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Semi-supervised integration of single-cell
transcriptomics data

Massimo Andreatta 1,2,3, Léonard Hérault 1,2,3, Paul Gueguen 1,2,3,
David Gfeller 1,2,3, Ariel J. Berenstein 4 & Santiago J. Carmona 1,2,3

Batch effects in single-cell RNA-seq data pose a significant challenge for
comparative analyses across samples, individuals, and conditions. Although
batch effect correction methods are routinely applied, data integration often
leads toovercorrection and can result in the loss of biological variability. In this
work we present STACAS, a batch correction method for scRNA-seq that
leverages prior knowledge on cell types to preserve biological variability upon
integration. Through an open-source benchmark, we show that semi-
supervised STACAS outperforms state-of-the-art unsupervised methods, as
well as supervised methods such as scANVI and scGen. STACAS scales well to
large datasets and is robust to incomplete and imprecise input cell type labels,
which are commonly encountered in real-life integration tasks. We argue that
the incorporation of prior cell type information should be a common practice
in single-cell data integration, and we provide a flexible framework for semi-
supervised batch effect correction.

Single-cell omics technologies enable characterizing the cellular
complexity of biological samples with very high resolution. While
individual samples can provide readouts for thousands of individual
cells, addressing biological questions typically requires the compara-
tive analysis of multiple samples, tissues, individuals and experimental
conditions. By means of data integration or harmonization, cells from
different sources canbeplaced in the sameembedding or latent space,
facilitating themeasurement ofdistances between them, the collective
annotation of cell populations, and additional downstream joint ana-
lyses. However, differences in sample collection, processing, and
experimental protocols introduceunwanted variation in themolecular
readouts that interferes with the identification of true biological dif-
ferences between samples. This technical variation is sometimes
referred to as “batch effects” since it is typically observed between
groups of samples that were handled in different batches1,2.

Several methods for single-cell RNA-seq data integration have
been proposed, based on different approaches such as mutual nearest
neighbors and linear embeddings, deep learning, and graph struc-
tures, each with strengths and limitations3–8. Integration methods aim

at removing batch effects while preserving relevant biological varia-
tion. Two main aspects are considered to determine the quality of
single-cell data integration: (i) batch mixing and (ii) preservation of
biological variance. Batch mixing measures whether similar cells from
different batches are well mixed after integration. Frequently used
metrics of batch mixing are entropy, kBET, and integration LISI
(iLISI)9–11. Preservation of biological variance can be quantified by how
close to each other cells of the same type are, and how separated from
each other cells of different types are in the joint integrated embed-
dings. Commonly-used metrics include average silhouette width
(ASW), average Rand index (ARI), and cluster LISI (cLISI)11–13. For a
review on integration metrics see Luecken et al.14.

For certain tasks, such as integration of technical replicates or
very similar samples,most integrationmethods performgenerally well
both in terms of batch mixing and preservation of biological
variance2,14. However, more common scenarios include the integration
of datasets from biologically heterogeneous samples, e.g. from
different donors, timepoints or tissues. These do not only display
technical batch effects, but also large variability in terms of cell type
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composition. Differences in cell type abundance are a major compo-
nent of biological variance across samples15,16, and such imbalance
represents a particularly challenging task for integration methods17,18.

The choice of a specific integration method and parameters
configuration should take into account the tradeoff between preser-
ving relevant biological variation and increasing batch mixing14.
Since most integration tasks involve samples with some degree of cell
type imbalance, choosing integration strategies that favor preserva-
tion of biological variance over batch mixing might be preferable17.
An appealing approach to preserve biological variance is to make use
of prior cell type information to guide dataset integration. Indeed,
in recent benchmarks of single-cell data integration tools, methods
that take cell type labels as input showed the highest performance in
terms of preservation of biological variance14,19.

In this study, we describe STACAS, a semi-supervised scRNA-seq
data integrationmethod that leverages prior knowledge in the formof
cell type annotations to preserve biological variance during integra-
tion. Using an open and reproducible benchmarking pipeline we show
that semi-supervised STACAS compares favorably to popular unsu-
pervised methods such as Harmony, FastMNN, Seurat v4, scVI, and
Scanorama, as well as to the supervised methods scANVI and scGen,
while being robust to missing and imperfect cell type information.
We argue that prior cell type information should be routinely incor-
porated in integration tasks and we propose a general strategy for its
implementation.

Results
Semi-supervised STACAS uses prior cell type information to
guide data integration
STACAS is a batch correction method for the integration of hetero-
geneous scRNA-seq datasets. The result of STACAS integration is a
batch-corrected combined gene expression matrix that can be used
for downstream multi-sample analyses, such as clustering and visua-
lization. The method is based on the concept of mutual nearest
neighbors to identify biologically equivalent cells in pairs of datasets
(referred to as “anchors”)3, which are used to estimate batch effects.

STACAS builds upon the Seurat integration method5 and applies
reciprocal principal component analysis (rPCA) to find anchors, where
each dataset in a pair is projected into the principal components (PC)
space of the other. STACAS uses the rPCA distance between the two
cells of an anchor to weigh the biological relevance of the anchor and
ultimately its contribution to batch correction vectors (see Methods).
In this way, anchor cells that are close to each other in the rPCA space
will contribute more strongly to batch correction than distant anchor
cells, which are transcriptionally more dissimilar and thus less likely to
be biologically equivalent cells.

