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Memristor-based storage system with
convolutional autoencoder-based image
compression network

Yulin Feng 1,2, Yizhou Zhang1, Zheng Zhou 1, Peng Huang 1 ,
Lifeng Liu 1 , Xiaoyan Liu1 & Jinfeng Kang 1

The exponential growth of various complex images is putting tremendous
pressure on storage systems. Here, we propose a memristor-based storage
system with an integrated near-storage in-memory computing-based con-
volutional autoencoder compression network to boost the energy efficiency
and speed of the image compression/retrieval and improve the storage den-
sity. We adopt the 4-bit memristor arrays to experimentally demonstrate the
functions of the system. We propose a step-by-step quantization aware train-
ing scheme and an equivalent transformation for transpose convolution to
improve the system performance. The system exhibits a high (>33 dB) peak
signal-to-noise ratio in the compression and decompression of the ImageNet
and Kodak24 datasets. Benchmark comparison results show that the 4-bit
memristor-based storage system could reduce the latency and energy con-
sumption by over 20×/5.6× and 180×/91×, respectively, compared with the
server-grade central processing unit-based/the graphics processing unit-based
processing system, and improve the storage density by more than 3 times.

With the development of artificial intelligence and the Internet of
Things (IoT), the amounts of data generated from data centers, auto-
motive, and edge devices have increased dramatically. As a result,
higher requirements for data storage have been put forward, including
bit density/chip and memory capacity1–3. The emergence of 3D NAND
has resolved the density limitations of conventional planar NAND
through 3D integration techniques, with improved scaling and bit
density4. However, the further improvement of density limitations will
ultimately be constrained by the storage architecture, devices, and
process-induced reliabilities5,6. Therefore, it is necessary to explore
new attractive storage strategies. Storage systems that compress data
are being keenly sought after to alleviate the storage pressure caused
by large amounts of data7, especially for applications that can tolerate
partial loss after data reconstruction. Image compression is a main
branch of data compression that focuses on digital images, encoding
the original image with fewer bits to reduce the storage and trans-
mission costs8,9. Traditional lossy image compression techniques such

as joint photographic experts group (JPEG) and JPEG2000 usually
include domain transformation, quantization, and entropy coding
modules10–12.

Recently, a deep learning-based image compression technique
has emerged as an alternative. It has been widely studied in image
compression due to its superior performance and ability to learn
practical information from different images in various scenarios13–17.
Moreover, the performance of the deep image compression network is
comparable with, or even better than, that of JPEG, JPEG2000, and
better portable graphics (BPG)14,15,17,18. Integrating such a reconfigur-
able compression network, consisting of an encoder and decoder, into
the storage system is an innovative and effective way to improve sys-
tem efficiency and image storage density for edge devices and cloud
servers.

For the hardware implementation of deep neural networks
(DNNs), the memristor crossbar-based processing-in-memory archi-
tecture has proven to be an efficient approach due to its high
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parallelism and energy efficiency19–24. A vital advantage of this inte-
gration structure is that it cannot only storeweights and realize vector-
matrixmultiplication (VMM) in one step to accelerate computations of
neural networks25–30 but also can be used as a general-purpose non-
volatilememory for high-density data storage31–33. Utilizingmemristors
for computing and storage in the same physical unit can fully leverage
this advantage. Recent studies have reported using memristor arrays
to experimentally demonstrate JPEG-based image compression34,35 and
compressed data storage36,37. However, no study has been conducted
on fully memristor-based storage in which the data compression,
decompression, and storage are fully hardware implemented based on
the memristor arrays.

This studyproposes amemristor-based storage system integrated
with the near-storage in-memory computing for data compression/
decompression and multi-bit storage banks. We use the 4-bit mem-
ristor to experimentally demonstrate the function of the proposed
system, including encoding, data storage and retrieval, and decoding.
We design a convolutional autoencoder (CAE) network as a codec for
natural image compression and an equivalent transformation for
transpose convolution to accelerate the decoding process. We pro-
pose a step-by-step quantization aware training scheme for device-
algorithm codesign to improve the quality of the reconstructed ima-
ges. The system can achieve a high (>33 dB) peak signal-to-noise ratio
(PSNR) in the compression and decompression of the ImageNet and
Kodak24 datasets. The Top5 accuracy for recognizing the recon-
structed ImageNet dataset with ResNet34 only decreases by 0.06%
compared with the original dataset, indicating the high fidelity of the
reconstructed images. The evaluation results indicate that the pro-
posed system effectively reduces latency and energy consumption by
more than 20× and 180× compared with the server-grade central
processing unit (CPU)-based processing system, 5.6× and 91× com-
pared with the graphics processing unit (GPU)-based processing sys-
tem, and 5.6× and 30× compared with the application-specific
integrated circuit (ASIC)-based and non-near-storage in-memory pro-
cessing systems. In addition, the storage density could improve by
more than 3 times. This study paves an efficient path for developing an
efficient and high-density storage system tailored for the image data.

Results
Memristor-based storage system with image compression
network
Figure 1 schematically illustrates the proposed storage systemwith the
near-storage in-memory computing architecture and its implementa-
tion based on memristor arrays. The system contains multiple storage
banks and in-memory computing banks to compress and decompress
the image data (Fig. 1a). The computing and storage cores are dis-
tributed across different banks for the computation of the codec
network and the storage of the compressed data, respectively (see
Supplementary Fig. 1). The images to be stored are firstly compressed
by the encoder of the codec, which is realized by using convolution
operations to reduce the dimensionality of the input image while
extracting its main spatial features. As a result, the compressed
representations are obtained and can be stored inmulti-bit memristor
arrays. When the image needs to be retrieved, the stored data is read
from the storage arrays and decompressed by the decoder, which
utilizes multi-step transpose convolution operations to restore the
original image at each pixel. During the reconstruction process, the
size of the image and the pixel information on the corresponding
imagepositioncanbe restored. Considering thememristor’s themulti-
level characteristics and the array’s crossbar integration structure,
using thememristor arrays to implement the proposed storage system
is very advantageous and attractive. The image compression network
with different types and scales can be configured into the system
according to the specific application scenarios and available hardware
overhead. Thanks to the adaptability and robustness of neural

networks, the system integrated with the deep learning-based com-
pression network is suitable for compressing and decompressing
diverse and complex images.

