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Ubiquitin ligase RNF20 coordinates
sequential adipose thermogenesis with
brown and beige fat-specific substrates

Yong Geun Jeon 1, Hahn Nahmgoong1, Jiyoung Oh2, Dabin Lee3,
Dong Wook Kim3, Jane Eunsoo Kim1, Ye Young Kim 1, Yul Ji1, Ji Seul Han 1,
Sung Min Kim1, Jee Hyung Sohn1, Won Taek Lee 1, Sun Won Kim 1, Jeu Park1,
Jin Young Huh1,4, Kyuri Jo 5, Je-Yoel Cho 3, Jiyoung Park 2 &
Jae Bum Kim 1

In mammals, brown adipose tissue (BAT) and inguinal white adipose tissue
(iWAT) execute sequential thermogenesis to maintain body temperature
during cold stimuli. BAT rapidly generates heat through brown adipocyte
activation, and further iWAT gradually stimulates beige fat cell differentiation
upon prolonged cold challenges. However, fat depot-specific regulatory
mechanisms for thermogenic activation of two fat depots are poorly under-
stood. Here, we demonstrate that E3 ubiquitin ligase RNF20 orchestrates
adipose thermogenesis with BAT- and iWAT-specific substrates. Upon cold
stimuli, BAT RNF20 is rapidly downregulated, resulting in GABPα protein
elevation by controlling protein stability, which stimulates thermogenic gene
expression. Accordingly, BAT-specific Rnf20 suppression potentiates BAT
thermogenic activity via GABPαupregulation.Moreover, upon prolonged cold
stimuli, iWAT RNF20 is gradually upregulated to promote de novo beige adi-
pogenesis. Mechanistically, iWAT RNF20 mediates NCoR1 protein degrada-
tion, rather thanGABPα, to activate PPARγ. Together, currentfindings propose
fat depot-specific regulatory mechanisms for temporal activation of adipose
thermogenesis.

In mammals, adipose tissue plays a key role in regulating energy
homeostasis and maintaining body temperature1,2. Adipose tissues are
largely divided into white adipose tissue (WAT), which stores extra
energy in the form of triglycerides, and brown adipose tissue (BAT),
which produces heat through uncoupling protein 1 (UCP1) in the
mitochondria3. In rodents, brown-like thermogenic adipocytes called
beige (or brite) adipocytes are induced in inguinal WAT (iWAT) by
hormonal and metabolic stimuli4–6. Catabolic capacity of thermogenic

adipocytes has attracted considerable attention as a potential
approach to counteract metabolic diseases7–9.

In response to cold stimuli, mammals sequentially activate adi-
pose thermogenesis for survival. At the acute phase of cold stimuli
(~hours), BAT rapidly stimulates heat generation by activating brown
adipocytes3,10, thereby playing the first line of defence against hypo-
thermia. Further, in the presence of chronic cold stimuli (>1 day), beige
adipocytes are newly differentiated from a subset of preadipocytes
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expressing PDGFRβ/CD81/BST2 in iWAT to increase wholebody ther-
mogenic capacity6,11,12, forming the second line of the thermo-
regulatory defence system. As each fat depot arises from distinct
developmental origins13 and reacts differently to cold stimuli, ther-
mogenic execution of brown and beige fat might be differently regu-
lated by fat depot-specific mechanisms. Althoughmany recent studies
have elucidated the origin and key factors of brown and beige fat
thermogenesis12,14–21, tissue-specific and temporal regulatory mechan-
isms of brown and beige fat thermogenesis upon cold exposure peri-
ods have not been well elucidated.

Emerging evidence suggests that E3 ubiquitin ligase regulates its
substrates in a stimulus-dependent and tissue-specific manner22–24.
Recently, it has been reported that E3 ubiquitin ligase ring finger
protein 20 (RNF20) plays various roles in metabolic tissues. In WAT,
RNF20 promotes nuclear corepressor 1 (NCoR1) degradation, thereby
activating peroxisome proliferator-activated receptor gamma (PPARγ)
and stimulating white adipocyte differentiation25,26. Also, in liver and
kidney cancer, RNF20 promotes protein degradation of sterol reg-
ulatory element binding protein 1c (SREBP1c) to regulate lipid
metabolism27–29. Further, RNF20 also promotes ubiquitination of other
substrates suchashistoneH2B30, Eg531, andeEF1BδL32 in a cell type- and
stimulus-dependent manner, raising the possibility that RNF20 might
play distinct roles in brown and beige fat cells for adipose
thermogenesis.

In this study, we demonstrate that RNF20 controls brown and
beige fat thermogenesis with fat depot-specific substrates during cold
stimuli. Upon acute cold stimuli, BAT RNF20 facilitates rapid thermo-
genic activation by guanine and adenine-binding protein alpha
(GABPα) protein stability control. In addition, upon chronic cold sti-
muli, iWATRNF20potentiates beige adipocyte differentiation through
NCoR1degradationother thanGABPα, which stimulates PPARγ activity
for adipogenesis. Together, our data suggest that the sequential
execution of adipose thermogenesis is exquisitely regulated by fat-
depot-specific RNF20 substrates.

Results
Upon acute cold, BAT RNF20 downregulation potentiates ther-
mogenic activity
Recently, it has been reported that RNF20potentiates white adipocyte
differentiation25,26. When we examined the potential roles of RNF20 in
brown adipocyte differentiation, no significant changeswere observed
in lipid accumulation or expression of adipogenic markers by
RNF20 suppression in brown preadipocytes (Supplementary
Fig. 1a–d), implying that RNF20 might not have a profound effect on
brown adipogenesis, which appears to be different from white
adipogenesis14,33. Nonetheless, themRNA level ofUcp1was elevated by
RNF20 suppression in differentiated brown adipocytes (Supplemen-
tary Fig. 1b, d), implying that RNF20 might contribute to thermogenic
gene expression in brown adipocytes.

To investigate the physiological roles of RNF20 in brown adipo-
cytes, we examined the RNF20 level during cold stimuli. When differ-
entiated brown adipocytes were treated with β-adrenergic agonists,
such as isoproterenol, the level of RNF20 protein was rapidly down-
regulated, which preceded an increase in UCP1 (Fig. 1a). Furthermore,
with cold stimuli, RNF20 protein was quickly decreased and its sub-
strate NCoR1 protein was increased in BAT (Fig. 1b and Supplementary
Fig. 2a, b). Conversely, when mice were exposed to warm environ-
ments after cold stimuli, the level of RNF20was greatly upregulated in
BAT (Supplementary Fig. 2c), suggesting that cold stimuli would
decrease BAT RNF20. Also, we found that Rnf20was downregulated in
high thermogenic brown adipocytes34 compared to low thermogenic
brown adipocytes (Supplementary Fig. 2d−f), proposing the possibility
that RNF20 might be negatively related to the thermogenic activity of
brown adipocytes. To address this, RNF20 expression was modulated
in differentiated brown adipocytes. RNF20 overexpression (OE)

decreased the expression of thermogenic genes such as Ucp1 and
Pgc1a and attenuated oxygen consumption rate (OCR) in brown adi-
pocytes (Fig. 1c–e). In contrast, Rnf20 knockdown (KD) in differ-
entiated brown adipocytes greatly stimulated thermogenic gene
expression and oxygen consumption (Fig. 1f−h). These results suggest
that RNF20would suppress thermogenic activity in brown adipocytes.

