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Experimental warming accelerates positive
soil priming in a temperate grassland
ecosystem

Xuanyu Tao1,2,11, Zhifeng Yang 1,2,11, Jiajie Feng 1,2,11, Siyang Jian 1,2,11,
Yunfeng Yang3 , Colin T. Bates1,2, Gangsheng Wang4, Xue Guo1,2,3,
Daliang Ning 1,2, Megan L. Kempher 1,2, Xiao Jun A. Liu 1,2, Yang Ouyang1,2,
Shun Han 1,2, Linwei Wu 1,2, Yufei Zeng3, Jialiang Kuang 1,2, Ya Zhang 1,2,
Xishu Zhou1,2, Zheng Shi1,2, Wei Qin 1,2, Jianjun Wang 5, Mary K. Firestone6,7,
James M. Tiedje 8 & Jizhong Zhou 1,2,7,9,10

Unravellingbiosphere feedbackmechanisms is crucial forpredicting the impacts
of global warming. Soil priming, an effect of fresh plant-derived carbon (C) on
native soil organic carbon (SOC) decomposition, is a key feedback mechanism
that could release large amounts of soil C into the atmosphere. However, the
impacts of climate warming on soil priming remain elusive. Here, we show that
experimental warming accelerates soil priming by 12.7% in a temperate grass-
land. Warming alters bacterial communities, with 38% of unique active phylo-
types detected under warming. The functional genes essential for soil C
decomposition are also stimulated, which could be linked to priming effects.We
incorporate lab-derived information into an ecosystem model showing that
model parameter uncertainty can be reduced by 32–37%. Model simulations
from 2010 to 2016 indicate an increase in soil C decomposition under warming,
with a 9.1% rise in priming-induced CO2 emissions. If our findings can be gen-
eralized toother ecosystemsover an extendedperiodof time, soil priming could
play an important role in terrestrial C cycle feedbacks and climate change.

Since the onset of industrialization, global surface temperature has
risen considerably due to the accumulation of atmospheric CO2 and
other greenhouse gases from fossil fuel combustion and land-use
changes, making climate change a major scientific and political issue
worldwide1–3. As anticipated, the pace of anthropogenic climate
change is likely to accelerate, giving rise to more unpredictable and

extreme weather patterns4,5. To predict and mitigate future climate
change, it is crucial to understand the direction, magnitude, and
duration of biospheric feedbacks. However, the feedbackmechanisms
between terrestrial carbon (C) and climate represent one of the largest
uncertainties in forecasting future climate warming in Earth system
models6–10. Despite extensive research over the past three decades,
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experimental studies examining the effects of climate warming on
various soil C processes have yielded conflicting and controversial
results6,10–16. This controversy is partially due to the lack of a mechan-
istic understanding of the interactive processes among plants, soils,
and microbes. Soil priming is one of these critical feedback processes,
in which fresh plant-derived C input as litter, dead fine roots, and root
exudates can alter the decomposition of native soil organic carbon
(SOC)17,18.

Soil organic carbon (SOC) is vital for soil health, food production,
ecosystem functionality, and climate regulation19. The global SOCpool
contains 2,400 to 3,000 petagrams (Pg) of C, more than twice the
amount of the atmospheric C pool20,21. Soil C stock is ultimately
determined by the balance between the C gains from photosynthesis
and the C loss through decomposition and erosion19. Apart from their
direct contribution to photosynthesis, plants can regulate SOC
decomposition via soil priming, which is a key driver affecting soil
biogeochemical cycles and determining the capacity of soils to func-
tion as sources or sinks of atmospheric CO2

22–24. The input of fresh C
from plants can either stimulate (i.e., positive priming) or suppress
(i.e., negative priming) the decomposition of the native SOC25–29, as
shown by the observed positive30–32, negative33–35, no effects36,37, or
both38–40. Although recent modeling analysis have shown that incor-
porating soil priming into ecosystem models is crucial for predicting
globalCdistributions41,42, whether, andhow, to capturepriming effects
in SOC models remains an area of exploration43. As a result, despite
extensive research on soil priming, our understanding of how climate
warming impacts on soil priming and the underlying biological
mechanisms remains severely limited35,44,45.

The impact of climate warming on soil priming is highly complex,
as it directly or indirectly affects plant and microbial communities, as
well as soil biogeochemical processes. These effects largely depend on
factors such as plant productivity, microbial community structure and
activity, and soil nutrient status. Climate warming can act as a double-
edged sword for soil priming: on one hand, it may accelerate priming
by stimulating plant growth and biomass6,7,46 and/or activating
microbial groups and functions that facilitate priming;6,16,46–49 on the
other hand, it may impede priming by reducing plant growth and
biomass50 and/or altering microbial community structure and activ-
ities in away that delays priming. In addition, nutrient availability, such
as N could be essential in controlling the direction and magnitudes of
soil priming32,48,51 in response to climate warming.

To investigate whether and how climate warming affects soil
priming, we added 13C-labeled straw as plant litter to soils samples
collected from a long-term (7 years) experimental warming site in a
tallgrass prairie ecosystem in theUSGreat Plains of Central Oklahoma
(34̊° 59ʹN, 97̊° 31ʹW)52. Our main scientific questions are: (i) whether
and how does experimental warming affect soil priming; (ii) what are
the microbial mechanisms underlying soil priming, and (iii) can soil
priming and associated microbial mechanisms be incorporated into
ecosystemmodels to improvemodel performance and reducemodel
uncertainty? Based on our previous results that experimental warm-
ing enhances microbial succession, temporal turnover rates, and
potential biotic interactions14,47,52,53, we hypothesized that warming
would accelerate the positive soil priming. Our results reveal that
experimental warming indeed strengthens soil priming via activating
various functional populations, and that incorporating microbial
mechanisms and information into an ecosystem model significantly
reduces model uncertainty and improves the accuracy of predic-
tions (Fig. 1).

Results and discussion
Long-term warming enhanced the positive priming effect
To determine how experimental warming affects soil priming, eight
surface soil samples (0–15 cm) were collected from the warmed
(continuous heating at a target of +3 °C above ambient temperature)

and control plots (n = 4) in 201652,53. Although the SOC and total
nitrogen (N) were not significantly changed by warming during the 7-
year experimental warming, the mineral N (NO3

-) was significantly
increased in warmed soil plots than control (Supplementary Table 1).
Furthermore, the analysis of dissolved organic matter (DOM) compo-
sition by Fourier transform ion cyclotron resonance mass spectro-
metry (FT-ICR MS, Bruker Daltonics, Billerica, MA, USA) revealed that
warming increased the relative abundance of tannins (p <0.01, 95%
confidence interval) but decreased those of carbohydrates and con-
densed aromatic compounds (p < 0.05, 95% confidence interval) in soil
samples (Fig. 2a & Supplementary Fig. 1).

The soil samples were incubated for one week with 13C-labeled
wild oat (Avena fatua) straw powder to simulate plant litter decom-
position, along with a 12C-labeled straw addition and no straw treat-
ments serving as isotopic control andbackground, respectively (Fig. 1).
The overall priming effect was positive for the control samples, with
121.1 ± 10.4μgC/g soil (mean ± s.d.) during the 7-day incubation
(Fig. 2b and Supplementary Fig. 2). The priming effect in control
samples increased the basal respiration by 554 ± 99%, which is within
the range as previously reported, up to 1200%54. In the warmed sam-
ples, warming accelerated the positive priming effect to
135.6 ± 5.2μgC/g soil (593 ± 143% to the basal respiration), which was
overall significantly higher (p < 0.001, permutation ANOVA) than the
control samples by 12.7 ± 9.4% (Fig. 2b and Supplementary Fig. 2, and
see Supplementary Note 1 for details). Consistently, microbial
respiration of warmed samples also increased by 14.2 ± 12.8% (p <0.01,
permutation ANOVA) than control samples (Fig. 2b and Supplemen-
tary Fig. 2). The warming-enhanced positive priming effects were also
observed in another 63-day incubation experiment (Supplementary
Fig. 3 and see Supplementary Note 1 for details).

Warming altered active bacterial communities
Based on the phospholipid fatty acid (PLFA) analysis, the biomass ratio
of fungi to bacteria is 0.055 ± 0.036 for warming plots and
0.043 ±0.025 for control plots55, suggesting that bacterial biomass is
muchhigher than fungi in our field site. Consequently, in this study, we
focused on examining the responses of active bacterial communities
to climate warming. To this end, we extracted DNA after a 7-day
incubation and employed quantitative stable isotope probing (qSIP) to
identify and analyze the active bacterial community (Supplementary
Fig. 4)56. Warming significantly increased apparent active bacterial
abundance by 81 ± 34% (p <0.001, permutation ANOVA) and total
bacterial abundance by 44% ± 24% compared to the control (p <0.001,
permutation ANOVA; Fig. 2c, Supplementary Fig. 5, and see Supple-
mentary Note 2 for details).