To demonstrate the functionality of the storage system, we con-
structed a two-layer CAE network (Fig. 1b) within the system. The
network contains one convolution layer in the encoder and one
transpose convolution layer in the decoder, responsible for the input
image compression and the stored data decompression, respectively
(see Methods). The inputted high-resolution test image needs to be
segmented into a series of sub-images with the same size as the
training set,which is then sequentially input into thenetwork. Figure 1c
and d schematically show the typical convolution and transpose con-
volution and the corresponding events in the memristor array. The
blue square in the figure represents an input case that slides over the
input to achieve a reduction or expansion of the image in dimen-
sionality. We adopted the bit-slicing encoding technique for multi-bit
input of the memristor array (see Supplementary Note I). This tech-
nique first involves converting the input into a sequence of binary
voltage pulses, which are then flattened before inputting into theword
lines (WLs) of the memristor array by using time division. A signed
kernel weight is mapped to a pair of memristors with differential
conductance for weight transfer. Each memristor pair represents a
different weight bit and has a different weight coefficient (kn), where k
is related to the available conductance levels of the memristor, and n
refers to the bit number. The output Y can be obtained by multiplying
the source line (SL) output and weight coefficient.

Different from the neural network used for image recognition,
which determines the classification of input by comparing the prob-
ability of the networkoutputs, themain target of image compression is
to restore the specific value at each spatial pixel. Therefore, higher
weight quantization accuracy is required for better-quality recon-
structed images. Each weight is first converted into a series of bit
numbers and then mapped to multiple pairs of memristors to achieve
the mapping of the high-precision weights (see Supplementary Fig. 2).
After encoding the pulses and inputting them into the WLs, the cur-
rents of the two different SLs are sensed and subtracted as the output
of corresponding weight bit. The final result is obtained by summing
the weighted outputs of different pairs of SLs.

Implementation of storage system with memristor arrays
For hardware implementation of the storage system, multi-bit mem-
ristor arrays were fabricated to perform the computation of the
encoder/decoder networks and storage of the compressed data. The
testing set-up with packaged 1-transistor 1-memristor (1T1M) chip and
the photographs of the die and array structure are shown in Fig. 2a. A
4 kb (256×16) crossbar array with TiN/TaOx/HfOx/TiN structure is
designed and fabricated on top of the CMOS circuits (see
Methods)38,39. The array design of this size is conducive to reducing the
complexity and area overhead of peripheral circuitry (see Supple-
mentary Fig. 3 and Note II). The memristors in the same column share
the same bit line (BL) as top electrode and the same SL connecting to
the source of transistors, while those in the same row possess a com-
monWL connecting to the gate of transistors. The transistors provide
efficient control over multi-level conductance tuning with sufficient
accuracy. Programming and computing are performed on a custom-
built testing system connected to the test board, and all signals are
generatedoff-chip (seeMethods). Excellent inter- and intra-cell cycling
uniformity can be achieved, as shown in Fig. 2b and Supplementary
Fig. 4. By using the bidirectional incremental gate voltage in combi-
nation with fixed SET and RESET pulses (see Methods and Supple-
mentary Fig. 5)39, the memristor can be precisely programmed to an
arbitrary conductance state within a predefined error range. Figure 2c
shows the distribution of 1600 memristor cells in 16 conductance
states, where no overlap is observed between neighboring curves. To
verify the feasibility and validity of the array operation and weight
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mapping schemes for VMMs, a typical convolution experiment with
Sobel operators for edge extraction is carried out in the 1T1M array
(see Supplementary Fig. 6). The high precision of the computation
results in correlation plots of ideal VMM and experimental VMM
indicates the effectiveness of the schemes.

Figure 3a illustrates the overall operation flow of the system
implementationwithmemristors. The data retrieval, transmission, and
reading can be realized through the interactive control of 1T1M chips,
microcontroller (MCU), and software. Once the system is trained, the
weights are quantized and mapped to the memristor arrays. The
convolution and transpose convolution are performed by the VMMof
the memristor array, which enables high computation efficiency. For
the process of compressed data storage, the analogue output of the
encoder network is first quantized based on the limited available

conductance states of thememristor and then written into the storage
array. The write-verify scheme is applied for weight mapping and data
writing.

To implement the function of the system with high performance,
we propose effective strategies for algorithm-device codesign for
decompression processes and introduce the digital readout scheme40

into the CAE network. The PSNR value, a typical metric for image
compression15,41, is used to evaluate the quality of the images after
decompression (see Methods). For the weight mapping process, a
convenient and universalmethod is to directly quantize the weights to
different levels to match the multi-bit memristor. In this manner, the
performance of the CAE network is severely affected by the quanti-
zation accuracy of the weight or the compressed data (see Supple-
mentary Fig. 7). The design space exploration is performed with
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Fig. 1 | Memristor-based high-density storage system. a Schematic illustration of
the proposed near-storage in-memory processing system implemented with
memristor-based cores. The upper part shows a multi-layer image compression
network. The compression and decompression processes are generally structurally
symmetric to ensure that the resolution of the reconstructed image is consistent
with that of the input. Once the network completes training, it can be used for any
input to acquire a compressed representation. The lower part shows the imple-
mentationof the systemwithmemristor-based cores. The greenand yellow squares
represent the computing and storage cores, respectively. The computing banks
and storage banks are located in the neural processing and storage unit. b A con-
structed two-layer convolutional autoencoder (CAE) network that contains eight