Next, we investigated in vivo roles of RNF20 in BAT thermogen-
esis. AsRnf20wholebody knockoutmice are embryonically lethal35, we
examined thermogenic activity in Rnf20 defective (Rnf20+/−) mice.
Under room temperature (RT) conditions, BAT of Rnf20+/− mice
exhibited a relatively dark brown colour with abundant mitochondria,
accompaniedby small lipid droplets (LDs) compared towild-type (WT)
littermates (Fig. 1i and Supplementary Fig. 3a). Consistently, the
expression levels of mitochondrial and thermogenic genes, as well as
mitochondrial copy number, were enhanced in BAT of Rnf20+/− mice
(Fig. 1j–l). Further, compared to WT mice, upon cold stimuli, Rnf20+/−

mice exhibited higher rectal and BAT temperatures, accompanied by
elevated wholebody heat generation and oxygen consumption
(Fig. 1m–r). In addition, Rnf20+/− mice housed under thermoneutral
(TN) conditions showed enhanced thermogenic capacity during cold
stimuli (Supplementary Fig. 3b–d). Together, these data propose that
cold-induced RNF20 downregulation would potentiate thermogenic
activity in BAT.

BAT-specific RNF20 modulation controls wholebody thermo-
genic activity upon acute cold stimuli
Since Rnf20+/−mice harbour RNF20 defects in all tissues, we attempted
to modulate RNF20 expression in a BAT-specific manner. Injection of
RNF20-expressing plasmid into BAT selectively increased the levels of
RNF20mRNAandprotein in BAT, but not in other tissues (Fig. 2a−c). In
BAT of RNF20OEmice, the levels of thermogenic gene expression and
mitochondrial copy number tended to decrease (Fig. 2d–f, and Sup-
plementary Fig. 4a). In the presence of cold stimuli, BAT RNF20 OE
mice exhibited decreased rectal and BAT temperatures (Fig. 2g–j).
Consistent with these, heat generation and oxygen consumption were
reduced in BAT RNF20 OE mice accompanied by ‘whitening’ of BAT
with enlarged LDs (Fig. 2k, l, and Supplementary Fig. 4b–g), indicating
that elevated RNF20 in BAT would suppress thermogenic execution.

To affirm that RNF20 would regulate BAT thermogenic activity,
RNF20 was selectively knocked down in BAT by siRNA injection
(Fig. 2m, n). In contrast to BAT RNF20 OE mice, BAT RNF20 KD
potentiated thermogenesis upon cold stimuli (Fig. 2o–r). Moreover,
RNF20KD increased the expression of thermogenic andmitochondrial
genes with small LDs (Supplementary Fig. 4h−k). These data suggest
that BAT RNF20 downregulation would be important for conserving
body temperature during acute cold stimuli.

In BAT, RNF20 regulates thermogenesis via GABPα, a crucial
factor for thermogenic activation
To elucidate the underlyingmechanism(s) by which BATRNF20would
control thermogenic activity, BAT proteomes of WT and Rnf20+/− mice
were examined. Proteomics analysis showed that BAT-enriched mito-
chondrial proteins, including NDUFV3 and TOMM40, were upregu-
lated in BAT of Rnf20+/− mice, whereas the levels of WAT-enriched
genes regulating lipid storage were downregulated, accompanied by
NCoR1 accumulation (Fig. 3a–c, Supplementary Fig. 5a–o), indicating
that BAT RNF20 would preferentially regulate thermogenic activity.

As RNF20 is located in the nucleus and regulates the activity of
several transcription factors25,26,28,32,36, gene network analyses were
performed37,38 to identify key thermogenic target(s) in BAT of Rnf20+/−

mice. Notably, we found that the upregulated genes in BAT of Rnf20+/−

mice were mainly regulated by GABPα (Fig. 3d, e), a well-known tran-
scription factor for mitochondrial biogenesis39–41. qRT-PCR validated
that the pattern of mRNA expression of GABPα-regulated mitochon-
drial genes was enhanced in BAT of Rnf20+/− mice (Fig. 3f), implying
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that RNF20 defects in BAT would facilitate transcriptional rewiring by
stimulating GABPα activity.

As it has not been explored whether GABPα might regulate ther-
mogenic activity inBAT,wedecided to examinewhetherGABPαwould
potentiate BAT thermogenesis. Transcriptomic analysis revealed that
genes upregulatedby acute cold stimuli would beprimarilymodulated
by GABPα in BAT (Fig. 3g, h, and Supplementary Fig. 6a). Moreover,
single-cell RNA sequencing analysis showed that high thermogenic
brown adipocyte-enriched genes seemed to be regulated by GABPα
(Fig. 3i, j), proposing that BAT GABPα might upregulate thermogenic
genes. Next, we explored whether GABPα might directly potentiate
expression of thermogenic genes such as Ucp1 and Pgc1a. Motif ana-
lysis showed that there would be a putative GABPα-binding motif in

the enhancer region ofUcp1 and Pgc1a (Fig. 3k, Supplementary Fig. 6b,
c), which was affirmed by luciferase assays and chromatin immuno-
precipitation assays (Fig. 3l, Supplementary Fig. 6d, e). Accordingly,
Gabpa suppression in differentiated brown adipocytes decreased the
mRNA levels of Ucp1, Pgc1a, and Dio2 (Supplementary Fig. 6f). In
addition, in human brown adipocytes, GABPA expression was posi-
tively correlated with UCP1 enhancer activity (Fig. 3m). Further, BAT-
specific GABPα OE upregulated UCP1 protein level and thermogenic
activity upon cold exposure (Fig. 3n, o). Thus, these data suggest that
GABPα would be a crucial activator for BAT thermogenesis.

Next, we raised the question that elevated thermogenic activity in
Rnf20defectivemicemight depend onGABPα stimulation. To address
this, we suppressed GABPα in WT and Rnf20 defective mice through
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siRNA injection. GABPαKD in BAT nullified the increased UCP1 protein
and the enhanced thermogenic activity of Rnf20 defective mice upon
cold stimuli (Fig. 3p, q and Supplementary Fig. 6g). Interestingly, we
found that the level of GABPα protein was elevated in BAT of Rnf20
defective mice (Fig. 3p), implying that RNF20 might regulate GABPα
protein stability. Together, these data suggest that BAT RNF20 would
control acute thermogenic activity by regulating GABPα.

RNF20 promotes GABPα protein degradation in BAT
E3 ubiquitin ligase RNF20 promotes degradation of its
substrates25,29,36,42, which prompted us to explore whether BAT RNF20
might affect GABPα degradation. As shown in Fig. 4a, GABPα protein
washighly expressed inBAT compared to that in iWAT. In addition, the
level of GABPα protein, but not its mRNA, was upregulated by cold
stimuli in BAT (Fig. 4b, c), whichwas negatively correlatedwith RNF20.
Moreover, RNF20 OE in BAT reduced the level of GABPα protein,
whereas RNF20 suppression increased GABPα protein (Fig. 4d, f, h).
Nonetheless, mRNA levels of Gabpa were not altered by RNF20 mod-
ulation (Fig. 4e, g, i), leading us to speculate that RNF20wouldmediate
GABPα protein degradation.

As endogenous RNF20 bound to endogenous GABPα in BAT
(Fig. 4j), we decided to test whether RNF20 might stimulate GABPα
protein degradation. As indicated in Fig. 4k, l, RNF20 OE facilitated
polyubiquitination of GABPα in BAT, whereas RNF20 deficiency
decreased the degree of GABPα polyubiquitination. Furthermore, the
proteasome inhibitor MG132 relieved GABPα degradation by RNF20
(Fig. 4m), and cycloheximide chasing experiments in differentiated
brown adipocytes showed that RNF20 enhanced GABPα degradation
(Fig. 4n, o). Thus, these data propose that RNF20 would stimulate
GABPα degradation in BAT.

Since GABPα is a transcription factor40, we then exploredwhether
RNF20 would affect GABPα activity. RNF20 OE repressed GABPα
activity at its canonical target genes such asMtif243 and Ucp1, whereas
RNF20 KD potentiated GABPα activity (Fig. 4p–s), implying that BAT
RNF20 could regulate thermogenic gene expression by facilitating
proteasomal degradation of GABPα.

