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Contribution of climate change to the spatial
expansion of West Nile virus in Europe

Diana Erazo 1 , Luke Grant 2, Guillaume Ghisbain1,3, Giovanni Marini 4,
Felipe J. Colón-González5, William Wint 6, Annapaola Rizzoli4,
Wim Van Bortel 7,8, Chantal B. F. Vogels 9, Nathan D. Grubaugh 9,10,
Matthias Mengel11, Katja Frieler 11, Wim Thiery 2 & Simon Dellicour 1,12

West Nile virus (WNV) is an emerging mosquito-borne pathogen in Europe
where it represents a new public health threat. While climate change has
been cited as a potential driver of its spatial expansion on the continent, a
formal evaluation of this causal relationship is lacking. Here, we investigate
the extent to which WNV spatial expansion in Europe can be attributed to
climate change while accounting for other direct human influences such as
land-use and human population changes. To this end, we trained ecological
niche models to predict the risk of local WNV circulation leading to human
cases to then unravel the isolated effect of climate change by comparing
factual simulations to a counterfactual based on the same environmental
changes but a counterfactual climate where long-term trends have been
removed. Our findings demonstrate a notable increase in the area ecologi-
cally suitable for WNV circulation during the period 1901–2019, whereas this
area remains largely unchanged in a no-climate-change counterfactual. We
show that the drastic increase in the human population at risk of exposure is
partly due to historical changes in population density, but that climate
change has also been a critical driver behind the heightened risk of WNV
circulation in Europe.

Anthropogenic climate change is having unprecedented impacts
on ecosystem functions and services globally, with mounting
evidence that climate-driven changes in the redistribution of
biodiversity can impoverish human well-being1. Understanding
how large-scale public health issues are modulated by anthro-
pogenic stressors is critical as sustained changes in climate are

expected to force changes in distribution and phenology of sev-
eral arthropods of epidemiological importance, such as mosqui-
toes and ticks that can transmit pathogens2. The effects of altered
climatic conditions on the reproduction, development, beha-
viour, and survival of these ectothermic organisms can have
major consequences on their population dynamics at large scales,
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with cascading impacts on pathogen transmission to human and
animal populations3–5.

Mosquito-borne diseases such as dengue, malaria, and West Nile
fever, are dynamic systems involving complex ecological interactions
depending on local environmental conditions5. The transmission rates,
range, distribution, and seasonality of their causal pathogens are
notably influenced by environmental changes6–9. Climatic variables
such as air temperature, precipitation, and relative humidity can affect
the habitat suitability, distribution, bionomics, and abundance of the
mosquito vectors transmitting these pathogens, as well as their
host-seeking activity and biting behaviour10–15. Furthermore, the
duration of the extrinsic incubation period (EIP) is strongly dependent
on temperature16,17. Nonetheless, the degree to which recent observed
changes in the distribution of mosquito-borne diseases can be
attributed to climate change as a primary driver remains poorly
understood18.

West Nile virus (WNV) is one of the most recent and widespread
emerging mosquito-borne viruses in Europe19,20. It is maintained in a
bird-mosquito transmission cycle primarily involving mosquito spe-
cies of the genus Culex, of which the Culex pipiens complex is thought
to be the most common and competent vector in Europe21–23. Mos-
quitoes first get infected after biting an infectious bird and, after a
temperature-dependent incubation period ranging from2 to 14 days24,
become infectious themselves and can transmit the virus through
subsequent blood feeding25. In this transmission cycle, mammals —

particularly humans and horses — act as incidental dead-end hosts
unable to re-transmit the virus to mosquitoes25,26. While most human
and animal infections are asymptomatic, in humans around 25% of
victims develop symptoms such as fever and headache, and <1%
develop more severe neurological complications that can lead to
death25.

WNVhas circulated in Europe since the 1950s, but it is only in 1996
that a large human outbreak with 393 human cases was detected in
Romania27. WNV is characterised by a high genetic diversity, withWest
Nile virus lineage 1 (WNV-1) and West Nile virus lineage 2 (WNV-2)
mainly associated with disease in humans and animals. A phylogenetic
analysis has shown that six lineages have so far been detected in Eur-
ope where WNV-2 had the largest number of sequences available,
accounting for 82% of all WNV sequences detected in Europe so far,
and the widest diffusion since it has been found in at least 15 European
countries28. Since its emergence on the continent, annual WNV out-
breaks have been reported every summer in the Mediterranean and
central Europe29. Since its detection in the State of New York in 1999,
WNV has also invaded the North American continent30. Between 1999
and 2021, the USA has reported >55,000WNV cases, of which >27,500
led to a neuroinvasive disease and >2500 to death (www.cdc.gov/
westnile).