kernels in convolution layer for compression and three kernels in transpose con-
volution layer for decompression. Implementation of (c), convolution and (d),
transpose convolution with memristor arrays. The blue, red, and yellow rectangles
represent the selected elements of the input, kernel weight, and output, respec-
tively. Through the time-division input of the image and multiply-accumulate
operation of the source line (SL) output, the pixel value of the output feature map
can be obtained. During the entire computing process, a constant read voltage (Vr)
is applied to all bit lines (BLs), and the SLs are grounded. Kernel cm and cn represent
the mth convolution kernel and nth transpose convolution kernel, respectively.
Output cm and cn correspond to the feature maps output by the mth convolution
kernel and nth transpose convolution kernel, respectively.
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different quantization precisions and CAE network structures for
choosing applicable precisions of weight and compressed data (see
Supplementary Fig. 8). Considering the hardware overhead and the
quality of the reconstructed image, we chose 8-bit and 6-bit precision
to quantify the weights and data after compression, respectively. To
alleviate the impact of the deviations caused by the direct quantiza-
tion, the CAE network is retrained with quantized weights and com-
pressed data. The quantized weights and activations are used in the
forward propagation, while 32-bit floating-point numbers are utilized
in the back-propagation process to update the weight23,42–44. However,
the performance improvement after retraining is limited, whichmight
be mainly due to the direction of image dimension change being
opposite during the encoding and decoding processes in the CAE
network. Therefore, we propose a step-by-step quantization aware
training scheme (Fig. 3b) in which the compressed data, encoder, and
decoder are quantized and trained in sequence to adapt to the changes
of the image size in different directions during encoding and decoding
(see Methods). Based on the proposed quantization scheme, the per-
formance of the system is significantly improved and approaches that
of software as the number of network layers increases (Fig. 3c), which
effectively suppresses the degradation of system performance caused
by the quantization-induced deviations. It is worth noting that the
PSNR value decreases with more codec layers, mainly due to partial
information loss during downsampling operations in convolution
computing process. This issue can be alleviated by optimizing the
network structure or training scheme, such as nonlinear
transformation15 or content-weighted scheme13 so that a large-scale
network can be used to obtain a high compression ratio while
achieving an accepted PSNR value.

When demonstrating image compression based on non-volatile
memories (NVMs), the stored data is usually read out in analogue form
and used for image reconstruction35,36,45. The readout conductance is
then converted into voltage pulses with different amplitudes or widths
and directly used for image decompression, which is discussed in
detail in Supplementary Note III and Fig. 9. For memristors, the read-
out conductance values from the storage array are distributed around
the target conductance level (Fig. 3d). This will lead to deviations in the
converted voltage pulses that are used in subsequent decoding com-
putations, resulting in the deterioration of the quality of the recon-
structed image. To eliminate this deviation, we utilized a digital
readout method, which appears common for multi-bit memory sys-
tems, for hardware demonstration of deep learning-based image
compression technique to improve the quality of reconstructed ima-
ges. When using this scheme, the readout conductance value is first
quantified and then input into the transpose convolution network
bitwise from the most significant bit (MSB) to the least significant bit
(LSB) to perform decompression computations. In this case, the dis-
tributed conductance values can be accurately quantified to the dis-
crete target conductance level without needing other peripheral
circuitry for data conversion operation. A typical storage and readout
process are shown in Supplementary Fig. 10. It can be observed that
the reconstructed pixel matrix is completely consistent with the
quantized pixel matrix by utilizing the proposed method to read the
compressed data, which is critical for high-quality image reconstruc-
tion. Figure 3e shows the statistical distribution of the error between
the readout conductance and the target conductance using both
readout methods. The digital readout can tolerate variations in
the intermediate storage and reading process, thus preventing the
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introduction of errors in the readout conductance array. On the other
hand, the error of the readout conductance in analogue reading con-
forms to the normal distribution due to the drift of the memristor
conductance and the disturbance of the read circuit, which directly
leads to the degradation of the quality of the reconstructed image, as
shown in Fig. 3f. Intuitive results by using two readoutmethods can be

seen from the visualization of the reconstructed images (see Supple-
mentary Fig. 11).

To achieve upsampling during decompression, the transpose
convolution is carried out. In this process, the input first needs to add
zero spacings between each element in the spatial dimension
according to the mathematical definition, followed by step-by-step
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convolution. However, this process leads to a lot of zeros being
inserted into the input, requiring large amounts of multiplication and
additionoperations on thesepixels during transpose convolution. As a
result, a significant number of invalid operations are produced,
increasing the computational load. To improve the efficiency of the
decompression process, we designed an equivalent transformation
derived from the definition of transpose convolution (see Supple-
mentary Note IV), which directly utilizes the kernel to weight each
element of the input (Fig. 3g), effectively avoiding invalid calculations
caused by zero inputs and substantially reduces the number of
operations required when hardware implemented bymemristor array.
As shown in Fig. 3h, after undergoing the equivalent transformation,
the number of operations required for transpose convolution is
reduced by a factor of 7 as compared to the mathematical definition.