In iWAT, RNF20 potentiates beige adipocyte thermogenesis
upon chronic cold stimuli, independent of GABPα
Upon chronic cold exposure (e.g., >1 day), the differentiation of beige
adipocytes, characterised bymultilocular LDs, was boosted in iWAT to
sustain wholebody thermogenesis44 (Fig. 5a). To explore the role of
RNF20 in beige fat thermogenesis, we examined RNF20 levels during
cold exposure. Unexpectedly, unlike BAT, the level of RNF20protein in
iWAT was upregulated upon chronic cold stimuli (Fig. 5b and Sup-
plementary Fig. 7a), with a little alteration of GABPα, implying that

there might be iWAT-specific regulation of RNF20 with its substrates
upon cold stimuli.

To address this, RNF20 was specifically overexpressed in iWAT in
a contralateral manner and then exposed to chronic cold (Fig. 5c, d).
When iWAT temperature was monitored with a thermal camera, the
temperature of iWAT area with RNF20 OE appeared to be higher than
that in the mock control (Fig. 5e and Supplementary Fig. 7b, c).
Moreover, RNF20 OE in iWAT increased the formation of multilocular
adipocytes and potentiated the expression of thermogenic and fatty
acid oxidation genes with slightly enhanced insulin sensitivity upon
chronic cold stimuli (Fig. 5f–h and Supplementary Fig. 7d–m), sug-
gesting that RNF20 would stimulate beige fat thermogenesis upon
chronic cold challenges. Conversely, iWAT of Rnf20 KD and Rnf20
defective mice showed fewer multilocular adipocytes than control
groups, and expression levels of thermogenic genes were down-
regulated upon chronic cold stimuli (Fig. 5i–k and Supplementary
Fig. 8a–f). Intriguingly, iWAT RNF20 OE did not largely alter GABP
protein levels without largely affecting GABPα polyubiquitination or
protein degradation rate (Fig. 5l–n and Supplementary Fig. 8g–l).
Together, these data propose that RNF20 in iWAT would facilitate
beige fat thermogenesis upon chronic cold stimuli, probably, by uti-
lizing different substrates other than GABPα.

iWAT RNF20 potentiates beige fat thermogenesis by promoting
NCoR1 degradation to stimulate PPARγ
Given that RNF20 potentiates PPARγ activity in WAT by promoting
NCoR1 protein degradation25,26, we decided to test the possibility that
RNF20 would stimulate beige fat cell formation by regulating NCoR1-
PPARγ axis. In iWAT, the mRNA levels of PPARγ target genes were
strongly induced by chronic cold stimuli accompanied by NCoR1
downregulation (Fig. 6a, b, and Supplementary Fig. 9a, b). Since the
function of NCoR1 in beige fat thermogenesis is not fully understood,
we overexpressed NCoR1 specifically in iWAT (Fig. 6c). iWAT-selective
NCoR1 OE repressed thermogenic activity, accompanied by down-
regulation of PPARγ target genes, including Ucp1 (Fig. 6c–e and Sup-
plementary Fig. 9c). Conversely, iWAT-selective NCoR1 KD enhanced
thermogenic activity in iWAT (Supplementary Fig. 9d), indicating that
NCoR1 in iWAT would suppress beige fat thermogenesis by inhibit-
ing PPARγ.

To test the idea that RNF20 would facilitate beige fat thermo-
genesis through NCoR1 protein regulation, we examined NCoR1 pro-
tein level upon RNF20 OE. Upon chronic cold, RNF20 OE in iWAT
decreased NCoR1 protein level (Fig. 6f) with increased NCoR1 poly-
ubiquitination and facilitated NCoR1 protein degradation in beige
adipocytes (Supplementary Fig. 9e, f), which in turn stimulated PPARγ
target gene expression (Fig. 6f, g and Supplementary Fig. 9g–j),

Fig. 1 | UponAcuteCold, BATRNF20DownregulationPotentiatesThermogenic
Activity. a Western blot analysis of a differentiated brown preadipocyte cell line
(BAC) treated with isoproterenol (Iso. 1μM) and relative band intensity normalised
toACTIN.Thep-valuewas calculatedcompared to the0 hgroup.n = 6 independent
replicates. Representative results from two independent experiments. b Western
blot analysis of brown adipose tissue (BAT) frommicehoused at room temperature
(RT, n = 4 mice) and exposed to a cold environment (6 °C, n = 5 (6h), n = 4 mice
(72 h)). Representative results from three independent experiments. The p-value
was calculated compared to the 0 h group. c, d qRT-PCR and western blotting
analyses of differentiated BAC cells transfected with mock or RNF20-expressing
plasmid. n = 3 independent replicates. Ct: critical threshold. eOxygen consumption
rate (OCR) of differentiated brown adipocytes transfected with mock or RNF20-
expressing plasmid. n = 5 (Mock), n = 4mice (RNF20 OE). f, g qRT-PCR and western
blot analyses of differentiated BAC cells transfected with siNC or siRnf20. n = 3
independent replicates. hOCR of differentiated BAC cells transfected with siNC or
siRnf20. n = 5 independent replicates (siNC),n = 4 independent replicates (siRnf20).
i Representative macroscopic view, wholemount MitoTracker staining images, and

quantitative analysis of MitoTracker intensity of BAT of WT and Rnf20+/− mice
housed under RT. j–l Western blot analysis, qRT-PCR analysis (n = 4 (WT), n = 4
(Rnf20+/−)mice), andmitochondrialDNA (mtDNA) (n = 7 (WT),n = 5 (Rnf20+/−)mice)
content of genes related to thermogenesis in BAT of WT and Rnf20+/− mice housed
under RT. Representative results from two independent experiments. m–p Rectal
temperature and representative infrared images ofmale (n = 4 (WT),n = 4 (Rnf20+/−)
mice) and female (n = 8 (WT),n = 4 (Rnf20+/−)mice)WTandRnf20+/−miceupon cold
exposure (6 °C). For (m, n) representative results from three independent experi-
ments. q, r Wholebody heat generation, oxygen consumption, physical activity,
drink, and food intake in male WT and Rnf20+/− mice housed under RT. During the
experiment, β3-adrenergic agonist CL316,243 (CL, 0.5mg/kg body weight) was
administrated (arrow). n = 5 mice. Source data are provided as a Source Data file. n
indicatesbiological replicates. Data are represented asmean ± S.D. Significancewas
determined using one-way ANOVA with Dunnett’s multiple comparison (a, b, q),
unpaired two-sided Student’s t-test (d, e, g, h, i, j, k), repeated measures ANOVA
with Tukey’s multiple comparisons test (m, o, q), and two-way ANOVA (q, r).
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implying that iWAT RNF20 would determine the degree of NCoR1
protein and PPARγ activity upon chronic cold stimuli. In accordance
with these, RNF20 andNCoR1 doubleOE showed that RNF20OEpartly
alleviated the inhibitoryeffectofNCoR1OEonbeige fat thermogenesis
(Fig. 6h–j and Supplementary Fig. 9k). In line with these, Rnf20 and
Ncor1 double KD partly nullified the effect of Rnf20 on iWAT thermo-
genic activity (Supplementary Fig. 9l). Together, these data suggest

that upon chronic cold stimuli, iWAT RNF20 would promote NCoR1
degradation to stimulate PPARγ for beige fat thermogenesis.

In iWAT, RNF20 stimulates de novo beige adipogenesis upon
chronic cold stimuli
Upon chronic cold stimuli, beige adipocytes predominantly arise from
beige progenitors44,45. Consistent with these, chronic cold stimuli
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induced the expression of adipogenic genes (Fig. 7a). The fact that
RNF20 promotes white adipocyte differentiation by regulating NCoR1-
PPARγ axis25 led us to speculate that RNF20 would stimulate beige
adipocyte differentiation. When platelet-derived growth factor recep-
tor alpha-expressing (CD31–CD45–PDGFRα+) preadipocytes46 were
induced to differentiate into beige adipocytes, RNF20 protein levels
were upregulated (Fig. 7b and Supplementary Fig. 10a, b). To investi-
gate whether RNF20 might promote beige fat cell differentiation,
PDGFRα+ preadipocytes were overexpressed with RNF20 and differ-
entiated into beige adipocytes (Fig. 7c). RNF20 OE facilitated LD for-
mation and the expression of thermogenic genes such as Ucp1 and
Pgc1a (Fig. 7d, e). Conversely, Rnf20 suppression in PDGFRα+ pre-
adipocytes repressed beige fat cell differentiation (Fig. 7f–h and Sup-
plementary Fig. 10c–e). In line with these, RNF20 OE in mature beige
adipocytes augmented expression levels of thermogenic genes
whereas Rnf20 KD decreased them (Supplementary Fig. 10f–i). Toge-
ther, these data imply that iWAT RNF20 would promote beige fat cell
differentiation upon stimuli.