It was earlier demonstrated that the occurrence of the virus is
linked to high temperatures in spring31 and summer32,33, droughts in
summer32,33, and warm winters33. In addition, high spring and summer
temperatures, lower water availability, and drier winter conditions
were found to be main determinants of WNV occurrence across
Europe34. While local WNV circulation in Europe has been shown to
depend on weather conditions5,31, so far, the effect of the historical
long-term changes in climate on the occurrence of (human) infections
on the continent has not been quantified. An overall high sensitivity to
weather conditions does not necessarily imply a strong impact of long-
term climate change, as this depends on the strengths of these long-
term changes in climate, the interplay across the changes in different
climate variables that may amplify or cancel out, and the impact of
long-term changes in other environmental and/or anthropogenic dri-
vers. Changes in land use could indeed also noticeably impact the
circulation of such vector-borne pathogens35. For instance, irrigated
croplands and highly fragmented forests are known to favour WNV
outbreaks in Europe32,33. Furthermore, the presence of standing water

bodies promotes the completion of the life cycle of mosquitoes and
favours the sympatry between mosquito and bird populations36,37.
Biodiversity loss can also promote transmission patterns as decreases
in host community diversity could increase the vector-host encounter
rate38,39. For example, a negative correlation has been found between
bird diversity and WNV infection in vectors, at the regional scale in
Missouri, and in humans, at the national scale in the USA40. On the
other hand, some evidence also supports the assertion that avian
biodiversity loss can be a contributing factor to the decline in
mosquito infection rates and avian seroprevalence in Atlanta
(Georgia, USA)41.

In this context, the Working Group 2 (WG2) of the Intergovern-
mental Panel on Climate Change (IPCC) devoted a section to the
attribution of observed changes in human, natural and managed sys-
tems to climate change in its sixth assessment report (IPCC 2022,
chapter 16.2.142). The framework outlined by the IPCC defines an
“observed impact as the difference between the observed state of a
natural, human or managed system and a counterfactual baseline that
characterises the system’s state in the absence of changes in the
climate-related systems”, where climate-related systems mean the
climate-system itself including the ocean and the cryosphere (e.g.,
changes in sea level rise) as physical or chemical systems that are not
relevant in this study. The IPCC then states that the “difference
between the observed and the counterfactual baseline state is con-
sidered the change in the natural, human or managed system that is
attributed to the changes in the climate-related systems (impact
attribution)”. “Changes in climate-related systems” explicitly mean
“any observed long-term change” no matter whether such a trend is
induced by anthropogenic climate forcing or not43. The counterfactual
impact baseline cannot be observed and thus needs to be simulated by
an impact model. A precondition for impact attribution is that the
impact model explains the observed phenomenon under considera-
tion reasonably well given its drivers.

Here, we investigate the contribution of climate change (observed
long-term trend in climate) to WNV spatial expansion in Europe
building on the IPCC framework. We use an impact indicator of WNV
infection risk, assess its performance for the historical period and
compare it to a counterfactual impact baseline. We use four
observationally-based reanalysis climate datasets and their counter-
factuals that were recently made available through the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP). ISIMIP is dedicated to
fostering impact attribution following the definition of the IPCC WG2
in an international modelling effort in its currently running ISIMIP3a
phase. Specifically, the counterfactual climate data are obtained by
detrending the observational (factual) climate data: the counter-
factuals approximate a “no-climate change” climate through the
removal of the long-term trend related to global mean temperature
change from the factual reanalysis datasets44. The resulting time series
thus consist of stationary climate data obtained from observational
daily data when removing the long-term trend while preserving the
internal day-to-day variability44. We exploit the newly available factual
and counterfactual historical datasets to assess whether there is an
increased ecological suitability for WNV in Europe, and if this increase
can be attributed to climate change.

