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Unraveling the epigenetic code: human
kidney DNA methylation and chromatin
dynamics in renal disease development

Yu Yan1,2,3,4, Hongbo Liu 1,2,3,4, Amin Abedini 1,2,3,4, Xin Sheng 1,2,3,4,
Matthew Palmer4,5, Hongzhe Li4,6 & Katalin Susztak 1,2,3,4

Epigenetic changes may fill a critical gap in our understanding of kidney dis-
ease development, as they not only reflect metabolic changes but are also
preserved and transmitted during cell division. We conducted a genome-wide
cytosinemethylation analysis of 399 human kidney samples, alongwith single-
nuclear open chromatin analysis on over 60,000 cells from 14 subjects,
including controls, and diabetes and hypertension attributed chronic kidney
disease (CKD) patients. We identified and validated differentially methylated
positions associated with disease states, and discovered that nearly 30% of
these alterations were influenced by underlying genetic variations, including
variants known to be associated with kidney disease in genome-wide asso-
ciation studies.We also identified regions showing bothmethylation and open
chromatin changes. These changes in methylation and open chromatin sig-
nificantly associated gene expression changes,most notably those playing role
in metabolism and expressed in proximal tubules. Our study further demon-
strated that methylation risk scores (MRS) can improve disease state annota-
tion and prediction of kidney disease development. Collectively, our results
suggest a causal relationship between epigenetic changes and kidney disease
pathogenesis, thereby providing potential pathways for the development of
novel risk stratification methods.

Chronic kidney disease (CKD) ranks as the tenth leading cause of
death globally, accounting for approximately one million deaths
each year1. CKD is a complex disease resulting from gene-
environment interactions. Kidney dysfunction, primarily estimated
as low glomerular filtration rate (eGFR), has a strong heritable
component, with genetic variants potentially accounting for
30–50% of eGFR variability in the general population2–4. Most CKD
cases in the US arising as a consequence of diabetes, hypertension,
aging, ischemic, or toxic insults5.

Genome-wide association studies (GWASs) have identified over
800 loci where variants are associated with kidney function4,6–9.
Despite the remarkable success of GWAS, it remains challenging to
interpret this information since more than 90% of identified variants
reside in the noncoding regions of the genome10. Moreover, the
identified variants only explain a small fraction of heritability, with
factors accounting for the remaining heritability yet to be discovered11.

Multiple lines of evidence suggest that epigenetic modifications
could account for some of the missing heritability of kidney
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disease6,12–16. Studies indicate that adverse intrauterine conditions,
such as calorie restriction or hyperglycemia, contribute to the devel-
opment of hypertension and kidney disease later in life17–19. Addition-
ally, periods of hyperglycemia can hasten kidney function decline in
patients with diabetes even after decades of strict glycemic control, a
phenomenon known as “metabolic memory”20,21. Epigenome-
modifying enzymes, which use substrates such as acetyl and methyl
groups for post-translational modification of histones or DNA, are
highly sensitive to fluctuations in metabolite levels22–24.

Several studies already explored epigenetic changes in patients
with kidney disease. Cytosine methylation changes in blood samples
have been analyzed in several large cohorts, including the Pima,
CKDGen, DCCT (Diabetes Control and Complications Trial), German
CKD Cohort, and in the Chronic Renal Insufficiency Cohort
(CRIC)14–16,25–30. These studies identified a robust association between
methylation of specific loci and kidney function. Using statistical
modeling, the DCCT study even suggested that certain epigenetic
alterations mediate the hyperglycemia-induced kidney disease
development31. However, these previous studies have several limita-
tions, including small sample sizes, not differentiating between
methylation changes driven by genotypes and those driven by envir-
onmental factors, and not linking methylation changes observed in
bulk samples to single-cell level differences.

The development of droplet-based encapsulation and barcoding
has enabled the analysis of thousands or even millions of single cells
and the genome-wide analysis of open chromatin and gene expression
changes. Initial analysis of a limited number of samples has allowed for
the identification of cell-type-specific open chromatin changes and
potential key transcription factors specific to each cell type32,33. Ana-
lysis of control and disease samples would also enable precise cell-
type-specific characterization of epigenetic changes in disease state,
but sample number and the availability of human kidneys remains
limited. Combining cell-type-specific analysis with bulk profiling of
large cohorts could provide comprehensive and complementary
information.

In this study, we aimed to address the limitations of previous
research by conducting an extensive epigenome-wide analysis of a
larger cohort of 399 human kidney tissue samples from controls,
diabetic, hypertensive, and chronic kidney disease (CKD) patients,
and by employing single-cell open chromatin analysis of over
60,000 cells obtained from 14 subjects. By combining genetic and
epigenetic studies we aimed to understand the role of genetic var-
iations driving epigenetic changes and using genotype information
for causal inference analysis. Our objectives were to identify differ-
entially methylated sites associated with kidney disease, examine
their impact on gene expression, and assess the potential of
methylation risk scores (MRS) for disease prediction and diagnosis.
By combining genetic information, bulk profiling, and cell type-
specific analysis, we aimed to provide comprehensive and com-
plementary information on the role of epigenetic alterations in the
pathogenesis of kidney disease.

Results
Characteristics of study samples
Our goal was to uncover robust epigenetic changes associated with
commonmanifestations of kidneydisease, such as lowkidney function
(eGFR) and fibrosis. Diabetes and hypertension associated kidney
diseases exhibit overlapping clinical manifestations, and combined
account for over 75% of all CKD and end-stage renal disease (ESRD)
cases in the US34,35. As the epigenome is cell-type specific, we analyzed
changes inmicrodissected humankidney tubule samples to reduce the
contribution of cell heterogeneity36. We collected 399 kidney samples
from healthy, diabetic, hypertensive, and diabetic and hypertensive
CKD subjects (Table 1). The mean age was 60.2 years. Approximately
one-third of the participants had diabetes, and nearly 68% had
hypertension. Themean eGFR, calculated by the CKD-EPI formula, was
71.2ml/min/1.73m2, ranging from 3.7 to 134.9ml/min/1.73m2.
Approximately one-third (n = 123) of the subjects had an eGFR less than
60ml/min/1.7 2m2, meeting the classic definition of CKD.

We also assessed histological changes in biopsy samples using an
unbiased scoring system, evaluated by a pathologist who was blinded
to the clinical parameters. The median tubulointerstitial fibrosis
(hereinafter referred to as fibrosis) ranged from 0 to 100% with 129
samples with greater than 10% fibrosis. Fibrosis and eGFR showed a
significant negative correlation (Pearson correlation coefficient
r = −0.46, P < 2.2 ×10−16; Supplementary Fig. 1a). To examine the relat-
edness of the different clinical and histological variables, we con-
ducted clustering (Supplementary Fig. 1b). Clinical and histological
variables separated and formed independent clusters. Variables from
independent clusters used in the analysis to preventmodel overfitting.
In our study, 49 (12%) subjects met the standard definition of DKD,
which includes histological changes and reduced eGFR, while 94 (23%)
patients had hypertensive CKD.

Epigenome-wide association analysis (EWAS) identified methy-
lation changes associated with kidney structure and function
In this study, we quantified DNA methylation at over 850,000 CpG
sites in 399 kidney tubule samples using Illumina Human Methylation

Table 1 | Clinical and histopathological characteristics of the
human kidney samples

Characteristics (n = 399) Result

eGFR, median (IQR) (range), ml/min per 1.73 m2 71.2 (24.1) (3.7–134.9)

Age, mean (SD), year 60.2 (13.5)

Sex, M, n % 254 (63.7)

Race, Black, n % 61 (15.3)

Diabetes, n % 136 (34.1)

Hypertension, n % 271 (67.9)

BMI, median (IQR), kg/m2, (n = 370) 29.4 (26.0, 34.4)

HgbA1c, median (IQR), %, (n = 57) 6.8 (5.9, 11.1)

Serum glucose, median (IQR), mg/dl, (n = 272) 121.0 (97.0, 151.0)

Systolic BP, mean (SD), mmHg 134.9 (18.8)

Diastolic BP, mean (SD), mmHg 76.5 (11.9)

Serum albumin, median (IQR), g/dl, (n = 168) 4.0 (3.6, 4.3)

Pathology

Interstitial fibrosis, median (IQR), % 5 (2, 10) (0–100)

Interstitial lymphocytic infiltrate >2 +, % 19.8

Interstitial plasmacytic infiltrate present, % 28.7

Interstitial eosinophilic infiltrate >2 +, % 1.0

Tubular atrophy, median (IQR), % 5 (2, 10)

Acute tubular injury, median (IQR) (range), % 0 (0, 2) (0–50)

Tubules reabsorption present, % 23.6

Global glomerulosclerosis, median (IQR), % 5.7 (2.4, 13.1)

Glomerular wall thickening >2 +, % 2.3

Glomerular hypoperfused >2 +, % 9.6

Glomerular mesangial matrix >2 +, % 6.6

Glomerular mesangial cellularity >2 +, % 6.1

Glomerular KW nodules present, % 2.5

Glomerular pericapsular fibrosis >2 +, % 9.0

Vessel medial thickening present, % 8.2

Vessel intimal fibrosis >2 +, % 44.9

Vessel arteriolar hyalinosis >2 +, % 8.5

eGFR estimated glomerular filtration rate,Mmale, BMI bodymass index,HgbA1c high sensitivity
hemoglobin A1C, IQR interquartile range.