In anchor-based methods, obtaining an accurate set of anchors
is critical for integration performance. STACAS v2 introduces the
ability to useprior information, in termsof cell type labels, to refine the
anchor set. We refer to this mode of dataset integration as “semi-
supervised”. Cell type labels may be obtained from automated classi-
fiers,manual annotation,multi-modal informationor anyother source.
When provided, cell labels are used by STACAS to remove “incon-
sistent” anchors, composed of cells with different labels (Fig. 1). Note
that missing labels are not penalized in this step, generalizing the
method to partially annotated datasets. Finally, consistent integration
anchors are used to calculate batch effect correction vectors between
pairs of datasets, and their weighted anchor scores are used to con-
struct an integration guide tree that will determine the order in which
the datasets will be integrated (see Methods).

A cell type-aware implementation of the LISI metric to quantify
batch mixing
A frequently used metric to assess the quality of single-cell data
integration is the Local Inverse Simpson’s Index (LISI). LISI measures
mixing by estimating the effective number of classes in local neigh-
borhoods of cells11 and is relatively fast to compute. When applied to
measure the effective number of datasets or batches in a neighbor-
hood, this metric is referred to as ‘iLISI’ (integration LISI);
when applied to measure the effective number of cell types in a
neighborhood, LISI has been named ‘cLISI’ (“cluster” or “cell type”
LISI). Another widely-used performance metric to assess cell type

Fig. 1 | Schematic of semi-supervised STACAS integration method. The algo-
rithm identifies integration anchors between all pairs of datasets from a shared
nearest neighbors (SNN) graph. These are expected to be cells of the same type
across batches and are used to calculate batch effects. Integration anchors are
weighted by a score that combines a SNN anchor consistency score (based on the
overlap of shared neighbors) and a score based on rPCA distance (how similar are
cells of one dataset to the corresponding anchor cells in a second dataset projected

into the PCA space of the latter). If cell type labels are available, they can be pro-
vided as input to the algorithm. When cell type labels between two cells of an
anchor are inconsistent, the anchor is rejected with a predefined probability and in
that case will not contribute to batch effect correction. Finally, the sum of retained,
weighted integration anchor scores is used to calculate global similarities between
datasets and to derive a guide tree that will determine the order in which the
datasets are to be integrated.
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clustering is the average silhouette width (ASW), which quantifies
distances of cells of the same type compared to the distances to cells
of other types (cell type ASW)2,14.

To evaluate the behavior of these metrics on datasets with dif-
ferent levels of batch effects, we generated synthetic scRNA-seq
datasets (see Methods). This simulation setting consists of three bio-
logical samples: sample A comprises cell type 1 and cell type 2 in equal
parts; sample B contains only cell type 2; and sample C contains only
cell type 1. Each sample corresponds to a different experimental batch
(batch 1 to 3) and displays batch effects in addition to cell type bio-
logical variation (Fig. 2A). We generated several scenarios with
increasing batch effects: no batch effects (batch0), mild (batchMild),
and strongbatch effects (batchStrong). In the fourth example both cell
type variation and batch effects are zero, representing the situation of

an extreme overcorrection of batch effects. We employed these
simulated datasets to evaluate different integration metrics.

In terms of preservation of biological variance, both normalized
cell type ASW and normalized cLISI (see methods) correctly capture
the poor cell type separation in the ‘overcorrected’ dataset, while
remaining high in all other cases (Fig. 2B).We note that the normalized
cLISI, because it only measures local neighborhoods, is unaffected by
mild levels of batch effect. Instead, cell type ASW seems to be more
sensitive in detecting cell type spread due to batch effects (Fig. 2B). In
terms of batchmixing, iLISI decreases together with themixing of cells
from different batches, as expected. However, iLISI increases from
≈1.75 in the case with no batch effect (batch0) to ≈2.75 in the case with
nobatcheffect andno cell type signal (overcorrected) (Fig. 2B).Hence,
iLISI would favor a method that completely removes biological

Fig. 2 | Integrationmetrics onsynthetic single-cell datasets. A Scatterplot offirst
and second principal components (pca_1 and pca_2) for four simulated scenarios
where datasets have increasing levels of batch effects (“batch0” with no batch
effects, “batchMild”, and “batchStrong”), and one case where there is no batch
effect and no biological cell type signal (simulating the result of an extreme batch-
effect “overcorrection”). Each scenario is composed of three samples/batches and
two cell types. BMetrics of preservation of biological cell type variability (cell type
ASW and average normalized cLISI) and batch mixing (average iLISI and average
CiLISI) for the four simulated scenarios. C Scatterplot of average CiLISI (x-axis)

versus average iLISI (y-axis) for the four simulated scenarios. D Scatterplot of
average CiLISI (x-axis) versus average cell type ASW (y-axis) for the four simulated
scenarios; a batch-corrected and biological variance-preserving integration should
aim atmaximizing bothmetrics. CiLISI is defined here as the normalized batch LISI
calculated on a per-cell type basis; it tends to 1 when cells of the same type are well
mixed across batches, and becomes zero when cells from different batches do not
mix. AWS average silhouette width, LISI local inverse Simpson’s index, iLISI inte-
gration (or batch) LISI, cLISI celltype (or cluster) LISI, CiLISI per celltype integration
LISI. Source data are provided as a Source Data file.
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variance together with batch effects over a method that effectively
removes batch effects while preserving biological variance. This is an
undesirable behavior for an integration metric. To obviate this lim-
itation, we propose to evaluate iLISI on a per-celltype basis, hereafter
referred to as CiLISI (normalized to vary between 0 and 1, see Meth-
ods). Unlike iLISI, CiLISI measures batch mixing in a cell type-aware
manner and scores similarly the cases with no batch effects, irre-
spective of the biological variance (Fig. 2C). We argue that CiLISI is
preferable over iLISI because it does not penalize methods that pre-
serve biological variance in datasets with cell type imbalance.