Results
We performed ecological niche modelling with a boosted regression
tree (BRT) approach to estimate the WNV ecological suitability, a
metric ranging from 0 to 1 that can be interpreted as a measure of the
risk of WNV circulation given local environmental conditions. We
conducted the analyses at the “nomenclature of territorial units for
statistics” (NUTS) level 3, i.e., administrative polygons corresponding
to the third administrative level in European countries. The input data
were twofold: 13 years of confirmedWNV human infections across the
European continent for the period (2007–2019; Fig. 1), as well as

Article https://doi.org/10.1038/s41467-024-45290-3

Nature Communications |         (2024) 15:1196 2

http://www.cdc.gov/westnile
http://www.cdc.gov/westnile


climatic, land-use, and human population data for a corresponding
period (2000–2019; Fig. S1). We trained our models on such present-
day data retrieved from four ISIMIP3a reanalysis datasets of historical
climate change (GSWP3-W5E5, 20CRv3, 20CRv3-ERA5, and 20CRv3-
W5E5). We subsequently estimated the areas ecologically suitable for
local WNV circulation leading to human cases since the beginning of
the 20th-century considering either the historical climate or its
respective counterfactual. Since the simulated historical WNV ecolo-
gical suitability notably differs among the four ISIMIP3a reanalysis
datasets used to train themodels (see below), we did not average their
outcome and independently reported the simulations based on each
dataset considered, which allowed pointing and discussing their
differences.

With Area Under the receiver operating characteristic Curve
(AUC) and prevalence-pseudoabsence-calibrated Sørensen’s Index
(SIppc) metrics all higher than 0.8 (Table S1, Fig. S2; see also the
“Methods” section for further detail on those metrics), our ecological
niche models demonstrate a good prediction performance when
trained on the ECDC data. Those ecological niche models also allowed
us to compute the relative influence (RI) of each environmental factor
in the models (Table S2). For the GSWP3-W5E5 factual climate dataset,
near-surface air temperature in summer demonstrated the highest
relative influence (RI = 16.3%), followed by air temperature in winter
(RI = 10.5%), relative humidity in winter (RI = 10.1%), precipitation in
summer (RI = 8.5%), and relative humidity in fall (RI = 7.5%; Table S2).
As for the land-use factors in the ecological niche models, the pro-
portion of managed pastures and rangeland presented the highest
relative influence (RI = 7.1%), followedby secondary non-forested areas
(RI = 4.8%), and croplands (RI = 4.8%). These results are globally con-
sistent with those obtained from training the ecological model on
three alternative climate reanalyses (Table S2).

To assess the relationship between eachenvironmental factor and
the estimated ecological suitability values, we plotted response curves
showing how WNV ecological suitability varies with one specific
environmental factor (Fig. S3). For instance, air temperature and pre-
cipitation in summer, as well as croplands, display a clear positive
association with WNV ecological suitability, with summer air tem-
perature above ~20 °C, summer precipitation above ~2.2 kg/m2/day,
and cropland density >20% being associated with a notable increase in
WNV ecological suitability (Fig. S3). Conversely, environmental vari-
ables, such as air temperature in winter, relative humidity in winter,
and density of managed pastures as well as rangeland, all presented a
negative association with WNV ecological suitability: the estimated

ecological suitability displays a notable decrease for winter air
temperature > 4–5 °C, winter relative humidity >83–84% andmanaged
pasture/rangeland density >10% (Fig. S3).

To investigate the impact of climate change on the spatial
expansion of WNV across the continent, we compare past changes in
WNV ecological suitability based on ecological niche model simula-
tions forced by the factual and counterfactual historical climate,
respectively. We first considered the simulations based on the GSWP3-
W5E5 reanalysis dataset, which is particularly aligned with real-world
conditions for the recent years coinciding with the time window of
WNV case data obtained from the ECDC and on which our ecological
niche models were trained. W5E5 is considered the potentially closest
approximation to reality as it is based on the latest version of the
European Reanalysis (ERA5)45 that was further corrected by observa-
tional data based on the WATCH Forcing Data methodology46. To
generate the counterfactuals, i.e., to construct a dataset that described
a counterfactual world without long-term changes in climate since
1901, the W5E5 data had to be expanded backwards in time. For this
extension, we first used version 1.09 of the Global Soil Wetness Project
phase 3 (GSWP3) dataset47, bias-adjusted to W5E5 v2.0 in order to
reduce discontinuities at the 1978–1979 transition44. As some variables
in GSWP3 show discontinuities at every turn of the month that have
been induced by amonth-by-month bias adjustment to the underlying
rawdata (20CRv2)48, we additionally considered a backward-extension
based on the Twentieth Century Reanalysis version 3 (20CRv3)49,50,
interpolated to 0.5° and then bias-adjusted to W5E5 v2.0. Notably,
20CRv3-W5E5 data remain continuous at every turn of the month
thanks to the application of ISIMIP3BASD v2.5 in running-window
mode. Thus, 20CRv3-W5E5 reanalysis dataset can be considered an
update of GSWP3-W5E5. 20CRv3-ERA5 has then been introduced to
allow for testing the sensitivity of the results to potential trend and
variability artefacts in W5E5 that are related to the climatological
infilling procedures used to deal with gaps in the station observations
employed for the bias adjustment of ERA5 for the production of
WFDE5 (for a detailed descriptionof this caveat see https://data.isimip.
org/caveats/20/). Finally, we have also considered the “raw” 20CRv3
data interpolated to 0.5° but not bias-adjusted to any other dataset.
This latter dataset is included since it was generated with only one
method and did not need to be combined with another dataset to fully
cover the 20th-century. Overall, considering all four reanalysis data-
sets (that have all been introduced by Mengel and colleagues44) allows
us to investigate the robustness of our findings to the choice of the
reanalysis dataset.

