz, respectively. The propagation attenuation of the SH wave
mode in the 64°Y-cut LiNbO3 crystal is larger than that of the Rayleigh
wave mode, resulting in a lower resonant peak for the SH wave com-
pared to the Rayleigh wave.

We first study skyrmion generation by using SAWs. Figure 2 shows
the MOKE images for the evolution of magnetic textures. At a zero
magnetic field,maze domains are observed (Fig. 2a). Thenwe start with
a state with almost no magnetic texture by eliminating the initial maze
domain structure (by applying out-of-plane magnetic field of −0.8mT),
as shown inFig. 2b.Magnetic skyrmionswith a topological chargeQ= +1
are createdafter exciting apropagatingRayleighwaveor SHwavewith a
pulse duration of 300ms at the resonance frequencies, as shown in
Figs. 2c and 2d. The positive or negative sign ofQ represents the center
magnetization of the skyrmion being up or down. Fig. 2e and f show the

evolution of skyrmion densities and sizes as a function of applied RF
powers, which are created by SH and Rayleigh waves. Note that the
skyrmiondensity createdby aRayleighwave is slightly smaller than that
in the previous report37, which could be attributed to the shorter pulse
duration in our experiments. We find that the SH wave can generate
skyrmionsmore efficiently than theRayleighwavewhen theRFpower is
above 20dBm. This indicates that the SH wave mode can couple with
skyrmions more effectively because the SH wave with its dominant in-
plane shear horizontal displacement produces a stronger in-plane
magnetoelastic energy. The average sizes of skyrmions generated by
both SH andRayleigh waves are estimated to be around 1 μm, similar to
that generated by the magnetic field.

We then study the skyrmion motion by applying continuous SAW
pulses with a fixed RF power of 26 dBm. Figure 3a–d (e-h) illustrate
MOKE images ofQ = +1 (Q = −1) skyrmion after exciting 1st− 4th SHwave
pulse with a duration of 300ms (also see Supplementarymovies 1 and
2). We find that the skyrmions not only move along the wave propa-
gation direction (x axis), but also exhibit a transverse velocity com-
ponent (y axis), in analogy to the skyrmion Hall effect12. The motion

distances d (d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx
2 +dy

2
q

) of the circled skyrmions (Q = ± 1) are

around 3μmafter each pulse. The SHwavewith awavelength of 10μm
alsomoves skyrmions (Supplementary Fig. S7). Statistically, 32% of the
skyrmion population in the whole sample shows motion distance d > 1
μm (Supplementary Fig. S8). Note that the motion distances can be
further improved by increasing RF powers or decreasing the wave-
length of SAWs (Supplementary Fig. S8). By contrast, we do not
observe any skyrmion motion driven by Rayleigh waves although the
power of the receiving IDTs for a Rayleigh wave is 12 dBm higher than
that of an SH wave (Supplementary Fig. S9), which is consistent with
our micromagnetic simulations.
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Fig. 2 | Generation of skyrmions by Rayleigh and SH waves. Polar MOKE images
(a) of the maze domain at a zero magnetic field, (b) before exciting a propagating
SAW wave, Hoop = −0.8 mT, the magnitude of the applied out-of-plane field
increases over the negative saturation field and then decreases to −0.8mT, (c) after
exciting a propagating Rayleighwave, (d) after exciting a propagating SHwave. The

RF power is 26 dBm. The SAW pulse duration is 300ms. The scale bar is 5 μm.
e Densities of skyrmions created by SH waves and Rayleigh waves as a function of
RF powers. f Skyrmion sizes induced by SH waves and Rayleigh waves as a function
of RF powers. The error bars correspond to the standard deviation.
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Discussion
We estimate the skyrmion velocity driven by SH wave to be about 10
μm/s, which is similar to that driven by current-induced spin-orbit
torques with small current densities4345. This could suggest that the
skyrmion motion driven by SH waves under the present experimental
condition remains in the creep regime. By progressively increasing the
RF power, it is possible to increase the skyrmion velocity, but the wave
amplitude is saturated (Supplementary Fig. S9). To transform from the
creep regime to the flow regimewith amuchhigher skyrmion velocity,
one can use magnetic films with stronger magnetoelastic coupling
constants and low damping parameters (Supplementary Information
Note 3).

We summarize the motion trajectories (both dx and dy) of 18 dif-
ferent skyrmions in Fig. 4a. In the creep regime, the skyrmion is easily
trapped by the randomly distributed pinning sites. Nonetheless, the
skyrmions with Q = +1 (Q = −1) move consistently along the wave pro-
pagation direction with dy < 0 (dy > 0). This is in agreement with our
micromagnetic simulation (Figs. 4b and 4c). The average deflection
angles (ϕsk = arctanðdy=dxÞ) ofQ = −1 andQ = +1 skyrmions are around
49.5° ± 15.2° and −34.2° ± 17.7°, respectively. The large variation of
deflection angles can be attributed to the pinning potential induced by
random defects. By solving the Thiele equation46, our analytical cal-
culation reveals that the deflection angle is determined by the damp-
ing parameter and the ratio of effective magnetoelastic forces along
the x and y axes (Fx and Fy). In Fig. 4d, the solid curves show the
calculated deflection angle as a function of damping parameters with

Fy/Fx = 0.3 (reasonable value for an SH wave). The calculated curves
correspond to the experimental data (extract from Fig. 4a), which
gives the dampingparameters in the range of 0.01-0.07 (the calculated
deflection angles with different Fy/Fx are shown in Supplementary
Fig. S10). The large deflection angles that were observed in the creep
regime are in sharp contrast with that observed in the current driven
experiments (skyrmion Hall effect)12, as the skyrmion Hall angles are
generally suppressed in the creep regime. This behavior indicates the
magnetoelastic effective field can be an additional factor besides the
topological Magnus force to jointly determine the deflection angle.