Article https://doi.org/10.1038/s41467-024-45295-y

Nature Communications | (2024)15:873 2



EPIC arrays. After rigorous data processing and quality control filter-
ing, we investigated the association between fibrosis and DNA
methylation levels at 701,519 CpG sites. To account for technical
effects and the bimodal distribution of the methylation measure-
ments, we employed linear mixed-effects models, regressing methy-
lation (used as M values) on bisulfite conversion control, mean
intensity of measurements, sample plate, and lymphocytic infiltration.
Next, we performed a linear regression analysis to assess the associa-
tion between normalized fibrosis score and residualized methylation,
while controlling for potential confounders such as age, sex, race,
hypertension, and diabetes status.

We identified 171 CpG sites where cytosine methylation levels
correlated with the degree of fibrosis (differentially methylated posi-
tion: DMP) (Fig. 1a; Supplementary Data 1) at an epigenome-wide sig-
nificance level (P < 9.42 × 10−8) after correcting inflation. Of the 171
fibrosis-DMPs, 49 (28.7%) exhibited lower methylation in fibrotic
samples (Fig. 1b). The most significant signal was observed at
cg18566594 (on chromosome 12; Bacon corrected P = 1.10 × 10−11),
whichwas in the promoter region of CCND2-AS1 gene (Supplementary
Fig. 2). Methylation levels at the top fibrosis DMPs, cg04659689 and
cg01105362, showed direct and significant correlation with fibrosis
score (Fig. 1c).

Methylation levels at 19 CpG sites showed a statistically significant
association with eGFR (eGFR-DMPs) (Supplementary Fig. 3a; Supple-
mentary Data 2) at an epigenome-wide significance threshold. Of the
19 eGFR-DMPs, 15 had lower methylation levels at high eGFR (Sup-
plementary Fig. 3b). The strongest association was obtained at
cg27630540 (on chromosome 4; Bacon corrected P = 1.8 × 10−9), which
was in the enhancer region of the UVSSA (UV Stimulated Scaffold
Protein A) gene (Supplementary Fig. 3c).

To evaluate the robustness and consistency of the identified
methylation changes, we sought to validate the fibrosis-DMPs in two
independent external cohorts containing 9137 and 85 human kidney
samples obtained from individuals with and without diabetes and
analyzed using Illumina Infinium 450K arrays. The demographic,
clinical, and histopathological characteristics of the two validation
datasets can be found in Supplementary Data 3 and 4. Owing to dif-
ferences inmethylation platforms (450K and EPICor 850K arrays), we
coulddirectly compare 55 out of our 171 identified fibrosis-DMPs in the
first validation cohorts38. Overall, the effect estimates of the 55CpGs in
our study strongly and significantly correlatedwith those described by
Gluck et al. (Pearson correlation coefficient r = 0.81, P = 3.8 × 10−14;
Supplementary Fig. 4a, Supplementary Data 5)38. For the second vali-
dation cohort (containing 85 kidney samples), Ko et al. identified

Fig. 1 | Epigenome-wide association analysis (EWAS) identified methylation
changes associated with kidney disease severity. a Manhattan plot of fibrosis
EWAS in 399 human kidney samples. The x-axis represents the chromosomal
location of the CpG probes and the y-axis is the -log10(P value with Bacon‐correc-
tion) of fibrosis and methylation association. The epigenome-wide significance
level (two-sided P < 9.42 × 10−8) is indicated by the red line and significant CpGs are
highlighted as rectangles. b Volcano plot showing the association between fibrosis
and methylation changes. The x-axis represents the effect size (from the linear
regression) of each CpG probe with fibrosis and the y-axis indicates the strength of

the association (-log10(P value with Bacon‐correction)). Each dot corresponds to
one probe, with red dots representing hypermethylated probes and cyan dots
representing hypomethylated probes that are associated with higher fibrosis.
c Correlation between methylation levels and fibrosis score at cg04659689 and
cg01105362. Each data dot represents one kidney sample. The x-axis shows the
percent kidney fibrosis (0–100%),the y-axis represents the methylation level (as M-
value), and the shaded area indicates the 95% confidence interval for the correla-
tions. The r represents Pearson’s correlation coefficient andP indicates the strength
of the association (two-sided).
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differential methylation regions using a distinct approach that directly
compared methylation ratio between control and diseased tubule
samples (binary outcome)37. Hence, we rerun the same model using
linear regression while adjusting for age, sex, race, diabetes, hyper-
tension, and batch effects to validate the 85 CpG sites out of our 171
identified fibrosis-DMPs which overlap with the second dataset. Simi-
larly, the effect estimates of the 85 CpGs between the two studies were
highly consistent (Pearson correlation coefficient r = 0.73, P = 2.0 ×
10−15), further validating the association between CpGmethylation and
kidney disease severity (Supplementary Fig. 4b, Supplemen-
tary Data 6).

Lastly, we conducted sensitivity analyses to evaluate the robust-
ness of our findings. Sensitivity analyses additionally adjusting for BMI
(n = 370; Supplementary Fig. 5a, b) or genetic ancestry (the top 5
genetic principal components) (n = 378; Supplementary Fig. 5c, d)
yielded highly consistent results. Restricting the analysis to partici-
pants who had hypertension and/or diabetes (n = 286; Supplementary
Fig. 5e, f) also yielded consistent associations. Similar results were
observed when we limited the sensitivity analysis for those probes
showing significant association in the EWAS analysis. In summary, our
analysis identified robust changes in cytosine methylation levels in
kidney tissue samples associated with eGFR and fibrosis.

Kidney disease associated cytosine methylation changes are
enriched on kidney enhancers
Cytosine methylation changes at transcription factor binding sites
could potentially alter the binding strength of transcription factors
and decrease gene expression, while methylation in the gene body
could increase transcript levels39. We used the Reference Sequence
(RefSeq) database to annotate transcribed regions, gene body, 5′ and
3′ untranslated genomic regions to understand the genomic regions
showing methylation changes. We observed that the majority of
fibrosis DMPs were located in gene body regions (41.5% of DMPs) and
regions surrounding the transcription start site (38.0% of
DMPs; Fig. 2a).

To further understand the functional role ofDMPs associatedwith
fibrosis, we generated adult human kidney-specific functional gene
regulatory regions annotation (promoters and enhancers, etc.) by
combining multiple histone chromatin immunoprecipitation data
(ChiP-seq) using ChromHMM40. Investigating the chromatin states
wherefibrosis-associatedDMPswere located, we found that compared
to all probes present on the EPIC arrays, fibrosis-DMPs showed the
strongest enrichment in regions annotated as enhancers in the human
kidney (OR = 5.96, χ2 testP < 2.2 ×10-16; Fig. 2b using a two-sided Fisher
exact test).