For system training, the Cifar-10 dataset is used to train the CAE
network before being applied to compress the tested natural ima-
ges. Once the ex-situ trained convolution and transpose convolution
kernel weights are transferred into memristor arrays, the functions
of data compression, storage, and reconstruction can be demon-
strated in 1T1M array. Figure 4 shows the step-by-step experimental
results of the system, including weight mapping, image compres-
sion, reconstruction, and data storage and readout. The quantized
kernel weights are accurately transferred to the corresponding
memristor with small errors between the actual and target con-
ductance. Benefiting from the excellent retention property of the
conductance state, the conductance value after mapping has little
fluctuation. The segmented input image is convolved by kernels,
and eight grayscale images containing different feature information
are achieved by array computation. After convolution, the analogue
compressed feature map is quantized to 6 bits to acquire pixel

quantization matrix. In this case, each pixel information can be
stored on two pairs of 4-bit memristor cells, which leads to a 3×
improvement in storage density. Each compressed feature map can
be stored in the storage array as compressed data and read out when
needed for application. During reconstruction, the stored data are
read out followed by computation with transpose convolution ker-
nels to output three feature maps that correspond to the original
RGB images. Since the output of the VMM is the accumulation of
currents through a column, the small random drift of the cell con-
ductance has little impact on it46, which is critical for the image
compression network that needs high accuracy of the reconstructed
pixel information. Since the input is converted into bits fromMSB to
LSB by bit-slicing encoding, it should be noted that a large con-
ductance drift in thememristor corresponding toMSB of the weight
can still cause a large output deviation. Therefore, we use the pro-
gramming scheme proposed in our previous work to maintain the
conductance stability of the MSB weight39.

As observed in the implementation results, there are no dis-
cernible differences between the reconstructed image in the experi-
ment and that in the simulation, and both are consistent with the input
image in terms of visualization degree, which includes object position,
edge contour, and contrast. Although there is a slight degradation in
thePSNRvalue (<1 dB) in experiment,which is probably arises fromthe
quantization errors and deviations in the computing operations. But
this degradation is still within an acceptable range for image com-
pression. The successful demonstration of the storage system and the
consistent results of the obtained feature maps between experimental
and simulationmanifest the feasibility of the proposed storage system,
as well as the reliability of implementing deep learning-based image
compression with multi-bit memristor arrays.
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Fig. 4 | Implementation of the memristor-based near-storage in-memory pro-
cessing system. Eight compressed featuremaps are achievedwith analogue values
by convolving the input with convolution (Conv.) kernels. The feature maps are
then quantized and stored into the storage arrays. The original image can be
restored by performing a transpose convolution (Trans. Conv.) operation with the
compressed featuremaps (digital). The number ofmemristors required tomap the
weights of the transpose convolution kernel is much smaller than that used for

convolution kernels, which means that feature extraction in CAE network is more
critical. The resolution and pixel depth of the compressed 8 feature maps are
16 × 16 and 6-bit, respectively. Since the original image is 32 × 32 with 8-bit for 3
color channels, as a result, a compression ratio of 2 is achieved with the demon-
strated system (see Methods). Quan. and Recon. are used as abbreviations for
quantization and reconstruction, respectively. PSNR refers to peak signal-to-
noise ratio.
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Performance evaluation of the storage system
The practicability and fidelity of the image data passing through the
proposed near-storage in-memory processing system are vital metrics
for data storage and subsequent practical applications. We deployed
the ImageNet dataset and Kodak24 dataset, which contain richer
images of daily life and various image types unrelated to the training
dataset (Cifar-10), to examine the restoration degree of the trained
storage system in the face of unseen images. Visualization results of
the randomly selected sample images after compression are the same
as those before compression (see Supplementary Figs. 12, 13), and all
the images obtain >33 dBPSNR values,whichproves the universality of
the proposed storage system and its ’data class’-independent char-
acteristic. Moreover, we used reconstructed and original ImageNet
datasets to perform image recognition tasks with the ResNet34 neural
network (see “Methods”). The ResNet34 neural networks are trained
and tested with the original and reconstructed ImageNet datasets,
respectively. The recognition results, shown in Fig. 5a, indicate that the
network with the reconstructed dataset achieved almost the same
Top5 recognition accuracy (91.36%) as the original dataset (91.42%)
without performance degradation. We also examined the network
performance when using different types of ImageNet datasets for
training and test (see Supplementary Fig. 14). The accuracy slightly
decreases (<1%) when the test set is different from the training set,
which is probable due to the partial mismatch of the pixel values
between two datasets and has little impact on practical applications.

We chose the VisualQA v2.0 dataset47 to be stored to estimate the
latency, energy consumption, and storage density of the proposed
system. As shown in Fig. 5b, the required area for storing the dataset is
greatly reduced after compression with the increase in the number of
network layers and multi-bit capabilities of the memristor. To more
fairly discuss the area overhead, the areas, including encoding/
decoding, storage arrays, and peripheral circuitry used for

compression/retrieval, are all considered during evaluation (see
Methods). In this case, the storage density improves by a factor of 3
when using the constructed system in our demonstration (two-layer
CAE network with 4-bit memristor), and a maximum storage density
improvement of 18 times can be achieved if a six-layer CAE network
and 8-bitmemristor arrays48 are adopted. It can be inferred from these
results that by using deep neural networks with higher compression
ratios ormemristor arrayswithmore states, the storage density can be
significantly improved (see Supplementary Fig. 15). However, the
ensuing challenges should also be given due consideration. On one
hand, as the degree of compression increases, the distortion of the
reconstructed image will becomemore significant. On the other hand,
the reliability of the multi-bit memristor will deteriorate with the
increase in the number of conductance states. Therefore, the trade-off
between storage density improvement and image quality should be
carefully considered according to different application scenarios.
Factors including algorithm, network structure, device characteristics,
and selection of training dataset need to be co-optimized to minimize
the loss of the reconstructed image while achieving a high compres-
sion ratio. Although integrating a deep image compression network
into the storage system will cause some hardware overhead, it is
insignificant compared with the hardware consumption for data
storage.

