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Brain asymmetries frommid- to late life and
hemispheric brain age

Max Korbmacher 1,2,3 , Dennis van der Meer2,4, Dani Beck 2,5,6,
Ann-Marie G. de Lange2,7,8, Eli Eikefjord1,3, Arvid Lundervold3,9,
Ole A. Andreassen 2,10, Lars T. Westlye 2,6,10 & Ivan I. Maximov 1,2

The human brain demonstrates structural and functional asymmetries which
have implications for ageing and mental and neurological disease develop-
ment. We used a set of magnetic resonance imaging (MRI) metrics derived
fromstructural anddiffusionMRIdata inN=48,040UKBiobankparticipants to
evaluate age-related differences in brain asymmetry. Most regional grey and
white matter metrics presented asymmetry, which were higher later in life.
Informed by these results, we conducted hemispheric brain age (HBA) pre-
dictions from left/right multimodal MRI metrics. HBA was concordant to
conventional brain age predictions, usingmetrics from both hemispheres, but
offers a supplemental general marker of brain asymmetry when setting left/
right HBA into relationship with each other. In contrast to WM brain asym-
metries, left/right discrepancies in HBA are lower at higher ages. Our findings
outline various sex-specific differences, particularly important for brain age
estimates, and the value of further investigating the role of brain asymmetries
in brain ageing and disease development.

There are various structural and functional differences in brain archi-
tecture between the left and right hemispheres1–6. Microstructural
brain characteristics, such aswhitematter (WM)pathways or intra- and
extra-neurite water organisation, might underlie the brain’s functional
lateralisation7. Furthermore, handedness has been repeatedly assessed
together with asymmetry in humans and animals, and relates to brain
asymmetry8. Both structural and functional brain asymmetry exhibit
clinical importance as there are differences in brain asymmetry
between healthy controls and various disease groups, including neu-
rodegenerative diseases such as Alzheimer’s disease9,10, Parkinson’s
disease11, and psychiatric disease such as obsessive-compulsive
disorder12,13 and schizophrenia14. In that context and particularly rele-
vant from a lifespan-perspective, cortical thickness asymmetry

decreases throughout ageing, with this alteration being potentially
accelerated in the development of neurodegenerative disorders such
as Alzheimer’s Disease9. Similarly, some studies suggest lower WM
microstructure asymmetry at higher ages, indicated by intra-axonal
water fraction15, fractional anisotropy, or the apparent diffusion
coefficient16. Additional investigations into brain asymmetries’ age-
dependencies can provide a more comprehensive understanding of
the influence of asymmetries on ageing and disease development.

Brain age is a developing integrative marker of brain health, par-
ticularly sensitive to neurodegenerative diseases17,18. Brain age refers to
the predicted age in contrast to chronological age and is based on a set
of scalar metrics derived from brain scans such as MR. To date, brain
agehasoften been estimatedusing a global brain parametrisation such
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as the averaged scalar measures over particular anatomical regions or
the whole brain17–21. Hence, we refer to these whole-brain age predic-
tions as global brain age (GBA). However, while brain age has been
calculated for different brain regions18,22–24, the use of hemisphere-
specific data is usually not being considered as a potential source of
additional information. Yet, one study presents hemisphere-specific
and region-specific brain ages containing useful clinical information
about post-stroke cognitive improvement22.

Previous results show that brain age prediction depends on the
specific features used25–27, rendering for example modality as impor-
tant. Yet, the influence of hemispheric differences or brain asymmetry
on the age predictions remains unclear. However, previously outlined
brain asymmetries1–6 might be informative for age predictions. One
way of leveraging brain asymmetries into simple metrics is to estimate
separate brain ages for each hemisphere (HBA) and to then compare
the estimates. It remains unclear whether predictions from a single
hemisphere lead to less accurate predictions due to the inclusion of
less data and a potential attenuation of noise. At the same time, in the
case of diffusionMRI (dMRI), different model-based diffusion features
yield highly concordant brain age predictions, also when varying the
number of included features21. Finally, although the evidence is mixed
on the influence of handedness on brain asymmetry28–31, differences in
handedness are potentially reflected in brain structure, which would in
turn influence age predictions differently when obtained from the left
or right hemisphere only. Hence, handedness requires further exam-
ination as potential confounding effect when assessing asymmetry.

HBA, a new brain agemeasure, may propose more sensitive brain
healthmarkers thanGBA, as agepredictions canbe comparedbetween
hemispheres to infer the integrity of each hemisphere and give a
general estimate of brain asymmetry. Brain asymmetries are com-
monly observed using the Laterality Index (LI)32. However, different
ways of estimating asymmetry can introduce variability in its depen-
dency with age33, and covariates of brain age require further
investigation34,35. To extend the existing brain age conceptualisation of
using features across the whole brain and tomaximise interpretability,
we restrict brain age predictions to region-averaged and global fea-
tures and not asymmetries of these features. Additionally, differences
in the models’ abilities to predict age from WM microstructure fea-
tures derived from dMRI compared to T1-weighted features (volume,
surface area, thickness) need to be ruled out in order to validate both
GBA and HBA.

Hence, in the present work, we tested first the preregistered
hypotheses (written study and analysis plan prior data inspection and
analyses36,37) that the GBA and HBA depend on the used MRI modality
(Hypothesis 1), disentangling whether the different grey matter (GM)
and WM metrics and the degree of their asymmetry influences brain
age predictions. We furthermore tested whether there was an effect of
hemisphere (Hypothesis 2) and handedness (Hypothesis 3) on brain
age predictions. Exploratory analyses included (a) revealing hemi-
spheric differences between GM and WM features, (b) examining LI
associations with age, including the LI of the brain features as well as
left and right brain ages, and (c) testing the consistency of brain age-
covariate associations (specifically, health-and-lifestyle factors, as
these were previously associated with brain age20,26,38–41).

Results
Hemispheric differences and age sensitivity for GM and WM
features
Two-tailed paired samples t-tests showed that a significant proportion
of the GM and WM features differed between hemispheres with
medium effect sizes. Among the significant 793 of 840 dMRI feature
asymmetries (94.4%, padj<0.05, with Cohen’s j�ddMRI j = 0.57 ± 0.44).
The largest differences were found for DTI FA in the inferior long-
itudinal fasciculus (d = 3.64), and cingulum (d = 1.95), and for AD in
superior longitudinal fasciculus.