Fig. 2 | Kidney-disease associated cytosine methylation changes are enriched
on kidney enhancers. a Genomic features of 171 fibrosis-DMPsmapped to Refseq.
b Functional enrichment of fibrosis-DMPs (n = 171) using human kidney chromatin
profiling. The fold enrichment of a particular genomic regulatory regions com-
pared to all CpGs present on the EPIC arrays are shown. The x-axis shows genomic
annotations and y-axis represents the enrichment odds ratio (two-sided Fisher
exact test). Center lines indicate the median fold change, box limits denoted the
upper and lower quartiles, and whiskers extend to the 5th and 95th percentiles
range. c Tissue specificity of fibrosis-DMPs across 8 different human tissue. The
functional annotation is based on (Roadmap project) ChromHMM data. The x-axis

shows theenrichmentORand the y-axis shows theP value calculatedbya two-sided
Fisher exact test; d Transcription factor motif enrichment (based on HOMER) of
fibrosis-DMPs. The P value was obtained by binomial test. e Features of the top
significant fibrosis-DMPs cg04659689. Regional association (locusZoom) of the
cg04659689CpG site on chr7p22. The x-axis indicates chromosomal positionwhile
the y-axis is the strength of the association (log10(P value)) derived from EWAS
analysis. The cg19942083 probe is shown as a red dot. The lower panel kidney
tissue ChromHMM annotation and histone modification marks by chromatin
immunoprecipitation (ChIP)-seq. H3K4me3 marks represent active promoters,
while H3K27ac marks indicate active enhancer elements.
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Having observed an enrichment of DMPs on enhancers, we ana-
lyzed the association between DMPs and enhancers across different
tissue types (including liver, heart, and lung) using the Roadmap Epi-
genomics ChromHMM annotations41. We found that kidney fibrosis-
associated DMPs were enriched in kidney enhancers (P < 2.2 ×10-16;
Fig. 2c) compared to other tissue enhancers.

Furthermore, to identify transcription factors whose effects may
be potentially influenced by cytosine methylation, we performed
transcription factor motif analysis using the HOMER software. Com-
pared to all probes on the EPIC array, fibrosis-DMPs were enriched for
15 transcription factor binding motifs (false discovery rate (FDR) <
0.05; Fig. 2d, Supplementary Data 7), with the most prominent motifs
representing ERRA, COUP-TFII, NUR77, and FXR, HNF4A, PPARA,
HNF1B. Many of these transcription factors have been shown to reg-
ulate cellularmetabolism, and some have also been proposed to play a
crucial role in kidney disease and fibrosis development42–45. For
instance, we present cg04659689 as an example of one of the top
significant fibrosis-DMPs (Bonferroni corrected P = 8.4 × 10-10) located
on a kidney enhancer region (Fig. 2e).

In summary, methylation changes associated with kidney disease
were enriched at active functional elements in the kidney. These
findings imply the functional importance of the identified
fibrosis-DMPs.

Disease associated genetic variants often drive observed disease
associated methylation changes
One of the key limitations of EWAS studies is that phenotype-
associated methylation changes are likely the consequence of the
disease process rather than the cause. Genetic variants do not suffer
from reverse causation, so we evaluated genetic variants associated
withmethylation changes. We analyzed human kidney cis-methylation
quantitative trait loci (cis-meQTL) to identify CpG sites that are under
the influence of genotype variation (Fig. 3a). We examined single-
nucleotide polymorphisms (SNPs) within a cis window of ±1Mb of the
171 fibrosis-DMPs. A total of 549,142 SNPs around these CpG sites were
tested (constituting 673,614 SNP–CpG pairs), and 3,825 significant cis-
meQTLs were identified (FDR <0.01 level; Supplementary Data 8).
Among the 171 fibrosis-DMPs, 67 CpG sites (39.2%) had at least one
genome-wide significant cis-meQTL SNP (Fig. 3b). Significant cis-
meQTL SNPsweremostly foundwithin 100 kb of target DMPs (Fig. 3c),
and those DMPs were more likely to be enriched in kidney enhancer
regions (OR = 6.99, P = 9.0×10−14), overall suggesting that the observed
methylation changes are strongly impacted by genetic variations.

To understand whether the underlying genetic variation-driven
methylation changesmay be associated with disease development, we
overlapped genetic variants that drove methylation differences (3,825
cis-meQTLs) with genetic variants associated with phenotype devel-
opment (GWAS) (Supplementary Data 9). We identified 43 cis-meQTLs
(6 CpG) associated with eGFR GWAS6, 23 cis-meQTLs (3 CpG) asso-
ciated with urate GWAS46, and 7 cis-meQTLs (1 CpG) associated with
UACR GWAS47. Furthermore, by mapping to additional disease-
associated GWAS results, we found 9 cis-meQTLs (6 DMP) associated
with blood pressure and 32 cis-meQTLs (3 DMPs) associated with
T2DM48,49.

Finally, to understand the target genes of genotype-associated
methylation changes,we examined gene expression changes driven by
genetic variations, in expressionquantitative trait loci (eQTL) analysis6.
We found that from the methylation-driving SNPs, 881 unique SNPs
showed statistically significant associations with 53 genes, including
FBRSL1, OAF, LIMK1, TRIM29, and PXMP2 (Supplementary Data 10).
For instance, rs2444239, a cis-meQTL associated with DNA methyla-
tion at cg15412087, was also associatedwith albuminuria (measured as
urinary albumin creatinine ratio) and exhibited a significant correla-
tion with OAF expression (P = 5.04 × 10−18; Fig. 3d). Cg15412087 was
located in the enhancer region of OAF, as indicated by the H3K27Ac

ChIP-seq signal and chromatin state annotations (Fig. 3e). OAF (Out At
First Homolog), a protein-coding gene expressed in the renal cortex,
has been reported to be involved in protein reabsorption in the
kidney47. Knockdown of its orthologs in Drosophila nephrocytes
reduces albumin endocytosis47. Collectively, our findings indicate that
close to a third of kidney disease-associated methylation changes are
under genotype influence, and in multiple cases, these underlying
genetic variants are also associated with kidney dysfunction. These
results suggest that genetic variations play a significant role in driving
methylation changes, which in turn can influence disease
development.

Changes in human kidney single cell open chromatin regions in
disease states
Epigenetic changes are highly cell-type specific, and although bulk
methylation differences have been linked to kidney-specific enhancer
changes, the underlying cell types have not been identified. To
understand cell-type specific epigenetic variations, we reanalyzed
single-nucleus transposase-accessible chromatin with sequencing
(snATAC-seq) data from 14 human kidney samples50. The snATAC-seq
libraries were prepared following the 10x platform and the raw
sequencing data were aligned using Cell Ranger ATAC and further
analyzed using Signac51. After quality control, a total of 401,395
accessible chromatin regions (also known as ‘ATAC peaks’) were
identified in all cell types.

Chromatin accessibility information, which indicates tran-
scriptionally active (i.e., open) and inactive (i.e., condensed) regions,
allowed for grouping cells into discrete cell clusters based on differ-
entially accessible chromatin regions (DAR). Using open chromatin-
based gene activity indices we were able to identify 24 key kidney cell
types, including different types of proximal tubules segments 1-3
(PT_S1, S2, S3, and injured), descending loop of Henle (DLOH), podo-
cytes, cortical andmedullary thick ascending loop ofHenle (C_TAL and
M_TAL), distal convoluted tubule (DCT), connecting tubule (CNT),
principal cells of collecting duct (PC), intercalated cells type alpha and
beta (IC_A and IC_B), stromal, and different types of immune cells
(Fig. 4a; Supplementary Fig. 6a; Supplementary Data 11).

Out of the 14 analyzed samples, 7 can be considered healthy and 7
with CKD based on eGFR and histopathological information (greater
than 10% fibrosis). To gain a deeper understanding of cell-type-specific
differentially accessible regions (DAR), we compared CKD and control
samples, in each cell type. In total, we identified 38,316 cell-specific
differentially accessible chromatin regions at a 5% FDR q-value and an
absolute log-fold-change threshold of 0.25 (Fig. 4b; Supplementary
Data 12). Overall, a higher number of accessible chromatin regions
were observed in CKD samples compared to healthy controls. Of the
identified differential accessible regions (DARs), the majority
(n = 19,456; 50.8%) were located in promoter regions (Fig. 4c; Sup-
plementary Fig. 6b), while a minority (n = 6,264; 16.4%) were inter-
genic. Notably, identified DARs between healthy and CKD samples
highlighted PT, PC, and collecting duct cell types with the highest
numbers of DARs. Proximal tubule cells (PT_S1, PT_S2, PT_S3, and
injured_PT) had the greatest number of DARs (n = 27,566 in total),
followed by the PC (n = 20,684), IC_A (n = 11,154), and mesangial cells
(n = 5,114). Amongst the identified DARs, 52.6% (n = 20,157) were cell-
type specific (only observed in one cell type) while a subset of DARs
(n = 18,159, 47.4%) were shared between cell types.