A total of 147 amplicon sequence variants (ASVs) were identified
as active C decomposers across all samples (Fig. 2d and see Supple-
mentaryNote 3 for details), includingwell-knownCdecomposers such
as Burkholderia, Sphingomonas, and Bacillus57–59. The active bacterial
community compositions in warming samples were different from
those in control (p < 0.05, permutation ANOVA, Fig. 2e). Among the
active bacterial community (Fig. 2d), 56 ASVs (60%) were active only in
warmed samples, indicating that these active C decomposers (e.g.,
Bacillales) exclusively responded to warming treatment (Fig. 2a and
see Supplementary Note 3 for details). To confirm this, these ASVs
were also detected in situ by annual surveys (during 2010–2016), and
their mean relative abundance increased by 27–205% under warming
(Fig. 2f and see SupplementaryNote 3 for details). In contrast, warming
did not affect the mean relative abundance of the remaining active
ASVs (non-warming induced) during 2010–2016 (Supplementary Fig. 6
and see Supplementary Note 3 for details). All of these results
demonstrated a substantial taxonomic compositional change induced
by warming, which could affect overall soil C decomposition (Sup-
plementary Fig. 7 and see Supplementary Note 3 for details). In addi-
tion, warming increased the phylogenetic α-diversity of the active
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bacterial community (Supplementary Fig. 8, Supplementary Fig. 9, and
see Supplementary Note 3 for details).

To determine whether and how warming affects the functional
capacities of the active microbial communities, GeoChip 5.0 micro-
arraywas used. In line with the changes in the taxonomic composition,
functional gene composition associated with C decomposition of the
active communities under warming was different from those under
control conditions (p <0.05, permutation ANOVA, Fig. 3a). Moreover,
the taxonomic composition (Fig. 3b, correlation = 0.88, p <0.05, Pro-
crustes analysis) and theDOMcomposition (Fig. 3c, correlation = 0.78,
p =0.06, Procrustes analysis) were significantly or marginally sig-
nificantly associated with functional gene composition. Fifteen out of
45 detected C-decomposing genes, especially those involved in
hemicellulose, cellulose, and lignin decomposition, significantly
increased under warming (Fig. 3d). As the second most abundant
component of oat straw (~27% w/w)60, hemicellulose is more chemi-
cally labile than cellulose and lignin,making it a preferred substrate for
active decomposers during 7-day incubation period. Correspondingly,
four biomarker genes for hemicellulose decomposition (i.e., genes
encoding xylanase, mannanase, xylose isomerase, and an L-arabinose
operon comprised of L-arabinose isomerase, ribulokinase, and L-
ribulose-5-phosphate 4-epimerase) were all significantly increased by
warming (Fig. 3d). Also, BIOLOG EcoPlates showed that the microbial
utilization capacity of xylose in warming samples increased by 77.4%
(Supplementary Fig. 10a). Furthermore, the gene axe encoding acetyl
esterase for cellulose decomposition and the genes encoding phenol
oxidase and vanillate O-demethylase for lignin decomposition
increased in relative abundance under warming (Fig. 3d). Consistently,

the in situ cellulose decomposition rate determined by litterbag
experiment was also increased under warming14.

To verify functional gene results from the qSIP experiment, we
further compared them with the changes of the functional gene
composition of the in situ soil microbial communities collected from
warmed and control plots during annual surveys during 2010–2016.
Consistently, almost all of the genes associatedwith degrading various
soil organic C were significantly increased or unchanged by warming
(p < 0.05, 95% confidence interval; Supplementary Fig. 10b). In 2016,
genes important for degrading starch (e.g., aceB encoding malate
synthase A, cda encoding cyclomatodextrinase, and amyA encoding α-
amylase), hemicellulose (e.g., genes encoding xylanase and manna-
nase), and chitin (e.g., gene encoding acetyl glucosaminidase) (Sup-
plementary Fig. 10b) were increased. These results appeared to be
consistent with the observed decrease in the relative abundances of
carbohydrates and condensed aromatics in warming soil sam-
ples (Fig. 2a).

Priming effect is associated with active bacterial communities
under warming
To better understand the potential associations between the positive
priming effect and the active bacterial community under warming, we
conducted a Projection to Latent Structures (PLS) modeling analysis
(Fig. 4a) with the presumed relationships (Supplementary Table 2).
The analysis found a notable associationbetween soil temperature and
active bacterial communities in terms of their abundance (partial
R2 = 0.46, p <0.01, based on the PLS model), phylogenetic diversity
(partial R2 = 0.30, p < 0.01), and functional genes related to C
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Fig. 1 | Study design and objectives. The schematic of the study design illustrates
soil sampling fromwarmed and control plots, followed by comprehensive analyses
of soil and microbial properties and mechanisms, and subsequent field model
optimization based on lab-derived data/model. The research objectives of this
study are to ascertain: (i) the effects of experimental warming on soil priming; (ii)
the microbial mechanisms underlying soil priming; and (iii) the potential for
incorporating soil priming and associated microbial mechanisms into ecosystem
models to enhance model performance and reduce uncertainty. To address these
objectives, eight surface soil samples (0–15 cm depth) were collected in 2016 from
warmed (targeted continuous heating at +3 °C above ambient temperature) and
control plots (n = 4) at a long-term (7-year) experimental warming site in a tallgrass
prairie ecosystem in the US Great Plains of Central Oklahoma (34°59’N, 97°31’W).
Following geochemical measurements and Dissolved Organic Matter (DOM) ana-
lysis, the samples were incubated for one week with ¹³C-labeled wild oat (Avena

fatua) straw powder to simulate plant litter decomposition, with additional treat-
ments involving ¹²C-labeled straw and no straw serving as isotopic control and
background, respectively. Active degraders in both warming and control samples
were identified using qSIP analysis to further explore the microbial mechanisms
underlying soil priming. Subsequently, the lab incubation datasets were integrated
into a lab-scale Microbial-ENzyme Decomposition (MEND) model to simulate the
7-day incubation period. This lab-MENDmodel informed the prior parameter range
for a separate field-scale MEND (field-MEND) model, which assimilated field
warming experiments conducted from 2010 to 2016 to simulate soil C decom-
position. Concurrently, the field-MEND model was compared with the Terrestrial
ECOsystem (TECO) model to validate the effectiveness of incorporating microbial
data into the MEND model for improving performance and reducing uncertainty.
Soil, plant-straw, and bacterial symbols, as used in our previous study55 are adop-
ted here.
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decomposition (partial R2 = 0.25, p <0.050). Mineral N also showed a
significant associationwith soil temperature (partialR2 = 0.16, p < 0.05)
and active bacterial abundance (partial R2 = 0.20, p < 0.01). As antici-
pated, the composition of active bacterial communities were corre-
lated with total bacterial abundance (partial R2 = 0.32, p < 0.01),
phylogenetic diversity (partial R2 = 0.39, p <0.01), functional gene
abundance (partial R2 = 0.47, p <0.01), carbohydrate (partial R2 = 0.34,

p <0.01), condensed aromatics (partial R2 = 0.46, p < 0.05), and tan-
nins abundance (partial R2 = 0.34, p < 0.05). Additionally, soil C
decomposition had a notable association with active functional genes
related to vanillin-lignin decomposition (partial R2 = 0.48, p < 0.01),
and exhibited a significant correlation with the mineral N (partial
R2 = 0.42, p <0.05) in the soil. These findings suggest that priming
effects under warming either directly or indirectly related to the
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changes in active microbial community functional genes and N avail-
ability (Supplementary Tables 3-6 and see Supplementary Note 4 for
details). Moreover, while the inactive bacterial communities were not
directly involved in fresh carbon degradation, they could be intricately
linked to the consumption of native SOC61. Based on Mantel and
Pearson correlation analysis, specific taxa within the inactive group
(e.g., Acanthopleuribacteraceae, Clostridiales_Incertae Sedis III, Chloro-
flexaceae, etc.) were found to be associated with the priming effect,
suggesting their potential role in the degradation of additional native
SOC (Supplementary Table 4, Supplementary Table 5 and see Sup-
plementary Note 4 for details).

Theoretically, two prominent competing hypotheses have been
proposed to elucidate the soil priming effect: the stoichiometric
decomposition hypothesis and the microbial N mininghypothesis28,32

(Supplementary Fig. 11). The stoichiometric decomposition hypoth-
esis assumes that microbial activities, including decomposition and
respiration, would be highest when the stoichiometry of substrates
matches that of microbial demands32,62 (Supplementary Fig. 11a–d).
Specifically, when the C/N ratio exceeds the microbial optimal, an
increase in available N draws the C/N ratio closer to this optimal. This
enhances microbial activities, thus increasing C decomposition and
the priming effect (Supplementary Fig. 11a). Conversely, an increase in
fresh C input shifts the C/N ratio away from the optimal, which could
induce N deficiency, weaken microbial activity, and lead to a reduc-
tion in C decomposition and the priming effect (Supplementary
Fig. 11b). In contrast, the microbial N mining hypothesis posits that
microorganisms can use labile C as an energy source to decompose
the native SOC for additional nutrient/nitrogen (N)25,63 (Supplemen-
tary Fig. 11e-11i).