Effects sizes of the significant hemispheric differences of the 115of
117 T1-weighted features (98.3%), were similar:mean j�dT1

j = 0.53 ± 0.41,
and the largest asymmetries were found for the surface area of the
transverse-temporal region (d = 1.81), frontal pole (d = 1.76), and pars
orbitalis (d = 1.74; see Supplementary Table 10 for T1-weighted and
dMRI features with strongest hemispheric differences).

Likelihood Ratio Tests (LRTs) comparing a baseline model pre-
dicting age from sex and scanner site compared to a model where the
respective smooth of the metric was added (Eq. (3) and (4)) indicated
most features as age-sensitive (231 of the 234 (98.72%) of the
T1-weighted features; 1601 of the 1680 (95.53%) dMRI features). Age-
sensitivity was strongly expressed in both significant T1-weighted fea-
tures (�FT 1

= 1168.90 ± 993.59), as well as significant dMRI metrics
(�FdMRI = 1208.97 ± 943.52) with strongest age-sensitivity observed for
left superior temporal thickness, left/right overall thickness, left/right
hippocampus volume, and right inferior parietal thickness and multi-
ple WMMmetrics in the right anterior limb of the internal capsule, the
left/right fornix-striaterminalis pathway, left/right anterior corona
radiata and inferior fronto-occipital fasciculus (F > 3000; for top fea-
tures see Supplementary Table 2). Results were similar when com-
paring linearmodels to the baselinemodel (Eq. (2) and (4)): 1448 of the
1680 (86.19%) dMRI metrics, and 228 of the 234 (97.44%) of the
T1-weighted features were age-sensitive (�FT1

= 3426.89 ± 2947.11,
�FdMRI = 2378.46 ± 2357.80), with the features with the strongest age-
sensitivity resembling LRT results of non-linear models (for top fea-
tures see Supplementary Table 3).

Considering only left/right averages identified only DTI-AD, and
WMTI axial and radial extra-axonal diffusivity to not differ between
hemispheres (padj >0.05). Furthermore, all features were age-sensitive
when GAMs (padj < 3.4 × 10−64; yet for linear models, BRIA-vCSF and
WMTI-axEAD, as well as right DTI-AD and left WMTI-radEAD were not
age sensitive (Supplementary Tables 4, 5). Furthermore, the age-
relationships for most of the left/right averages were similar across
hemispheres (Fig. 1, both for crude and adjusted values: Supplemen-
tary Fig. 1, and for linear and non-linearmodels: Supplementary Fig. 4).
However, differences in dMRI metrics were observed for the ends of
the distribution including individuals aged younger than 55 (N = 5307)
and older than 75 (N = 3480).

GM and WM feature asymmetry
Using LRTs comparingGAMs to a baselinemodel 53 (45.30%) of the 117
T1-weighted and 733 of the 840 (87.26%) dMRI ∣LI∣ features as age
sensitive (padj< 0.05). Using LRTs on linear effects identified 53
(45.30%) of the 117 T1-weighted and 678 of the 840 (80.71%) dMRI ∣LI∣
features as age sensitive (padj<0.05).

In the followingweconstrain analyses to linearmodels andpresent
partial derivatives/slopes as ameasureof effect size, allowing for simple
comparisons across age-relationships as model fit indices AIC and BIC
of linearmodels and GAMs suggested on average no differences across
both T1-weighted (padj AIC =0.759; padj BIC = 1) and diffusion-weighted
features (dAIC =0.510, padj AIC =0.020; padj BIC =0.126).

The absolute feature asymmetries were higher later in life
(�βdMRI =0:05±0:07;

�βT 1
= 0:03±0:06, j�βmultimodal j=0:05±0:07, here

only padj < 0.05 selected; Supplementary Figs. 2, 3).
The strongest adjusted relationships between the respective

features’ asymmetries and age were found for dMRI metrics
(j�βdMRI j = 0.06 ± 0.04, j�βT 1

j = 0.05 ± 0.03; Fig. 2), particularly out-
lining asymmetry increases in the tapetum (βSMTmc−intra = 0.24,
βBRIA−Vintra = 0.24, βSMT−FA = 0.23) and fornix-stria terminalis
(βDTI−MD = 0.22, βBRIA−Vcsf = 0.21), and decrease in the tapetum
(βSMT−long = −0.23), cerebral peduncle (βSMTmc−extratrans = −0.20,
βSMT−trans = −0.19, βBRIA−Vextra = −0.16) and superior longitudinal tem-
poral fasciculus (βSMT−long = −0.14).

For T1-weighted metrics, larger, and central structures’ ∣LI∣ were
most sensitive to age, with the strongest negative associations
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Fig. 1 | Age curves of standardized and zero-centered mean values of GM and
WM features per hemisphere. A cubic smooth function (s) with k = 4 knots was
applied to plot the relationship between age and brain features correcting for sex
and scanner site (F): ^age= sðFÞ+ sex + site using restricted maximum likelihood

(REML). The grey shaded area indicates the 95% CI. All age-relationships were sig-
nificant (padj < 3.4 × 10−64). Sample sizes for diffusion metrics: NdMRI = 39, 637, sam-
ple size for T1 metrics: NT 1

= 48,040. Source data are provided in Source Data file 1.
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including the inferior lateral (β = −0.15) and lateral ventricles
(β = −0.10), pallidum (β = −0.12) volumes, rostro-middle thickness
(β = −0.11), thalamus volume (β = −0.09) and enthorinal area
(β = −0.06). Largest positive age-associations were were shown for
accumbens area (β =0.13), WM surface area (β =0.12), amygdala
volume (β =0.11), caudal anterior cingulate thicknes (β =0.11), cortical
(β =0.09) and white matter volume (β =0.09), as well as caudate
volume (β =0.09), in addition to several temporal and limbic
areas (Fig. 2).

Sex-specific differences in the influence of hemisphere, mod-
ality, and handedness on brain age estimates
Model performance metrics indicated that most accurately age pre-
dictions were accomplished using multimodal MRI data based on left,
right, and both hemispheres (Table 1), with obtained HBA and GBA
being strongly correlated with each other for similar models (Fig. 3).

Additional sex-stratified models produced similar results in terms of
model performance (Supplementary Table 14), associations across
brain ages and age (Supplementary Fig. 10, and feature importance
rankings (compare Supplementary Tables 11–13).