Disease-associated cell-specific DARs were enriched for distinct
transcription factors (the full list of motif enrichment is provided in
Supplementary Data 13), including key cell type-specific transcription
factors like HNF4A in the proximal tubules. Transcription factors
enriched in disease DARs provide insight into cell-specific signaling
pathways altered in CKD. Notably, injured PT DARs were significantly
enriched for NF1, HNF1B, and FOS motifs (NF1 P = 1.0 × 10−266; HNF1B
P = 1.0 × 10−214; FOS P = 1.0 × 10−204), known regulators of PT identity,
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suggesting that epigenetic regulation may have implications for the
development of kidney disease.

For example, our analysis revealed a subgroup of DARs consisting
of 24 regions located within or in close proximity to the PRKAG2 gene
(protein kinase AMP-activated non-catalytic subunit gamma 2). Nota-
bly, these regions exhibited a more accessible chromatin in CKD.
PRKAG2 encodes the γ2 regulatory subunit of the AMP-activated
protein kinase (AMPK), a crucial regulator involved in glucose and lipid
metabolism, ion and water transport, inflammation, and stress
response. Additionally, we observed a significant association between
rs10224210, a genetic variant identified in eGFR GWAS6, and the
expression of the PRKAG2 gene. These findings suggest a potential
involvement of the identified DARs inmodulating kidney function and
kidney disease development.

In summary, our human kidney snATAC analysis identified cell-
type and disease-specific changes in open chromatin, some of which
were associated with genetic variants known to play a role in disease
development, indicating the potential causal role for open chromatin
and methylation changes.

The relationship between open chromatin and methylation
changes
Next, we wanted to understand the relationship betweenmethylation-
(DMPs) and single-cell open chromatin- changes. We found that 145 of
the 171 fibrosis-associated DMPs were in open chromatin regions in
human kidney single cell data. Fibrosis-DMPs showed enrichment in
open chromatin regions in PT, thin descending loop of Henle (DLOH),
and principal cells (PC), with the highest enrichment in PT_S3

Fig. 3 | Genetic variation contributes to methylation and corresponding gene
expression changes. a Integrative analysis to identify methylation and disease-
associated genetic variants. Parts of the right panel have been created using
BioRender.com. b Genetic variation likely contributes to methylation changes at
40% of fibrosis-DMPs. cMethylation and driving genotype change association. The
x-axis is thedistancebetweenSNPand their targetCpG sites and the y-axis indicates
the strength of the meQTL association (-log10(P value)). d The left panel shows the
association of genotype (rs2444239, x-axis) and normalized CpG methylation
(cg15412087, y-axis) in human kidneys (n = 443). The right panel shows the asso-
ciation of genotype (rs2444239, x-axis) and normalized gene expression (OAF,
y-axis) in human kidney tubule samples (n = 356). Each dot represents a sample,

which was grouped according to the genotype. Center lines indicate the medians,
box limits show the upper and lower quartiles, and whiskers extend to the 5th and
95th percentiles. The P value (two-sided) was derived from either meQTL regres-
sionmodels or published eQTLmeta-analysis of 686 samples. e Feature of fibrosis-
DMPs cg15412087 and its driving genetic changes (meQTLs). The upper panel
shows the regional association of the cg15412087 CpG site on chr11q23. The x-axis
indicates chromosomal position while the y-axis is the strength of the association
derived from EWAS analysis (-log10(P value)). The cg15412087 probe is shown as a
red dot. The lower panel includes meQTLs, eQTLs, human kidney histone mod-
ifications, and chromatin states annotations. The top meQTL (rs2444239) selected
based on the P value of meQTL associations is highlighted by the label.
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(OR = 4.90, P < 2.2 × 10−16; Fig. 4d) compared to probes present on the
EPIC array. Genomic regions harboring fibrosis-associated DMPs in
PT cells were enriched for ERRA, PPARa, RXR, as well as HNF4a tran-
scription factor motifs (the full list of motif enrichment is provided in
Supplementary Data 14) again indicating their potential functional
importance.

We further overlapped the 171 fibrosis-associated DMPs with cell-
specific DARs, and found that approximately one-fifth of DMPs were
located in open chromatin regions that changed during disease state;
disease-associated DAR regions (n = 53, 31.0%). Most of these regions

exhibited a more accessible chromatin status in CKD. Notably, the
overlap highlighted PT, PC, and collecting duct cells harboring
the highest numbers of DMPs. These regions were enriched for
transcription factors motifs including JUND, KLF5, FRA1, JUNB, and
ETS: RUNX (the full list of motif enrichment is provided in Supple-
mentary Data 15). These transcription factors were known to reg-
ulate cell proliferation, apoptosis, tubulointerstitial inflammation,
and fibrosis. These findings further support the potential role of epi-
genetic alterations in transcriptional regulation and kidney disease
development.

Fig. 4 | DMPs are enriched at open chromatin regions and CKD differential
accessible regions in kidney proximal tubules. a Single-nucleus accessibility
UMAP for 80,845 human kidney cells by snATAC-seq. Each dot represents a cell,
with color coding for the cell types: Endo_GC; endothelial cells of glomerular
capillary tuft, Endo_peritubular; endothelial cells of peritubular vessels, Mes;
meseangial cells, VSMC/Myofib; vascular smooth muscle cells/myofibroblast, PEC;
parietal epithelial cells, Podo; podocyte, PT_S1; proximal tubule segment 1, PT_S2;
proximal tubule segment 2, PT_S3; proximal tubule segment 3, Injured_PT; injured
proximal tubule cells, DLOH; thin descending loop of Henle, C_TAL; cortical thick
ascending loop of Henle, M_TAL; medullary thick ascending loop of Henle, DCT;
distal convoluted tubule, CNT; connecting tubule cells, PC; principal cells of col-
lecting duct, IC_A; Type alpha intercalated cells, IC_B; Type beta intercalated cells,

CD4T; T lymphocytes CD4 +, B_Naiive; Naiive B lymphocyte, Mac; macrophage.
b Number of differentially accessible regions (DARs) in each cell type in disease
state. The x-axis represents the cell types, while the y-axis indicates the count of
significant DARs. The color scale indicates the direction of chromatin accessibility
changes compared to control samples, with red indicating increased accessibility
andblue indicating decreased accessibility. cThedistribution of disease-associated
DARs across the RefSeq genome. d Enrichment of fibrosis-DMPs located in cell-
types open chromatin regions compared to all CpGs present on the EPIC arrays.
The x-axis shows the cell types and y-axis represents the enrichment OR, which was
examined using a two-sided Fisher exact test. The color of the dot indicates the
specific cell type.
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The relationship between epigenetic and gene expression
changes
Next, we wanted to identify potential target genes for the observed
methylation changes. First, we annotated DMPs with the nearest
protein-coding gene. Among the 171 fibrosis DMPs, 137 DMPs were
annotated to 125 protein-coding genes, including CCND2, SLC25A11,
FBRSL1, and KIF15 (Fig. 5a; the full list is provided in Supplementary
Data 16). Notably, one of the most significant fibrosis-associated DMP;
cg20691282, was annotated to the PERM1 gene (PPARGC1 and ESRR

induced regulator, muscle 1 gene), which has been demonstrated to
enhance mitochondrial biogenesis and metabolism52.