Our results indicate that (i) Mineral N increased with native soil
respiration stimulated by the addition of fresh C (Fig. 4b; R2 = 0.51,
p < 0.050); (ii) Plant biomass increased with decreased native soil
respiration stimulated by the addition of fresh C (Fig. 4c; R2 = 0.60,
p = 0.062). These observations align more closely with the sce-
narios predicted by the stoichiometric decomposition hypothesis,
especially for the C/N ratio exceeds the microbial optimal scenar-
ios (Supplementary Fig. 11a, b). Furthermore, the stimulation of
potential r-strategists, such as α-Proteobacteria and Bacilli, by the
addition of fresh C (Supplementary Table 3, Supplementary
Table 5, and see Supplementary Note 4 for details) is in line with
previous observations that r-strategists’ dominance elucidates the
enhanced SOM decomposition based on the stoichiometric
decomposition hypothesis32. Therefore, although the roles of
microbial N mining could be not completely ruled out, our data are
more consistent with the stoichiometric decomposition
hypothesis.

Combination of laboratory and field experiments improved soil
C modeling
Since the priming effect has been invoked as an important mediator in
regulating the SOC turnover and C cycling and could be enhanced by
warming, it is inevitable to be included into global-scale models for
better climate projections43,64. A great challenge in ecology is to inte-
grate microbial community information, particularly omics data, into
ecosystem models65. We have recently explored incorporating func-
tional gene data into Microbial-ENzyme Decomposition (MEND)66.
Since the MEND model considers dynamic microbial dormancy and
resuscitation processes regulated by environmental conditions and
substrate availability65,67, it is advantageous to incorporate microbial
activity data into ecosystem models. Our previous results indicated
that incorporating GeoChip-detected functional genes important to C
degradation into the MEND model significantly reduced parameter
uncertainties and improved model prediction of soil microbial
respiration in response to experimental warming14, nitrogen amend-
ment, and elevated CO2

66. While in situ measurements in field experi-
ments is crucial for parameterizing ecosystem models, some
parameters (e.g., maximum specific growth rate and dormant micro-
bialmaintenance rate) could be efficiently constrainedwith laboratory
experimental observations by excluding various cofounding factors
in situ and tracking specific microbial processes68.

Here, we initially calibrated the lab-scaleMEND (lab-MEND)model
using laboratory measurements, including microbial respiration (total
CO2 and

13CO2 fluxes) with or without litter addition, microbial active
fraction, and oxidative (EnzCo) and hydrolytic enzyme (EnzCh) con-
centrations informed by GeoChip-detected functional gene abun-
dances of active communities. Then, we calibrated the field-scale
MEND (field-MEND) model using field measurements, including in situ
heterotrophic respiration rates (Rh), monthly and annual gene abun-
dance, and microbial active fraction as well as lab-MEND derived
parameters. For lab-MEND, we found that the simulated total CO2 and
13CO2 fluxes agreed well with the observed data from the 7-day
laboratory incubation (mean absolute relative error
(MARE) = 0.07–0.32; Fig. 5a–c), suggesting that lab-MEND model suc-
cessfully captured the C dynamics observed by the priming experi-
ments. Additionally, the active fractions based on qSIP and the
response ratios of the GeoChip-based functional genes in active
communities were assimilated into the lab-MEND model (Supple-
mentary Fig. 14), enabling direct constrains on simulated enzyme
production and microbial activation processes.

Since laboratory incubations could overestimate microbial para-
meters such as intrinsic C use efficiency at reference temperature
(Yg)68, it is necessary to evaluate whether our estimates are reasonable
compared to literature before extrapolating them to in situ conditions.

Fig. 2 |Warming enhanced the priming effect and restructured active bacterial
communities. a Response ratios of relative abundances of DOMbetween warming
and control samples in 2016 (Warming vs. Control). Red symbols indicate sig-
nificantly positive response ratios, while blue symbols indicate significantly nega-
tive response ratios. Grey symbols represent non-significant response ratios. Each
symbol represents the average ± 95% CI of four biological replicates (n = 4) of
warmed or control samples. Significance is denoted as follows: *p ≤0.05 and
**p ≤0.01, as determined by using the one-sided Response Ratio test110. No
adjustments weremade formultiple comparisons, and exact p-values are provided
in the Source Data file. b The overall microbial respiration or priming effect during
the 7-day incubation with 13C-labeled straw. The bars represent the average ±
standard error of four biological replicates (n = 4) ofwarmed (red) or control (blue)
samples. Significance is denoted as follows: **p ≤0.01 and ***p ≤0.001 determined
by using one-sided permutation ANOVA. Exact p-values are provided in the Source
Data file. c Abundance of active and total bacterial community after the 7-day
incubationwith plant litter. The bars represent the average ± standard error of four
biological replicates (n = 4) of warmed (red) or control (blue) samples. Significance
is denoted as follows: ***p ≤0.001, determined by using one-sided permutation

ANOVA. Exact p-values are provided in the Source Data file. d The maximum-
likelihood phylogenetic tree of active bacterial ASVs (decomposers) across all
samples. The phyla colors are defined as follows: Firmicutes (taupe brown), Gam-
marproteobacteria (lavender purple), Betaproteobacteria (pastel pink), Alphapro-
teobacteria (light orange), Actinobacteria (dusty pink), Bacteroidetes (eggplant
purple), Unclassified (light khaki), Thaumarchaeota (lime green). W: warmed
samples; C: control samples; rrn: 16S rRNA gene. e PCoA analysis based on Bray-
Curtis dissimilarity metric showing that taxonomic composition of active bacterial
communities are different between warmed (red) and control (blue) samples.
f Yearly means of relative abundance of active bacterial ASVs in in situ warmed
samples during 2010–2016. The least-squaresmean values were determined by the
linear mixed-effects model. Each bar represents the mean ± standard error of 28
biological replicates (n = 28) of in situ warmed (red) or control (blue) samples over
yearly repeated measures during 2010–2016. Significance is denoted as follows:
#p ≤0.1; *p ≤0.05; **p ≤0.01; and ***p ≤0.001, determined by using two-sided
ANOVA. No adjustments were made for multiple comparisons, and exact p-values
are provided in the Source Data file. Source data are provided as a Source Data file.
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Our parameter estimates (Supplementary Table 7) are within reason-
able ranges compared with previous modeling studies65,68. In addition,
one keymicrobial parameter in controlling SOC (i.e., the intrinsic C use
efficiency, Yg) wasmuchbetter constrainedwhen activemicrobial data
were included (0.25–0.32) than excluded (0.47–0.60) (p < 0.001;
Supplementary Fig. 15a). Also, our estimated Yg was reasonable com-
pared to global synthesized ranges69,70.

To determine howmicrobial genomic information and laboratory
data help calibrate ecosystem models, we conducted five model
experiments to test different combinations of calibrationdata forfield-
MEND and the Terrestrial ECOsystem (TECO) models (Fig. 5d). TECO
includes the traditional three soil carbon pools (fast, slow, and pas-
sive), but does not explicitly represent microbial pools and their
processes71. Under both warming and control conditions, TECO had
the largest parameter uncertainties on average (Fig. 5d, dark blue
bars), potentially due to the lack of microbial and enzyme groups to

assimilate additional microbial information. By contrast, the field-
MEND, which assimilated both Rh and in situ gene abundance, reduced
theparameter uncertainty by 3–67% (Fig. 5d, yellowbars). The addition
of active fraction and lab-MEND-derived parameters reduced the
parameter uncertainty by 7–44% and 6-19%, respectively (Fig. 5d, grey
and red bars). The field-MEND, which assimilated all information, had
the highest performance and reduced the parameter uncertainty by
32–37% comparedwithfield-MENDassimilatingRh andgenes (p <0.05,
Fig. 5d, light blue bars). In total, the calibration with all data using field-
MEND reduced the uncertainty by 78% compared with TECO under
warming condition (p <0.01). These results highlighted that integrat-
ing diverse microbial data in ecosystemmodels can effectively reduce
parameter uncertainty.