The impact of the device variations on network performance is
also assessed by introducing the normalized standard deviation (σ) to
the memristor conductance (see Methods). The PSNR values of the
different networks decrease as σ increases (Fig. 5c). This can be
attributed to conductance deviations, which cause the pixel values of
the reconstructed image to deviate from the corresponding values in
the original image. We also discovered that the quality of the recon-
structed image in the memristor-based storage system is more sus-
ceptible to weight conductance fluctuations than compressed data
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Fig. 5 | Performance evaluation of the storage system. a Top5 recognition
accuracyofResNet34neural network that is trained and testedwith theoriginal and
reconstructed ImageNet datasets. b Area comparison of server-grade central pro-
cessing unit (CPU)-basedprocessing systemandproposed near-storage in-memory
processing system for storing VisualQA v2.0 dataset. Different codec layers and
memristor storage capacities are used in proposed storage system. The area of
peripheral circuitry used for encoding/decoding and storage are taken into con-
sideration. c The PSNR values of the reconstructed images with different codec

layers as a function of normalized conductance standard deviations. d Latency and
(e), energy comparisonof server-grade CPU-based, graphics processing unit (GPU)-
based, application-specific integrated circuit (ASIC)-based, non-near-storage in-
memory, and near-storage in-memory processing systems for implementing
compression techniques including joint photographic experts group (JPEG), por-
table network graphic (PNG), autoencoder (AE), and convolutional auto-
encoder (CAE).
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(see Supplementary Fig. 16), which can be used as a guidance for sys-
tem design.

We compared the latency and energy consumption of the pro-
posed system with that of other competitive technologies, including
JPEG, portable network graphic (PNG), autoencoder (AE), and CAE
implemented in the server-grade CPU-based processing system, and
CAE implemented in theGPU-based, ASIC-based, andnon-near-storage
in-memory processing systems (see Methods and Supplementary
Fig. 17). Since traditional compression techniques usually contain
various domain transformations and complex lossless coding schemes
(such as Huffman coding), in most cases, the compression is better
suited for execution on the CPU. As illustrated in Fig. 5d, e, the near-
storage in-memory processing system effectively reduces the latency
and energy consumption by more than 20× and 180×, respectively,
compared with server-grade CPU-based processing system, 5.6× and
91×, respectively, compared with GPU-based processing system, and
5.6× and 30×, respectively, compared with both ASIC-based and non-
near-storage in-memory processing systems. The significant
improvements in energy efficiency can be mainly attributed to the
integration of memristor-based computing banks and storages banks
within the same unit, which effectively reduces the latency and energy
consumption caused by circuitmodule interfaces and internal transfer
during data movement. It should be noted that the latency and energy
reductions of ASIC-based processing system is almost the same as
those of non-near-storage in-memory processing system, which is due
to the fact that in both systems, the overhead of data access during
compression and decompression processes is much greater than that
of data processing. The overall latency and energy consumption are
dominated by the storage unit. Moreover, the impact of memristor
multi-bit capability on boosting system performance is further dis-
cussed (see Supplementary Note V). The results illustrate that mem-
ristor devices with more storage capacities could effectively promote
the overall efficiency of the system (see Supplementary Figs. 18, 19).

In Table 1, we summarized and compared the reported imple-
mentations of emerging NVM-based image compression techniques
and storage after compression. Previous studies focused mainly on
using memristors to only implement the frequency domain transfor-
mation step in traditional compression algorithms34,35, or using phase
change memory (PCM)/memristors only for storing compressed
data36,37,45. Meanwhile, the restored image quality after decompression
is not very high. Here, we experimentally demonstrate the fully
memristor-based storage system equipped with image compression/
decompression networks. Compression (convolution computing),
compressed data storage and access, and decompression (transpose
convolution computing) are all hardware demonstrated accompanied
by achieving the high PSNR value (34.08 dB) of reconstructed images.
The achievements provide an efficient avenue and serve as a guidance
for developing efficient and high-density storage technology.

Discussion
In this study, we proposed a memristor-based storage system that
integrates a deep image compression network for image data storage,
which is implemented based on a near-storage in-memory processing

architecture with high efficiency and storage density. A two-layer CAE
network was constructed in the storage system. All the system func-
tionalities, including compression, decompression, and data storage
and access, were hardware demonstrated with 4-bit memristor arrays
and achieved a comparable PSNR (34.08 dB) to that in simulation
(34.84 dB). We proposed a step-by-step quantization aware training
scheme that improves PSNR value by 5 dB compared to the direct
quantization scheme. In addition, we designed an equivalent trans-
formation for transpose convolution, which dramatically reduces the
amount of computation by more than 7 times. The benchmark com-
parison results illustrate that the memristor-based near-storage in-
memory processing system can achieve reductions in latency and
energy consumption of over 20× and 180×, respectively, when com-
pared with the server-grade CPU-based processing system. Similarly, it
achieves reductions of 5.6× and91×, respectively, when comparedwith
the GPU-based processing system, and 5.6× and 30×, respectively,
when compared with the ASIC-based and non-near-storage in-memory
processing systems. Considering the areas of encoding/decoding
array, storage array, and peripheral circuitry, the storage density is
increased by a factor of 3. It can be further improved to 18 times when
employing a six-layer CAE networkwith 8-bitmemristors. It is essential
to carefully consider the trade-off between storage density and
reconstructed image quality when designing the storage system. The
trained storage system (with Cifar-10) is applied to compress and store
the ImageNet and Kodak24 datasets. The high PSNR values (>33 dB)
and clear visualization results exhibit the universality of the trained
system and independent characteristics of the class of the data that is
being stored, which is critical for a storage system. Image recognition
tasks were performed in the ResNet34 neural network with the
reconstructed ImageNet dataset, achieving a 91.36% Top5 accuracy
which is comparable to that (91.42%) with the original dataset. The
implementation of the memristor-based near-storage in-memory
processing system provides an effective alternative for efficient and
high-density storage of growing diverse image information, which can
be further extended to the compressed storage of any data by using
emerging and suitable deep learning-based compression networks
with larger and more reliable memristor arrays.