LMERs did not indicate a difference between modalities
(Hypothesis 1) when comparing brain ages estimated from both sexes
from dMRI to multimodal MRI (p = 0.623), and dMRI to T1-weighted
MRI (p =0.452). There were also no differences in brain age estimates
between hemispheres (p = 0.413, Hypothesis 2). Moreover, LRTs indi-
cated no significant difference between models when adding hand-
edness (χ2 = 4.19, p = 0.123, df = 2) or handedness-hemisphere
interaction andhandedness (χ2 = 7.32,p =0.120,df = 4; see Eqs. (5)–(6)).

To additionally consider sex differences, we estimated additional
sex-specific brain ages and control for the modelling choice (as
extension to Eq. (6)). We find that females’ brain ages do not differ
when estimated from females’data only compared to predictions from
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Fig. 2 | T1-weighted and dMRI features linear asymmetry-age-associations. The
plot presents the standardized (sex- and site-corrected) regression slopes versus
Bonferroni-adjusted -log10 p-values. Modelling was done using Eq. (2):
^age=β0 +β1 × F +β2 × Sex +β3 × Site, where F is the respective brain feature.

Labelling was done separately for T1-weighted and dMRI indicating the 10 most
significantly associated features (five for β >0 and five for β <0). ILF inferior

longitudinal fasciculus, Cereb.Peduncle Cerebral peduncle, Rostro-mid. thickness
Rostro-middle thickness, SLFT Superior longitudinal fasciculus (temporal part),
Fornix-Str.Term. Fornix-stria terminalis tract, Caud. ant. cingulate Caudal anterior
cingulate. Sample sizes for diffusion metrics: NdMRI = 39,637, sample size for T1
metrics: NT 1

= 48,040. Source data are provided in Source Data file 2.
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bothmales’ and females’ data (β = −0.0073 years, p = 0.420). The same
holds true for male brain ages estimated from males’ data only com-
pared to data from both sexes (β = −0.0002 years, p = 0.984). Fur-
thermore, with these additional modelling choices, we identified a
significant marginal effect of sex (indicating an older brain age for
males: β = 0.58 years, p <0.001), and hemisphere for T1-weighted
(β =0.03 years, p =0.022), but not dMRI (β =0.02 years, p =0.099), or
multimodal MRI (β =0.02 years, p = 0.110). Moreover, ambidextrous
brain age was higher than for left-handed (β = 1 year, p < 0.001) and
right handedparticipants (β =0.7 years,p < 0.001), aswell as higher for
right-handed compared to left-handed participants (β =0.2
years, p < 0.001).

Further investigating the identified sex-effect, we found higher
brain ages for males across modalities with larger differences identi-
fied for dMRI (βleft =0.768 years, p < 0.001, βright =0.870 years,
p <0.001), followed by T1-weighted (βleft =0.308 years, p <0.001,
βright =0.438 years, p <0.001) and multimodal MRI (βleft =0.503
years, p < 0.001, βright =0.570 years, p < 0.001). Notably,

females’ right brain age was lower than the left brain age
(βT 1

= � 0:035 years,p= :027, βdMRI = −0.029 years, p = 0.066,
βmultimodal = −0.013 years, p = 0.403), which was the opposite for males
showing lower left brain age (βT 1

= 0:095 years,p<:001, βdMRI =0.073
years, p < 0.001, βmultimodal = −0.054 years, p =0.001). In contrast to
the analyses across sexes, these additional analyses provide support
for Hypotheses 1-3 when sex-stratifying.

Lower brain age asymmetry at higher ages
To test whether asymmetries between hemisphere-specific brain
age predictions are lower at higher age, ∣LIHBA∣, was associated with
age (Eq. (7)–(8)). ∣LIHBA∣ showed negative unadjusted associations
with age for T1-weighted (r = −0.069, p < 0.001), dMRI (r = −0.121,
p < 0.001), and multimodal models (r = −0.121, p < 0.001). The
associations were similar when using LMEs adjusting for
sex and the random intercept site (T1-weighted: β = − 0.069,
p < 0.001, dMRI: β = −0.115, p < 0.001, multimodal: β = −0.117,
p < 0.001). LRTs indicate the age-sensitivity of LIHBA (T1-weighted:

Table 1 | Hemispheric brain age prediction outcomes

Model Features R2 MAE RMSE Correlation*

Left T1w 117 0.504 (0.010) 4.389 (0.054) 5.472 (0.061) 0.708 [0.703, 0.712]

Right T1w 117 0.492 (0.008) 4.439 (0.049) 5.529 (0.051) 0.705 [0.700, 0.709]

T1w 234 0.526 (0.011) 4.294 (0.050) 5.356 (0.062) 0.725 [0.721, 0.730]

Left dMRI 840 0.568 (0.014) 4.000 (0.047) 4.990 (0.067) 0.757 [0.753, 0.762]

Right dMRI 840 0.582 (0.013) 3.960 (0.052) 4.967 (0.079) 0.766 [0.762, 0.771]

dMRI 1680 0.605 (0.010) 3.867 (0.059) 4.821 (0.094) 0.781 [0.777, 0.785]

Left multimodal 957 0.630 (0.009) 3.757 (0.046) 4.673 (0.047) 0.794 [0.790, 0.797]

Right multimodal 957 0.634 (0.014) 3.723 (0.073) 4.673 (0.092) 0.794 [0.791, 0.798]

Multimodal 1914 0.628 (0.017) 3.663 (0.055) 4.563 (0.077) 0.793 [0.789, 0.797]

R2 Variance explained,MAE Mean Absolute Error, RMSE Root Mean Squared Error, Corr. Correlation, Values in round parentheses () refer to standard deviations and square brackets [] to 95%
confidence interval around correlations (Pearson’s r) of uncorrected brain age estimates and chronological age. N = 35,665. Source data are provided in Source Data file 5.
*The correlation between raw brain age and chronological age. All padj <0.001.

Fig. 3 | Pearson correlation coefficients between chronological and predicted
ages for T1-weighted, diffusion, and multimodal MRI for left, right and both
hemispheres, N = 35,665. All Bonferroni-corrected p <0.001. L Left hemisphere,

R Right hemisphere, LR Both hemispheres. Source data are provided in Source
Data file 3.
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χ2 = 173.42, p < 0.001, dMRI: χ2 = 488.74, p <0.001, multimodal:
χ2 = 506.08, p < 0.001).

These results were robust to stratifying by sex, estimates from
a brain age model considering both sexes for unadjusted
(rdMRI males = −0.134, rdMR Ifemales= −0.104, rT1 males= −0.134, rT1
females= −0.048, rmultimodal males = −0.134, rmultimodal females = −0.111),
and adjusted associations (βdMRI males = −0.134, βdMRI females = −0.099,
βT1 males= −0.134, βT1 females = −0.045, βmultimodal males = −0.134,
βmultimodal females = −0.106), with χ2 tests suggesting age sensitivity
(all p<0.001).