Given these insights, we suggest evaluating integration perfor-
mance by assessing jointly (i) batch mixing in terms of per-cell type
normalized batch LISI (CiLISI) and (ii) cell type clustering in terms of
cell type ASW (or alternatively normalized cLISI). Well-performing
methods should be able to mix cells of the same type in different
batches (i.e. maximize CiLISI) while keeping apart cells of different
types (i.e. maximizing cell type ASW and normalized cLISI) (Fig. 2D).
We implemented these metrics in an R package, available at https://
github.com/carmonalab/scIntegrationMetrics.

Semi-supervised STACAS outperforms state-of-the-art methods
To assess the performance of semi-supervised STACAS compared to
state-of-the-art integration tools, we took advantage of the ‘scib’
pipeline published by Luecken et al. 14., which allows comparing
methods written in R and python in a reproducible environment. We
modified the pipeline to include STACAS and the CiLISI metric, and to
evaluate allmethodson latent spaces of the same size (seeMethods for
details). Importantly, we included the option to evaluate semi-
supervised methods with incomplete cell type labels, as well as with
partially shuffled labels. In our benchmark we shuffled 20% of the cell
type labels and set 15% to ‘unknown’ as input to supervised methods,
simulating a realistic setting where prior cell type knowledge is
imperfect and incomplete. We assess the effect of overfitting in dif-
ferent integration methods as a function of the percentage of incom-
plete or noisy input labels in a later section.

The performance of 11 computational tools was evaluated on 4
different integration tasks,with increasing levels of cell type imbalance
(Fig. 3A–D). We also evaluated the effect of re-scaling gene expression
data prior to batch effect correction, and we report results for both
unscaled and scaleddata for eachmethod (this is not applicable to scVI
and scANVI, which use count data as input). On the Pancreas integra-
tion task, consisting of technical replicates obtained with different
sequencing platforms, most methods performed well (Fig. 3A). In
particular, Seurat CCA, STACAS (unsupervised) and Seurat rPCA
achieved high batch mixing (CiLISI) while preserving biological var-
iance (cell type ASW). In this balanced scenario (Fig. S1A), cell type
information does not appear to provide an advantage to semi-
supervised methods: semi-supervised STACAS (ssSTACAS) obtained
similar performance to unsupervised STACAS, scGen ranked below
several unsupervisedmethods, and scANVI performedpoorly and only
marginally better than its unsupervised counterpart scVI.

The Immune integration task comprises 10 datasets from 5 dif-
ferent studies corresponding to peripheral blood and bone marrow
human samples, as compiled by Luecken et al. 14. While most cell types
are represented bymultiple datasets, the composition is less balanced
than in the Pancreas integration task (Fig. S1B) Here the semi-
supervised methods scGen and ssSTACAS were the best tools in find-
ing a trade-off between batch mixing and preservation of biological
variance (Fig. 3B). Other methods such as Seurat CCA, scVI and Har-
mony, on the other hand, overcorrected batch effects and performed
poorly in terms of cell type ASW (cfr. Figure 3B and ‘overcorrected’
in Fig. 2D).

The Lung atlas represents a more challenging integration task, as
it comprises samples frommultiple human donors, covering different
spatial locations20. Semi-supervised STACAS, and to a lesser degree its

unsupervised version, successfully mitigated batch effects while pre-
serving biological variance (Fig. 3C). Again, the widely used Seurat
CCA, Harmony and scVI performed poorly in terms of cell type AWS,
suggesting that these methods tend to overcorrect batch effects.

To evaluate the performance of STACAS in a setting with strong
cell type imbalance and strong batch effects, we used the collection of
T cell datasets from Andreatta et al. 21. These contain seven datasets
from six different studies covering tumor and lymph node samples,
comprising studies with both CD4+ and CD8+ T cells (MC38_dLN, Ekiz
and Xiong), only CD8+ T cells (Carmona, Singer) or only CD4+ T cells
(Magen_dLN and Magen_TILs) (Fig. S1D). As with the Immune integra-
tion task, we observed that semi-supervised STACAS and scGen were
the best performing tools, especially in terms of preservation of bio-
logical variance (Fig. 3D–F, Fig. S2).