By decreasing the SHwave pulse duration, we have also found the
deformation of skyrmions. When the duration of the SH wave pulse is
reduced to 200ms, a few circular skyrmions deform into strip
domains, as shown in Supplementary Fig. S12. One possible explana-
tion for this phenomenon is that when the energy is insufficient to
overcome pinning potentials of skyrmions, spatially inhomogeneous
strain can cause the boundaries of skyrmions to move with different
velocities, resulting in deformation. For longer SH wave pulses, more
skyrmions are created, which leads to strong skyrmion-skyrmion
repulsive interaction. As a result, a limited skyrmion motion can be
identified in this case (Supplementary Fig. S12).

In summary, we have experimentally demonstrated themotion of
Néel-type skyrmions driven by acoustic waves, in which the skyrmions
canmove along thewave propagation directionwith a deflection angle
with respect to the wave propagation direction, consistent with our
simulations. This work provides useful insights into the control of
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skyrmion dynamics by incorporating magnetoelastic or magneto-
electric coupling. Themanipulation of skyrmion dynamics by acoustic
wave could potentially lead to skyrmion-based memory, logic and
microwave devices without involving electric currents and with
designed motion trajectory (circular motion, Supplementary
Fig. S13)47. For a simple comparison, the efficiency of different
skyrmion-driven methods is provided in Supplementary Table. S1. In
particular, the efficiency of acoustic wave driven skyrmionmotion can
be further enhanced by implementing materials (with high magne-
toelastic coupling) and devices (with high power handling). More
importantly, the controlledmotion trajectorywith a high precision can
be achieved by using high-frequency acoustic waves (small wave-
length) and techniques of acoustic wavemanipulation, such as phased
array acoustic transducers48. This is comparable to acoustic tweezers
for dynamic microparticle manipulation49.

Methods
Sample fabrication
Synchronous two-ports SAW delay line devices were patterned on a
64°Y-cut LiNbO3 substrate by using photolithography and a lift-off
fabrication process. Ti (5 nm)/Pt (150 nm) electrodes were deposited
on a 64°Y-cut LiNbO3 substrate by using high vacuum magnetron
sputtering with Ar pressure of 3 mTorr. The SH type leaky SAW is
confined on the surface using IDTs consisting of heavy metal Pt elec-
trodes on top of the LiNbO3 substrate. The magnetic multilayers Ta
(5 nm)/Co20Fe60B20 (1 nm)/MgO (1 nm)/Ta (2 nm) were sputtered by
using high vacuum magnetron sputtering with an Ar pressure of
3 mTorr.

P-MOKE measurements with in-situ RF voltages
The skyrmionswere imaged by using a polarmagneto-opticKerr effect
(p-MOKE) microscope, as shown in Supplementary Fig. S14. All mea-
surements were performed at room temperature. The transmission
spectrum between two IDTs was measured using a vector network
analyzer (Keysight E5080B). Radiofrequency (RF) voltage pulses sup-
plied to IDTs were provided by an analog signal generator (Keysight
N5183B) and a function/arbitrary waveform generator (Keysight
33210 A). The frequency of the RF voltage is the same as the resonance
frequency of the SAW. SAW pulses are generated by an on-off keyed
(OOK) RF modulation. The local heat and thermal gradient in the
magnetic thinfilmwhen theRFpower is applied to IDTs is evaluatedby
using a time-resolved thermography camera (Luxet thermo 100). See
Supplementary Information Fig. S11 for details.

Micromagnetic simulations
The micromagnetic simulation is implemented including interfacial
Dzyaloshinskii-Moriya interaction, exchange interaction, magnetic
anisotropy,magnetostatic, andmagnetoelastic coupling contributions
using MuMax350–52. Considering the computational capacity limita-
tions, the size of the simulation layer is set to be 256 nm in length,
256nm in width, and 1 nm in height. The discretization cell size along
the x, y, and z axes are 1 nm, 1 nm, and 0.5 nm, respectively. In the
simulations, the diameter of skyrmions and the wavelength of the
surface acoustic wave (SAW) are set to be 30nm and 240nm,
respectively, which are significantly smaller than the corresponding
values used in experiments. Nevertheless, the ratio of skyrmion dia-
meter to the SAW wavelength remains consistent with that in experi-
ments. Thematerial parameters used in the simulations are as follows:
an exchange constant Aex = 1 × 10−11 J/m20, a saturation magnetization
Ms = 5.8 × 105A/m measured by a vibrating sample magnetometer
(Supplementary Fig. S15), an interfacial Dzyaloshinskii-Moriya inter-
action constant D = 3 × 10−3 J/m2, a perpendicular anisotropy constant
Ku = 7 × 105J/m3 20,, a Gilbert damping parameter α =0.1. The first order
and the second order magnetoelastic coupling constants
B1 =B2 = −8.8 × 106J/m3 and a mass density of 8000 kg/m3 are taken
from the literature44. Elastic constants are C11 = 283GPa, C12 = 166GPa,
and C44 = 58 GPa44,53. The simulations are calculated under ideal con-
ditions without considering elastic wave attenuation. However, the
wave attenuation and the pinning effect due to the impurities and
defects induced disorder in actual devices will lead to skyrmion velo-
cities driven by SAWs to be lower in reality.

Data availability
Full data supporting the findings of this study are available within the
article and its Supplementary Information. The source data generated
in this study are available in the figshare repository (https://doi.org/10.
6084/m9.figshare.24988164). Additional data are available from the
corresponding authors upon reasonable request. Source data are
provided with this paper.

Code availability
The codes used for the micromagnetic simulations are in Supple-
mentary Information.
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