To affirm that RNF20 might facilitate beige adipogenesis in vivo,
we took advantage of AdipoChaser mouse model, in which newly dif-
ferentiated adipocytes can be labelled by doxycycline
administration44,47 (Fig. 7i, j). RNF20 OE in AdipoChaser iWAT
increased the number of newly differentiated beige adipocytes and the
level of UCP1 protein upon chronic cold stimuli (Fig. 7k and Supple-
mentary Fig. 10j). In contrast, RNF20 KD suppressed de novo beige
adipogenesis upon chronic cold stimuli (Supplementary Fig. 10k, l).
Together, these findings propose that upon prolonged cold stimuli,
iWAT RNF20 would potentiate beige adipogenesis in vivo.

Discussion
During cold stimuli, mammals execute spatiotemporally coordinated
adipose thermogenesis. Upon acute cold stimuli, brown adipocyte
thermogenesis is rapidly activated to prevent hypothermia4,13. On the
other hand, in the presence of prolonged cold, shivering thermogen-
esis by the muscle is substantially reduced48 and beige adipocyte for-
mation is boosted to maintain body temperature4,13. Given that the
origins and roles of two fatdepots suchasBAT and iWAT are distinct, it
is feasible to speculate that adipose thermogenesis upon cold stimuli
duration might be regulated by fat depot-specific mechanisms. How-
ever, since it is technically difficult to modulate genes in a fat depot-
specific manner, in vivo studies to investigate distinct mechanisms of
brown and beige fat have not been well explored. Here, using fat
depot-specific geneticmodulation, we demonstrated that E3 ubiquitin
ligase RNF20 would control brown fat cell activation and beige fat cell
differentiation through fat depot-specific substrates during cold sti-
muli. Our findings suggest that RNF20-GABPα axis in BAT would
rapidly activate thermogenic activity upon acute cold stress, whereas
upon chronic cold stimuli, RNF20-NCoR1-PPARγ axis in iWAT would
protect against hypothermia by stimulating beige adipocyte differ-
entiation. Thus, RNF20 would play a crucial role in orchestrating the
timely activation of adipose thermogenesis upon cold stimuli (Fig. 8).

To prevent hypothermia, BAT needs immediately to activate
thermogenesis, which is primarily achieved by increasing thermogenic
gene expression and mitochondrial activity. It is well established that
PKA andMAPK signalling pathways phosphorylate ATF2 and PGC1α to
stimulate these transcriptional activators3. However, as phosphoryla-
tion is often temporal and transient, other relatively stable and rapid
mechanisms would be required to potentiate mitochondrial biogen-
esis and thermogenic gene expression upon acute cold stimuli. Here,
current data propose that E3ubiquitin ligaseRNF20 inBATcontributes
to acute thermogenic activation by repressing ubiquitin-mediated
protein degradation of GABPα. Upon acute cold stimuli, RNF20 was
suppressed to potentiate BAT thermogenic activity, whereas, under
warm conditions, BAT RNF20 promoted proteasomal degradation of
GABPα. Furthermore, we demonstrated that GABPα stimulated
expression of thermogenic genes and mitochondrial biogenesis in
BAT. Consistently, RNF20 downregulation increased GABPα protein
levels, which promoted transcription of mitochondrial and thermo-
genic genes to stimulate BAT thermogenesis. Moreover, in human
brown adipocytes, GABPA expression levels are positively correlated
with human UCP1 enhancer activity. In addition, we observed that
RNF20 could regulate NCoR1 protein abundance in BAT, which
appeared to regulate lipid metabolism (Supplementary Fig. 5). There-
fore, our data propose that RNF20 would be a key player for rapidly
and reliably controlling BAT thermogenic activation by modulating
GABPα protein.

Upon prolonged cold stimuli, beige adipocytes are differentiated
in iWAT to facilitate thermogenic activity for survival6,45. It has been
suggested that beige adipocytes in rodents primarily arise from beige
progenitors upon cold exposure (i.e., de novo beige adipogenesis)44,45.
Although PPARγ is a crucial factor for de novo beige adipogenesis,
underlying mechanisms that stimulate PPARγ activity in response to
prolonged cold stimuli are largely unknown. In this study, we
demonstrated that upon chronic cold stimuli, an increase in RNF20
activated PPARγ by promoting NCoR1 degradation for beige adipo-
genesis. Several lines of evidence support this. First, iWAT-specific
RNF20 OE potentiated thermogenic gene expression with abundant
beige adipocytes. Second, iWAT-specific NCoR1 OE suppressed PPARγ
target gene expression and beige fat thermogenesis. Third, RNF20
decreased NCoR1 protein levels, and thus, RNF20 OE in iWAT relieved
the inhibitory effect of NCoR1 on beige fat thermogenesis. Lastly, in
vitro and in vivo adipogenic experiments showed that
RNF20 stimulated de novo beige adipogenesis in iWAT. Nevertheless,
as we analysed systemic Rnf20 heterozygous-null mice and fat depot-
specific Rnf20modulationmice, it is plausible to speculate that RNF20
modulation in other cell types would affect thermogenic phenotypes.
Thus, it is important to scrutinize brownadipocyte- or beigeprecursor-
specificRnf20OEandKOanimalmodels to elucidate the role of RNF20
in brown adipocyte activation and beige adipocyte differentiation in
future studies.

One of the intriguing observations in this study is that GABPα
would be the primary target of RNF20 in BAT, but not in iWAT, which

Fig. 2 | BAT-specific RNF20 Modulation Controls Thermogenic Activity Upon
Acute Cold Stimuli. a Experimental scheme for plasmid injection (5μg) into BAT
with in vivo jetPEI. b qRT-PCR of BAT and other peripheral tissues in mock and
RNF20 overexpression (OE)mice. n = 5 (Mock), n = 3 (RNF20OE)mice. c–fWestern
blotting, qRT-PCR, mtDNA content of BAT frommock and RNF20 OEmice housed
under RT. n = 4 (Mock), n = 6 (RNF20 OE) mice. Representative results from two
independent experiments. g–j Rectal temperature and representative infrared
images of mock and RNF20 OE male (n = 6 (Mock), n = 6 (RNF20 OE) mice) and
female mice (n = 8 (Mock), n = 7 (RNF20 OE) mice) upon cold exposure (6 °C).
Representative results from three independent experiments. kRepresentative H&E
images of BAT frommock andRNF20OEmice and the distribution of the LD size of
BAT. lRepresentative image showing BAT of RNF20OEmice floating in phosphate-

buffered saline (PBS; density: 1.0723 g/cm3). m Experimental scheme for siRNA
injection (5μg) into BAT. n Western blot analysis of BAT of siNC or siRnf20 mice
housed under RT. Representative results from two independent experiments.
o–r Rectal temperature and representative infrared images of siNC or siRnf20male
(n = 5 (siNC), n = 4 (siRnf20) mice) and female mice (n = 7 (siNC), n = 8 (siRnf20)
mice) upon cold exposure (6 °C). In vivo experiments were performed 3 d after
nucleotide injection. Representative results from two independent experiments.
Source data are provided as a Source Data file. n indicates biological replicates.
Data are represented as mean ± S.D. Significance was determined using unpaired
two-sided Student’s t-test (b, d, f), multiple unpaired t-test with False Discovery
Rate (b), and repeated measures ANOVA with Tukey’s multiple comparisons
test (g, i, o, q).
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might probably enable RNF20 to regulate fat depot-selective ther-
mogenic execution during cold exposure. It has been reported that
several E3 ubiquitin ligases exhibit tissue-specific substrate
preference23,24,49–53. For example, E3 ubiquitin ligaseFBXW7 inhibits cell
proliferation in several cancer cells by ubiquitylating MYC, whereas it
promotes cell proliferation in certain tumours by p100 degradation50.