Methods
Fabrication of 1-transistor 1-memristor array
Thememristor is composedof TiN/TaOx/HfOx/TiN structure. Standard
CMOS foundry processes under 130 nm technology node are used to
fabricate the transistors, metal interconnections, and vias. The
remaining memristor stacks and top metal interconnections are
completed in the laboratory. Thememristor cell is formedon the drain
of the transistor. An 8-nm-thick HfOx switching layer is deposited on
theTiNbottomelectrode using atomic layer depositionwithwater and
tetrakis(dimethylamido)hafnium as precursors at 250 °C. A 45 nm-
thick TaOx capping layer is then deposited by sputtering the Ta target
in Ar/O2 atmosphere, which acts as thermally enhanced layer to
modulate the electric field and heat in HfOx. The top electrode of TiN/
Al are deposited using sputtering and electron beam evaporation.
Finally, contact pads were formed through dry etching.

Table 1 | Summary of hardware implementation of image compression based on emerging NVMs

Image compression technique Compression Decompression Storage Reconstructed image quality

JPEG35 Memristor (for DCT) Software – –

-34 Memristor (for DFT) Memristor (for IDFT) – 26.1 dB

Fully-connected AE45 Software Software PCM 25.1 dB

Fully-connected AE36 Software Software Memristor 30.3dB

Convolutional AE (this work) Memristor Memristor Memristor 34.08dB

DCT discrete cosine transformation, DFT discrete fourier transformation, IDFT inverse discrete fourier transformation, AE autoencoder, PCM phase change memory.
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Experimental set-up and write-verify programming scheme
A customized measurement system has been built to read and write
the 1T1Mchip. The 1T1Mchip iswire-bonded into adual in-line package
andmountedon aprinted circuit board (PCB). Power signals andSL/BL
gating chips are integrated on PCB, as only WL control circuits are
fabricated into the chip. MATLAB scripts are written to control the
measurements by communicating the MCU and external signal sour-
ces. For electrical characterizations, set-ups including Agilent B1500A,
81160A, and 34980A are utilized.

To program multi-bit memristors efficiently and reliably, we uti-
lize the write-verify programming scheme based on bidirectional
incremental gate voltage, in combination with fixed SET and RESET
pulses (Vset=2.8V, Vreset = 3 V, Pw = 100ns). The read voltage is set to
0.2 V throughout the programming process. We set the defined error
margin to ±1 μS and maximum programming pulse number to 100.
During programming, the gradually incremental voltage is input to the
gate of the transistor to apply a compliance current for conductance
modulation. Once the measured conductance falls within the target
conductance range, the programming successfully ends. Otherwise,
the conductance modulation continues until the maximum pulse
number is reached. We program 16 individual target conductance
states onto randomly selected memristors, and each conductance
state is programmed onto 100 cells. The target states are distributed
within the switching window from <1 μS to 75 μS with a uniform
interval of 5 μS. During the experiment, the conductance of the
memristor array is programmed from 0 μS up to 75 μS.

Convolutional autoencoder network
The CAE network is an end-to-end unsupervised learning model that
learns optimal convolution and transpose convolution operators to
minimize the reconstruction error. The CAE network can be con-
sidered as two transformations: an analysis transformation with an
encoder function y = fα(z) and a synthesis transformation with a
decoder function ẑ = gβ(y). The z, y, and ẑ represent original images,
latent representation, and reconstructed images, respectively. α and β
denote the hyper-parameters in the encoder and decoder. In order to
achieve the latent representation of input and reconstructed output,
downsampling and upsampling operations are required. Since the CAE
network constructed in this work is not deep, consecutive sampling
operations canbe performedwhilemaintaining network performance.
During the encoding process, different kernels slide over the input
with a stride of 2 to obtain downsampled compressed feature maps.
Different from encoding, the decoding process uses transpose con-
volution kernels to expand one input pixel to 2 × 2 pixels to achieve
upsampling. During transpose convolution, the stride and padding are
set to 2 and 1, respectively. As shown in Fig. 1b, the compressed feature
maps with size 16 × 16 × 8 (width × height × depth) are acquired after
convolution with kernel weights of size 3 × 3 × 3 × 8 (width × height ×
depth × batch). Then, the reconstructed feature maps with size of
32 × 32 × 3 are formed after transpose convolution with 2 × 2 × 8 × 3
kernel weights. Eight convolution kernels are needed to extract
enough effective information from the input image for subsequent
reconstruction. Since there is only one transpose convolution layer,
the number of kernels is set to three according to the RGB format of
the input image. For the four-layer and six-layer CAE networks, the size
of the convolution kernels remains unchanged while the number
doubles with each convolution layer. The variation in depth and
quantities of the transpose convolution kernels correspond to the
convolution kernels. Consequently, the CAE networks with two-, four-,
and six-layer have convolution/transpose convolution kernel elements
of 216/96, 1368/608, and 5976/2656, respectively.

To train the CAE network, we utilized the Cifar-10 training dataset
which comprises 50,000 color images. During training, we employed
the Adam optimizer49 and set the batch size to 16. The learning rate is
decayed from 0.01 to 0.0004 over 300 epochs. To measure the

distortion between the original and reconstructed images, mean
square error (MSE) is used as the loss function during training. For
testing, we used both the ImageNet dataset and Kodak24 dataset.
Since the input size is set to 32 during training, high-resolution images
during testing are split into 32 × 32 patches.

After software training, we conducted step-by-step quantization
aware training to accommodate for different dimensional changes in
the encoder and decoder. The learning rate is kept at a constant of
0.001. In the first step, the compressed data is quantized (6-bit) and
introduced it into the training while maintaining the kernel weights in
the encoder and decoder as 32-bit single-precision floating-point.
Next, the weights in encoder are quantized (8-bit) and trained them
while keeping the weights in the decoder (32-bit single-precision
floating-point weights) and compressed data (6-bit quantized data)
unchanged. Similar to the second step, the final step is to quantize and
train the weights in the decoder. We conducted five-epoch training in
each step to attain the optimal network performance after
quantization.