Using brain age predictions from models which were indepen-
dently estimated for males and females showed similar results for
unadjusted (rdMRI males = −0.141, rdMRI females = −0.094,rT1males = −0.120,
rT1 females = −0.031, rmultimodal males = −0.165, rmultimodal females = −0.089),
and adjusted associations (βdMRI males = −0.137, βdMRI females = −0.088,
βT1 males = −0.117, βT1 females = −0.029, βmultimodal males = −0.162,
βmultimodal females = −0.084), with χ2 tests suggesting age sensitivity
(all p <0.001).

Finally, alsowhen analysing brain ages formales and females from
sex-specific models together shows similar trends for uncorrected
∣LIHBA∣-age associations (rmultimodal = −0.123, p < 0.001; rT1

= � 0:074,
p <0.001, rdMRI= −0.114, p <0.001), as well as corrected association

(βmultimodal = −0.125, p < 0.001; βT 1
= � 0:071, p <0.001, βdMRI= −0.113,

p <0.001; Eq. (7)–(8)).

HBA and GBA and health-and-lifestyle factors
We further investigated the pattern of relationships with general
health-and-lifestyle phenotypes across HBAs (Fig. 4). Relationships
between brain ages from single and both hemispheres were similar
within modalities, but varied slightly between modalities (Fig. 4).
These results were robust to sex stratifications. Yet, while males’
brain age was sensitive to high cholesterol, hip circumference,
smoking and weight, this was not the case for females’ brain age
when using brain age predictions from data of both sexes (Sup-
plementary Figure 11–12).

Sex stratified hemispheric differences and age sensitivity for GM
and WM features
For further insights into sex differences, we repeated the presented
analyses on hemispheric differences and features’ age-sensitivity
stratifying by sex. Two-tailed paired samples t-tests assessing regio-
nal differences between hemispheres showed similar results between
sexes, which are also comparable to cross-sex results. Most features
differed between hemispheres for both males and females (T1-
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Fig. 4 | Linear association between general health-and-lifestyle phenotypes
and brain age estimated from different modalities, left, right and
both hemispheres. Eq. (9) was used and standardized slopes are presented. For
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weighted: 98.3% for both sexes, dMRImales: 96%, dMRIfemales: 95%), and
effect sizes were similar (j�dT 1malesj =0.54 ±0.42, j�dT 1f emalesj
=0.53 ± 0.42, j�ddMRImalesj =0.57 ± 0.41, j�ddMRIf emalesj = 0.60 ±0.47).

Also the strongest effects were similar across sexes: strongest
differences in T1-weighted features in males were observed for frontal
pole (dT 1males = 1.82) and pars orbitalis (dT 1males = 1.78) surface area,
and for females in the area of the transverse temporal area (dT 1f emales

= 1.89) and the frontal pole (dT 1f emales = 1.73). Strongest WM differ-
ences were observed for both sexes in inferior longitudinal fasciculus
(ddMRI males = 3.44, ddMRI females = 3.91), and superior longitudinal tem-
poral fasciculus (ddMRI males = 2.09, ddMRI females = 2.40; Supplementary
Table 6).

LRTs comparing a baseline model predicting age from sex and
scanner site compared to a model where the respective smooth of the
metric was added (Eq. (3) and (4)) indicated most features as age-
sensitive (230 of the 234 (98.29%) of the T1-weighted features (both
sexes); 1557 and 1564 of the 1680 (92.68% and 93.10%) dMRI features
for males and females, respective). Age-sensitivity was strongly
expressed in both significant T1-weighted features (�FT 1males =
640.80 ± 521.33; �FT 1f emales = 578.61 ± 500.79), as well as significant
dMRI metrics (�FdMRImales = 586.38 ± 450.68, �FdMRIf emales =
674.61 ± 499.58).

Similar to the results including both sexes, the strongest T1-
weighted feature age-sensitivity was observed for left superior tem-
poral thickness, left/right hippocampus volume for both sexes, and
right inferior parietal thickness only for females. Concerning dMRI
features, sex stratification reflects the findings accounting for sex,
outlining the fornix-striaterminalis pathway, anterior corona radiata
and inferior fronto-occipital fasciculus, yet adding the anterior limb of
the internal capsule and the anterior thalamic radiation. Unique to
non-linear models, also the lateral ventricle volume was lined out as
highly age sensitive (all F > 1666; for top features see Supplementary
Table 7.

Results were similar when comparing linear models to the base-
linemodel (Eq. (2) and (4)): 1557 and 1564 of the 1680 (92.68%, 93.01%)
dMRI metrics, and 226 and 224 of the 234 (96.58%, 95.73%) of the
T1-weighted features were age-sensitive for males and females,
respectively (�FT1males = 1767.60 ± 1474.69; �FT 1f emales = 1712.73 ±
1488.97; �FdMRImales = 1198.85 ± 1135.84, �FdMRIf emales = 1297.51 ± 1257.02),
with the features with the strongest age-sensitivity resembling LRT
results of non-linear models (for top features see Supplementary
Table 8).

Considering only left and right hemispheric averages, t-tests
indicated that all features differed between hemispheres for males
(padj < 3.1 × 10−9). In females,WMTI radEADandaxEADaswell asDTI AD
did not differ between hemispheres (padj >0.05), but all other metrics
differing between hemispheres (padj < 1.5 × 10−36).

Considering all regional features, LRTs on GAMs (Eq. (4), (3))
indicated that all features were age-sensitive (padj < 5.1 × 10−71). LRTs on
linear models (Eq. (2), (4)) indicated that right hemisphere BRIA-vCSF
and left microRD were not age sensitive (padj >0.05) in males. In
females, additionally, left DTI-RD and GM thickness as well as left and
right WMTI-axEAD were not age-sensitive. All other metrics were age
sensitive (padj < 2.7 × 10−11). Hemispheric features’ age-relationships
showed similar intercepts and slopes across sexes, except DTI-AD,
WMTI-radEAD and WMTI-axEAD (Supplementary Figs. 5, 6).