Although underlying mechanisms have not yet been well elucidated, it
is feasible that the abundance of tissue-specific substrates of E3 ubi-
quitin ligases might be associated with these phenomena. Similarly,
MKRN1 promotes AMPKα1 protein degradation in the liver and adi-
pose tissue52, in which AMPKα1 is abundantly expressed54,55. However,
MKRN1 does not appear to determine AMPKα1 abundance in the brain,
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where AMPKα1 is expressed at low levels52,54,55. Our data showed that
the level of GABPα protein was high in BAT, but relatively low in iWAT.
Intriguingly, when GABPα was overexpressed in iWAT, the degree of
polyubiquitination of GABPα was enhanced (Supplementary Fig. 11a,
b), implying that the level of substrate might be one of the crucial
factors in determining substrate specificity, at least partly, in RNF20 E3
ubiquitin ligase. On the other hand, it seems that RNF20 would target
NCoR1 in both iWAT and BAT, speculating that substrate quantity
might be involved in the target preference of E3 ubiquitin ligase.
Nevertheless, as signalling cascades and substrate recognition recep-
tors are able to affect the substrate specificity of E3 ubiquitin
ligase22,56–58, we cannot exclude the possibility that the abundance of
substrates would not be the sole factor for determining tissue-specific
protein degradation, which needs to be investigated in future. In
addition, it needs to elucidate the mechanisms by which the levels of
RNF20 proteins are differentially regulated upon cold duration in BAT
and iWAT. In this regard, it has been reported that phosphoproteome
upon cold stimuli is significantly different in brown and beige
adipocytes59. In future, it will be necessary to investigate underlying
mechanisms by which fat depot-specific signalling could regulate the
level of RNF20 protein.

This study shows one of the key regulatorymechanisms by which
adipose thermogenesis is spatiotemporally coordinated upon cold
duration. Current data show that RNF20 differentially controls brown
adipocyte activation and beige adipocyte differentiation via fat depot-
preferential proteolysis of GABPα and NCoR1. Since each fat depot is
likely to execute a unique mechanism that plays its own physiological
roles in maintaining energy homeostasis, the fat depot-specific mole-
cular mechanisms proposed in this study would provide an important
perspective on adipose biology.

Methods
Animal experiments
In Rnf20 defective (Rnf20+/−) mice, exons 3–20 of the Rnf20 gene were
deleted. Rnf20+/− mice were obtained from the knockout mouse pro-
ject repository (KOMP). This mouse strain, [C57BL/6N-Rnf20tm1(KOMP)

Vlcg/TcpMmucd (RRID:MMRRC_049486-UCD)], was obtained from the
Mutant Mouse Resource and Research Centre at the University of
California at Davis35. Mice were backcrossed with C57BL/6 J for more
than 10 generations25. Mice were fed normal chow diet (13.12% of
energy from fat, PicoLab Rodent Diet 20, LabDiet 5053, Texas), and
housed in a temperature- and humidity-controlled (50%), specific
pathogen-free animal facility at 22 °C, under a 12:12 h light:dark cycle,
and health status checks were performed two or three times a week.
Mice were mated in-house with WT and Rnf20+/− mice, and WT litter-
mates and Rnf20+/− mice were used for genotyping (Supplementary
Data 1). For the cold tolerance test, 3–4-month-old male and female
mice were placed in a temperature-controlled rodent incubator

maintained at 6 °C (Environmental Cabinet, DBL Co.). For thermo-
neutral and cold-exposure experiments, 3–4-month-old male mice
were kept at 30 °C for 7 d, and then these mice were exposed to cold
environments (6 °C) in a climate-controlled rodent incubator. Rectal
temperature was measured using a thermal probe (Testo925, Testo
Inc.). BAT Mock, RNF20 OE, and GABPA OE experiments were con-
ducted on the same day (Figs. 2g, o and 3o), and BAT siNC and siRnf20
experiments (Fig. 2i, q) were conducted on the same day. An infrared
camerawas used tomeasure the body surface temperature of themice
(CX320 Thermal Imaging Camera; COX Co.). Mice were euthanized by
carbon dioxide asphyxiation (CO2) inhalation.

AdipoChaser mice (Adipoq-rtTA; TRE-Cre; Rosa26-loxp-stop-
loxp-YFP) were kindly provided by Dr. Philipp Scherer (UT South-
western). For adipocyte chasing experiments60, 12-week-old male
AdipoChaser mice were fed a doxycycline (600mg/kg)-containing
chow diet for 2 weeks to label the old adipocytes, and then fed a
normal chow diet.

For BAT- or iWAT-specific plasmid or siRNA delivery, 5μg of
plasmid or siRNA was directly injected into BAT or iWAT of male and
female mice using In vivo-jetPEI® (201-10G, Polyplus). Cold exposure
experiments were performed 3 d after nucleotide injection. This study
was reviewed and approved by the Institutional Animal Care and Use
Committee of Seoul National University.

Adipose tissue fractionation
BAT and iWAT were minced into small pieces and digested in col-
lagenase buffer (0.1M HEPES, 0.125M NaCl, 5mM KCl, 1.3mM CaCl2,
5mM glucose, 1.5% (w/v) bovine serum albumin, and 0.1% (w/v) col-
lagenase I) at 37 °C for 1 h with shaking.

Fluorescence-activated cell sorting (FACS)
Stromal vascular fraction (SVFs) were stained with anti-CD31 (1:200,
102405, BioLegend), anti-CD45 (1:200, 103107, BioLegend), and anti-
PDGFRα (1:100, 135902, BioLegend). The cells were analysed using a
FACS Canto II instrument (BD Biosciences).

Cell culture and differentiation
All cells were cultured at 37 °C and 5% CO2 in a humidified cell incu-
bator. To differentiate SVF-derived brown adipocytes, SVFs from BAT
were grown to confluence in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% FBS. After achieving confluent growth, the
cells were induced with dexamethasone (1μM), methylisobu-
tylxanthine (520μM), insulin (20 nM), indomethacin (125 μM), T3
(1 nM), and rosiglitazone (1 μM). After 2 d, the culture medium was
replaced with DMEM containing 10% FBS, insulin (20 nM), T3 (1 nM),
and rosiglitazone (1μM), and the cells were incubated for 5–6 d. To
differentiate iWAT PDGFRα-expressing (CD31–CD45–PDGFRα+)
preadipocytes-derived beige adipocytes6, PDGFRα-expressing