In general, simple models with very few parameters may underfit
the experimental data, failing to capture the variations in datasets
containing multiple observed variables. Conversely, complex models
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Fig. 3 | Warming stimulates the C-decomposing capacity and activity of active
microbial communities. a PCoA analysis showing that the functional gene com-
position of activebacterial communities is significantly different between warmed
(red) and control (blue) samples. b The congruence between taxonomic (triangle)
and functional gene compositions (circle) of active community assessed by a Pro-
crustes analysis optimized through a PCoA plot (red: warming samples; blue:
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using a two-sided PROcrustean Randomization Test (PROTEST)112, wtih 999 per-
mutations.dResponse ratios ofGeoChip signal intensities ofC-decomposing genes
between the warming and control samples. Red symbols represent significantly
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symbol represents the average ± 95% CI of four biological replicates (n = 4) of
warmed or control samples. Significance is denoted as follows: *p ≤0.05, **p ≤0.01,
and ***p ≤0.001 as determined by using the one-sided Response Ratio test110. No
adjustments weremade formultiple comparisons, and exact p-values are provided
in the Source Data file. Source data are provided as a Source Data file.
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with an excess of parameters may overfit the data, leading to poor
generalization72. To test the impacts of model complexity on model
generalization, we compared the test error (unexplained variance of
the test dataset) for field-MEND models with an increasing number of
parameters calibrated with the training dataset (Supplementary
Fig. 16b and see Supplementary Note 5 for details). Increasing model
parameters may lead to reduced unexplained variance in the training

set. However, if test error rises simultaneously, it suggests overfitting—
the model is overly complex, fitting too closely to the training set and
struggling to predict new data accurately. Our results showed that the
test error decreased with an increasing number of parameters (Sup-
plementary Fig. 16b), suggesting improved model prediction for test
data without overfitting. Nevertheless, in addition to the number of
parameters, the consistently higher test error compared to the training
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Fig. 4 | Potential mechanisms of how warming enhances the priming effect.
a PLS model showing the relationships among soil temperature, soil properties,
active bacterial community and priming effect. The active bacterial community
composition (β-diversity) is represented by the PC1 to PC7 from the PCoA analysis
based on Bray-Curtis dissimilarity metric. Directions for all arrows are from inde-
pendent variable(s) to a dependent variable in the forward selected PLS models
(p <0.05 for both R2

Y and Q2
Y); only the most relevant variables (variable influence

on projection > 1) are presented. Each number without parenthesis near the
pathway is the PLSpartialR2 (Eq. (2)) and the significance is basedonpermutational
test (1000 times) of PLS R2

Y. Each number in the parenthesis is the coefficient of

determination (R2) between the two connected variables and the significance is
basedonPearson correlation test orMantel test (forβ-diversity). The arrowwidth is
proportional to the strength of the relationship determined by the PLS partial R2.
Significance is indicated by *0.01 <p ≤0.05; **0.001 <p ≤0.01; and ***p ≤0.001.
b Linear regression betweenMineral N (NH4

+ + NO3
-) from the field and the primed

C determined in laboratory (red: warming samples; blue: control samples). c Linear
regression between plant biomass from the field and the primed C determined in
laboratory (red:warming samples; blue: control samples). For (b and c),p values are
calculated using a one-sided permutational test, constrained by treatment and
block factors. Source data are provided as a Source Data file.
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error suggests the need for further enhancements in the model’s
structure to improve its generalization capabilities73. Furthermore, the
calibration of more parameters initially increased parameter uncer-
tainty and later decreased it (Supplementary Fig. 16c and see Supple-
mentary Note 5 for details), which indicated that the 14-parameter
MENDhad the least parameter uncertainty among themodels with the
lowest test error. Overall, the current parameter selection improves
model generalization, alleviating the overfitting problem without a
notable increase in parameter uncertainty.

Therefore, we selected the final field-MEND model with the least
parameter uncertainties for subsequent analysis. The model simula-
tion achieved a high correlation between the simulated enzyme con-
centrations and GeoChip-detected oxidative and hydrolytic gene
abundances (Pearson correlation r = 0.59 for EnzCo; r =0.67 for EnzCh,
Supplementary Fig. 14). In addition to the annual GeoChip-detected
gene abundances collected from 2010 to 201614, the model also suc-
cessfully fitted the temporal variations of 22 monthly gene abundance
data points for 2012 and 2016 (Supplementary Fig. 17). The model
simulation also captured magnitudes and changes in microbial active
fractions under control and warming conditions (MARE = 0.12, Sup-
plementary Fig. 14). These results suggested that the field-MEND
model fitted the observed microbial dynamics well with strong con-
straints applied to microbial processes and their controlling
parameters.

We further determined whether the selected field-MEND model
has a better predictive capability for Rh compared with TECO (Fig. 5e).
The field MEND model showed a high goodness-of-fit between the
simulated and observed Rh (Fig. 5e, R2 = 0.55 for warming, R2 = 0.60 for
control). In comparison, the TECOmodel showed a lower performance
on simulating Rh, specifically for warming conditions (R2 = 0.45 for
warming, R2 = 0.60 for control, Supplementary Fig. 14). Hence, this
integrated laboratory and field experiments approach with microbial-
explicit models improves the accuracy and robustness of representing
and modeling microbial feedback in warming and priming processes.

With the calibrated field-MEND model, we further explored the
potential contributions ofmicrobial feedbacks to soil CO2 emissions in
response to the field experimental warming. Model simulations
showed that in situfieldwarming significantly (p <0.001) increased the
2016 annual average ofmicrobial growth (Supplementary Fig. 15b), the
active microbial fraction (Supplementary Fig. 15c), and the decom-
position rates of all three soil C pools in the MEND model (Supple-
mentary Fig. 15d). Particularly, the simulated decomposition rate of
mineral-associated organic C (MOC, a stable and native C pool with a
low reaction rate) increased by 176% under warming (Supplementary
Fig. 15d).

Given the enhanced soil C decomposition, it remains an open
questionwhether increasedC input to soil ingrasslandswould result in
a net change in soil C, considering both priming and replenishment
under warming conditions. In both laboratory and field experiments,
the combinations of priming and replenishment yielded net increases
in soil carbon (Supplementary Fig. 18) under both warming and con-
trol, which is consistent with the results from a previous data-model
synthesis study based on 84 priming experiments74. Our results also
revealed that the experimental warming may decrease the net soil C
gain by reducing replenishment by 1.7% (scaled to percent of annual
plant C input) and increasing the priming effect by 9.1% under the field
condition. Overall, our results suggested that warming enhanced
microbial decomposition and priming processes, potentially leading
to a reduced net gain from plant C input.

By combining long-term field and laboratory analyses with inte-
grated technologies of isotope chemistry, advanced mass spectro-
metry, metagenomics, and ecosystem modeling, this study provides
several important insights into the impacts of experimental warming
on soil priming. First, although soil priming plays a critical role in
terrestrial biogeochemical cycling, the direction, magnitude, and

drivers of priming within the context of climate change remain
elusive24,43,48. Second, despite intensive research on soil priming, our
understanding of its microbial basis and mechanisms is very limited75.
Our results revealed that the abundances of the active functional
groups critical to soil C degradation were greatly promoted under
warming, although the overall diversity of microbial communities is
lower under warming47,53. This is the first demonstration that experi-
mental warming can regulate soil priming via altering the active
microbial community’s functional structure. In addition, assimilating
various types of field and laboratory data is critical, but very challen-
ging, for global ecosystem modeling76,77. Although incorporating
functional gene information into ecosystem models is valuable for
improving ecosystem model performance as we demonstrated
recently14,66,67, how to effectively use both laboratory and field data to
constrain ecosystem models remains challenging. This study repre-
sents the first attempt in using both laboratory-derived active micro-
bial data and functional gene information, as well as diverse field
observations, for robust model parameterization and simulations.
Thus, it is possible to improve the model predictive ability for pro-
jecting future climate change by considering various types of feedback
mechanisms resulting from both field and laboratory experimental
data on plant-soil-microbe interactions and the adaptive changes in
active community microbial diversity and structure at the level of
functional guilds6.

Together, our findings have two important implications for pro-
jecting ecological consequences of future climate warming and eco-
system management. Firstly, our results revealed that warming
intensified positive soil priming effects, leading to increased soil CO2

emissions to the atmosphere, especially if warming coincides with
enhanced plant biomass production. Therefore, the effects of climate
warming on temperate grassland ecosystems could be more pro-
nounced than previously estimated when the dynamic of soil priming
is factored in. This nuanced understanding underscores the com-
plexity of soil carbon responses to climate warming and the need for
integrated models that capture the interplay between soil carbon
dynamics andecosystemprocesses22. Second, because thepositive soil
priming is primarily driven by enhanced microbial activities of several
key bacterial functional groups, it could be counteracted for climate
change mitigation via in situ engineering of microbiome interactions
by adding inhibitive amendments to retard the decomposition activ-
ities of key microbial populations78,79 or by using genetic
approaches80–82 to particularly alter their decomposition activities.
However, further research is necessary to determine whether the
warming-enhanced positive priming and associated mechanisms
learned from this experimental system are applicable to other
ecosystems.

Methods
Site description and field measurements
The in situ warming experiment was carried out in the tallgrass prairie
of Kessler Atmospheric and Ecological Field Station (KAEFS) in
McClain County, Oklahoma, USA (34° 58’ 44”N, 97° 31’ 15”W). Detailed
information of our study site, whichwas initiated in 2009, is described
in our previous study52. The soil classification of the site is Mollisols
(Suborder: Ustolls), which is a well-drained soil formed in loamy sedi-
ment on flood plains83. The soil texture is loamwith 51% of sand, 35% of
silt, and 13%of clay,with a soil bulk density of 1.2 g cm−3. The soil has an
available water holding capacity of 37%, neutral pH (6.64 ± 0.24 in
2009), and a deep (about 70 cm), moderately penetrable root zone52.
The addition of straw powder to soil with a high C/N ratio (C/N ratio:
24), similar as litterfall in natural conditions, could lead to the soil to be
more N limited for microbes84.

Constantan-copper thermocouples wired to a Campbell Scientific
CR10Xdatalogger (Campbell Scientific Inc., Logan,UT,USA)wereused
to measure and record soil temperature every 15min at the soil depth
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of 7.5, 20, 45, and 75 cm at the center of each plot. In this study, we
used the annual average temperature data in 2016 (the sampling year)
at a depth of 7.5 cm. Soil volumetric water content at a depth of
0–15 cm was measured every month by placing a portable time-
domain reflectometer (Soil Moisture Equipment Corp., Goleta, CA,
USA) in three randomly selected locations of each plot. Then the
annual average soil moisture in 2016 was calculated. Above-ground
plant biomass was measured during the peak growing season (Sep-
tember 2016) by a modified pin-touch method85.