a WNV cases/km2

(original NUTS3) 

2 x 10−9

4 x 10−9

6 x 10−9

8 x 10−9

≥ 10−8

b WNV cases/105 people
(original NUTS3) 

20

40
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80

≥ 100

WNV cases/km2

(optimised NUTS3) 
WNV cases/105 people
(optimised NUTS3) 

Fig. 1 | Distribution ofWNV cases reported in the ECDCdatabase until 2019.We
here report the density of both “probable” and “confirmed” cases in each admin-
istrative area for which there was at least one confirmed case before 2020. Speci-
fically, we report the number of WNV cases by aggregating both “probable” and
“confirmed”per km2 (a) or per 100,000people (b), either considering theNUTS3or
optimised NUTS3 administrative polygons. Darker grey areas correspond to

Switzerland and Bosnia & Herzegovina, two countries that are not included in the
ECDC WNV surveillance. The administrative areas of those countries were not
considered when training the ecological nichemodels. The United Kingdom is also
not included in the ECDC WNV surveillance but was considered when training the
models as the country has not reported any WNV case so far (www.nhs.uk).
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Under factual climate conditions,model simulations based on the
GSWP3-W5E5 reanalysis dataset show clear increases in WNV ecologi-
cal suitability in European regions such as northern Italy, the Car-
pathianmountains, the lowlands inHungary and easternRomania, and
the Aegean region in eastern Greece (Fig. 2a). The increase in WNV
ecological suitability is particularly marked from the 1980s. The
noticeable increase is not present in the reconstructions driven by the
counterfactual GSWP3-W5E5 data: in absence of historical climate
change, the estimated WNV ecological suitability map remains similar
throughout the 1901–2019 period (Fig. 2b). In other words, we do not
find a clear increase in the local risk of WNV circulation when non-
climatic environmental factors change as observed over the past
century, but climate change is absent. These results indicate that cli-
mate change contributed to the escalation of the risk associated with
West Nile virus circulation in Europe.

While we can also highlight two different trends when comparing
the past evolution of the WNV ecological suitability projected on
historical and counterfactual data from the 20CRv3-W5E5 reanalysis
dataset (Fig. S4) and, to some extent, the 20CRv3-ERA5 dataset
(Fig. S5), this is however not the case with the 20CRv3 dataset
(Fig. S6). Yet, as the 20CRv3 reanalysis only assimilates surface pres-
sure in combinationwith prescribed sea surface temperatures and sea
ice concentrations, it can be considered the most uncertain product
for present-day conditions. Among the meteorological variables with
the highest RI in the ecological niche models, in 20CRv3, relative
humidity changes the least from early 20th-century condi-
tions (Fig. S7).

For the three other reanalysis datasets, relative humidity inwinter
is associated with an averaged RI above or close to 10% and decreases
across the continent during the last century. Considering the negative
relationship estimated between winter relative humidity and WNV
ecological suitability, the former emerges as a pivotal environmental
factor potentially driving local increments in the latter. With an aver-
agedRI higher than 15%nomatter the reanalysis dataset (Table S2) and
associated response curves highlighting a clear positive association
with WNV ecological suitability (Fig. S3), air temperature in summer is
here identified as another predominant factor: an increase in summer

air temperature across the continent (Fig. S8) is indeed concomitant
with the increased risk of WNV circulation.