We next aimed to interrogate cell types in which methylation
target genes expressed. We reanalyzed gene expression information
from 17 adult human kidney samples including 10 control samples and
7withCKD50. The single-nucleusRNA sequencing (snRNA-seq) libraries
were processed using Cellranger (10X Genomics) and analyzed with
Seurat. Prior to analysis, doublets were removed using DoubletFinder,
andbatcheffectswere corrected usingHarmony53–55. A total of 223,439

Fig. 5 | Fibrosis-DMPs nearest gene expressed in kidneyproximal tubules. aThe
location of the prioritized gene promoter in relation to CpG sites. The x-axis is the
distance fromCpG sites to their target gene TSS and the y-axis is the strength of the
association derived from EWAS analysis (-log10(P value)). The prioritized genes of
top 20 significant fibrosis-associated DMPs are labeled. b Single-nuclear RNA-seq
UMAP of 223,438 human kidney cells. Each dot represents a cell, with color coding
for the cell types: Endo_GC; endothelial cells of glomerular capillary tuft, Endo_-
peritubular; endothelial cells of peritubular vessels, Endo_Lymphatic, endothelial
cells of lymphatic vessels, Mes; meseangial cells, VSMC/Myofib; vascular smooth
muscle cells/myofibroblast, PEC; parietal epithelial cells, Podo; podocyte, PT_S1;

proximal tubule segment 1, PT_S2; proximal tubule segment 2, PT_S3; proximal
tubule segment 3, Injured_PT; injuredproximal tubule cells, DLOH; thin descending
loop of Henle, C_TAL; cortical thick ascending loop of Henle, M_TAL; medullary
thick ascending loop of Henle, DCT; distal convoluted tubule, CNT; connecting
tubule cells, PC; principal cells of collecting duct, IC_A; Type alpha intercalated
cells, IC_B; Type beta intercalated cells, CD4T; T lymphocytes CD4 +, B_Naiive;
Naiive B lymphocyte, Mac; macrophage, GS_Stromal; cells specifically present in
sclerosedglomeruli.cHeatmapof the expressionof 125 co-access genes ineach cell
type (yellow: high expression, black: low expression); d The number of top 2 cell
types expressing the highest fibrosis DMP target genes.

Article https://doi.org/10.1038/s41467-024-45295-y

Nature Communications | (2024)15:873 8



cells passed quality control filters, capturing all major kidney cell types
in both healthy and diseased conditions across different anatomical
regions (Fig. 5b; Supplementary Fig. 6c).

By analyzing the expression patterns of the 125 targeted genes, we
found that the majority of genes exhibited enrichment in the kidney
cortex, suggesting that their alterations predominantly affect the
function and physiology of this specific region (Fig. 5c). Furthermore,
our analysis revealed distinct expression patterns of these genes
across different cell types within the kidney, indicating that their
dysregulation may be cell type-specific. Interestingly, methylation
differences were more common around genes expressed in proximal
tubule (PT) cells. Moreover, we found 27 genes (21.6%; Fig. 5d) exhi-
biting their highest expression in PT cells (PT_S1, PT_S2, PT_S3, and
Injured_PT), including those associated with metabolism (e.g.,
SLC22A13, SLC6A19, FTCD, ALDH4A1, and OAT) and fibrogenesis (e.g.,
PDK2, PFKFB2, MYOM3). These findings suggest that kidney structure-
associatedDNAmethylation can impact gene expression in various cell
types, particularly in PT cells.

Taken together, our results provide valuable insights into the cell-
type specificity of DNA methylation changes in kidney disease. They
underscore the importance of considering the unique cellular contexts
in which these alterations occur, shedding light on the potential
mechanisms driving kidney pathophysiology.

Fibrosis-correlating DMPs associated with the expression of
solute carriers and metabolic genes
To understand the functional role of genes showing methylation and
open chromatin changes in disease, we analyzed the function of the
targeted genes. Gene ontology analysis of epigenetically targeted
genes revealed 64 biological processes (P < 0.05), such as gluconeo-
genesis, response to insulin stimulus, and regulation of the MAPK
cascade (Fig. 6a; Supplementary Data 17). Impaired renal gluconeo-
genesis is a key feature of DKD. Reactome pathway enrichment ana-
lysis identified 41 pathways (P <0.05; Supplementary Data 18),
includingmetabolism (such as amino acids and derivatives, glyoxylate,
and glucose), transporter-related signaling pathways (such as Na + /Cl-
dependent neurotransmitter transporters, bile salts and organic acids,
metal ions and amine compounds, and inorganic cations/anions and
amino acids/oligopeptides), and gluconeogenesis, as well as MAPK1/
MAPK3 signaling. Some of these processes are known to play a role in
kidney fibrosis.

Due to the limited number of the targeted genes in this dataset,
we expanded gene ontology analysis for the top 1,000 fibrosis-DMPs
(829 genes). Gene ontology analysis indicated enrichment for glucose
metabolism, potassium ion transportation, as well as regulation of
MAPK signaling (Supplementary Fig. 7a). Subsequent pathway
enrichment identified 29 pathways (FDR <0.05; Supplementary
Fig. S7b), including amino acid metabolism (such as histidine, trypto-
phan, and arginine), protein digestion and absorption, gluconeogen-
esis, cell adhesion, and other metabolic pathways. In summary, we
observed that differentially methylated sites in disease showed
enrichment for open chromatin regions in kidney proximal tubules
and identifiedmultiple genes,mostly solute carriers thosemethylation
changes were not only associatedwith kidney disease but also with the
expression of a variety of transporters.

Here we highlighted the cg09837037 site, which showed strong
associations with fibrosis in EWAS analysis. The cg09837037 site was
located at the SLC6A19 promoter, which was at an open chromatin
region in PT cells (Fig. 6b). Additionally, we observed negative corre-
lations between the methylation level of cg09837037 and SLC6A19
expression (Pearson correlation coefficient r = −0.56, P < 2.2× 10−16;
Fig. 6c). Furthermore, SLC6A19 gene expression in human kidneys
significantly correlated with fibrosis (r = −0.53, P < 2.2× 10−16). SLC6A19
encodes a sodium-coupled transporter located at the apical mem-
brane of renal proximal tubule cells and is prominently involved in the

absorption of neutral amino acids. Mutations in SLC6A19 have been
associated with aminoaciduria. Another similar example is the
cg06224737 site, located 365 kb from the TSS of the SLC22A13 gene
which has been implicated in phosphate and urate reabsorption in
human kidney tubules56,57. The methylation level of cg06224737 was
found to be negatively correlated with the expression of SLC22A13
(Pearson correlation coefficient r = −0.61, P < 2.2 × 10−16; Fig. 6d).
SLC22A13 gene expression in human kidneys was inversely correlated
with fibrosis (Pearson correlation coefficient r = −0.51, P < 2.2 × 10−16).
In summary, we observed that differentiallymethylated sites in disease
showed enrichment for open chromatin regions in kidney proximal
tubules and identified multiple genes, mostly solute carriers, whose
methylation changes were not only associated with kidney disease but
also with the expression of various transporters.

Methylation risk scores improve kidney function and prognosis
estimation
Our analysis indicated that methylation changes offer an important
combined read-out for both genetic and non-genetic factors (envir-
onmental) and demonstrate an associationwith disease state. In recent
years, genetic factors integrated as polygenic risk scores (PRS) have
emerged as powerful tools for predicting diseases. We hypothesized
that methylation risk scores (MRS) might work even better than PRS
since they integrate both genetic and non-genetic factors. As many of
the fibrosis-DMPs were correlated, we applied LASSO regression to
narrow down the number of disease-associated CpGs and computed
weighted MRS for everyone using a linear combination of the effect
estimates and methylation levels of these selected CpGs (Fig. 7a).

First, wewanted to understandwhetherMRS can improve fibrosis
estimates in the kidney. As noted before, eGFR poorly correlates with
fibrosis (r of −0.46) and it is hard to estimate the degree of fibrosis
based on clinical parameters. We computed a weighted MRS based on
19 LASSO-selected CpGs (Supplementary Data 19) from 70% of the
study samples (the training set) for individuals. We used the remaining
30% of the samples as study samples (the testing set). We then gen-
erated log2-transformed fibrosis estimates in the testing set using a
polynomial linear regression model, with eGFR as the predictor vari-
able, controlling for age, sex, race, diabetesmellitus, and hypertension
status. This eGFR-based predictionmodel explained 30.3% of the log2-
transformed fibrosis level variance, consistent with previous studies,
indicating that clinical parameters relatively poorly predict histologi-
cal damage. The addition of MRS into the base model significantly
improved this capability to 42.1% (likelihood ratio χ2 test P = 6.3 × 10−6;
Fig. 7b), indicating that the establishedMRS can enhance the accuracy
of fibrosis estimation.