Sex differences in GM and WM feature asymmetry
Sex-stratified analyses indicate most dMRI ∣LI∣ features to be age sen-
sitive (dMRImales = 64.29%, dMRIfemales = 69.52%), but less T1-weighted
features (T1 males = 47.86%, T1 females = 38.46%) when using non-linear
models. Linear models showed similar results (dMRImales = 60.95%,
dMRIfemales = 64.05%; T1 males = 44.44%, T1 females = 37.61%). Comparing
linear to non-linear models using two-sided paired samples t-tests
suggests no differences model fit indicated in AIC or BIC scores for

both males and females in T1-weighted and diffusion features’ asym-
metry (padj >0.05). Hence, linear model outcomes are presented
below. Similar to models including both sexes, when stratifying
for sex, ∣LI∣ for diffusion and T1-weighted feature were positively
associated with age (�βdMRImale =0:05±0:08,

�βdMRIf emale =0:05±0:08,
�βT1male =0:03±0:06,

�βT1f emale =0:03±0:06).
The strongest adjusted relationships for diffusion features

were found in the cingulate gyrus tract (βmales BRIA−microRD =0.25, βmales

BRIA−microFA =0.22, βfemales BRIA−microRD =0.25, βmales BRIA−microFA =0.21)
and in the cerebral peduncle (βmales SMTmc−extratrans= −0.19, βmales SMT

−trans = −0.18, βfemales SMTmc−extratrans= −0.21, βfemales SMT−trans = −0.20,
βfemales BRIA−Vextra = −0.18; Supplementary Figs. 8, 9). Strongest age
associations with T1-weighted asymmetries were found for the area of
the accumbens (βmales=0.14,βfemales =0.12) and WM surface
(βmales =0.13, βfemales=0.12), with strongest inverse relationships
observed for inferior lateral ventricles (βmales = −0.17, βfemales= −0.14)
and pallidum (βmales= −0.11, βfemales = −0.12).

Discussion
In the present work we investigated a new way of utilising brain age to
differentiate between hemispheres, and performed a detailed assess-
ment of brain asymmetry associations with age. As a baseline, we
showed that most grey and white matter features were age-sensitive
and differed between hemispheres with relatively large effect sizes.
Brain asymmetry was age-sensitive, and overall higher at higher ages.
In contrast, asymmetry in hemispheric brain age was lower at higher
ages. The strongest relationship of age and absolute brain asymmetry
was identified in larger GM and WM regions, as well subcortical and
lower structures, including the limbic system, the ventricles, cingulate
and cerebral as well as cerebral peduncle WM.

Brain age predictions exhibited concordant accuracy within
modalities for left, right, and both hemispheres, and concordant
associations with health-and-lifestyle factors also when analysing data
for males and females separately, training brain age models on data
from each sex separately or both sexes together. The predictions did
not differ statistically between hemispheres, modalities, or handed-
ness groups when considering both sexes together. However, sex-
stratified analyses, which considered different brain age modelling
choices, revealed significant opposing effects between sexes for
hemisphere and modality, and outlined marginal differences between
handedness groups. There are multiple reasons for the observed
higher brain age in females’ right hemisphere compared to males’
higher brain age of the left hemisphere, in addition to modality-
specific differences. First, male and female brain structure differs,
resulting in sex-specific regional variations in brain age estimates42.
Second, body and brain ageing trajectories differ between sexes, for
example, outlined by sex-dependent importance of cardiometabolic
risk factors43. Hence, the tendency of males’ predicted brain age being
lower using T1-weighted and multimodal in contrast to diffusion-
derived brain ages, with these trends reversed in females, might also
reflect stronger brain age associations with cardiometabolic risk
factors in males (Supplementary Fig. 7), which have been
demonstrated earlier for WM features and WM brain age38,39. HBA
allows to assess the structural integrity of each hemisphere indi-
vidually, and to set brain ages from the two hemispheres in rela-
tionship to each other providing a general marker of asymmetry.
Despite brain asymmetries overall increasing (Supplementary
Figs. 2, 3), the asymmetries between left/right HBA were smaller at
a higher age. At higher ages, both hemispheres might hence
become overall more comparable, despite ageing-related
changes44.

We found that the majority of regional and hemisphere-averaged
MRI features differed between hemispheres. Both features and asym-
metries were age-sensitive indicating that the investigation of asym-
metries are useful across ages and MRI modalities.
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Interestingly, hemisphere-averaged features’ age-associations and
HBA of the same modality were similar between hemispheres (Fig. 1),
and the hemisphere was not a significant predictor of brain age esti-
mated from a particular hemisphere, when analysing data from both
sexes together. However, when sex-stratifying, modality and hemi-
sphere were significant predictors, suggesting that HBA captures both
brain asymmetries as well as biological sex-differences which become
apparent when using multimodal MRI. These results outline the
importance of considering sex-differences in brain age analyses.

Several studies present evidence for asymmetries inWM6,45–48 and
GM4,9,49–51. In contrast to these previous studies, for the first time, we
examine variousmetrics supplying information onbothWMandGM in
a large sample. While we find various differences between hemi-
spheres, age relationships of T1-weighted and dMRI features were
similar between hemispheres using hemispheric averages, also when
stratifying by sex. Spatially finer-grained examinations revealed more
specific patterns of asymmetry in T1-weighted features, such as GM
thickness9, and dMRI features45. This is also shown in the present study
by stronger age-effects for specific regional asymmetries compared to
asymmetries in hemispheric averages. Age-MRI metric relationships
depend, however, on the selected metric, the sample, and the sam-
pling (cross-sectional or longitudinal)52,53. For example, previous evi-
dence from T1-weighted MRI indicates no differences in GM volume
between hemispheres54, but hemispheric differences of cortical
thickness and surface area across ageing4,9.

The presented age charts of MRI metrics in the current work
(Fig. 1, Supplementary Fig. 1) provide similar trends to those reported
in previous studies observing global age dependencies19,21,55–57. Yet, the
stratification between hemispheres when presenting brain features’
age dependence is a novel way of presenting brain charts.

We found asymmetries based on GM and WM brain scalar mea-
sures. Unimodal studies with smaller, younger samples presented age-
dependence of the brain asymmetry during early WM development48

and adult cortical thickness9, other T1-derivedmetrics33, and functional
network development5, showing lower asymmetry at higher ages. In
contrast to HBA asymmetries, brain asymmetries do generally not
support the notion of lower but instead of higher brain asymmetry
later in life. Different study design choices, such as temporal and
spatial levels might provide supplemental information into the age-
dependence of brain asymmetries, for example, by further investi-
gating longitudinal and voxel-level asymmetries.

We extended previous findings by providing a comprehensive
overview of brain asymmetry associations throughout mid- to late life
including both GM and WM. Our findings indicate that when con-
sidering various metrics, older brains generally appear less symmetric
than younger brains in the current sample mid- to late-life sample,
whereas brain age appears more symmetric in older brains.