We then compare the evolution of the estimated population at
risk of exposure to WNV under factual and counterfactual historical
climate. We estimate the total number of people at risk of exposure
across the entire study area while considering two different threshold
values of ecological suitability above which we consider a risk of local
WNV circulation (0.1 and 0.5). As expected, both the historical and
counterfactual climate are associated with similar values at the
beginning of the last century. However, the estimates then diverge
with time, as the historical population at risk of exposure almost
doubles that of the counterfactual by the onset of the 21st century in
the GSWP3-W5E5 reanalysis dataset and a threshold ecological suit-
ability value of 0.1 (Fig. 3). When considering a threshold value of 0.5
for the estimates derived from the same reanalysis dataset, the his-
torical population at risk of exposure is almost multiplied by six when
compared to that of the counterfactual at the present-day (Fig. 3). In
the counterfactual baseline case, the increase in the number of people
at risk of exposure is thus largely due to the increase of the European
population from 1901 to 2020. The estimates we obtained based on
the three other reanalysis datasets are however different: although
comparable patterns can be observed, the differences between the
estimatedhistorical and counterfactualpopulations at risk of exposure
is less marked (Fig. 3).

Discussion
European public health authorities have reported autochthonous
cases of WNV in 201151, which has been suggested to be mainly driven
by favourable environmental conditions for the establishment of the
virus, such as warm spring and summer seasons32–34,52, heavy rains33,
and river floods52. This study is a first attempt to formally evaluate the
attribution of climate change to the enhanced circulation ofWest Nile
virus in Europe. Our results indicate that the development of the
current hotspots ofWNVcirculation in Europe can be to a large extent
attributed to climate change. These findings are in line with previous
studies showing that increases in summer air temperature32 and
precipitation33 represent pivotal drivers of WNV circulation. Our

a
1901−1919 1920−1939 1940−1959 1960−1979 1980−1999 2000−2019

b

0.0
0.2
0.4
0.6
0.8
1.0

Fig. 2 | Changes in the ecological suitability ofWestNile virus (WNV) in Europe.
Past and present ecological suitability estimated for each administrative unit are
based on both the reconstructions of the historical climate (a) and a counterfactual
baseline (b). Ecological suitability values are averaged over the estimates of ten

independent BRT models trained on present-day data retrieved from the ISIMIP3a
reanalysis dataset GSWP3-W5E5. See Figs. S4–S6 for the estimates of three other
ISIMIP3a reanalysis datasets (20CRv3, 20CRv3-ERA5, and 20CRv3-W5E5).
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assessment indicates that Europe experienced a notable increase in
WNV ecological suitability from the 1980s, which coincides with a
rapid warming during this time in Europe (https://showyourstripes.
info/c/europe/all/) as well as the establishment of WNV hotspots in
Romania from 199627,52, in Italy from 200853, and in Greece from
201054.

Although anomalous higher temperature in spring was previously
identified as a reliable early warning predictor for WNV human
cases31,34, weherefind that the relative contributions of air temperature
in summer and winter to the ecological suitability ofWNV were higher
than the one of spring temperatures. This discrepancy could be due to
the definition of the response variable of the model: while other stu-
dies define it as incidence31,55, we define it as a binary presence/absence
variable, which is a different way to account for WNV circulation (see
below for a motivation of that choice). Moreover, it has been shown
that factors associated with WNV incidence in the USA on a 10-year
scale could be different from those associated with inter-annual
differences56. Irrigated croplands and fragmented forests have also
been pointed as factors that might favour WNV outbreaks in
Europe32,33. Our results also show that the ecological suitability ofWNV
could increase with cropland density, althoughmanaged pastures and
rangelands could also play a role.

Our study presents necessary analytical compromises. First, it was
not feasible to incorporate important biotic factors such as mosquito
and bird diversity/abundance in our ecological niche modelling ana-
lyses. While some distribution data are available for the Culex species
involved in WNV transmission cycle, there is no equivalent data
encompassing the past century, which would prevent us to re-project
the WNV ecological suitability from 1901 onward. One way to cir-
cumvent the first issue would be to train and project in the past eco-
logical nichemodels for those Culex species, but such ecological niche
models would themselves be based on the sameor a very similar set of
present-day environmental factors to the one also included in the set
of variables used to train WNV ecological niche models, which would
thus lead to a circularity issue alsomaking itmore difficult to interpret
the results (and in particular the relative influence value computed for
each variable). Besides, we here aim to estimate the risk of local WNV
circulation given local environmental conditions, which implicitly
involves a minimum and here unestimated level of mosquito vector
abundance. Regarding the bird data, in addition to the circularity issue
mentioned above, we have also so far been unable to find a definitive

consensus list of bird species involved, and obtaining high-resolution
species-specific distribution data has proved problematic anyway.