Next, we wanted to know whether MRS can help to identify CKD
cases. We fine-tuned the MRS weights using all available 399 samples.
We conducted a logistic regression analysis, controlling for age, sex,
race, diabetes mellitus, and hypertension status. MRS was significantly
associated with CKD incidence (OR = 2.57, 95% CI = 1.37- 4.95; P = 3.6 ×
10−3; Fig. 7c). Compared to the initialmodel that only included age, sex,
race, presence of DM, and/or HTN, the addition of MRS significantly
improved the discriminative performance of incident CKD (area under
the curve, 0.76 versus 0.70, likelihood ratio χ2 test P = 1.3 × 10−7). To
assess the robustness of our results, we conducted sensitivity analyses
for the associations between MRS and CKD using the 2021 (race-free)
eGFR equation58. We identified 110 CKD patients using the 2021 (race-
free) eGFR equation. Remarkably, the findings remained consistent.
The established MRS was significantly associated with new CKD inci-
dence (OR= 2.61, 95% CI = 1.37 – 5.05; P = 3.7 × 10−3). Compared to the
initial model that only included age, sex, race, presence of DM, and/or
HTN, the addition of MRS significantly improved the discriminative
performance of incident CKD (area under the curve, 0.74 versus 0.70,
likelihood ratio χ2 test P = 1.4 × 10−5) reaffirming the robustness of our
results.
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Lastly, we examined whether MRS could predict future kidney
function decline in our cohort. Our cohort included 117 participants
with at least 3months of follow-up data after kidney sample collection.
A mixed-effect model was used to identify factors associated with
longitudinal eGFR levels, controlling for known clinical covariates and

incorporating random-effects terms to account for differences in eGFR
values between subjects and over time. The results showed that
fibrosis MRS was significantly associated with longitudinal eGFR
changes (beta = −18.7, P = 6.7 × 10−7; Fig. 7d). Furthermore, compared
to the model where only clinical parameters were included, the

Fig. 6 | DMPs are correlated with the expression of solute carriers and
metabolic genes. a Functional enrichment of fibrosis-associated DMPs’ nearest
genes. The left panel shows Gene Ontology (GO) enrichment, while the right panel
depicts the Reactome Pathway enrichment. The top 10 terms passing a nominal
P value < 0.05 are shown. The y-axis shows the enriched GO term or Reactome
pathways ordered by enrichment scores (x-axis), and the color indicates the
strength of enrichment (-log10(P value)) from strongest (red) to lowest (blue).
b Feature of fibrosis-DMPs cg09837037 and its prioritized target gene SLC6A19.
The upper panel shows the regional association of the cg09837037 CpG site on
chr11p15. The x-axis indicates chromosomal positionwhile the y-axis is the strength
of the association derived from EWAS analysis (-log10(P value)). The cg09837037
probe is shown as a red dot and highlighted in a box to facilitate mapping across
tracks. The lower panel includes Cicero connections, human kidney snATAC-seq

chromatin accessibility, histone modifications, and chromatin states. c Left panel:
correlation between methylation levels at cg09837037 (x-axis) and SLC6A19 gene
expression (y-axis). Right panel: correlation between fibrosis score (x-axis) and
SLC6A19 gene expression (y-axis). Eachdata dot represents one kidney sample. The
correlation coefficient and two-sided P value were obtained from the Pearson
correlation (r) statistic test. The shaded area indicates the 95% confidence interval
for the correlations. d Left panel: correlation between methylation levels at
cg06224737 (x-axis) and SLC22A13 gene expression (y-axis). Right panel: correla-
tion between fibrosis score (x-axis) and SLC22A13 gene expression (y-axis). Each
data dot represents one kidney sample. The correlation coefficient and two-sided
P value were obtained from the Pearson correlation (r) statistic test. The shaded
area indicates the 95% confidence interval for the correlations.
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inclusion of MRS significantly improved themodel’s fitness (likelihood
ratio test P = 6.1 × 10−11, Akaike Information Criterion 2062.4versus
2111.9, R2 0.77 versus 0.67).

These findings suggest that fibrosis-related methylation infor-
mation is clinically important for kidney function estimation and long-
term prediction, highlighting the potential utility of MRS as a prog-
nostic tool for CKD.

Methylation differences predict longitudinal eGFR change
We further wanted to elucidate whether methylation alterations could
predict kidney disease development by analyzing a subset of 117 par-
ticipants with longitudinal eGFR data available. To account for varia-
bility in the follow-up time and baseline eGFR, we used a linear mixed
model that includes an individual-specific random effect for our
analysis.
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Wediscovered that the cytosinemethylation levels of 15 CpG sites
significantly correlated with changes in longitudinal eGFR at
epigenome-wide significance (P < 9.42 × 10−8; Supplementary Fig. 8a-b;
Supplementary Data 20). The strongest association was observed on
chromosome 8 with cg09514524 (P = 7.56 × 10−9), located in the pro-
moter region of glutamic pyruvate transaminase (GPT; Supplementary
Fig. 8c), also known as cytosolic alanine aminotransaminase 1 (ALT1).
ALT1 has been linked to non-alcoholic fatty liver disease and insulin
resistance59.

Of the 15 identified CpG sites, 5 were also classified as fibrosis-
DMPs (cg27630540, cg04659689, cg09514524, cg21366655, and
cg25544164), and 4 were also eGFR-DMPs (cg27630540, cg04659689,
cg01119571, and cg25544164). These findings suggest that CpG
methylation may play role in long-term changes in eGFR, thereby
providing a new perspective on how epigenetic changes can con-
tribute to kidney disease progression.

In summary, our findings demonstrate that methylation differ-
ences at specific CpG sites can predict longitudinal eGFR changes,
suggesting a potential role for epigenetic modifications in kidney
disease development and progression.

Discussion
In this study, we conducted the most extensive epigenome-wide ana-
lysis of 399 human kidney tissue samples, including controls, diabetic,
hypertensive, and CKD tissues. We identified methylation changes
associated with disease states. We found that nearly 30% of these
changes were influenced by underlying genetic variations, mostly in
kidney enhancer regions, associating with (and likely driving) the
expression of nearby genes, indicating that thesemethylation changes
likelymediate diseasedevelopment.We also reanalyzed human kidney
single-cell open chromatin changes in healthy and diseased kidneys,
identifying a large number of open chromatin changes in disease and
small subset of consistent epigenetic (methylation and open chroma-
tin) changes in PT cells associated with metabolism-related gene
expression. Finally, we implemented methylation risk scores. MRS
were shown to improve disease state annotation and prediction of
kidney disease development. Furthermore, methylation differences
predicted future kidney function decline.

Epigenetic changes (EWAS) in kidneys of patients can provide
critical insight into understanding disease pathogenesis. Here we
provide the largest sample collection to date combined with stringent
statistical analysis. Our EWAS analysis identified DMPs associated with
kidney fibrosis, with many of these methylation changes enriched in
kidney-specific regulatory regions, such as enhancers. The use of
human kidney single-cell open chromatin information allowed us to
prioritize target genes that could be regulated by the identified DMPs.
Notably, the majority of the prioritized genes were found to be enri-
ched in proximal tubule cells, supporting the notion that DNA
methylation alterations may preferentially impact gene expression in
these cells. Future studies shall analyze other cell types as PT cells are
the most abundant cell types in microdissected tubule samples. In
addition, asmethylation patterns are highly cell type-specific, accurate
inclusion of cell fraction will be important. Additionally, our findings
suggested that many DMPs were associated with changes in the

expression of genes involved in kidneymetabolism, which is known to
play a significant role in disease development. It is important to note
that one of our objectives was to meticulously dissect the influence of
genetic factors from non-genetic factors (often attributed to envir-
onmental influences). Through our rigorous analysis, we have arrived
at a significant and noteworthy finding: the majority of observed
changes in methylation cannot be solely attributed to genetic differ-
ences among individuals. While genetic variations undoubtedly play a
role in shaping epigenetic patterns, our results demonstrate that these
genetic differences alone do not account for the entirety of the
observed alterations, suggesting that a multitude of factors beyond
genetics must be considered to gain a more holistic perspective on
disease pathogenesis.