Globally, when considering cell type ASW and CiLISI across the
four integration tasks, semi-supervised STACAS was the best-
performing method, followed by unsupervised STACAS and scGen
(Fig. S3B–D). scANVI performed in the middle of the pack in terms of
these metrics, ranking 8th/9th globally (Fig. S3B–D). When evaluating
performance on a broad panel ofmetrics for preservation of biological
variance (“bio-conservation”) and batch-correction, as in the original
benchmark by Luecken et al., semi-supervised STACAS remains the
bestmethod, followedby the semi-supervisedmethodscANVI (Fig. 3G,
S3A, C). These rankings remained consistent whether the latent spaces
used 30 or 50 dimensions (Fig. S3, S4). Across all integration tasks,
using unscaled data was preferable to scaled data for the preservation
of biological variance in terms of cell type silhouette coefficient (Fig.
S5). In integration tasks with large cell type imbalance, methods that
use prior cell type information were shown to better preserve biolo-
gical variance compared to unsupervised methods. To evaluate more
systematically the effect of cell type imbalance on integration perfor-
mance, we artificially generated modified versions of the pancreas
dataset with increasing levels of cell type imbalance. In these settings,
ssSTACAS consistently outperformed the othermethods across a wide
range of cell type imbalance (Fig. S6). In particular, when evaluating
rankings based on CiLISI and celltype_ASW, ssSTACAS was the top-
performingmethod in all cases except the fully balanced set. The other
supervisedmethods scANVI and scGen also showed a relative increase
in ranking as cell type imbalance increased. In contrast, SeuratCCAwas
the top performer with balanced cell-type composition, but its per-
formancedropped sharply as soon as imbalancewas added to the data
(Fig. S6A). Similar patterns could be observed when evaluating per-
formance on a larger panel of metrics (Fig. S6B). Based on these
results, we recommend using prior cell type information, whenever
available, to guide single-cell data integration tasks.

Semi-supervised STACAS is robust to incomplete and noisy
annotations
A potential risk of applying supervised or semi-supervised integration
methods is overfitting the cell type labels provided as input. In real-life
data integration scenarios, manual or automatic cell annotation may
not allow providing cell type identities to all cells. Even when all cells
can be annotated, these annotations might be wrong or inaccurate.
Therefore, relying excessively on a priori cell type labels to force
integration results may be undesirable. Instead, robust (semi) super-
vised integration methods should be tolerant to incomplete and
incorrect input cell type information.

To evaluate the effect of incomplete or noisy cell type annotations
on the performance of semi-supervised integration methods, we
constructed alternative versions of the four collections of datasets
used in our benchmark (Pancreas, Immune, Lung and T cell tasks) with
increasing levels of shuffledor unknowncell type labels (seeMethods).
We used these noisy labels as input for (semi) supervised integration,
and the original labels to evaluate performance. As the percentage of
shuffled labels increases from 0% to 100%, we observed an expected
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gradual drop inperformance for all supervisedmethods, both in terms
of bio-conservation and batch mixing (Fig. 4A). However, scGen was
considerably more sensitive to shuffled labels than ssSTACAS and
scANVI, with a sharp drop in performance with as low as 10% or 20% of
shuffled labels. Both ssSTACAS and scANVIwere robust to noisy labels,
but ssSTACAS obtained higher celltype ASW across all tasks. Similar
results were observed when cell type label shuffling only affected
neighboring, transcriptionally similar cell types (Fig. S7) or when pro-
viding incomplete cell type labels as input to the three tools (0% to
100% ‘unknown’ labels) (Fig. 4B). These results suggest that scGen,
when used as a batch-correction tool, is prone to overfitting on the
provided input labels. In general, using the same cell type labels as
input for supervised integration and to evaluate integration leads to
over-optimistic performance assessment and should be avoided.

These considerations suggest that fair performance evaluation of
semi-supervised tools should account for potential noise in the input

labels. As previously mentioned, the benchmark presented in Fig. 3
included 20% shuffled labels and 15%unknown labels. Because random
shuffling of labels can, with some probability, swap identical labels, a
20% random shuffling results in practice in about 15%of actual shuffled
labels of a different identity. This setup corresponds to an integration
taskwhere about 70% of cells are correctly annotated, 15% arewrongly
annotated, and 15% are left unannotated. We believe this is a more
reasonable setting for benchmarking than assuming the totality of true
cell types can be known prior to integration. Amodified version of the
‘scib’ pipeline that can account for incomplete or unknown annota-
tions is available at https://github.com/carmonalab/scib-pipeline.

Construction of a multi-study reference single-cell transcrip-
tional map for human CD8 T cells
To date, most single-cell studies define cell states from scratch by
dimensionality reduction, cell clustering andannotation. This approach

Fig. 3 | Integration performance for single-cell data integration tools over 4
different tasks. A CiLISI (per cell type integration LISI, measuring cell type-aware
batch mixing) vs. celltype_ASW (cell type average silhouette width, measuring
preservation of biological variance) for several integration methods on the Pan-
creas integration task. B CiLISI vs. celltype_ASW across methods on the Immune
cells integration task. C CiLISI vs. celltype_ASW across methods on the Lung inte-
gration task. D CiLISI vs. celltype_ASW across methods on the T cells integration
task. E,F UMAP embeddings for the mouse T cell integration task, for unintegrated
data colored by cell type (top) and by study of origin (bottom) (E) and for eight

representative integration methods, colored by cell type (F). G Global rankings of
integration tools based on the weighted contribution of a broad panel of metrics
both for preservation of biological variance (“bio-conservation”) and batch-cor-
rection, as proposed by Luecken et al. Supervised methods (ssSTACAS, scGen and
scANVI) were provided noisy input labels (15% unknown and 20% shuffled labels).
All experiments were performed with latent spaces of 50 dimensions. For alter-
native rankings using only CiLISI and celltype_ASW, or a different number of
dimensions, see Fig. S3 and S4. HVG: highly variable genes. Source data are pro-
vided as a Source Data file.
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is highly time-consuming and leads to inconsistent definitions across
studies. Instead, the use of expert-curated reference maps to inter-
pret single-cell data enables more consistent and faster cell state
definitions21–23. Building robust reference single-cell maps typically
requires integrating multiple datasets from different studies and
conditions.