Second, considering a higher number of more detailed land-use
variables would have been advantageous. Yet, the main objective of
the study is not to provide the most accurate and precise WNV niche
modelling, which has been investigated in previous studies33,57,58 and
would have required consideration of additional environmental pre-
dictors such as more detailed land-use categories. For example, land-
use diversity, where mosquito-bird encounters could take place and
amplify the viral circulation, could be a determinant for assessing the
WNV risk. However, given that our analytical approach depends on the
available ISIMIP environmental data, we were unable to include such
more detailed land-use categories.

Third, we model WNV ecological suitability on the basis of pre-
sence/absence data, which gives the same weight to all administrative
units with at least one confirmed non-imported human case, irre-
spective of the total number of cases reported for each area. On the
other hand, it preciselyprevents treating absolute number of cases as a
reliable proxy for WNV prevalence, which would correspond to a
relatively strong assumption given spatial heterogeneity in surveil-
lance effort. Indeed, the case data to which we have access is reported
rather than the result to more reliable serological surveys. Further-
more, considering such a binary response variable rather than an
incidence estimated from reported cases also prevents us from having
tomake the assumption that the surveillance effort was homogeneous
during the considered time period, which is likely not true given
that local reporting rates could increase over time with awareness/
knowledge of WNV.

Fourth, we here attribute WNV spatial expansion in Europe to
climate change (irrespective of the cause) following the IPCCAR6WG2
framework42 rather than to anthropogenic climate forcings, as our
counterfactuals consist of detrended reanalyses44. Attribution to
anthropogenic climate forcings is indirect here given the well-
established anthropogenic influence on climate warming in Europe59.
Finally, to match with the ISIMIP data available until 2019, our models
have been trained on occurrence data reported until the same year,
thus discarding from the models training more recent WNV occur-
rence records, e.g., reported in the Netherlands or in southern Spain.
Interestingly, our ecological niche models do not highlight this area as
particularly suitable for localWNV circulation, thus calling for updated
ecological niche modelling for this virus in the near future.
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Fig. 3 | Changes in the population at risk of exposure toWest Nile virus (WNV)
in Europe. Past changes in the population at risk of exposure to WNV have been
estimated for both a counterfactual baseline and the observed historical climate
data retrieved from four ISIMIP3a reanalysis datasets (GSWP3-W5E5, 20CRv3,

20CRv3-ERA5, and 20CRv3-W5E5) and while considering two different thresholds
of ecological suitability (ES) above which an area was considered at risk (0.1
and 0.5).
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Here we exploit newly available counterfactual climate data from
ISIMIP to show that climate change is directly involved in the increase
in local circulation of WNV in Europe. Our simulations of the historical
period show no increase in areas ecologically suitable for WNV in the
counterfactual simulations for three out of four reanalysis datasets.
Our results thus point towards a significant responsibility of climate
change in the establishment of WNV in the south-eastern part of the
continent. In particular, we identify that current WNV hotspots in
Europe aremost likely to be attributed to climate change.With climate
change emerging as a critical public health challenge, future work
should explore the evolution of infectious disease distributions under
different scenarios of future climate change to inform surveillance and
intervention strategies60,61. In that perspective, this work provides an
example of how climate data could be effectively used in an epide-
miological context by estimating the past and present-day ecological
suitability of the virus, filling another analytical gap between climate
science and spatial epidemiology.

Methods
Data acquisition
WNVhuman infection records aggregated at the NUTS level 3 (NUTS3)
from 2007 to 2019 were retrieved and curated from the European
Surveillance System (TESSy) database of the European Center for
Disease Prevention and Control (ECDC; Fig. 1). Climate, land-use, and
population data were retrieved from the Inter-Sectoral Impact Model
Intercomparison Project phase 3 (ISIMIP3, https://www.isimip.org/
protocol/3/). ISIMIP prescribes protocols and background datasets for
modelling the impacts of climate change in various systems sensitive
to climate and human management. In ISIMIP3a, modellers run his-
torical impact simulations with reanalysis datasets, which are global
reconstructions of the historical climate. Importantly, these datasets
are provided additionally in a counterfactual version without the cli-
mate change signal to enable model evaluation and attribution of the
impacts of climate change. In synthesis, counterfactual time series thus
consisted of stationary climate data obtained from observational daily
data after having removed the long-term trend while preserving the
internal day-to-day variability44. Climate information used in this study
consists of daily gridded near-surface air temperature, surface pre-
cipitation, and relative humidity (Fig. S1). Climate data, i.e., tempera-
ture, precipitation, and relative humidity, were aggregated by season
along 20-year mean periods: winter (December, January, February),
spring (March, April, May), summer (June, July, August), and autumn
(September, October, November). Land-use data were retrieved from
the Land Use Harmonisation project (version 2; LUH2) providing his-
torical and projected land-use states62. Land-use data included six land
cover categories63: primary forest areas, primary non-forest areas,
secondary forest areas, secondary non-forest areas, croplands, and
rangelands/pastures (Fig. S1). Gridded human population data62 was
log10-transformed and divided by polygon area (km2).