Sample preparation and geochemical measurements
Eight soil samples used in this study were collected in September 2016
at a depth of 0–15 cm from 4 warmed plots and 4 control plots (i.e.,
four biological replicates for warming or control). Visible roots longer
than 0.25 cm and stones were removed from soil by 2-mm-meshmetal
sieves (Hogentogler Co. Inc., Columbia, MD, USA), followed bymanual
mixing to homogenize soils thoroughly. All samples were then ana-
lyzed for soil geochemistry by the Soil, Water, and Forage Analytical
Laboratory at Oklahoma State University (Stillwater, OK, USA) (Sup-
plementary Table 1). Organic C and total nitrogen contents of the soil
were determined by a dry combustion C and nitrogen analyzer (LECO
Corp., St. Joseph, MI, USA). Soil pH was measured using a water-to-soil
mass ratio of 2.5:1 by an Accumet XL15 pH meter with a calibrated
combined glass electrode (Accumet Engineering Inc., Westford, MA,
USA). The dissolved organic matter (DOM) in both warming and con-
trol soil samples was analyzed by an ultrahigh-resolution Fourier
transform ion cyclotron resonance mass spectrometer (Tesla solariX
XR system, Bruker Daltonics, Billerica, MA, USA), adhering to estab-
lished methods86. Raw spectral data were processed using software
BrukerDaltonik v4.2 and Formularity (v1.0)87. The identified molecules
were subsequently classified into 8 compound classes, based on their
respective van Krevelen diagrams88.

SIP incubation and measurements of respiration and
priming effect
13C- and 12C-straw of common wild oat (Avena fatua)89 was used as
stable isotope probe (SIP) substrates to simulate deposition of grass
litter to the soil. In general, the change of native SOC decomposition
caused by root inputs is referred to as rhizosphere priming effect
(RPE), while those by leaf and stem C inputs as litter-derived priming
effects (LPE)26,90. For the purpose of this study, the priming effects
resulting from litter input are referred to soil priming. The C and N
contents of the straw are 40.10% ± 0.08% and 1.70% ± 0.05%, respec-
tively, determined by the Soil,Water, and Forage Analytical Laboratory
at Oklahoma State University, OK, USA. The 13C atom% of the 13C-straw
was 75.1%, as determined by the Stable Isotope Facility, University of
California, Davis, CA, USA. Before the incubation experiment was set
up, the 13C- and 12C-straw were ground into powder. Three incubation
groups, i.e., (i) with 0.1 g of 13C-straw in 5 g of soil (equivalent to
10mgC/g dry soil) as isotopic treatment, (ii) with 0.1 g of 12C-straw in
5 g of soil (equivalent to 10mgC/g dry soil) as isotopic control, and (iii)
with 5 g of soil as the background, were set up for both in situ warmed
and control samples. To homogenize soil samples with straw, these
three groups were thoroughly stirred with steel spoons. Each replicate
was sealed in a 25-ml lightproof bottle and incubated at 25 °C
for 7 days.

Given that cellulose and hemicellulose constitute over 65% of oat
straw’s composition60 and hydrolyze faster than lignin, prolonged
incubation could lead to severe cross-feeding issues among microbial
community members91,92. Thus, to minimize the potential for cross-
feeding and enhance the accuracy of subsequent quantitative stable
isotope probing (qSIP) experiments58,91–93, the incubation period was
set to seven days in this study. This strategy ensures a reliable identi-
fication of carbon decomposers. Based on reviewing previous studies
which utilized complex carbon (e.g., straws or leaves) to study priming

effects31,38,94–98, the typical range for C addition amounts is between
2.5mgC/g soil and 12mgC/g soil. Additionally, the straw is degraded
and assimilated much slower by bacteria compared to glucose, as the
turnover time for straw is ~104 to 106 longer than the glucose99,100. A
previous study using the qSIP to study the priming used 1.25mg glu-
cose (equivalent to 0.5mgC/g soil) as the fresh carbon for 1 g soil
incubation61. Given these, a relatively higher amount of 13C-straw is
essential for ensuring efficient 13C incorporation into the DNA of active
bacteria and producing a discernible 13C-incorporation signal for
identification of active bacteria during 7-day incubation. Therefore, we
decided to add 0.1 g of straw to 5 g of soil (10mgC /g dry soil) for both
determining the priming effect and efficiently labeling DNA of bacteria
for qSIP.

However, one week incubation might miss the information of
whether more recalcitrant C such as lignin can affect priming. Con-
currently, whether smaller straw additions would yield comparable
results for the priming effect in response to warming? Thus, con-
sidering the potential for continued carbon processing beyond a
seven-day incubation period, we also established another 63-day
incubation experiment. This incubation experiment was set up exactly
as above described, with the only differences being the addition ofC at
3mgC/g soil and an extended incubation period of 63 days.

Headspace gas was collected daily into 12-ml evacuated vials
(Labco Ltd., Lampeter, UK), after which the bottles were opened and
refreshed for 30min on a clean bench with the maximal flow of wind.
To avoid gas contamination from the atmosphere, we diluted sampled
gas by injecting 10ml of N2 gas into each vial, generating a positive
pressure to the atmosphere. 12CO2 and 13CO2 concentrations were
measured at the Stable Isotope Facility, University of California, Davis,
California, USA. The concentrations of CO2 and 13CO2, measured in
parts per million (ppm), were converted to moles using the ideal gas
law (PV = nRT)58. For this calculation, the pressure (P)was set at 101 kPa,
and the volume (V) was determined bymultiplying 25ml with the CO2

or 13CO2 concentration in ppm. The gas constant (R) was taken as
8.314 J K−1 mol−1, and the temperature (T) was maintained at 298K.
Finally, the percentage of the CO2-C deriving from 13C-straw was cal-
culated as:

%Csubstrate =
δC � δT

δC � δL
× 100% ð1Þ

where δC is the δ13C value of respired CO2 from the soil with no straw,
δT is theδ

13C value of respiredCO2 fromthe soil with 13C-straw, and δL is
the δ13C value of 13C-straw.

For all samples,microbial respiration was calculated as the sumof
the amount of 12CO2 and

13CO2. The amount of SOC primed by straw
was calculated as totalmicrobial respiration after straw additionminus
the amount of C respired from straw, and thenminus the amount of C
respired from the soil with no straw.

DNA extraction
To avoid the potential cross-feeding among different microbial
populations, we only analyze the active populations in the 7-day
incubation experiment instead of the 63-day experiment. After 7-day
incubation, soil DNA was extracted with a freeze-grinding method101,
followed by PowerMax Soil DNA Isolation Kit (Cat. No. 12988-10, MO
BIO Laboratories, Inc., Carlsbad, CA, USA) according to the manu-
facturer’s protocol. DNA quality was assessed based on spectrometry
absorbance at wavelengths of 230 nm, 260nm, and 280 nm by a
NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). The absorbance ratios of 260/280nmwere about
1.8, and 260/230 nm were about 1.7, which were considered good in
DNA quality. DNA was quantified by PicoGreen using a FLUOstar
OPTIMA fluorescence plate reader (BMG LabTech, Jena, Germany),
which showed that DNA concentrations were 49.1 ± 12.7 ng/µl (mean ±
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s.d., n = 24), with no difference (p >0.05) among warming/control
treatments or isotopic treatments. Soil DNA was stored at −80 °C
before further analyses.

Density-gradient ultracentrifugation of soil DNA
To reveal the effect of 13C-straw incubation on soil DNA density, we
performed density-gradient ultracentrifugation58. Briefly, we cen-
trifuged 5.1ml of a solution composed of 3.6 µg of soil DNA (the
minimumtotalDNAamount in all samples), 1.90 gml−1 cesiumchloride
(Cat. No. 02150589-CF, MP Biomedicals, Santa Ana, CA, USA), and a
gradient buffer (1mM EDTA, 0.1M KCl, and 0.1M Tris-HCl), reaching a
final density of 1.725 gml−1. The solution was sealed in a polyallomer
centrifuge tube (Cat. No. 342412, Beckman Coulter, Brea, CA, USA)
with a cordless tube topper and centrifuged on a Vti 65.2 rotor of an
Optima L-XP ultracentrifuge (Beckman Coulter, Brea, CA, USA) at
177,000 g and 20 °C for 48 h. The solution from each centrifuged tube
was then divided into twenty-four fractions (14 drops per fraction/
~0.21ml per fraction). The buoyant density of each fraction was
determined by an AR200 digital refractometer (Reichert Inc., Depew,
NY, USA). DNA in each fraction was then precipitated with 20 µg of
glycogen and two volumes of PEG solution (30% PEG 6000 and 1.6M
NaCl), washed with 70% ethanol, and resuspended in 35 µl of
ultrapure water.

qPCR of 16S rRNA genes
qPCRwas used to determine the abundance of 16S rRNA genes in each
fraction. Universal primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) were used to target the
V4 region of 16S rRNA genes102. qPCRwas performed in triplicate 20-μl
reactions containing 10μl of SsoAdvanced Universal SYBR Green
Supermix (Cat. No. 1725274, Bio-Rad, Hercules, CA, USA), 350nM of
each primer, and 1μl of template, using a thermocycler program of 35
cycles of 95 °C for 20 s, 53 °C for 25 s, and 72 °C for 30 s on an IQ5
Multicolor Real-time PCR Detection System (Bio-Rad, Hercules, CA,
USA). Gene abundances (copy numbers) were determined by a stan-
dard curve generated with the 16S rRNA gene segment on the TA
cloning vector within E. coli JM109 cells (Cat. No. A1360, Promega,
Madison, WI, USA).