Notably, we identified strong associations between specific brain
regions’ asymmetry and age. The strongest age associations of asym-
metries were observed for subcortical, ventricle-near structures. The
general age-sensitivity of such structures21,58,59 might be a reason for
the observed age associations in asymmetries, and hence pointing
towards one hemisphere being stronger affected by degradation
effects, or even the involvement of such regions in psychiatric and
neurodegenerative disorders40,55,58,60–65. For example, the hippo-
campus, a prominent limbic structure, presents relatively high levels of
adult neurogenesis, which might potentially explain repeated findings
of the region’s associations with psychiatric disorders and disorder
states such as depression, anxiety, schizophrenia, addiction, and
psychosis66,67, and neurdegenerative disorders, especially Alzheimer’s
Disease68, but also ageing in general69. Some of the strongest age-
relationship for T1-derived asymmetries were observed in the accum-
bens, ventricles and pallidum. In turn, a series of dMRI approaches was
sensitive to asymmetry in the cingulum tract, which is higher in late-life
and cerebral peduncle asymmetry which appears lower in late-life. In

particular, radial diffusivity metrics, such SMT-trans, SMTmc-extra-
trans, and BRIA-microRd, and fractional anisotropy indicated by BRIA-
microFA were sensitive to age-dependencies of these asymmetries.
Although speculative, this observation could indicate a relationship
between asymmetry and axonal properties during ageing, such as
myelination, density, or diameter, in the cingulum, with yet a more
general marker (BRIA-microFA) of anisotropy asymmetry increasing at
advanced age. However, limitations of the different diffusion metrics,
such as the inability to account for axonal swelling, infection, or
crossing fibres70, aggravates the interpretation of such asymmetry
changes. Overall, asymmetries’ age-dependencies in subcortical, lim-
bic and ventricle-near areas are not surprising, considering that the
cingulum and cerebral peduncle WM, and middle temporal GM area
also presented some of the strongest asymmetries across the sample
(Supplementary Table 10).

BothGMvolume, surface, and thickness showasymmetries across
studies1,3,4,9,54. We identified lower asymmetry linked to higher ages in
the ventricular and pallidum volumes, appearing alongside the known
effect of larger ventricle volumes at higher ages55. The strongest
positive age-relationships for T1-weighted features’ asymmetry were
observed for accumbens and WM surface area, as well as limbic
structures such as amygdala, hippocampus, and cingulate. Limbic
structures have previously been outlined as highly age-
sensitive21,58,59,69. Higher asymmetry-levels might speak to asymmetric
atrophy in these limbic regions, potentially explaining several ageing-
related effects9. However, lifespan changes in ventricular volume
asymmetry in relation to symptom and disorder expression requires
additional investigations.

Cingulum WM microstructure has been reported to differ
between hemispheres71–73. Abnormalities in cingulum asymmetry have
been linked to schizophrenia74–76 and epilepsy77,78, and Alzheimer’s
disease59. Additionally, the cingulum tract was associatedwith the anti-
depressant effects of deep brain stimulation in treatment-resistant
depression79. Recent evidence points out strongest polygenic risk
associations for several psychiatric disorders in addition to Alzhei-
mer’s Disease with longitudinal WM in the cerebral peduncle58. Future
research could assess regional asymmetries to evaluate such metrics’
value for diagnostics and treatment in a range of brain disorders.

Overall, most absolute MRI feature asymmetries were positively
related to age, with brain age asymmetries showing inverse age-
relationships. However, for both WM and GM this process was
observed to be spatially distributed. Metric-specific changes might
indicate accelerated and pathological ageing9, which urges to examine
different WM and GMmetrics across temporal and spatial resolutions
and in clinical samples.

Informed by the presented brain asymmetries and their age-
dependence, we suggest HBA, indicating the structural integrity of
each hemisphere when compared to the chronological age. Moreover,
HBA provides a general marker of asymmetry, when setting left/right
HBA in relationship to each other. While this added information to
conventional GBA is promising,first, thedegree towhichHBAcaptures
GBA predictions, had to be assessed. This investigation included (1)
direct comparisons of HBA and GBA models and their predictions, (2)
the influence of covariates of brain age including MRI modality,
hemisphere, handedness, and the hemisphere-handedness interaction
effect, and (3) a comparison of health-and-lifestyle phenotype-
associations with HBA and GBA. Overall, HBA and GBA were highly
similar across these dimensions, yet different between hemispheres
and modalities within males and females, with these differences con-
trasting each other. This renders HBA sensitive to potential underlying
biological processes which only become apparent when assessing
males and females separately. Additionally, different modalities might
be sensitive to a range of biological phenomena in terms of brain age,
such as dMRI brain age which presents group differences for diabetes
only in males. In that sense, a further route of investigation could be
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to establish sex-specific uni- and multimodal brain age models (which
account for sex differences in brain morphology and its develop-
mental trajectories). The influence of hemisphere and sex on
how these models relate to biological phenomena can then be
assessed.

Congruently with previous research that combined MRI
modalities27, we found higher prediction accuracy for multimodal
compared to unimodal predictions for both HBA and GBA. Our results
extend previous findings on conventional brain age by not only esti-
mating brain age from different MRI modalities, but also for each
hemisphere and sex separately. HBA could hold potential in clinical
samples by informing about the consistency between the two hemi-
spheres’ brain age predictions. Particularly diseases or conditions
which affect a single hemisphere, such as unilateral stroke or trauma,
might then be sensitively detected, and the integrity of the unaffected
hemisphere can be assessed by observing the congruence of HBA22.
Larger discrepancies betweenHBAs of the same individualmight act as
a marker of hemisphere-specific brain health imbalance, which may
indicate potential pathology.

While this study provides initial explorations of asymmetries and
HBA, our findings remain limited to the examined sample (imaging
subset of the UKB), and limited by generational effects within the
sample. The UKB contains individuals born in different decades, which
influences individual predispositions for brain health through various
factors such as the living environment80 or education81, representing
various potential confounding effects. Additional biasmight have been
introduced by the sample characteristics and sampling procedure. The
UKB consists of nearly exclusively white UK citizens, limiting the
generalisability beyond white Northern Europeans and US Americans
in their midlife to late life. The volunteer-based sampling procedure
might additionally have introduced bias, reducing generalisability to
the UK population82, with the imaging sample of the UKB showing an
additional positive health bias (better physical andmental health) over
the rest of the UKB sample83, rendering this sub-sample as even less
representative of the total UK population. Finally, the selection of the
parcellation scheme for both grey and white matter, and the inherent
parcellation bias,might have influenced the results. As a consequence,
the reported findings might be more reflective of the parcellation bias
than the inherent brain organisation.