Fig. 3 | In BAT, RNF20 Regulates Thermogenesis via GABPα. a–c Volcano plot,
gene ontology, and heatmap of the proteome from WT and Rnf20+/− mice. n = 3
mice. dCrucial transcription factors (TFs) of upregulated proteins. eGene network
analysis of upregulated proteins in BAT of WT and Rnf20+/− mice. GABPα target
genes are labelled as red connection lines. f qRT-PCR analysis of GABPα-targeted
mitochondrial genes in the BAT of WT and Rnf20+/− mice housed at RT. n = 7 (WT),
n = 5 (Rnf20+/−) mice. g Gene clustering analysis of the BAT transcriptome
(GSE119452). h Gene ontology and crucial transcription factors of the upregulated
genes (cluster 2). i t-distributed stochastic neighbour embedding (tSNE) plot of
BAT single-cell RNA-seq data (GSE125269). Adipocytes were largely divided into
highthermo BAs, lowthermo BAs, and white adipocytes (WAs). j Gene ontology and
crucial transcription factors of highthermo BA-enriched genes. k Mouse Ucp1
enhancer regions with H3K27Ac enrichment peaks in BAT (GSE63964). Primers
used for enhancer cloning are indicated. l Luciferase activity of Ucp1-luciferase
(luc.) constructs containing their enhancer (−2.5 kb upstream, Materials and
Methods), minimal promoter (Mini prom), and TATA-box element. n = 3

independent replicates. m Correlation of GABPA expression level with UCP1-
enhancer luciferase activity in differentiated clonal brown preadipocytes from
humanBAT (GSE68544).n,oWestern blotting and rectal temperatures during cold
exposure (6 °C) of mock and GABPA-OE mice housed under RT. n = 3 mice.
Representative results from two independent experiments. p Western blotting
analysis of BAT of WT, Rnf20+/−, WT with siGabpa, and Rnf20+/− with siGabpamice
housed under RT. q Rectal temperatures of WT (n = 5), Rnf20+/− (n = 4), WT with
siGabpa (n = 6), and Rnf20+/− with siGabpa (n = 4)mice during cold exposure (6 °C).
In vivo experiments were performed 3 d after nucleotide injection. Source data are
provided as a Source Data file. n indicates biological replicates. Data are repre-
sented as mean± S.D. Significance was determined using multiple unpaired t-tests
with False Discovery Rate (a, f), Fisher’s exact test with Benjamini–Hochberg
method (b, d, h, j), unpaired two-sided Student’s t-test (l), two-tailed Pearson
correlation (m), repeatedmeasures ANOVAwith Tukey’smultiple comparisons test
(o), and two-way ANOVA (p, q).
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(CD31–CD45–PDGFRα+) preadipocytes from iWAT were grown to con-
fluence in DMEM supplemented with 10% FBS. After achieving con-
fluent growth, the cells were stimulated with dexamethasone (1μM),
methylisobutylxanthine (520μM), insulin (850 nM), indomethacin
(125μM), T3 (1 nM), and rosiglitazone (1μM). After 2 days, the culture
medium was replaced with DMEM containing 10% FBS, insulin
(850nM), T3 (1 nM), and with or without rosiglitazone (1μM) (descri-
bed in the figure legend), and the cells were incubated for 5–6 d. To
differentiate the immortalised brown preadipocyte cell line (BAC),
whichwas provided byDr. Kai Ge (National Institutes of Health)20, cells

were stimulated with dexamethasone (1μM), methylisobutylxanthine
(520μM), insulin (20 nM), indomethacin (125μM), and T3 (1 nM). After
2 days, the culture medium was replaced with DMEM containing 10%
FBS, insulin (20 nM), and T3 (1 nM), and the cells were incubated for
5–6 days.

Isolation and separation of two brown adipocyte
subpopulations
Brown adipocytes from interscapular BAT were obtained from 3–4-
month-old male mice34. Briefly, BATs were minced into small pieces
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and digested in collagenase buffer. The cell suspension was filtered
through a 100μm nylon filter (93100, SPL Life Sciences) to remove
undigested tissues and resuspended in three volumes of DMEM con-
taining 10% FBS, followingwhich the filtrate was centrifuged at 200 × g
for 8min. Floating brown adipocytes were transferred and re-
suspended in DMEM containing 10% FBS three times under the same
centrifugation conditions to eliminate other SVF contaminants. The
adipocyte suspension was then centrifuged at 100 × g for 5min. The
supernatant was carefully collected as a low-thermogenic brown adi-
pocyte subpopulation. The rest of the cell mixture was resuspended in
DMEM containing 10% FBS and centrifuged at 100 g for 5min. After
centrifugation, the thick top layer was the high thermogenic-brown
adipocyte subpopulation.

Western blot, immunoprecipitation, and quantification
Cells and tissues were lysed on ice with radioimmunoprecipitation
assay (RIPA) buffer [150mM NaCl, 50mM Tris-HCl (pH 7.4), 1% NP-40,
0.25% sodium deoxycholate, 1mM EDTA, protease inhibitor cocktail
(P3100; GenDEPOT), and MG132 (BML-PI102; Enzo Life Sciences)].
Total cell lysates were obtained by centrifugation at 13,000× g for
15min at 4 °C, and 1mg of lysates was used for immunoprecipitation.
The lysates were pre-cleared with 50% slurry of Protein A-Sepharose
(Cytiva 17-0780-01; Merck) with the lysis buffer, then incubated with
primary antibodies or IgG (sc-2025; Santa Cruz Biotechnology) for
overnight at 4 °Cwith rotation, followedby incubation for 2 hwith 50%
slurry of Protein A-Sepharose presaturated with the lysis buffer. After
washing three times with the lysis buffer, the immunoprecipitated
proteins were recovered from the beads by boiling in the sample
buffer with SDS and subject to Western blotting analysis.

Antibodies against RNF20 (ab32629; Abcam), UCP1 (ab10983;
Abcam) TUBULIN (T6199; Sigma-Aldrich), TOMM20 (612272; BD
Biosciences), SDHA (CSB-PA01985A0Rb; Cusabio), PPARγ (sc-7196;
Santa Cruz Biotechnology), PLIN1 (20R-PP004; Fitzgerald), MYC-tag
(05-724, Millipore), FLAG-tag (F1804; Sigma-Aldrich), HA-tag (3724;
Cell Signalling Technology), NCoR1 (ab3482; Abcam), adiponectin
(2789; Cell Signalling Technology), β-ACTIN (A5316; Sigma-Aldrich),
GABPA (MA5-15419; Invitrogen), Mono- and polyubiquitinylated con-
jugates (ENZ-ABS840; Enzo Life Sciences), GSK3β (610201; BD
bioscience), phospho-GSK3β (9336; Cell Signalling Technology), VIN-
CULIN (4650; Cell Signalling Technology), IgG (sc-2025; Santa Cruz
Biotechnology) andOXPHOS (ab110413; Abcam)were used. The bands
were visualised using horseradish peroxidase-conjugated secondary
anti-rabbit or anti-mouse IgG antibodies (A0545 and A9044, respec-
tively; Sigma-Aldrich). Uncropped images are provided in Source
Data File.

For Western blotting quantification, we used ImageJ program to
subtract the background from each blot (Process and Subtract Back-
ground tools with a rolling ball radius of 300 pixels)61. We defined a
rectangle that encompassed 30% of the width of each band, main-
taining consistent size of these rectangles within the same blot, and
then, the intensity of the rectangle was measured using ImageJ (Ana-
lyse and Measure tools).

Cell and whole-mount tissue imaging
Cells and whole or minced BAT and iWAT were washed with
phosphate-buffered saline (PBS) and stained with Hoechst33342,
BODIPY, MitoTracker™ Green, MitoTracker™ Deep-Red, or Lipid-
TOX™ Deep-Red for 5min. The samples were observed using a CQ1
confocalmicroscope (Yokogawa) and a coherent anti-Stokes Raman
scattering microscope (CARS) (TCS SP8 CARS microscope, Leica
Microsystems).

Proteomic analysis
Proteins were extracted from BAT of WT and Rnf20+/− mice using RIPA
buffer. Protein extracts were acetone-precipitated overnight at−20 °C,
following which a tandem mass tag (TMT) was performed (AB Sciex,
Framingham, MA, USA). Raw spectra were acquired using Orbitrap
Fusion™ Lumos™ (Thermo Fisher) and EASY-nLC™ 1200 (Thermo
Fisher). Raw MS spectra were processed using MaxQuant software
(v1.5.8.3) at default settings with the UniProt Mus musculus database
(16,987 reviewed protein sequences). Output files generated by Max-
Quant were subjected to Perseus software (Proteome Software Inc.) to
quantify TMT peptide and protein identification. Proteomics data was
provided in Supplementary Data 1.