To showcase the benefits of semi-supervised STACAS to generate
amulti-study referencemap,we applied it to integratemultiple human
CD8+ T cell single-cell datasets. Starting from a publicly available
collection of tumor-infiltrating lymphocyte scRNA-seq datasets
(‘Utility’ collection), we identified 20 high-quality samples with a suf-
ficiently large number of cells and high subtype diversity (see Meth-
ods). These samples amounted to 11,021 cells covering 7 different
tumor types from multiple studies24–32. Before dataset integration, we
observed large batch effects between samples (Fig. 5A), as could also
be quantified by a low CiLISI value (Fig. 5B). To leverage prior knowl-
edge on CD8 T cell diversity, we defined scGate33 gatingmodels for six

CD8 T cell subtypes based on well-established marker genes from lit-
erature (see Methods). This model allowed annotating individual
datasets with partial labels and provided prior knowledge for semi-
supervised integration (Fig. 5A).

Upon semi-supervised STACAS integration, cells of the same
type were clustered together, with simultaneous mitigation of batch
effects (Fig. 5A, B, Fig. S8A). Compared to the uncorrected data, both
batch mixing (CiLISI) and biological variance preservation (celltype
ASW) were improved (Fig. 5B). Importantly, semi-supervised inte-
gration allowed higher celltype ASW compared to unsupervised
STACAS integration, without a negative impact on batch mixing
(Fig. 5B). Integration of these data by Harmony11, one of the most
widely used integration methods to date, resulted in high batch
mixing but dramatic loss of biological variance (Fig. 5B, Fig. S8A), in
agreement with the results from our benchmark. Results for addi-
tional methods are shown in Fig. S8B. On the integrated space pro-
duced by this first integration (Semi-supervised STACAS (1)), we

Fig. 4 | Effect of noisy or incomplete cell type annotations on data integration
by supervised or semi-supervisedmethods. A Preservation of biological variance
(measured by celltype_ASW) and batch mixing (measured by CiLISI) for 4 data
integration tasks, using as input all cell type labels (0%) or increasing levels of
shuffled cell type labels (10% to 100%). B Preservation of biological variance

(measured by celltype_ASW) and batch mixing (measured by CiLISI) for 4 data
integration tasks, using as input all cell type labels (0%) or increasing fractions of
unknown cell type labels (10% to 100%). Unsupervised versions of ssSTACAS and
scANVI (STACAS and scVI respectively) are included for reference. Source data are
provided as a Source Data file.
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performed clustering and manually annotated the main T cell sub-
types. We then went back to the original data with this updated,
complete set of cell type annotations, and performed a new semi-
supervised integration (Semi-supervised STACAS (2)) guided by the
updated prior knowledge that was garnered from the first round of
integration. The second integration allowed further improving cell-
type ASW while conserving good batch mixing (Fig. 5A, B, Fig. S8A).
This suggests a strategy to iteratively update and improve cell type
annotations based first on prior knowledge, and secondly on the
results of preliminary analyses.

The integrated single-cell map recapitulated with high resolution
the knowndiversity of CD8 tumor-infiltrating T cells, as representedby
seven different subtypes (Fig. 5C and Fig. S8C): Naive-like cells, char-
acterized by the expression of transcription factors TCF7 and LEF1 and
homing molecules SELL, S1PR1 and CCR7; transcriptionally-related
Central-memory (CM) cells, with high expression of IL7R and lower
expression of other naive cells markers; Effector-memory (EM) cells,
characterized by highest GZMK expression (which in the tumoral
context have been referred to as ‘pre-dysfunctional’34); terminally

differentiated effector cells (TEMRA), with high expression of GNLY,
PRF1, multiple granzymes, KLRG1 and FCGR3A (encoding CD16);35

mucosal-associated invariant T cells (MAIT), characterizedby the semi-
invariant TCR chain TRAV1-2 and expression of KLRB1;36 terminally
exhausted effector (TEX) T cells, expressing cytotoxic molecules
(GZMB, PRF1), multiple inhibitory receptors (e.g. PDCD1, LAG3, CTLA4,
HAVCR2) and the exhaustion regulator TOX;37,38 and the elusive pre-
cursors of exhausted (TPEX) T cells, with co-expression of TCF7, TOX
and PDCD1, and specific expression of chemokines XCL1 and
XCL221,39,40. These T cell subtypes showed variable frequency between
samples (Fig. S1E), but displayed consistent expression profiles across
studies, patients, and cancer types (Fig. S8C).

Finally, we evaluated whether STACAS could be used for large-
scale integration of hundreds of samples and hundreds of thousands
of cells. For large-scale integration (by default, more than 20 datasets),
STACAS switches to a sequential integration strategy. Because
sequential integration only requires calculation of integration anchors
between one dataset at a time against a reference dataset, it is rela-
tively undemanding in terms of computational resources.