Amplicon sequencing of 16S rRNA genes
A two-step PCR was performed to generate amplicon libraries of 16S
rRNA genes in each fraction58. Briefly, the first step of the V4 region of
16S rRNA genes was amplified by the universal primers 515F and 806R
in triplicate 25-μl reactions containing 2.5μl of 10× AccuPrime PCR
buffer containing dNTPs (Cat. No. 12339016, Invitrogen, Grand Island,
NY, USA), 0.2μl of AccuPrime High-Fidelity Taq Polymerase, 1μl of
10μM forward and reverse primers, and 10 ng of template DNA. The
thermocycler programwas as follows: 94 °C for 1min., 10 cycles of 94
°C for 20 s, 53 °C for 25 s and 68 °C for 45 s, followed by a final
extension at 68 °C for 10min. Bead purification was performed to
retrieve amplicons generated by the first step, using AMPure XP
magnetic particles (Cat. No. A63882, Agencourt Bioscience Corp.,
Beverly, MA, USA) with a 1:1 volume to the reactions. The second step
of PCR also used triplicate 25-μl reactions comprised of 2.5μl of 10×
AccuPrime PCR buffer containing dNTPs, 0.2μl of AccuPrime High-
Fidelity Taq Polymerase, 1μl of 10μM515F and 806Rprimer combined
with the Illumina adaptor sequence (a pad and a linker of two bases,
and a unique barcode sequenceon the reverse primer), and 15μl of the
purified PCR product of the first step. The thermal cycling condition
was the same as the first step except for a cycle number of 20. Tripli-
cate PCRproducts from the second stepwere combined, examined for
DNA band of 16S rRNA genes by agarose gel electrophoresis, and
quantified by PicoGreen.

PCRproducts fromall fractionswerepooled at equalmolarity and
sequenced in the same MiSeq run103. First, raw sequence reads

underwent PhiX removal, followed by assignment to corresponding
samples according to barcodes with 0 mismatches, and trimming of
primers using a pipeline built on the Galaxy platform (http://zhoulab5.
rccc.ou.edu:8080/). Next, high-resolution amplicon sequence variants
(ASVs) with filtered sequencing errors were identified from the reads
using the DADA2 procedure104 with the dada2 package (version 1.12) in
R software (version 4.2.2). Given we used the same amount of DNA for
each sample, the ASV table was normalized by rarefying the sequence
counts of each fraction based on the total 16S rRNA gene copies in the
corresponding fraction determined by qPCR. The rrarefy function in
the vegan R package (version 2.4.6) was employed for the
rarefaction105. Lastly, a representative sequence of each ASV was
annotated through SILVA ribosomal RNA gene database (v. 132) with a
confidence score of 50%106. The 16S rRNA gene copy numbers were
annotated through the RDP classifier107.

Identification and quantification of active bacterial C
decomposers
Active C decomposers were identified by 13C-qSIP56,108, a newly devel-
oped technology with minor modifications. Briefly, the weighted
density based on the abundance in each fraction of each ASV (calcu-
lated by combining 16S rRNA genes sequencing and qPCR data) was
determined for soil samples with 13C- or 12C-straw. The density shift
(difference of density) of the ASV between 12C-straw samples and
13C-straw sampleswas calculated for all four biological replicates, and a
90% confidence interval (CI) was calculated for the density shift using
the bootstrap method with the boot (v.1.3-22) package in R software.
TheASVwas considered as an active decomposer if the lower boundof
the CI was above zero. To determine the total number of 16S rRNA
gene copies per gram of soil for each sample (copies/g soil), the total
number of 16S rRNA gene copies in each fraction (copies/μl) was
scaled by factors such as the resuspension volume, DNA elution
volume, the amount of soil used for DNA extraction, and the volumeof
DNAused for Density-gradient ultracentrifugation, as described by the
following equation (Eq. (2)). The relative abundance of each ASV was
then calculated by dividing its sequence reads by total sequence reads
from above normalized ASV table. From this, the absolute abundance
of each ASV in each sample was derived by multiplying the total
number of 16S rRNA gene copies by its corresponding relative abun-
dance. This absolute abundance could further be adjusted based on
the copy number of the 16S rRNAgeneper cell for eachASV. The active
bacterial abundance was then computed by summing the absolute
abundances of ASVs identified as active carbon decomposers.

Atotal =
Pn

i = 1ðaiÞ×Ve ×Vr

Vd ×M
ð2Þ

Atotal.soil is the total copy numbers in soil sample (copies/g soil), i
each density fraction, n is the number of fractions, a is the 16S rRNA
gene abundance in each density fraction (copies/μl), Vd is the volume
of DNA used for Density-gradient ultracentrifugation (μl), Ve is the
elution volumeofDNAextraction (μl),Vr is the resuspension volumeof
DNA precipitates (μl), and M is the amount of soil used for DNA
extraction (g).

Determination of functional community structure by GeoChip
microarray
The functional capacity of the active bacterial community was deter-
mined by GeoChip 5.0S58. Briefly, four fractions of each 13C-straw
sample were selected and regarded as representative for the active
bacterial community if 16S rRNA genes of the corresponding 12C-straw
samples at the same density fraction were close to zero (Supplemen-
tary Fig. 4). Approximately 50ng of DNA separated from 13C-fractions
in warmedor control samples were amplified using a Templiphi kit (GE
Healthcare, Little Chalfont, UK). Then, 2 µg of amplified DNA was
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labeled with a fluorescent dye (Cy-3) dUTP using random primers and
Klenow fragment of DNA polymerase I at 37 °C for 6 hrs, followed by
heating at 95 °C for 3min. Labeled DNA for each sample was purified
with QIAquick PCR purification reagents (Qiagen Inc., Hilden, Ger-
many) and SpinSmart columns (Thomas Scientific Inc., Swedesboro,
NJ, USA), dried in a SpeedVac at 45 °C for 45min., and resuspended in
43.1 µl of hybridization buffer containing 27.5 µl of 2× HI-RPM hybri-
dization buffer, 5.5 µl of 10× CGH blocking agent, 2.4 µl of cot-1 DNA,
2.2 µl of universal standard and 5.5 µl of formamide. DNA was hybri-
dized with GeoChip 5.0 S (60K) in an SL incubator (Shel Lab, Corne-
lius, OR, USA) at 67 °C plus 10% formamide and 20 rpm for 24 h.
GeoChip arrays were washed and scanned by an MS 200 Microarray
Scanner (Roche Inc., Basel, Switzerland) at 532 nm and 635 nm. Raw
signal intensities were processed by an online pipeline (http://ieg.ou.
edu/microarray/)83. In brief, poor-quality spotswerefirst identified and
eliminated. Thiswasdeterminedbyflaggingor if the spots had a signal-
to-noise ratio (SNR) less than 2.0. Following this, the normalized
intensity for each remaining spot was calculated. This involved divid-
ing the signal intensity of each spot by the total microarray intensity,
and then multiplying by a constant value, which is the average signal
intensity of all GeoChip data. Finally, a natural logarithmic transfor-
mation was applied to the data. The response ratio of signal intensities
to warmingwas calculated as ln (Iwarming/Icontrol), in which Iwarming is the
signal intensity of C-decomposing genes in warmed samples, and
Icontrol is the signal intensity of C-decomposing genes in control
samples.

Determination of carbohydrates utilization patterns by Biolog
EcoPlates
Biolog EcoPlates (Biolog Inc., Hayward, CA, USA) containing 31 different
labile C sources and one control without C source were used to assess
carbohydrate utilization capacity of soil microbial community before
the SIP incubation. For each soil sample, 0.5 g of soil was mixed with
45ml of 0.85% NaCl solution, shaken for 20min at 180 rpm, and settled
at 4 oC for 30min. Subsequently, 1.5ml of supernatant was mixed with
13.5ml of distilled water and added onto Biolog EcoPlates with 100 µl of
supernatant per well. The Biolog EcoPlates were incubated for 4.5 days
using a Biolog Omnilog PM incubator (Torcon Instruments Inc., Tor-
rance, CA, USA) at 25 °C. Color changes of the wells were transmitted to
absorbance-time curves. The area under the curves was calculated to
assess the utilization of various C sources109.