Gene regulatory network analysis
Thegene regulatorynetworkwasgeneratedbasedon the transcription
factor (TF) binding information from the ENCODE TF ChIP-seq (2015)
and ChEA (2016) datasets retrieved from the Enrichr gene-set library37.
Subnetworksof up- anddown-regulateddifferentially expressed genes
(DEGs)were induced from the gene regulatory network, including only
DEGs and TFs that bind to theDEGs. DEGswith a fold change >1.5 and a
p-value cutoff <0.1 in the MaxQuant software analysis were selected.
Additional edges of the subnetworks were added to visualise interac-
tions between genes, integrating the protein-protein interaction net-
work from the STRING database v11.538. TFs in the subnetworks were
ranked by the p-value of the one-sided Fisher exact test with SciPy
library v1.4.1 (scipy.stats.fisher_exact) using a contingency table of two
variables: TF target genes and DEGs. Network plots were generated
using Cytoscape v3.8.2 software62.

Luciferase assay
The luciferase assay was performed with a modified pGL4.24[luc2P/
minP] enhancer luciferase vector system, in which the enhancer
activity can be measured in the presence of minimal promoter
sequences. DNA fragment of the mouse Ucp1 (−2.5 kb upstream)
enhancer (301 bp length) containing GABPα binding sites was PCR-
amplified from C57BL/6 genomic DNA and cloned into the modified
pGL3 basic luciferase vector. Also, theminimal promoter region of the
pGL4.24 luciferase vector sequence was cloned and ligated between
the mouse Ucp1 enhancer region and β-galactosidase (primer
sequences in Supplementary Data 1). The mouse Pgc1α (−38 kb
upstream of the transcription start site) enhancer (339 bp length)
containing GABPα binding sites was PCR-amplified from C57BL/6
genomic DNA using the primers listed in Supplementary Data 1 and

Fig. 4 | RNF20 Promotes GABPα Protein Degradation in BAT, A Crucial Factor
for Thermogenesis. aWestern blotting analysis of inguinal WAT (iWAT) and BAT.
b, c Protein and mRNA levels (n = 4 (RT), n = 4 (Cold) mice) of Gabpa in BAT from
mice upon cold exposure (6 °C) for 6 h. d, e Protein andmRNA levels (n = 4 (Mock),
n = 6 (RNF20 OE) mice) of Gabpa in BAT of mock and RNF20 OE mice. f, g Protein
and mRNA levels (n = 7 (WT), n = 5 (Rnf20+/−) mice) of Gabpa in BAT of WT and
Rnf20+/− mice. h, i Protein and mRNA levels of Gabpa (n = 6 (siNC), n = 6 (siRnf20)
mice) in BAT of mice injected with siNC or siRnf20. For a–i representative results
from two independent experiments. j Endogenous co-immunoprecipitation using
GABPα antibody in BAT.kUbiquitin levels of GABPα in BATofmockandRNF20OE.
lUbiquitin levels of GABPα in BAT of siNC and siRnf20. Representative results from
two independent experiments. m Protein level of GABPα transfected with RNF20-

expressing plasmids in HEK293T cells without or with MG132 treatment (20μM for
6 h). n, o Cycloheximide (30μM)-chasing assay of GABPα protein in differentiated
brown adipocytes. n = 3 independent replicates. Representative results from three
independent experiments. o Scheme for luciferase assay using mouse Mtif2 pro-
moter (−86bp upstream) in which GABPα-binding motifs (C/AGGAAG or CTTCCT/
G) are present (GABPα activity luc.). pGABPα activity luc. with GABPα and GABPβ1-
expressing plasmids. n = 3 independent replicates. q–s Effects of RNF20 over-
expression and knockdown onGABPα orUcp1-luciferase activity. n = 3. Source data
are provided as a Source Data file. n indicates biological replicates. Data are
represented as mean± S.D. Significance was determined using an unpaired two-
sided Student’s t-test (c, e, g, i), and one-way ANOVA with Tukey’s multiple com-
parison (m–o, q–s).
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Fig. 5 | In iWAT, RNF20 Potentiates Beige Fat Thermogenesis upon Prolonged
Cold Stimuli, Independent of GABPα. a Representative H&E staining of inguinal
white adipose tissue (iWAT) frommice exposed to a cold environment (6 °C) for 6,
24, and 72 h. Scale bar: 50 μm. Representative results from two independent
experiments. b Protein levels of RNF20 and UCP1 in iWAT during cold exposure
n = 5 (RT), n = 5 (6h), n = 5 (72 h) mice. Representative results from two indepen-
dent experiments. c Experimental scheme for iWAT-specific RNF20 overexpression
(5μg). d–h RNF20 protein level, representative infrared image, iWAT region tem-
peratures (n = 5 for male and n = 4 for female mice), representative H&E staining,
qRT-PCR (n = 6mice), andwestern blotting analysis of iWAT frommock and RNF20
OE mice exposed to cold (6 °C) for 72 h. Representative results from two

independent experiments. i Experimental scheme for iWAT-specific siRNA treat-
ment (5μg). j, k iWAT region temperatures (n = 7 for male and n = 6 for female
mice) and qRT-PCR analysis (n = 6 mice) of iWAT from siNC and siRnf20mice
exposed to cold (6 °C) for 72 h. l,m GABPαmRNA and protein levels in iWAT from
iWATRNF20OEmice exposed to cold (6 °C) for 72 h.nUbiquitin levels of GABPα in
iWAT from mock and RNF20 OE mice. Representative results from two indepen-
dent experiments. Source data are provided as a Source Data file. n indicates bio-
logical replicates. Data are represented asmean ± S.D. Significance was determined
using one-way ANOVA with Dunnett’s multiple comparison (b) and paired two-
sided Student’s t-test (e, g, j, k, l, m).
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cloned between the KpnI and XhoI sites of the modified pGL3 basic
luciferase vector.

For the mouse Mtif2 promoter luciferase assay, the mouse Mtif2
promoter (−86bp upstream of the transcription start site) sequence
(105 bp length)was amplifiedwithXhoI andHindIII and cloned into the
pGL3 basic luciferase system vector (cloning primer sequences in
Supplementary Data 1). Luciferase assays were performed using tran-
sient transfection of HEK293T cells using the calcium phosphate
transfection method63. 24 h after transfection, the cell lysates were
harvested and extracted using lysis buffer [25mM Tris-phosphate (pH
7.8), 10% glycerol, 2mM EDTA, 2mM dithiothreitol, and 1% Triton™ X-

100], and luciferase and β-galactosidase activities were measured
according to the manufacturer’s protocol (E1500, Promega). The
relative luminescence units were normalised to β-galactosidase
activity.

Transient transfection
siRNAs for mouse Rnf20, Gabpa, human RNF20, and the negative
control were produced by Bioneer, Inc. (Daejeon, South Korea). Pre-
adipocytes or differentiated adipocytes were mixed with siRNA or
vectors using the Neon™ Transfection Kit (MPK1096 and MPK10096,
Thermo Fisher) and transfected with a single pulse at 1100V for 30ms
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using aMicroporatorMP-100 (Digital Bio, Seoul, Korea). HEK293Tcells
were transfected using Lipofectamine™ RNAiMAX (13778075, Thermo
Fisher) according to the manufacturer’s protocol or the calcium
phosphate method. The sequence information of the siRNAs is
described in Supplementary Data 1.