During the inference process, variations that might be caused by
memristor conductance fluctuation or readout operation are intro-
duced to evaluate their impact on network performance. To add var-
iations, the weight or compressed data is first converted into bit
numbers based on the storage capacity of the memristor. The nor-
malized σ is then added to the corresponding bit of the weight, fol-
lowed by the reconversion to floating point and being used for
subsequent computations.

To assess the quality of the image reconstruction, the typical
PSNR metric is used. The formula of PSNR is as follows:

PSNR=20log10

MAXf
ffiffiffiffiffiffiffiffiffiffi

MSE
p

� �

ð1Þ

where MAXf is the maximum pixel value in the original image. MSE
represents the mean square error between the original image and
reconstructed image, which can be expressed as follows:

MSE =
1
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where l,m, n denote the depth, length, andwidth of the original image,
respectively. f(∙) and g(∙) denote the matrix data of the original and
reconstructed image, respectively.

ResNet34 for image recognition
The structure of the ResNet34 network used for recognition is similar
to that in reference50, which contains one convolution layer, sixteen
residual blocks, and a fully-connected layer. Each residual block con-
sists of two convolution layers (kernel size of 3 × 3) and a shortcut
(kernel size of 1 × 1). The sixteen residual blocks are divided into four
groups, in which each group contains four residual blocks. The four
groups correspond to 64, 128, 256, and 512 output channels, respec-
tively. The ResNet34 network is trained with two types of training
datasets (original ImageNet dataset and reconstructed ImageNet
dataset) to achieve two networks with different parameters. These two
trained networks are used to test the original and reconstructed test
datasets, respectively.

System overhead evaluation
The schematic diagrams of the system architectures used for evalua-
tion are shown in Supplementary Fig. 17. Here, we use the VisualQA
v2.0 dataset47, which is 25 GB with 265016 images, to evaluate the
latency and energy. The evaluation starts from the input of the data for
compression and ends with the output of the reconstructed data. In
the CPU/GPU/ASIC-based processing system, the data is input into the
CPU/GPU/ASIC to perform the compression computation. The
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compressed data is fed into the hard disk drive (HDD) via the dynamic
random-access memory (DRAM). For data retrieval, the stored data is
fetched to CPU/GPU/ASIC via DRAM and output after the decode
computation. In the memristor-based non-near-storage in-memory
processing system, the data is input into the memristor-based in-
memory computing bank to perform the data compression with the
CAE algorithm and then stored into the HDD. The stored data is read
from the HDD and fed into the in-memory computing unit for data
retrieval. In our proposed system, the memristor-based in-memory
computing bank compresses the input data and stores it into the
memristor-based storage bank.When the data is required for retrieval,
the data is read out from the memristor-based storage bank and fed
into the memristor-based in-memory computing bank for decoding
with the CAE algorithm. The energy consumption is the sum of the
energy consumption of all components. Due to the dataset being
processed in a pipeline fashion during compression/retrieval, the
system’s latency depends on the process that consumes themost data
processing and storage time.

Server-grade central processing unit-based processing system. We
configured a Dell PowerEdge R750 rack server with two 28-core Intel
Xeon 6330 (10 nm) and sixteen 64 GB DDR4 SDRAM for latency and
energy consumption evaluation. Intel® Power Gadget 3.6 software51 is
used to measure the latency and power/energy of the encoding and
decoding processes. The system latency is obtained by measuring the
actual running time of the program. The energy consumption is cal-
culated as follows: thermal design power × CPU usage of executing
process × system latency. The network structure of AE refers to36,
which has 4096 neurons in the input and output layers and 448 neu-
rons in the hinder layer (compressed layer). The CAE network uses the
two-layer structure demonstrated in the manuscript, which has 8
convolution kernels with size 3 × 3 × 3 and 3 transpose convolution
kernels with size 2 × 2 × 8. Both AE and CAE networks are performed in
the Pytorch framework. Since the data storage and evaluation are
performed on Dell PowerEdge R750 with SEAGATE (ST4000NM00A)
HDD as storage media, the parameters from the SEAGATE datasheet52

are used for calculation. The latency and energy consumption gener-
ated by the data access,writing/reading are estimated according to the
interface access speed, max sustainable transfer rate, and average
operatingpower,whichcanbe acquired from thedatasheet of 1.5 Gb/s,
215MB/s, and 10.77W, respectively. Basedon the aboveconsiderations
and parameters, the evaluation results on latency and energy con-
sumption of server-grade CPU-based processing system are listed in
Supplementary Tables 2, 3, respectively.

Graphics processing unit -based processing system. We employed
an NVIDIA Tesla T4 GPU (TSMC 12 nm) backed with 16 GB GDDR6
DRAM to evaluate the latency and energy consumption. The system
latency is obtained by measuring the actual running time of the pro-
gram. The energy consumption is calculated as follows: (program
execution power - system standby power) × system latency. The CUDA
Toolkit53 is used to perform CAE models on the GPU and simulta-
neously test the latency and power consumption. The power statistics,
including GPU and DRAM power, are measured using the nvidia-smi
command in the terminal. The parameters for HDD can be referenced
setting in the CPU-based processing system section. According to the
above metrics, the latency and energy consumption for compressing
and decompressing the VisualQA v2.0 dataset are calculated in Sup-
plementary Table 4.

Application-specific integrated circuit-based processing system.
The ASIC-based processing system consists of a hardware accelerator
and off-chip DRAM and storage54. The recently reported CHIMERA
accelerator (40 nm CMOS technology)55 with 0.92 TOPS on peak per-
formance and 2.2 TOPS/W on energy efficiency is adopted for the

evaluation. DDR4DRAMwith 8memory controllers and 64-bit channel
per controller is utilized as external memory, which reported 45 pJ/bit
on read/write energy and 65 ns/60 ns on read/write latency56. For data
compression/retrieval, the latency/energy consumption can be
obtained by dividing the number of operations by peak performance/
energy efficiency. For the DRAM fetching process, the latency is cal-
culated by multiplying the read/write latency per operation and the
operation numbers, and the energy consumption can be achieved by
multiplying the energy consumption per bit and the data size. For the
VisualQA v2.0 dataset, the total number of operations during encod-
ing/decoding is 900G/400G for the CAE network. The transferred
data size after compression is 100Gb. The parameters for HDD can be
referenced in the GPU-based processing system section. Based on the
above parameters, the evaluation results on latency and energy con-
sumption can be estimated, as listed in Supplementary Table 5.
Although there are other ASIC and DRAM with relatively high perfor-
mance, the improvement in latency and energy consumption of the
compressed system based on ASIC is slight since the bottleneck is the
data transfer and storage.