In conclusion, we identified asymmetries throughout the
brain from midlife to late-life. These asymmetries appear higher
later in life across GM and WM. Opposing, the difference in left/
right hemispheric brain age is smaller at higher ages. We fur-
thermore identify various sex-specific differences in brain age and
its correlates, as well as regional asymmetries which do not only
show age-dependence but which have also been related to various
clinical diagnoses. The identified age-relationships of asymme-
tries provide future opportunities to better understand ageing
and disease development.

Methods
Sample characteristics
We obtained UK Biobank (UKB) data84, including N = 48,040 T1-
weighted datasets, N = 39,637 dMRI datasets, resulting in N = 39,507
joined/multimodal datasets after exclusions were applied. Participant
data were excluded when consent had been withdrawn, an ICD-10
diagnosis from categories F (presence of mental and behavioural dis-
order), G (disease of the nervous system), I (disease of the circulatory
system), or stroke was present, and when datasets were not meeting
quality control standards using the YTTRIUM method85 for dMRI
datasets and Euler numbers were larger than 3 standard deviations
below the mean for T1-weighted data86. In brief, YTTRIUM85 converts
the dMRI scalar metric into 2D format using a structural similarity87,88

extension of each scalar map to their mean image in order to create a
2D distribution of image and diffusion parameters. These quality

assessments are based on a 2-step clustering algorithm applied to
identify subjects located outside of the main distribution.

Data were collected at four sites, with the T1-weighted data col-
lected in Cheadle (58.41%), Newcastle (25.97%), Reading (15.48%), and
Bristol (0.14%). Of these data, 52.00% were females, and the partici-
pants age range was from 44.57 to 83.71, mean = 64.86 ± 7.77, med-
ian = 65.38 ± 8.79. DMRI data were available from four sites: Cheadle
(57.76%), Newcastle (26.12%), Reading (15.98%), and Bristol (0.14), with
52.19% female, and an age range of 44.57–82.75, mean= 64.63 ± 7.70,
median = 65.16 ± 8.73. Themultimodal sample (N = 39,507) was 52.22%
female, with an age range of 44.57–82.75, mean = 64.62 ± 7.70, med-
ian = 65.15 ± 8.73. Information on sex was acquired from the UK central
registry at recruitment, but in some cases updated by the participant.
Hence the sex variable may contain a mixture of the sex the UK
National Health Service (NHS) had recorded for the participant as well
as self-reported sex.

MRI acquisition and post-processing
UKB MRI data acquisition procedures are described elsewhere84,89,90

and can be found at https://www.fmrib.ox.ac.uk/ukbiobank/protocol/.
The raw T1-weighted and dMRI data were processed accordingly.
Namely, the dMRI data passed through an optimised pipeline85. The
pipeline includes corrections for noise91, Gibbs ringing92,
susceptibility-induced and motion distortions, and eddy current
artifacts93. Isotropic 1mm3 Gaussian smoothing was carried out using
FSL’s94,95fslmaths. Employing the multi-shell data, Diffusion Tensor
Imaging (DTI)96, Diffusion Kurtosis Imaging (DKI)97 and White Matter
Tract Integrity (WMTI)98 metrics were estimated using Matlab 2017b
code (https://github.com/NYU-DiffusionMRI/DESIGNER). Spherical
mean technique (SMT)99, and multi-compartment spherical mean
technique (SMTmc)100 metrics were estimated using original code
(https://github.com/ekaden/smt)99,100. Estimates from the Bayesian
Rotational Invariant Approach (BRIA) were evaluated by the original
Matlab code (https://bitbucket.org/reisert/baydiff/src/master/)101.

T1-weighted images were processed using Freesurfer (version
5.3)102 automatic recon-all pipeline for cortical reconstruction and
subcortical segmentation of the T1-weighted images (http://surfer.
nmr.mgh.harvard.edu/fswiki)103.

In total, we obtained 28 WM metrics from six diffusion approa-
ches (DTI, DKI, WMTI, SMT, SMTmc, BRIA; see for overview in Sup-
plement 9). In order to normalise all metrics, we used Tract-based
Spatial Statistics (TBSS)104, as part of FSL94,95. In brief, initially all brain-
extracted105 fractional anisotropy (FA) images were aligned to MNI
space using non-linear transformation (FNIRT)95. Following, the mean
FA image and related mean FA skeleton were derived. Each diffusion
scalar map was projected onto the mean FA skeleton using the TBSS
procedure. In order to provide a quantitative description of diffusion
metrics we used the John Hopkins University (JHU) atlas106, and
obtained 30 hemisphere-specific WM regions of interest (ROIs) based
on a probabilistic WM atlas (JHU)107 for each of the 28 metrics. For T1-
weighted data, we applied the Desikan-Killiany Atlas108. Altogether,
840 dMRI features were derived per individual [28 metrics × (24
ROIs + 6 tracts)] for each hemisphere, and 117 T1-weighted features
(surface area, volume, thickness for each of the 34 regions; 3 whole-
brain graymatter averages, and 2 averages ofwhitematter surfacearea
and volume) for each hemisphere.

Brain age predictions
Brain age was predicted using the XGBoost algorithm109 implemented
in Python (v3.7.1). We used six data subsets to predict brain age split in
the following manner: 1) right hemisphere T1-weighted, 2) left hemi-
sphere T1-weighted, 3) left hemisphere diffusion, 4) right hemisphere
diffusion, 5) left hemisphere multimodal, 6) right hemisphere multi-
modal. We applied nested k-fold cross-validation with 5 outer and 10
inner folds (see Supplementary Table 1 for tuned hyperparameters for
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models trained on data from both sexes together and Supplementary
Table 15 for models trained separately for males and females). We
corrected for age-bias andmere age-effects110,111 by including age in the
regression equations (Eq. (5)) when assessing effects of modality,
hemisphere, and handedness on brain age, as well as phenotype
associations with brain ages (Eq. (9)).

Statistical analyses
All statistical analyses were carried out using Python (v3.7.1) and
R (v4.2.0).