Statistical and phylogenetic analyses
Most statistical analyses were performed in R software (version 4.2.2).
The difference among 16S rRNA gene abundances was determined by
the one-way ANOVA with a permutation test (Perm-ANOVA) using the
lmPerm R package (version 2.1.0). The statistical significance of the
response ratio analyses for both the GeoChip and DOM data was
assessed using the Response Ratio Test110. The structural differences for
microbial communities betweenwarming and control samples based on
16S rRNA gene sequence data and GeoChip data were determined by
PCoA using vegan R package (version 2.4.6). Since we have identified
which ASVs are the potential active degraders in warming or control
groups, the unique representative sequences from those active ASVs
were used to search for the same ASVs from the 16S rRNA gene
sequencing data spanning 2010-2016 (The data is available in the NCBI
Sequence Read Archive under project no. PRJNA331185)14. The linear
mixed-effectsmodel (LMM) in the lme4 R package (version 1.1–35.1) was
used to determine warming effects on the relative abundance of those
active ASVs during 2010–201614. Based on the LMM, the means of
relative abundances for the active ASVs were least-squares means
(estimated marginal means) produced by the emmeans function in the
emmeans R package (version 1.9.0)14. The difference between respira-
tion and the priming effect was determined by repeated-measure
ANOVA in the vegan R package (version 2.4.6). Linearmodels were used

to detect correlations amongmicrobial communities and C fluxes in the
stats R package (version 3.5.2), which was subsequently tested for sig-
nificance by permutation tests in the lmPerm R package (version 2.1.0).
Mean values and standard errors of the mean are calculated. Unless
otherwise stated, values of p≤0.050 were considered to be significant.
The congruence between taxonomic and functional gene compositions,
and between the DOM and functional gene compositions was deter-
mined by Procrustes analysis86,111 of PCoA coordinates with the Bray-
Curtis dissimilarity metric. The statistical significance of the Procrustes
analysis (i.e., M2) was assessed using the PROcrustean Randomization
Test (PROTEST)112. This involved permutating the data 999 times to
evaluate the significance. The analysis was conducted using the vegan R
package (version 2.4.6).

The maximum likelihood phylogenetic tree was constructed with
the representative sequence for each active ASV. Cultured species of
>99.6% 16S rRNAgenenucleotide identitywith the6 topabundant active
ASVs was obtained from BLASTn on NCBI (blast.ncbi.nlm.nih.gov/Blas-
tAlign.cgi) and anchored into the tree as reference species. MEGA 6.05113

was used to construct the phylogenetic tree with MUSCLE alignment,
maximum likelihood method, and a bootstrap of 1,000 times. Visuali-
zation of the tree was generated by iTOL (itol.embl.de/)114. Phylogenetic
α-diversity was measured as Allen’s phylogenetic entropy, calculated
by entropart R package (version 1.6-13)115. The phylogenetic groups
governed by selection were identified by iCAMP R package (version
1.6.1)116.

To calculate the relative importance of environmental factors in
determining active bacterial phylogenetic diversity, we performed the
model selection analysis using the glmulti R package (version 1.0.8)117.
The importance score of each factor was calculated as the sum of the
Akaike weights for all models containing this factor, with a threshold
value of 0.8117.

PLS model was used to explore the relationships among environ-
mental variables, active bacterial communities, microbial respiration
and priming effect118. Each optimumPLSmodel is forward selected from
all factors which may affect the dependent variable in biology/bio-
geochemistry, based on predictive performance counting in the
explained variation (R2

Y) and model significance (P for R2
Y and

Q2
Y <0.05, where significant Q2

Y helps to avoid overfitting). To visualize
relevant associations, we only include the most relevant variable(s) with
Variable Influence on Projection (VIP) values higher than 1118. When used
as independent variables in PLS, the active community composition was
represented by the PC1 to PC7 from Principal Coordinates Analysis of
the Bray–Curtis distance. Inspired by VIP, we proposed a partial R2 index
based on PLS to represent the proportion of variance explained by each
independent variable (Eq. (3)). As a reference, we also calculated the
pairwise correlation coefficient (as well as theR2) among the factors, and
the significance is based on Pearson correlation (between vectors) or
Mantel test (between distance matrixes). The PLS-related analysis was
performed using ropls R package (version 1.34.0)119, and Mantel test by
vegan R package (version 2.4.6)120.

R2
PLSj =R

2
Y ×

P
f W 2

jf × SSY f

� �
SSY cum

=

P
f W 2

jf × SSY f

� �
SSY

ð3Þ

R2
PLSj Partial R

2 of variable j based on PLS.
Wjf The PLS weight of variable j on component f.
SSY f The sum of squares of Y explained by component f.
SSYcum The cumulative sum of squares of Y explained by all
components.
R2
Y The percentage of Y dispersion (i.e., sum of squares) explained

by the PLS model.
SSY Y dispersion, i.e., sum of squares of Y.
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Laboratory data assimilation and model simulation
We integrated multiple laboratory-derived datasets (respiration
fluxes, SIP-derived microbial active fraction, and GeoChip-detected
functional gene abundances) with the Microbial-ENzyme Decom-
position (MEND) model (Supplementary Fig. 19)14,66 and referred it
as lab-MEND. MEND describes soil organic C pools, microbial bio-
mass C pools, and enzymes C pools. Plant C first enters three soil
organic C pools: two particulate organic carbon (POC) pools and
DOC pools. The microbial pool directly takes up C from DOC and
produces oxidative (EnzCo) and hydrolytic enzymes (EnzCh) to
decompose POC into DOC and mineral-associated organic carbon
(MOC). MEND implements the transition of microbes between the
two physiological states (active and dormant), which have different
C mineralization and enzyme producing abilities. The flux rates are
determined by the governing equations (Supplementary Table 8).
The allocation of fluxes to different pools are described in Supple-
mentary Table 9. The response functions which scale the flux rates
under different pH, temperature and moisture are described in
Supplementary Table 10. The definition and initial ranges of para-
meters used in the equations and functions were described in
Supplementary Table 11. MEND was chosen for reproducing C and
microbial community patterns in lab and field warming experiments
due to its explicit mechanisms explaining priming effects, including
stimulated growth of microbial biomass and transition from a dor-
mant to an active state with fresh carbon input.

In each of the control and warming soil, there were 21 respiration
data points in total, including 7 CO2 fluxes in no litter treatment, 7 CO2,

and 7 13C-CO2 fluxes in 13C litter addition. Together, there were 42
respiration data points from four cases (2 temperature treatments × 2
litter treatments). Additionally, the active microbial abundance and
GeoChip-detected oxidative and hydrolytic gene abundances were
quantified in the 13C-litter addition treatment, providing six more data
points for constrainingmicrobial active fraction and oxidative (EnzCo)
and hydrolytic enzyme (EnzCh) concentrations as additional objective
functions14.

Fivemodel parameters regulating important microbial traits were
calibrated, including microbial growth, maintenance, extracellular
enzyme production, and active versus dormant fractions. These
microbial parameters were the enzyme production rate (pEP), max-
imum specific growth rate (Vg), a ratio (α=Vmt/(Vg+Vmt)) relating spe-
cific maintenance rate (Vmt) to Vg, half-saturation constant for
microbial assimilation of the substrate (KD), and the growth yield at
reference temperature (Yg). The multiple-case version of the MEND
was used since it allows for using one set of parameters to represent
different soils and treatments. We implemented multi-objective cali-
bration of the model121. Each objective evaluates the goodness-of-fit of
a specific observed variable, e.g., cumulative CO2 efflux, or relative
gene abundances (Supplementary Table 12). The parameter optimi-
zation aims to minimize the overall objective function (J) that is com-
puted as the weighted average of multiple single objectives
(Supplementary Table 12)122.

J =
Xm
i= 1

wi � Ji ð4Þ

Xm
i= 1

wi = 1withwi 2 ½0, 1� ð5Þ

where m denotes the number of objectives, and wi is the weighting
factor for the ith (i = 1, 2, …, m) objective (Ji). In the laboratory data
assimilation, Ji (i = 1, 2, 3, 4) refers to the objective function value for
cumulative CO2 efflux, EnzCo, EnzCh, and active fraction, respectively.
Since there are farmore cumulative CO2 efflux observations (e.g., 42 in

control andwarmed soils) than the other variables andCO2 efflux is the
most important variable in soil C studies; we assign a much higher
weighting factor to cumulative CO2 efflux than the other three objec-
tive functions (EnzCo, EnzCh and active fraction), i.e., w1 = 5/8 and
w2 =w3 =w4 = 1/8.

Themean absolute relative error (MARE) was used to estimate the
model performance between simulated and observed cumulative soil
CO2 efflux, active bacterial fraction, and functional gene abundances.
Calibration was accepted when theMARE was smaller than 0.465,68. We
did not adopt coefficient of determination (R2) as the objective func-
tion for the respiration fluxes in the laboratory data assimilation and
model simulation58,68 because the R2 would be overestimated for
observations that increase steadily such as cumulative CO2 efflux in
this case.

MARE =
1
n

Xn
i = 1

Ysim ið Þ � Yobs ið Þ
Yobs ið Þ

����
���� ð6Þ

MARE represents the average deviations of predictions (Ysim)
from their observations (Yobs), and lowerMARE values (MARE ≥0) are
preferred.