To complement bulk methylation analysis, we performed epi-
genome analysis of human disease kidney samples at single-cell reso-
lution by reanalyzing open chromatin regions of over 60,000 cells,
defining disease-specific regulatory landscape at single-cell resolution.
We observed that the fibrosis DMPs were enriched in open chromatin
regions that showed differential accessibility between healthy and
CKD samples. Moreover, transcription factor binding enriched in the
DMP-located DARs were found to be involved in renal inflammation
and fibrosis, further supporting the potential role of epigenetic
alterations in kidneydiseasepathogenesis. In summary,weprovide the
most comprehensive description of epigenetic changes in human
kidney samples in disease state at single-cell resolution. Moreover, we
identified a substantial number of open chromatin changes in disease
samples, alongwith a small subset of consistent epigenetic changes (in
both methylation and open chromatin) in proximal tubule (PT) cells
that were associated with gene expression related to metabolism. It’s
worth noting that our study primarily focused on analyzing micro-
dissected samples enriched for proximal tubules. As a result, further
investigations using whole kidney tissue are warranted to provide
additional insights into cell-specific changes.

Lastly, and most importantly we show the promise of the devel-
opment of methylation risk scores. As methylation changes act as
integrators of both genetic and environmental changes methylation
risk scores have the potential improve our precision of diagnosing and
predicting kidney disease. Our methylation risk scores can precisely
estimate disease state and severity in the kidney. Our analysis of
longitudinal eGFR data revealed that the methylation levels of certain
CpG siteswere significantly correlatedwith changes in eGFR over time.
Some of these CpG sites were also classified as fibrosis-DMPs or eGFR-
DMPs, providing evidence that DNA methylation changes may have a
role in long-term eGFR changes and potentially contribute to kidney
disease progression. It’s worth noting our study’s reliance on kidney
biopsy data is integral to the development and application of theMRS.
While the MRS holds great promise in enhancing the precision of
kidney disease diagnosis and prediction, it is important to recognize
that obtaining kidney biopsy samples may not always be feasible or
suitable for all individuals. Therefore, future research efforts in non-
invasive (such as blood) alternatives for obtaining the data are needed
to expand the accessibility and utility of the MRS in clinical practice.

Our study is also subject to several limitations that merit
acknowledgment. First, we were limited by the availability of albumin-

Fig. 7 | Methylation risk scores improve Kidney Function and prognosis esti-
mations. a Schematic representation of the construction and application of the
methylation risk score (MRS). The MRS CpG was selected by LASSO models based
on the 171 fibrosis DMPs. b MRS-based model estimated fibrosis score. The
weighted MRS was computed based on 19 LASSO-selected CpGs from the training
set for each individual in the testing set. Themodel explains 40.2% variance of log2-
transformed fibrosis. The blackdots represent the observed value and the coral dot
indicates MRS-model predict value. The shaded area indicates the 95% confidence
interval for the predicted values. c Left panel: MRS independently predicts the
incidence of CKD. Right panel: Discriminative performance of MRS predicting

incident CKD based on the model only included age, race, gender, DM, and HTN
status. Adding MRS provided additional information and improved the dis-
crimination power (area under the curve [AUC] = 0.76 vs 0.70, P = 8.8 × 10−8).d Left
panel: Performance of MRS predicting future kidney function based on the model
included age, race, gender, DM, and HTN status (R2 of 0.77). The x-axis represents
the follow-up time in years, while the y-axis displays the eGFR values. The yellow
curve illustrates the observed overall eGFR change, and the red curve depicts the
predicted overall eGFR change pattern. The shaded area indicates the 95% con-
fidence interval for thefitted curve. Right panel:MRS independentlypredicts future
kidney function decline in the follow-up cohort.

Article https://doi.org/10.1038/s41467-024-45295-y

Nature Communications | (2024)15:873 12



to-creatinine ratio (ACR) data, which was only available for fewer than
one-third of the participants. As a result, we did not include ACR in the
CKD incidence and longitudinal eGFR decline prediction models.
Second, we conducted an overlap analysis between genetic variants
influencing methylation differences and genetic variants previously
associated with the development of specific phenotypes, however, we
recognize that causative relationships and the precise mechanisms
underlying these associations warrant further investigation. Third, we
were constrained by the availability of electronic health record data
from an independent cohort. Consequently, we had to optimize the
utilization of the available dataset, using a 70-30 training-testing split
to evaluate the MRS performance on new samples.

While we have provided a comprehensive analysis of human
kidney tissue samples, further research is necessary for a long-
itudinal analysis and understanding the contribution of genotype-
driven changes. Future studies should include experimental valida-
tion and functional studies to confirm these associations and eluci-
date the precise mechanisms by which DNA methylation and open
chromatin changes contribute to kidney disease. Once developed,
single-cell methylation studies will be essential to further enhance
our understanding of the role of methylation changes in this
context.

In conclusion, our study sheds light on the epigenetic changes in
human kidneys, including DNA methylation and single-cell open
chromatin changes, genetic variants, gene expression, and kidney
disease development. We identified DMPs and cell type-specific open
chromatin changes associated with kidney fibrosis and changes in
eGFR. We also demonstrated the clinical utility and predictive value of
MRS and methylation changes for improving outcome estimations.
These findings may ultimately contribute to the development of novel
therapeutic strategies and improve our understanding of the mole-
cular pathways involved in kidney disease progression.

Methods
Study populations
The primary cohort consisted of a cross-sectional evaluation of 506
human participants undergoing clinically indicated nephrectomies for
renal neoplasia. Kidney samples were obtained from a non-neoplastic
portion surrounded by at least 2 cm of normal tissue margins via the
Cooperative Human Tissue Network. Human kidney tissue collection
was approved by the University of Pennsylvania Institutional Review
Board, and no informed consent was obtained because the study was
deemed IRB-exempt (exemption IV). Demographic, clinical informa-
tion, and laboratory data were collected through an honest broker.
Details of data collectionhavebeenpreviouslydescribed60. Thedegree
of tubulointerstitial fibrosis was scored (fibrosis score) in an unbiased
manner by a specialized renal pathologist using periodic acid–Schiff-
stained slides. eGFR values were calculated using the CKD Epidemiol-
ogy Collaboration equation based on serum creatinine, age, sex, and
self-reported or clinician-determined race, as obtained from medical
charts61. Finally, our epigenome-wide association analyses with fibrosis
and eGFR utilized 399 subjects with methylation measurements, kid-
ney histological scores, and good-quality genotype data. Additionally,
for a subset of samples (117 subjects), we were able to obtain long-
itudinal kidney function measurements with at least 3 months of
follow-up after nephrectomy.

DNA methylation profiling and EWAS analysis
Kidney DNA methylation at >850,000 CpG sites was profiled by
using Infinium Methylation EPIC BeadChip. A detailed data proces-
sing workflow has been previously described6. In brief, data pre-
processing and quality control were performed using SeSAMe
(v1.5.3)62. Probes with missing values in more than 20% of samples,
non-unique 30 bp 3’-subsequence, low mapping quality, incon-
sistent extension base fluorophore, extension base SNPs causing a

color channel switch, non-CpG sites, and SNPs on chromosomes X,
Y, and M, as well as global monomorphic variants over 1%, were
excluded. Sample outliers, defined as those exceeding ±3 standard
deviations from the mean of the PC1 and PC2 principal components
based on PCA of the top 10,000 variant probes, were also excluded.
Finally, a total of 701,519 CpG sites from 399 subjects were included
for further analysis.

DNA methylation levels were determined using methylation M-
values, which are defined as the log2 ratio of the intensities of
methylated probe versus unmethylated probe63. To account for
potential batch effects that may influence DNA methylation measure-
ments, we employed linear mixed-effects models in our analyses.
Specifically, we regressed M-values on technical factors including
bisulfite conversion control, mean intensity of measurements, sample
plate, BeadChip sentrix, and lymphocytic infiltration, and obtained the
residuals. For the EWAS analysis, we used log2-transformed kidney
fibrosis scores. Subsequently, we used linear regression to assess the
association between normalized fibrosis scores and residualized
methylation while controlling for potential confounders such as age,
sex, race, hypertension status, and diabetes status. To reduce bias and
inflation of the EWAS results, we applied the BACON method64. After
correction, the estimated inflation factors were 0.99 and 1.10 for
fibrosis and eGFR, respectively. CKD traits-DMPs were identified at the
epigenome-wide significance level (P < 9.42 × 10−8)65.

To test the robustness of our findings, we conducted three
separate sensitivity analyses. Firstly, we analyzed the EWAS models
with additional adjustment for BMI in 370 subjects who had available
data. Secondly, we analyzed the EWAS models with additional adjust-
ment for the top 5 genetic principal components in 378 subjects with
genotype data. Finally, we replicated the EWASmodels in the subset of
286 participants who had hypertension and/or diabetes.