Fig. 5 | Constructionof amulti-study referencemap for humanCD8T cellswith
semi-supervised STACAS. A Starting from 20 samples with large batch effects,
partial cell type annotations were generated using the scGate package and
literature-based marker genes. These labels were used as input to a first semi-
supervised STACAS integration, allowing the mitigation of batch effect and the
expert annotation of clusters corresponding to T cell subtypes. These new labels
were used to update the prior knowledge of the original data, and used as input for
a second semi-supervised STACAS integration, to define the final integrated space
of CD8 T cell subtypes. B Integration metrics for batch mixing (CiLISI) and biolo-
gical variance preservation (celltype_ASW) for the uncorrected data, Harmony,

unsupervised STACAS, semi-supervised STACAS on the initial partial annotation by
scGate [ssSTACAS (1)] and semi-supervised STACAS on the updated annotations
derived from the first integration [ssSTACAS (2)]. Additional methods were com-
pared in Figure S8B. C Average gene expression profiles (scaled by standard
deviation) for a panel of marker genes on the seven T cell subtypes of the final
integrated CD8 T cell map. Cell type abbreviations: CM central memory, EM
effector memory, TEMRA terminally-differentiated effector cells (aka effector
memorycells re-expressingCD45RA), TEX exhausted effector cells, TPEXprecursor
of exhausted cells, MAIT Mucosal-associated invariant T cells. Source data are
provided as a Source Data file.
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All remaining datasets from the ‘Utility’ collection (265 datasets,
totaling 553,077 cells) were sequentially integrated on the annotated
reference of “seed” datasets (Fig. 6A). This operation could be com-
pleted in approximately 150min on a desktop computer with 64GB of
RAM. After recalculation of low-dimensional embeddings, we assigned
cell type labels to all new cells by K-nearest neighbor classification
based on the “seed” annotated cells. This resulted in an integrated
collection of 571,672 cells from 285 datasets, with average expression
profiles for key T cell markers that matched expected profiles for the
CD8 T cell subtypes (Fig. 6B). Cell clusters obtained upon integration
by online LIGER, a tool designed for large scale integration, failed to
capture the diversity of CD8 T subtypes (Figure S9). The integrated
reference map, which can be directly applied to annotate additional
datasets using ProjecTILs21, is available from figshare (https://doi.org/
10.6084/m9.figshare.23608308) and can be explored interactively in
SPICA41 at https://spica.unil.ch/refs/CD8T_human.

Discussion
Integration of multiple single-cell transcriptomics datasets is a pow-
erful approach to characterize cell diversity across tissues and condi-
tions. Although decades of research have contributed extensive
knowledge on cell markers that distinguish cell types, this information
is typically not exploited for scRNA-seq data integration. In this work
we propose a user-friendly tool that can take advantage of available
prior information on expected cell types to obtain accurate data

integration. In particular, we showed that even partial and imperfect
annotations can be beneficial towards preserving biological variance
while correcting for technical batch effects in integrated single-cell
datasets.

In practice, some degree of prior knowledge on the cell type
composition of biological samples is nearly always available. Marker
genes from literature, as well as genes encoding markers commonly
used in flow cytometry and immunohistochemistry are often available
for many cell types. It is common practice in single-cell analyses to
examine the expression of such markers to gain insights into cell
cluster identity and provisionally identify cell types. We have pre-
viously shown that this task can be automated by computational tools
such as scGate33. While complete and fine-grained annotation of cell
types is challenging to achieve based only on a few marker genes, our
results suggest that even incomplete prior knowledge is beneficial to
data integration. Moreover, partial annotations can be complemented
and refined by preliminary integration and annotation steps, sug-
gesting a general strategy to iteratively update cell type labels and
achieve improved dataset integration.

A recent benchmark14 showed that two of the top performing
methods for scRNA-seq integration were those that can make use of
cell type labels information, scANVI6 and scGen42. However, the per-
formanceof thesemethodsmayhave been overestimated by using the
same cell type labels as input for supervised integration and for eva-
luation of integration performance. In particular, we observed that

Fig. 6 | Large scale integration of hundreds of samples. AA set of 20 high quality
“seed” datasets was selected to perform an initial integration and annotation of cell
types. All remaining datasets (265 datasets) were integrated using STACAS
sequential integrationmodeover the “seed” integratedmap.Cell labels for the new,
unannotated cells were obtained by a kNN classifier that assigns the majority label

from the top 20 nearest neighbors from the “seed” datasets. This results in an
integrated set of >500,000 cells from 285 samples. B Average gene expression
profile for a panel of marker genes, using all cells from 285 samples. Results
obtained using LIGER online learning integration are shown in Figure S9. Source
data are provided as a Source Data file.
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when introducing noisy or incomplete cell labels as input, the inte-
gration performance of scGen dropped significantly. In contrast, semi-
supervised STACAS and scANVI were robust to noisy and incomplete
annotations, maintaining high performance with levels of uncertainty
commonly expected from single-cell datasets. We argue that bench-
marks that include supervised integrationmethods should account for
noisy and partial cell-type information, as this better reflects integra-
tion scenarios encountered in practice.

Quantifying batch effects in single-cell data is essential to assess
integration quality and determine which integration methods and
configurations work best in different scenarios. Commonly used
batch-mixingmetrics, suchas LISI or Shannonentropy, are informative
when evaluating batch effects between technical replicates, e.g. when
there is no biological variability between samples. When integrating
technical replicates, lower batch mixing between two technical repli-
cates is a direct measurement of higher batch effects. However, most
integration tasks with practical relevance involve distinct biological
samples that display variation in cell type composition. In this case, a
lower batchmixing does notnecessarily implyhigher batcheffects.We
argue that batchmixingmetrics that neglect cell type information can
overestimate batch effects between samples with large biological
variance and underestimate batch effects in “overcorrected” data. This
is particularly important when integrating datasets with significant cell
type imbalance: in the absence of batch effects, cell type-agnostic
batch-mixing metrics can increase when biological variation is
removed, as cells of different type and batch are brought together as a
result of batch correction algorithms. In the context of benchmarks for
integration methods, this translates into favoring single-cell integra-
tionmethods that “overcorrect” and penalizingmethods that preserve
biological variance.