The uncertainty of optimized parameters was quantified by the
Critical Objective Function Index (COFI) method65. The COFI was
computed as Jcr (Eq. (7)). The feasibleparameter spacewasdetermined
by the parameters resulting in the total objective function values
between Jopt and Jcr. The parameter uncertainty ranges quantified in
laboratory data assimilation were used in the field data assimilation as
described in the next section.

Jcr = Jopt � 1 +
p

n� p
� Fα,p,n�p

� �
ð7Þ

where Jopt denotes theminimumobjective function value, n represents
the number of observations, p represents the number of calibrated
parameters, and Fα,p,n�p denotes the value of the F-distribution given
α = 0.05 and the degree of freedom, p and n–p.

As Yg plays a pivotal role in microbial respiration and growth, we
conducted a comparative analysis of parameter uncertainty in the
model calibration process, with and without the data on active
fraction.

Field data assimilation and model simulation
After calibrating the lab-MEND, we incorporated its parameter ranges,
microbial genomic information andfieldwarming experimentdatasets
into a newMENDmodel called field-MEND (Supplementary Fig. 20). To
determine how microbial genomic information and laboratory data
help calibrate ecosystemmodels, we conducted five experiments with
various combinations of calibration data for field-MEND and Terres-
trial Ecosystem (TECO) models: i). TECO model calibrated with Rh. ii).
Field-MEND model calibrated with Rh and microbial genomic infor-
mation, that is, gene abundances of oxidative (EnzCo) and hydrolytic
enzymes (EnzCh). iii). Field-MEND calibrated with Rh, genomic infor-
mation and microbial active fraction. iv). Field-MEND calibrated with
Rh, genomic information and lab-MENDderivedparameter uncertainty
ranges. v). Field-MEND calibrated with all available informa-
tion (Fig. 5d).

To assess the impact of model complexity on generalization
and parameter uncertainty, we first divided the dataset into a
training dataset (covering the first 3/4 data) for calibration and a
test dataset (comprising the subsequent 1/4 data) for evaluating
the model’s generalization capability. We then calibrated models
with varying numbers of undetermined parameters using the
training dataset. The parameters selected for calibration at each
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level of complexity were determined based on their sensitivities,
which were evaluated using the Multi-Objective Parameter Sensi-
tivity Analysis (MOPSA) method (see Supplementary Note 5 for
details)68,123. For each level of complexity in the MEND model, the
uncertainty of each parameter was estimated using the UQ-COFI
method67 and then averaged across all calibrated parameters. By
executing the calibrated models, we calculated the goodness-of-fit
(R²) for heterotrophic respiration (Rh) in the test dataset and
compared the unexplained variance (1−R²) across different levels
of model complexity.

TECO is a conventional CENTURY-like model, where the decom-
posed soil organic C is proportional to the C pool size (Supplementary
Fig. 19). In TECO, Plant biomass enters litter C, which is decomposed
into CO2 and transformed into soil C pools. Soil C pools are then
decomposed into CO2 and transformed into more recalcitrant C. Soil
carbon decomposition rates vary with temperature and moisture and
are calculated as the product of baseline turnover rate and scaling
functions for temperature and water stress. TECO includes the tradi-
tional three soil C pools (fast, slow, passive) and canpredict ecosystem
dynamics. Compared to MEND, TECO does not include specific
microbial pools and enzymes, therefore, limits its ability in assimilating
microbial trait information71.

The field warming experiment datasets (e.g., daily GPP, soil
temperature, soil moisture, and Rh) used for field data assimilation
were reported in our previous study14.In addition to the annual
GeoChip-detected gene abundances collected from 2010-2016, we
added 22 monthly GeoChip-detected gene abundances data points
collected in 2012 and 2016. As the field dataset has a larger sample
size of observation than the laboratory dataset, we could calibrate
more parameters for field-MEND. Thirteen model parameters that
regulate microbial processes were selected, including three para-
meters relevant to enzyme production and turnover (rE, pEP and
fpEM), two parameters relevant to C flow to dissolved organic C (fD
and gD), eight parameters relevant to microbial growth, main-
tenance and dormancy (Vg, α, KD, Yg, kYg, β and ψA2D) and tem-
perature sensitivity (Q10)

124. We replaced the initial parameter
ranges of field-MEND with the calibrated parameter uncertainty
from lab-MEND (Supplementary Table 7) before starting the cali-
bration process for the 4th and 5th model experiments. For TECO
model, we calibrated 10 parameters, including seven for baseline
turnover rates of seven plant biomass, litter and soil C pools as well
as three for scaling functions controlling temperature sensitivity
and moisture response in C decomposition.

The model parameters of the field-MEND and TECO were
optimized by achieving high goodness-of-fit of model simulations
against in situ observations. For each of the observed variables, an
objective function was assigned to quantify the model performance
between observation and simulation (Supplementary Table 12). The
parameter optimization aimed to minimize the overall objective
function as described in Eqs. 4–5. For this field data assimilation, the
coefficient of determination (R2, Eq. (8)) was used to evaluate the Rh

because it is frequently measured, and the absolute values can be
directly compared between observations and simulations. The
MARE (Eq. (6)) was used to evaluate the variables (e.g., microbial
biomass, active fraction, and the warming response of enzyme
concentration) with only a few measurements, and the absolute
values can be directly compared. To capture the temporal variations
of enzyme concentrations, the correlation coefficient (r, Eq. (9)) was
used to evaluate the correlation between observed and simulated
values, which could omit themagnitude and unit differences in gene
abundance data and simulated enzyme concentration. Similar to
the laboratory data assimilation, a much higher weighting factor to
Rh (w1 = 5/9) was assigned than the other four objective functions
(MBC, active fraction, EnzCo and EnzCh, w2 = w3 = w4 = w5 = 1/9).
This approach ensures that the model’s performance in predicting

Rh is prioritized, while still considering the other variables.

R2 = 1�
Pn

i = 1 Ysim ið Þ � Yobs ið Þ
� �2

Pn
i = 1 Yobs ið Þ � �Yobs

� �2 ð8Þ

r =

Pn
i = 1 Yobs ið Þ � �Yobs ið Þ

� � � Ysim ið Þ � �Ysim ið Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1 Yobs ið Þ � �Yobs

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i = 1 Ysim ið Þ � �Ysim

� �2q ð9Þ

The R2 value quantifies the proportion of the variance in the
response variables that can be predicted from the independent vari-
ables. A higher R2 value (R2 ≤ 1) indicates better model performance.
The r value quantifies whether two variables change in the similar
direction and degrees, and higher r values (|r | ≤1) means better model
performance.

The field model data assimilation generated five sets of best-fit
parameters for the five model experiments. Parameter uncertainty
ranges for each set were calculated according to Eq. (7). To exclude
differences in mean values of parameters, the coefficient of variation
(CV) of parameters was calculated to compare parameter uncertainty
between field-MEND and TECO models. Since the field-MEND model
calibrated with all available information minimized the parameter
uncertainty, we selected it to conduct subsequent model simulation
from 2010 to 2016 to evaluate prediction accuracy and explore the
potential contribution of microbial communities to in situ soil C
dynamics and priming effects.

Simulation of MEND and TECO for prediction
We ran the model simulation from 2010 to 2016 with the best para-
meter set obtained from the calibration processes for field-MEND.
The simulated values of Rh, microbial enzyme concentration (EnzCo
and EnzCh) and active fraction were extracted for the measurement
periods and compared with the observations to assess model pre-
diction accuracy. We also ran model simulation for TECO and com-
pared its prediction accuracy of Rh with field-MEND. Using field-
MEND, we further obtained the simulated microbial growth rate,
microbial active fraction, and the decomposition rates of three SOC
pools in 2016. Similar to a previous study74, we conducted both lab-
MEND and field-MEND simulations to estimate SOC changes in
response to litter/plant addition under control and warming. In plant
C-added scenarios, 13C labeled plant C and 12C labeled native soil C
were used to trace CO2 sources. The plant C-added scenario of lab-
MEND simulations follows the incubation experiment in this study. In
field simulations, plant C input remained constant for the plant C
addition scenario, while it was excluded in 2016 for the non-addition
scenario. Then, we calculated the annual replenishment (remaining
added litter C aftermicrobial respiration), primed soil C (respired soil
C with plant C addition minus respired soil C without plant C addi-
tion), and the net effect of plant C addition (i.e., the sum of replen-
ishment and priming effect).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw sequences of 16S rRNA gene amplicons after the 7-day incubation
with straw are available in the NCBI SRA database under accession
number PRJNA595391. Raw sequences of 16S rRNA gene amplicons for
yearly warming field sites are available in the NCBI SRAdatabase under
accession number PRJNA331185. GeoChip raw and normalized signal
intensities are deposited in the BioStudies under accession number E-
MTAB-13326. All other relevant data are available in Supplementary
Information. Source data are provided with this paper.

Article https://doi.org/10.1038/s41467-024-45277-0

Nature Communications |         (2024) 15:1178 14

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA595391
https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA331185
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13326
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-13326


Code availability
MEND model codes are available in Zenodo with the DOI identifier at
https://doi.org/10.5281/zenodo.10498280.
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