Memristor-based near-storage in-memory processing system. The
architecture of the memristor-based near-storage in-memory proces-
sing system consists of 2133 storage banks and 8 in-memory com-
puting banks for VisualQA v2.0 dataset compression and storage, with
architecture shown in Supplementary Fig. 1. Each computing and sto-
rage bank include 16 cores. The size of thememristor array is set to be
1Mb (1024 × 1024)57 in the storage core, and that in the computing
core remains 4 kb (256× 16) as discussed in the manuscript. The
latency and energy consumption are dominated by the memristor
array, analog-to-digital converter (ADC), digital-to-analog converter
(DAC), andbuffer,mainly consideredduring evaluation58–61. During the
compression process, theweights of the two-layer CAE network canbe
completely mapped into one computing core, so one bank can map
16 sets of weights and realize parallel computing. The dataset is
compressed to 16.67 × 109 pixels with 6-bit accuracy for each pixel by
the two-layer CAE network. In this case, the compressed data requires
about 2133 storage banks for data storage, and different storage banks
can perform parallel writing or reading of data. Accordingly, 8 com-
puting banks are integrated during evaluation to boost speed.

All the circuit components in the near-storage in-memory pro-
cessing system are evaluated under 65 nm technology node. A 0.2 V
read voltage with a 20ns pulse width is adopted for the single-bit
calculation of the memristor array. The mean weight value, extracted
from the conductance distribution of all cells in the weight matrix,
represents the weight of each cell, is used for calculating the energy
consumption. Similarly, the conductance value used for data writing
and reading is extracted from the conductance distribution of the
compressed data matrix. For data writing, the pulse numbers used for
multi-bitmemristor programming are calculated according to the total
programming pulses (see Supplementary Fig. 20). We use CACTI62 to
evaluate the latency and energy consumption of the buffer, which is
designed to be 64 KB in size and 2 kb in bandwidth to allow for parallel
computing of all 16 cores in the computing bank. The ADC in63 is
adopted, which reported an 8-bit resolution with a sampling rate of
450 MS/s and an active area of 0.035mm2. 16 SLs are operating in
parallel with one ADC on each. We use the DAC data from64, which
reported 136mW for digital/analogue conversion under 20 GS/s. All
the parameters are summarized in Supplementary Table 6. According
to thesemetrics, the latency and energy consumption for compressing
and decompressing the VisualQA v2.0 dataset are calculated in Sup-
plementary Table 7.

Memristor-based non-near-storage in-memory processing system.
Since the non-near-storage in-memory processing approach combines
memristor-based in-memory computing bank and HDD storage, the

Article https://doi.org/10.1038/s41467-024-45312-0

Nature Communications |         (2024) 15:1132 10



latency and energy consumption can be calculated based on available
device and circuit metrics setting in the above discussion.

Storage density evaluation
During evaluation, the compression ratio CR is defined as the ratio of
input data bit numbers to compressed data bit numbers, which is
expressed as:

CR =
W0 ×H0 ×C0 ×B0

Wr ×Hr ×Cr ×Br
ð3Þ

where W and H represent the width and height of the images,
respectively. C is the channel of the image, which is 3 for original color
maps (red, green, andblue).B is thebit number of eachpixel. Subscript
0 and r denote the original and compressed featuremap, respectively.

The storage density improvement is defined as the ratio of the
total area overhead used for compression/retrieval and data storage.
We consider the area of memristor array not only for data storage but
also for all encoding/decoding processing as well as corresponding
peripheral circuitry in cores and banks during evaluation. We still use
the VisualQA v2.0 dataset to evaluate the area. The architecture of the
proposed system is shown in Supplementary Fig. 1. The system con-
sists of 8 in-memory computing banks, and the number of storage
banks depends on the storage capacity of the memristors. The area
parameters of the buffer, ADC, DAC, and the memristor array in the
computing bank can be referred to Supplementary Table 6. In the
computing core, the register is designed based on D flip flop (DFF)65,
which has 8-bit for each WL. The MUX and sample and hold (S & H)
circuits performance are simulated and optimized in Cadence. The
shift & add circuit is designed to realize 16-bit shift addition based on
the adder and DFF acquired in references65,66. The area metrics of a
computing core are shown in Supplementary Table 1. In the storage
core, the area of one 1T1M cell is set to 12 F2 during evaluation, where F
represents the feature size. In this case, the area of WL, BL, and SL
drivers and MUX, composed of inverters or gate circuits, can be esti-
mated based on the feature size, as shown in Supplementary Table 8.
The peripheral circuits, includingDAC, S &H, ADC, and shift & add, are
located in the storage bank outside the core. The original VisualQA
v2.0 dataset requires 25 GB storage space for data storage, which
needs theHDDdisk and its peripheral circuitry area of about 7194mm2

for storage52. The areas of CPU andDRAM for processing are estimated
to be 2.48 and 84.23mm267,68.

Data availability
The datasets used for evaluation and recognition in this study are
publicly available. The source data underlying the figures in the main
manuscript are provided as Source Data file. Additional data sup-
porting the findings of this study are available from the corresponding
authors upon request. Source data are provided with this paper.

Code availability
The code that supports the results within this paper and the other
findings of this study are available from the corresponding authors
upon request.
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