Optimised polygon map
The sizes of NUTS3 polygons vary considerably among European
countries. For example, NUTS3 level polygons for Germany are rela-
tively small and similar in size to NUTS4 of other countries. We
therefore used an optimised NUTSmap in which levels were chosen to
homogenise as much as possible the polygon unit size (Fig. 1). This
standard shapefile was developed for the European network for
medical and veterinary entomology (VectorNet), a project led by the
ECDC and the European Food Safety Authority (EFSA) that aims to
contribute to improving preparedness and response for vector-borne
diseases following a one health approach64.

Ecological niche modelling
We implemented a BRT approach to train the different ecological
niche models for WNV for the 2000–2019 period. BRT is a machine

learning methodology that can be used to generate a collection of
sequentially fitted regression trees optimising the predictive prob-
ability of occurrence given local environmental conditions65. Such a
predictive probability can be interpreted as a measure of ecological
suitability, a value that ranges between 0 and 1. The interest of a BRT
approach lies in its ability to model complex non-linear relationships
between the response and various predictor variables66. Additionally, a
BRT approach does not require prior data transformation or elimina-
tion of outliers. Of note, it has been shown that the BRT methodology
has a superior predictive performance compared to alternative mod-
elling methods65. For implementing a Bernoulli BRT approach, both
presence and absence data are required, in the context of this study,
optimised NUTS3 administrative areas presenting one or more con-
firmed non-imported cases were considered as “presence” locations,
and the remaining administrative areas with zero confirmed non-
imported cases were treated as “pseudo-absence” locations. As stated
above, we preferred using presence/absence rather than incidence
data to account for surveillance heterogeneity across the study area
and to thus avoid treating absolute number of cases as a reliable proxy
forWNV prevalence. The response variable considered here is thus the
detection or not of at least one human case during the period
2007–2019 and that is not labelled in the ECDC database as an
“imported case”.

We used the BRT algorithm implemented in the R package
“dismo” (version 1.3–9)67. To account for spatial autocorrelation and
avoid model overfitting, we implemented a spatial instead of a stan-
dard cross-validation procedure, the latter being known to frequently
overestimate the ability of the model to make reliable predictions
when occurrence data are spatially auto-correlated68. Specifically, we
applied the spatial cross-validation procedure based on the blocks
generation, described by Valavi and colleagues and implemented in
the R package “blockCV” (version 3.1-1)69. In summary, data on WNV
human infection records (Fig. 1) was first transformed as a presence/
absence dataset, which was then divided in five spatial folds following
the blocks generation method. BRT models were trained using the
following parameter values: a tree complexity of 5, a learning rate of
0.005, and a step size of 10. We assessed the sensitivity of the pre-
dictive performance of the BRTmodels to the specification of the tree
complexity and learning rate parameters values. As summarised in
Table S3, our tests confirmed that their performance did not seem
impacted by the choice of these parameter values.

The predictive performance of each BRTmodel was first assessed
by estimating the area under the receiver operating characteristic
(ROC) curve, also referred to as “area under the curve” (AUC). Because
the use of the AUC metric was repeatedly criticised in previous works
due to its dependence on prevalence (i.e., the proportion of recorded
sites where a given species is present)70–73, we further assessed the
predictive performance of our ecological niche models by computing
a prevalence-pseudoabsence-calibrated Sørensen’s index (SIppc)
defined as follows73–75:

SIppc = ð2 ×TPÞ=ð2 ×TP+ x ×FPpa + FNÞ ð1Þ

where

x = ðP=AÞ× ðð1� prevspÞ=prevspÞ andprevsp = P=ðP+AÞ ð2Þ

with TP corresponding to the number of true positives, FPpa to the
number of false positives associated with sampled pseudo-absence
points, FN to the number of false negatives, P to the number of
presence points, and A to the number of pseudo-absence points. This
index has its lower limit at 0 and its upper limit at 1 (interpreted as a
maximal predictive performance). Because the computation of this
index requires binary presence-absence data but ecological niche
models instead return ecological suitability values ranging from0 to 1,
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we performed an optimisation procedure similar to one adopted by Li
& Guo76 by varying the threshold values in the range [0, 1] with a
0.01 step increment, and eventually selecting the threshold value
maximising the SIppc (see also the work of Ghisbain and colleagues for
a similar approach73). We computed a SIppc for each of the ten
independent ecological niche models (Table S1). As detailed in
Table S1, all averaged SIppc values are higher than 0.80 (>0.83). For
each trained ecological niche model, we also report the evolution of
the SIppc according to the ecological suitability threshold value ranging
from 0 to 1 (Fig. S2).

We trained ten independent replicate BRTmodels on present-day
data retrieved from four ISIMIP3a climate reanalysis datasets: GSWP3-
W5E5, 20CRv3, 20CRv3-ERA5, and 20CRv3-W5E577. The GSWP3-W5E5
(Global Soil Wetness Project Phase 3 - W5E5) dataset is a land surface
reanalysis dataset, combination of GSWP3 for 1979–201947 with W5E5
for 1901–197846,78. To minimise discontinuities at the 1978/1979 tran-
sition, GSWP3 data were homogenised with W5E5 data for 1901–1978
using the ISIMIP2BASD v2.3 bias adjustment method79. The 20CRv3
(The Twentieth Century Reanalysis version 3) dataset is an atmo-
spheric reanalysis dataset and covers daily data for the period
1901–201580. The 20CRv3-ERA5 is the combination of ERA5 for
1979–2021 with 20CRv3 homogenised to ERA5 for 1901–1978. Finally,
the 20CRv3-W5E5 dataset is the combination of W5E5 v2.0 for
1979–2019 with 20CRv3 homogenised to W5E5 for 1901–197849,50. The
homogenisation for 20CRv3-ERA5 and 20CRv3-W5E5 was done in the
same way as for the GSWP3-W5E5 dataset79. As detailed above, results
for BRT models trained on GSWP3-W5E5 were here emphasised over
other reanalyses because this can be considered a priority forcing
dataset in ISIMIP3a. Bias adjustments to ISIMIP3b are indeed based on
GSWP3-W5E5, andMengel and colleagues44 also evaluated the GSWP3-
W5E5 factual and counterfactual datasets in their review of the
ATTRICI (ATTRIbuting Climate Impacts) method for generating
counterfactual climate data.

We projected each trained ecological niche model on past
(1901–1999) and present (2000–2019) environmental conditions
considering both a counterfactual baseline and the observed historical
climate. The comparison between observed historical and counter-
factual projections allowed us to discuss if and to what extent the
increase in WNV ecologically suitable areas across the continent could
be attributed to climate change. In particular, we estimated and
compared the changes in the human population at risk of exposure to
WNV in Europe for both a counterfactual baseline and the observed
historical climate data retrieved from the four ISIMIP3a reanalysis
datasets.

We conducted additional analyses to investigate the robustness
and sensitivity of our results to the sampling intensity of pseudo-
absences across the study area. While the main analyses are based on
pseudo-absences sampled across 100% of the administrative areas in
which no presence has been confirmed, we additionally considered
alternative datasets of pseudo-absences corresponding to only 50%
and 75% of the administrative areas not associated with a presence
record. In both cases, we re-trained 100 ecological niche models each
based on a random selection of 50% or 75% of the original pseudo-
absences considered in the main analyses. Based on these newly gen-
erated models, we then re-estimated the changes in the population at
risk of exposure toWNV in Europe.Overall, our results confirm that the
inferred trends remain highly consistent with the results obtained
when considering all potential pseudo-absences (Fig. S9). All analyses
were performed using R (R Statistical Software version 4.02, R Foun-
dation for Statistical Computing, https://www.r-project.org/).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All ISIMIP3a data used are publicly available on https://data.isimip.
org/. Data on WNV human infections can be obtained on request
from The European Surveillance System (TESSy) at the European
Center for Disease Prevention and Control (ECDC) on https://www.
ecdc.europa.eu/en/publications-data/european-surveillance-system-
tessy. Restrictions apply to the availability of the ECDC data, which
were used under license for the current study, and so are not publicly
available.

Code availability
R scripts related to the ecological niche modelling are all available at
https://github.com/sdellicour/wnv_enm_europe (https://doi.org/10.
5281/zenodo.3764823). All information to reproduce figures is avail-
able in the github repository.
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