Chromatin immunoprecipitation assay (ChIP)
BAT was minced directly into a cross-linking solution (10ml, 1% for-
maldehyde diluted in PBS) for 20min at RT64. Cross-linking was
quenched by adding 0.5ml of 2.5M glycine for 5min, followed by
three washes with ice-cold PBS. SDS lysis buffer [50mM Tris-HCl (pH
8.1), 10mM EDTA, 1% SDS, and protease inhibitor (PI)] was then added

to the samples. Chromatin fragmentation was performed using probe
sonication at 4 °C for six cycles of 10 s atmiddle amplitude, with a 30 s
pause on ice between cycles. Chromatin lysates were diluted with nine
volumes of ChIP dilution buffer (16.7mM Tris-HCl pH 8.1, 1.2mM
EDTA, 0.01% SDS, 167mM NaCl, 1.1% Triton™ X-100, and PI). After
centrifugation, the input was saved, and lysates were incubated with
antibodies overnight at 4 °C and then immunoprecipitated with Pro-
tein A Sepharose CL-4B beads with rotation for 2 h at 4 °C. Immuno-
precipitation was performed as follows: one wash with 1ml of low-salt
wash buffer (20mM Tris-HCl pH 8.1, 2mM EDTA, 0.1% SDS, 150mM
NaCl, 1% Triton™ X-100, and PI), one wash with 1ml high salt buffer
(20mM Tris-HCl pH 8.1, 2mM EDTA, 0.1% SDS, 500mM NaCl, 1%
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Triton™ X-100, and PI), three washes with 1ml LiCl buffer (10mMTris-
HCl pH 8.1, 1mM EDTA, 250mM LiCl, 1% deoxycholate, and PI), and
two washes with 1ml TE buffer (10mM Tris-HCl pH 8.1, 1mM EDTA,
and PI). Lysates were eluted twice with 250μl elution buffer (100mM
NaHCO3and 1%SDS), at65 °C for 15min,with rotation, followingwhich
the elutes were combined (total 500μl). Cross-linking was reversed
overnight at 65 °Cwith 20μl of 5MNaCl (final concentration: 200mM
NaCl), then incubated with proteinase K, and DNA was isolated using
phenol/chloroform extraction, followed by ethanol DNA precipitation.
Antibodies against GABPα (MA5-15419; Invitrogen) and mouse IgG
(A9044; Sigma-Aldrich) were used. The sequence information for ChIP
is presented in Supplementary Data 1.

Estimation of mitochondrial DNA (mtDNA) copy number
Approximately 10–20mg of BAT was homogenised in 500μl of lysis
buffer (50mMTris pH 8.0, 10mM EDTA pH 8.0, 100mMNaCl, and 2%
SDS). The samples were then incubated overnight at 55 °C with pro-
teinase K (50μg/sample). After incubation with RNase A (100μg/
sample) for 3 h at 37 °C, the DNA was precipitated using ethanol. The
DNAsampleswerediluted to a concentrationof 10 ng/μl and subjected
toqRT-PCRanalysis usingmt-ND4LandHk2primers to amplifymtDNA
and nuclear DNA (nDNA), respectively. Sequence information for qRT-
PCR is presented in Supplementary Data 1.

Cellular oxygen consumption assay
Cellular OCR was analysed using a Seahorse XFe96 extracellular flux
analyser (Agilent) according to the manufacturer’s instructions. Dif-
ferentiated brown adipocytes were incubated in an assay medium
(25mM glucose, 1mM sodium pyruvate, 2mM L-glutamine, and 1%
fatty acid-free bovine saline albumin in Seahorse XF base medium at

pH 7.4). Cell numbers were determined by Hoechst staining and used
to normalise the OCRs.

Indirect calorimetry
Indirect calorimetry was performed using PhenoMaster (TSE Systems)
according to the manufacturer’s protocol. Male mice, aged
3–4 months, were placed in a calorimetric chamber. To activate β3-
adrenergic signalling, mice were intraperitoneally injected with CL-
316,243 (0.5mg/kg).

Public single-cell RNA-seq data analysis
Weanalysed gene-by-cell countmatrix in the public datasetGSE125269
(single-cell RNA-seq of brown adipocytes). In the analysis of dataset
GSE125269, cells with >75% unique molecular identifiers (UMIs)
assigned to mitochondrial genes, <5000 total UMI counts, or <500
detected genes were excluded. Clustering was performed using the
FindClusters function of the Seurat (v3.0.2) R package65 and visualised
by a t-SNE plot using the RunTSNE function of the same package.
Adipocyte clusters were identified by Adipoq expression and anno-
tated to high thermogenic adipocytes, low thermogenic adipocytes,
and white adipocytes based on the expression levels of Ucp1 and
thermogenic genes. Gene expression of adipocyte clusters was visua-
lised using the VlnPlot function, and differentially expressed genes
between low and high thermogenic adipocytes were identified using
the FindMarkers function of the Seurat package.

qRT-PCR
Total RNA was isolated from tissues or cells using TRIzol Reagent
(RiboEx, GeneAll) or Direct-zol™ RNA MiniPrep (Zymo Research) for
small amounts of RNA extraction), and subjected to cDNA synthesis
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Fig. 8 | Proposed model. Upon cold stimuli, mammals maintain their body tem-
perature by potentiating adipose thermogenesis in a fat-depot-specific manner. In
BAT, acute cold stimuli rapidly downregulate RNF20, which induces GABPα accu-
mulation and activation. In turn, GABPα enhances thermogenesis by stimulating

the expression of thermogenic and mitochondrial genes. Given that RNF20-NCoR1
axis in BATwould primarily regulate lipidmetabolism, NCoR1 in BAT is notmarked.
In iWAT, prolonged cold stimuli gradually upregulate RNF20 to stimulate PPARγ by
degrading NCoR1, which promotes de novo beige adipogenesis.
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using the ReverTra Ace qPCR RT Kit (Toyobo). Relative mRNA levels
were detected using the CFX96TM Real-Time System (Bio-Rad
Laboratories). qRT-PCR was performed using SYBR Green Master Mix
(DQ384-40h, Biofact). Target gene expression levels were normalised
to cyclophilin gene expression levels. The sequence information for
qRT-PCR is described in Supplementary Data 1.

Plasmid information
Myc-tagged RNF20 was constructed using the pcDNA3.1(+) vector25.
Flag-taggedNCoR1was constructed using the pCMXvector, whichwas
kindly provided by Sung Hee Baek from Seoul National University. For
Flag-taggedGABPα andGABPβ1, thep3xFLAG-CMV-10 vectorwas used
(cloning primer sequences Supplementary Data 1).

Insulin and glucose tolerance test
For the insulin tolerance test (ITT),micewere fasted for 2 h and insulin
was administered (0.75 units/kg body weight, 91077C; Sigma-Aldrich,
St. Louis, MO). In the Extended Fig. 7n experiment, mice were fed ad
libitum and insulin was administered (0.5 units/kg body weight) to
avoid hypoglycemic shock. For the intraperitoneal glucose tolerance
test (GTT),micewere fasted for 6 h and glucosewas administered (2 g/
kg body weight). For the insulin signalling examination, mice were
fasted for 2 h and insulin was administered.

Statistical analysis
Data are presented as the mean ± standard deviation. In each figure,
the number of biological replicates for each experiment (n) was
dictated. The number of independent experiments and relevant
statistical methods for each panel were described in the figure
legends. All data were tested for normal distribution using the
D’Agostino-Pearson omnibus normality test. If the data were not
normally distributed, the Mann–Whitney U test was performed. The
means of the two groups were compared using two-tailed Student’s
t-test. The means of multiple groups were compared using one-way
analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s
multiple comparisons test. Two independent variables were com-
pared using two-way ANOVA, followed by Sidak’s multiple com-
parisons test. Statistical analyses were performed using Prism v.
10.0.2 (GraphPad Software).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Proteomics data are provided in Supplementary Data 1. The used
public data were GSE11945266 for BAT RNA-seq, GSE12526934 for BAT
scRNA-seq, GSE6396467 for BAT ChIP-seq, GSE6854468 for brown adi-
pocyte microarray, GSE17938521 for iWAT RNA-seq, GSE9813269 for
WAT andBATRNA-seq, and human adipose tissue proteome70 [https://
static-content.springer.com/esm/art%3A10.1038%2Fsrep30030/
MediaObjects/41598_2016_BFsrep30030_MOESM2_ESM.xls]. Themass
spectrometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE71 partner repository with the
dataset identifier PXD048556. Source data are provided with
this paper.
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