To overcome this issue we propose to use cell type-aware batch
mixing metrics, such as CiLISI. Because CiLISI measures batch mixing
of cells of the same type only, spurious removal of cell type variance is
not associated with an artificial increase in batch mixing metrics. We
note that Luecken et al. 14. were also aware of this effect and previously
suggested cell type-aware modifications to existing metrics (kBET and
batch ASW).One obvious limitation of CiLISI and similarmetrics is that
it requires cell type annotations. As discussed above, (i) the utility of
cell type-agnostic batch mixing metrics is arguably very limited, and
only relevant for integration of technical replicates, and (ii) it is vir-
tually always possible to provide some level of cell type annotation.
Another limitation is that CiLISI cannot be calculated for cell types that
are only present in one dataset. Our implementation excludes by
default these cell types from calculation. We also note that, as LISI,
CiLISI remains suboptimal when datasets have highly unequal num-
bers of cells (e.g. even in the absence of batch effects CiLISI would be
lower than the optimal value of 1 thatwould beobserved if all cell types
were equally represented). Batch mixing metrics that are more robust
to lopsided cell proportions are still lacking (see ref. 43. for a sys-
tematic evaluation).

Our comprehensive benchmark using a reproducible pipeline
showed that STACAS consistently ranked as the top method across
multiple integration tasks and using different combinations of inte-
grationmetrics. The use of prior knowledge was particularly beneficial
for the integration of datasets with large cell type imbalance, where
semi-supervised methods more accurately preserved relevant biolo-
gical variability. On a large collection of T cell samples from cancer
patients, we demonstrated the feasibility of using STACAS to integrate
hundreds of samples and over 500,000 cells while preserving the
diversity of T cell subtypes contained within the samples. Combining
semi-supervised integration with emerging approaches to summarize
massive single-cell datasets, such as metacells44,45 and sketching46,
together with techniques for iterative ‘online learning’47, as well as on-
disk, out-of-memory data representations (e.g. using DelayedArray
objects48) will further increase scalability for organ atlas-level

applications comprising millions of cells. Altogether, we propose
STACAS as a first-line method for scRNA-seq data integration and
encourage the broader use of prior cell type knowledge to guide
integration and assess its quality.

Methods
STACAS integration method
STACAS is largely constructed on Seurat’s anchor-based integration
approach. Given as input a list of normalized expressionmatrices, one
for each dataset, the general aim is to determine batch-effect correc-
tion vectors between pairs of datasets; and by subtracting these cor-
rection vectors to calculate a corrected data matrix of “integrated”
expression values. The corrected data matrix can be used for down-
stream analyses such as dimensionality reduction, unsupervised clus-
tering and cell type annotation. We will outline in the sections below
the main components of the STACAS algorithm.

Highly variable features and dimensionality reduction
Thefirst step in STACAS integration is the calculationof highly variable
genes. These are determined using the FindVariableFeatures() function
from Seurat, but we also exclude certain classes of genes such as
ribosomal, mitochondrial, and cell cycling genes that can have a large
effect on the low-dimensional spaces without important contribution
to cell type discrimination. These gene sets are available through the R
package SignatuR (https://github.com/carmonalab/SignatuR; see e.g.
https://carmonalab.github.io/STACAS.demo/STACAS.demo.html#
notes-on-data-integration for an example). Additionally, genes with
average log-normalized expression below (default 0.01) or above a
threshold (default 3.0) are excluded from the highly variable genes.
Consistently variable genes are then calculated as those found to be
highly variable in multiple datasets, until reaching the desired number
of genes (by default 1000). This feature selection step, also referred to
as ‘sharedFeatures’ in the results, reduces the dimensionality of the
data to a few hundred or a few thousand genes, and ensures that batch
effects are calculated on genes with informative variability. The
dimensionality of the data is further reduced by Principal Components
Analysis (PCA) from the set of consistently variable genes. Unlike
the Seurat integration method, STACAS does not by default rescale
the data to zero mean and unit variance; we have previously shown
how this step can mask important biological differences between
datasets49.

Calculation and scoring of integration anchors
To determine integration anchors between pairs of datasets, we
extended the reciprocal PCA algorithm (rPCA) implemented in Seurat
to find shared nearest neighbors and return the pairwise distance
between anchors in rPCA space (rPCA_distance). These distances are
used to weigh anchor contributions, in combination with Seurat’s
shared nearest neighbor score (SNN_score) that quantifies the con-
sistency of edges between cells in the same neighborhood of the SNN
graph, using a geometric weighted sum with equation:

logsum=α lnðrPCA score + εÞ+ ð1� αÞ lnðSNN score + εÞ ð1Þ

anchor:score = elogsum � ε ð2Þ

where ε is a small number (10−6) to avoid ln(0), and the rPCAdistance is
transformed to a score bound between 0 and 1 using:

rPCA score = logisticðrPCA distanceÞ ð3Þ

This procedure results in a set of integration anchors with asso-
ciated weights, which can be used to estimate batch effects between
pairs of datasets. The parameterαbalances the contribution of the two
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scores, with α = 0.8 by default. The score weighting scheme differs
from previous versions of STACAS, where suboptimal anchors were
directly filtered out based on the rPCA distance scores49. Assigning
numerical weights to anchors instead of filtering them out is more
robust to parameter choices and avoids break cases where an insuffi-
cient number of integration anchors is retained after filtering, espe-
cially in the case of small datasets.