Hemispheric differences and age sensitivity. To give an overview of
the extent of brain asymmetry, we assessed the significance of T1-
weighted and dMRI features’ asymmetry using two-sided t-tests. The
lateralisation or asymmetry of the brain features was estimated as the
following: we applied the LI32 to both regional features and features
averaged over each hemisphere (see also ref. 33).

LI =
L� R
L+R

, ð1Þ

where L and R belongs to any left and right scalar metric, respectively.
Furthermore, when associating LI with age, we used absolute LI values
(∣LI∣) allowing to estimate age-effects on asymmetry irrespective of the
direction of the asymmetry (leftwards or rightwards).

We then used linear regression models correcting for sex and
scanning site to predict age from all regular and LI features:

^Age= F + Sex + Site, ð2Þ

where F is a scalar metric such as, for example, hippocampus
volume (derived from T1-weighted image) or tapetum fractional
anisotropy (derived from DTI). The same model setup was used
applying generalised additive models (GAM) to model non-linear
relationships between F and Age using a smooth s of linked
quadratic functions with k = 4 knots and restricted maximum
likelihood (REML):

^Age= sðFÞ+ Sex + Site: ð3Þ

Likelihood ratio tests (LRTs)112 wereused to assess the age sensitivity of
all T1-weighted and dMRI features and their asymmetry/LI features by
comparing the above models with baseline models not including the
respective feature:

^Age= Sex + Site: ð4Þ

We used the same procedure for region-averaged and hemispheric
average metrics for regular and LI features. Hemispheric averages of
regular features were then visualised by age, including surface area,
volume, thickness for T1-weighted data, and intra- and extra-axonal
water diffusivities as well as for DTI and DKI metrics.

To compare themodel fit of non-linear and linearmodels we used
the Akaike information criterion (AIC)113 and Bayesian information
criterion (BIC)114.

Brain age assessment. We estimated correlations across HBA and
GBA to assess their similarities in addition to the model output pro-
vided from the prediction procedure. We also correlated age with the
LI (see Eq. (1)) for the threemodalities (dMRI, T1-weighted, multimodal
MRI), and estimated the age sensitivity of the LI as described in
(Eqs. (2)–(4)).

As preregistered (https://aspredicted.org/if5yr.pdf), to test the
relationships between hemisphere (H), modality (M), and HBA while
controlling for age, sex, and scanner site, we employed linear mixed

effects regression (LMER) models of the following form:

^HBA=H +M +H ×M + Sex +Age+ Sex ×Age+ ð1jSiteÞ+ ð1jIÞ, ð5Þ

whereIrefers to the random intercept at the level of the individual.
Post-hoc group differences were observed for hemisphere, modality
and their interaction.

Next, handedness (Ha) was added to the model to observe whe-
ther there are model differences between the resulting LMER:

^HBA=Ha+H ×Ha+H +M +H ×M + Sex +Age+ Sex ×Age + ð1jSiteÞ + ð1jIÞ,
ð6Þ

and the previous model. Models were statistically compared using
LRTs112.

For sex-stratified analyses, we considered brain age estimates
both from models using data from both sexes together, as well as
models that were trained on females-only or males-only data. The
modelling choice (MC) was included as a factor for the sex-stratified
brain age analyses in the formula of Eq. (6).

Finally, the LIs (Eq. (1) of left and right brain age predictions for T1-
weighted, diffusion and multimodal MRI (LIHBA, i.e. the asymmetry in
brain age predictions) were associated with age, controlling for sex
and scanner site as random effect:

^Age= LIHBA + Sex + ð1jSiteÞ: ð7Þ

The LIHBAs’ age-sensitivity was then assessed (as for brain features, see
Eqs. (2)–(4)), using LRTs comparing the above model with a baseline
model excluding LIHBA (Eq. (4)):

^Age= Sex + ð1jSiteÞ: ð8Þ

This procedurewas also done for each sex individually, also separating
between brain age models predictions which were obtained from the
data from both sexes compared to a single sex.

Phenotype associations of brain age. In an exploratory analysis step,
we assessed association patterns between brain ages and health and
lifestyle factors which have previously demonstrated an association
with brain age20,26,38–41. This analysis step served to compare phenotype
associations across estimated brain ages. The health and lifestyle fac-
tors included alcohol drinking (binary), height and weight supple-
menting body mass index (BMI), diabetes diagnosis (binary), diastolic
blood pressure, systolic blood pressure, pulse pressure, hypertension
(binary), cholesterol level (binary), and smoking (binary describing
current smokers). For this last analysis step, LMERs were used with the
following structure:

P̂ =BA+ Sex +Age+ Sex ×Age+ ð1jSiteÞ, ð9Þ

where BA refers brain age incorporating both GBA and HBA, P is the
phenotype.

Furthermore, where applicable, we corrected p-values for multi-
ple testing using Bonferroni correction and an α-level of p < 0.05. This
involvesmultiplying the p-value by the number of tests used to test the
same hypothesis. Adjusted p-values are marked as padj and unadjusted
p-values as p. We used a high-precision approach to calculate exact
p-values utilising the Multiple Precision Floating-Point Reliable R
package115, and report standardised β-values. Sex and sitewere entered
as independent factorial nominal variables in the applicable regression
models,with sex being a binary (0 = female, 1 =male) and scanner site a
multinominal (0 = Cheadle, 1 = Newcastle, 2 = Reading, 3 = Bristol).
Finally, we repeated the presented statistical analyses stratifying
for sex.
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Effect size measures. For the estimation of the effect size of group
differences we used Cohen’s d, estimated from the means of the two
groups being compared (�X 1,�X2) and the pooled standard deviation of
the two groups (s):

d =
�X 1 � �X2

s
:

For the estimation of the effect size of associations, we used the
Pearson correlation coefficient, which is estimated from two variables’
individual data points (xi, yi), and their averages (�x,�y):

r =
Pðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxi � �xÞ2 �P ðyi � �yÞ2
q :

For multivariate associations, we used regression coefficients /
β-weights from the respective regression equation (see Eq. (2)–(9)).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study has been conducted using UKB data under Application
27412. All raw data are available from the UKB (www.ukbiobank.ac.uk).
UK Biobank has approval from the North West Multi-centre Research
Ethics Committee (MREC) as a Research Tissue Bank (RTB) approval.

The raw and processed UK Biobank MRI data are protected and
are not openly available due to data privacy laws. However, access can
be obtained by applying for access and paying an access fee
(see https://www.ukbiobank.ac.uk/enable-your-research/apply-for-
access). Source data are provided with this paper.

Code availability
Analysis code116 is available at https://doi.org/10.5281/zenodo.
10423745.
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