Genome annotation
Adult human kidney chromatin states were generated by training a 15-
state model using chromHMM software to capture all the relevant
interactions between chromatin marks38,40. Histone modification data
for adult human kidney, including H3K4me1, H3K4me3, H3K27ac,
H3K36me3, H3K9ac, and H3K9me3, were obtained through ChIP-seq
from GEO (GSM670025, GSM621648, GSM621651, GSM772811,
GSM1112806, GSM621634, and GSM621638). Chromatin states for 127
tissues or cell types were obtained from the Roadmap Epigenomics
project(https://egg2.wustl.edu/roadmap/web_portal/meta.html). The
enrichment of DMPs in each annotation category was assessed by
comparing the mapped number to all tested methylation probes pre-
sent on the EPICarrays. The significanceofdifferenceswas determined
using Fisher’s exact test, with a P-value threshold of <0.05. Transcrip-
tion factor motif enrichment was performed using HOMER (v4.10.3)66.
Quantification and plotting of histone modifications were done using
Deeptools67.

Methylation quantitative trait loci (meQTL)
To determine the human kidney cis-methylation quantitative trait loci
(cis-meQTL) for CpG sites that are under a strong genotype effect, we
investigated the associations between single nucleotide polymorph-
isms (SNPs) within a ± 1Mb cis window of CpGs and identified fibrosis-
DMPs using MatrixQTL (v.2.1.0) R package68. Genotype data from
kidney samples have been prepared using either Axiom Tx SNP GWAS
array or Affymetrix Axiom Biobank array6. In brief, quality control was
performed using PLINK (v1.9)69. A total of 549,142 SNP around these
CpG sites (constituting 673,614 SNP–CpG pairs) were tested with an
additive linear model fitted with covariates including general variables
(sample collection site, age, sex, top five genotype PCs, degree of
bisulfite conversion, sample plate and sentrix position) and PEER
factors6,70. Significant cis-meQTLs were identified using an FDR
threshold of <0.01.
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Single-nucleus RNA-seq profiles
Following manufacturer’s protocol the Chromium Controller (10X
Genomics, PN-120223) was used to load 30,000 cells into a Chromium
Next GEM chip G Single Cell Kit (10X Genomics, PN-1000120) to gen-
erate single cell gel beads in the emulsion (10X Genomics, PN-
1000121). The cDNA and library were created using the Chromium
Next GEM Single Cell 3′ GEM Kit v3.1 (10X Genomics, PN-1000121) and
Single Index Kit T Set A (10X Genomics, PN-120262), respectively50.

Single-nucleus chromatin accessibility profiles anddifferentially
accessible regions
Single nucleus ATAC-seq libraries were generated using the Chromium
Single Cell ATAC Library &Gel BeadKit and Chromium i7Multiplex Kit
N Set A (10X Genomics, PN-1000084) according to themanufacturer’s
instructions as described earlier50.

The Signac “FindMarkers” function was used to evaluate peaks
observed in at least 20% of cells for differentially accessible chromatin
regions (DARs) between different cell types using a likelihood ratio
test, a log-fold-change threshold of 0.25, and an FDR of 0.05. ChIP-
Seeker (v1.24.0) was then utilized to annotate the genomic regions
harboring snATAC-seq peaks71.

Gene expression profiles
RNA-seq generation and pre-processing in kidney tissue have been
previously described6. Briefly, RNA was isolated from the tubular
compartment using the RNeasy mini-kit following the manufacturer’s
instructions. Transcript level changes were profiled by RNA-seq with
reads aligned to the human genome (hg19) using STAR (v.2.4.1d)72.
Gene expression level was quantified using RSEM (v.1.3.1) and further
normalized across samples using edgeR (v3.32.1)73,74. The associations
between gene expression and DNA methylation or clinical variables
were evaluated using Pearson correlation analysis.

Methylation risk score (MRS)
As many of the fibrosis-DMPs were correlated with each other, we
performed penalized regression to narrow down candidate CpGs.
Specifically, we applied the least absolute shrinkage and selection
operator (LASSO) algorithmusing theRpackage glmnet (v 4.1-7). Since
previous kidney EWASs were conducted using the Illumina 450K array
and relatively small sample size, we randomly split the study samples
into a 70% training set (n = 279) and a 30% testing set (n = 120). The
penalty parameter λ was optimized using 10-fold cross-validation and
the LASSOmodelwas adjusted for the samemain EWAS covariates that
were not subject to penalization in the training set. We then integrated
the LASSO-selected CpGs in the remaining testing set by calculating a
weighted methylation risk score (MRS), which was the sum of the
residualized methylation M values multiplied by the LASSO estimate
effect size of each probe.

To discuss the clinical application of methylation information,
we performed three separate analyses. 1) First, we investigate whe-
ther our established MRS could provide complementary informa-
tion to kidney fibrosis estimations compared to the eGFR-based
prediction model. We generated fibrosis estimates using a poly-
nomial linear regression model, with eGFR as the predictor variable,
controlling for age, sex, race, diabetes mellitus, and hypertension
status60. We compared the model fitness between the model using
the above clinical information alone and the model with additional
MRS information by the likelihood ratio χ2 test. The 30/70 data split
method was only used for independent testing of the fibrosis esti-
mation analysis. Eventually, the weights for MRS were fine-tuned
using all available data in 399 samples, and the updated MRS was
applied to all samples for statistical inference. 2) To further evaluate
the ability of MRS to independently stratify CKD risk, we conducted
a logistic regression analysis, controlling for age, sex, race, diabetes
mellitus, and hypertension status. We performed the receiver

operating characteristic (ROC) curve analysis to quantify the dis-
criminative performance of models using clinical information alone
and with additional MRS. We used R package ROCR (v 1.0-11) to
estimate 95% confidence intervals (CI) of the area under the ROC
curves (AUC) and compared two models by the likelihood ratio χ2
test. 3) Lastly, we examined whether MRS could predict future kid-
ney function decline in our cohort.We included 117 participants with
at least 3 months of follow-up data after kidney biopsy and used a
mixed-effect model to determine factors associated with long-
itudinal eGFR levels75. The mixed-effect model incorporated
random-effects terms to account for patient and patient × time
differences in the eGFR follow-up levels, controlling for known
clinical covariates, including age, sex, race, BMI, diabetes mellitus,
and hypertension status, using the R package lme4 (v 1.1.32).

Methylation differences predict longitudinal eGFR change
The association of epigenome-wide methylation alterations and
kidney disease development was investigated in the subset of 117
participants with longitudinal eGFR data available. The linear mixed
model was used to characterize individual trajectories of long-
itudinal eGFR change. Random-effects terms were incorporated to
account for patient and patient × time differences in the eGFR
follow-up levels. The predictor included the term of methylation
value multiplied by the time interval, while controlling for the same
covariates as the main EWAS models. The EWAS analysis was con-
ducted using the R package lme4 (v 1.1-32) and the coefficients were
extracted using the R package broom (v 1.0.4). The epigenome-wide
significance threshold (P < 9.42 × 10−8) was used to determine the
significant CpGs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The human kidney snATAC-seq data have been deposited with the
Gene Expression Omnibus (GEO) under accession code nos.
GSE172008,GSE200547 and theCommonMetabolic DiseasesGenome
Atlas (https://cmdga.org/search/?type=Experiment&searchTerm=
FNIH0000000). The Integrative Genomics Viewer visualization of
human kidney cell-specific differentially accessible chromatin data
generated in this study are provided at (https://susztaklab.com/
Kidney_meQTL/index.php). Methylation data generated in this study
have been deposited in Supplementary data 1 and Supplementary
data 2. The raw individual participant data included in this project are
protected and are not available due to data privacy laws. The human
kidney eQTLs used in the present study are available online at the
Susztaklab Kidney Biobank (https://susztaklab.com/Kidney_eQTL).
The human kidney bulk RNA-seq data used in this study are available at
GEO under accession numbers GSE115098 and GSE173343. The human
kidney single cell ATAC-seq data are available in GEO under accession
number GSE211785.

Code availability
Customized code used in the present study are presented on GitHub
(https://github.com/Yyan-med/Kidney_epigenomics) and Zenodo76.
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