Using prior knowledge to filter anchors
When available, prior information on cell types can be used to guide
the integration by penalizing anchors composed of cells with
inconsistent cell type labels. Cell type labels must be provided as a
metadata column for each input object, and they can be incomplete,
i.e. not all cells are required to have a label. Given a set of anchors
calculated as described above and a set of cell-type labels, the algo-
rithm rejects (with probability = label.confidence) anchors composed
of two cells with inconsistent labels. Cells without an annotation are
never rejected at this step, generalizing to the unsupervised inte-
gration scenariowhen no labels are available.We recommend to only
provide cell type labels for high-confidence associations to a cell
type, and to leave the remaining cells as unlabeled (NA values). The
outcome of this step is a subset of the previously calculated set of
integration anchors, where anchors with inconsistent cell types have
been removed.

Integration guide trees
A crucial factor in the success of batch effect correction is the order of
dataset integration. To this end, STACAS calculates a weight matrix
that summarizes dataset-dataset similarity. For each pair of datasets, a
similarity score is obtained by summing the combined anchor scores
between the two datasets. On this similaritymatrix, an integration tree
is calculated by applying any of the clustering methods implemented
in hclust from the stats package (by default ‘ward.D2’). Integration is
initiated from the dataset with the highest sum of anchor scores
against all other datasets; the rationale is that the dataset with the
largest number of high-scoring anchors should be the most “central”,
with well-represented cell types, and a large number of cells. We note
that, instead, integration trees calculated by Seurat are rooted by the
largest datasets, regardless of the anchor scores.

Performance metrics of data integration
The average silhouette width (ASW) quantifies the average distance of
cells in a cluster compared to their distance to the closest of the other
clusters. When applied to cell type labels (celltype ASW), it measures
how well cells with the same cell type label are clustered together
compared to other cell types in the dataset. We compute the cell type
ASWwith the ‘cluster’ package50 using Euclideandistances in PC space,
excluding cells with unknown cell type labels.

The Local Inverse Simpson Index (LISI) has been previously pre-
sented as a metric to quantify local batch mixing (iLISI) and cell type
mixing (cLISI)11. Briefly, LISI metrics quantify the expected number of
cells from different batches (or different subtypes) in a local neigh-
borhood, with size determined by the perplexity parameter. We pro-
pose a modified version of iLISI that does not unfairly favor
overcorrection by calculating it independently for each cell type. The
new cell type-aware metric, called CiLISI, is then rescaled between 0
and 1 to make it comparable across integration tasks. In all experi-
ments in this study, we used a perplexity value of 30. Similarly, we
redefined cLISI to vary between 0 and 1, where zero represents a ran-
dom mix of cell types in all neighborhoods and one a perfect segre-
gation of cell types; we call this quantity ‘normalized cLISI’. For
normalized cLISI we set a perplexity value to twice the average number
of cells per cell type per dataset.

We implemented these metrics and made them available as an R
package at: https://github.com/carmonalab/scIntegrationMetrics.

Comparison to other integration tools
Taking advantage of the previously published ‘scib’ pipeline for sin-
gle cell integration benchmark pipeline14 we compared STACAS in
unsupervised mode and semi-supervised mode (ssSTACAS) with
9 other integration tools: Combat51, Scanorama4, FastMNN3,
Harmony11, Seurat v4 CCA and Seurat v4 rPCA5, scVI52, scANVI6 and
scGen42. We conducted our benchmark on 4 integration tasks, as
detailed next.

Integration tasks. The human pancreas atlas, the human immune cell
atlas and the human lung atlas, collated by Luecken et al. 14., were
downloaded from figshare (https://doi.org/10.6084/m9.figshare.
12420968.v8). We also included in our benchmark the mouse T cell
atlas by Andreatta et al. 21., available from figshare (https://doi.org/10.
6084/m9.figshare.12478571). For these 4 collections of datasets, the
preprocessed data (low quality cell filtered, raw and log-normalized
counts as well as original cell type annotations) obtained from the
previous studies were directly analysed with the ‘scib’ pipeline.

Integration procedure. We performed the 4 integration tasks as
follows:
– We used for all methods the same latent space dimensionality (D)

for integration (e.g. number of principal components or dimen-
sions of the reduced space or number of neurons in the bottleneck
layer of autoencoders) and report here results for D = 30 and
D = 50, the two most commonly used values in practice.

– For Seurat-basedmethods (rPCA and CCA), we computed reduced
dimensionalities for the integrated space directly in R, starting
from the scaled corrected counts matrix and applying the
RunPCA() Seurat function; the result is used as embedding output
for the ‘scib’ pipeline.

– All other methods were run with their default implementations as
in the original benchmark; (ss)STACAS was run with the one-liner
RunSTACAS() function and evaluated on the integrated PCA space
it outputs.

– For each integration task, we used the 2000 most variable genes
across the different batches (automatically identified by the ‘scib’
pipeline) as integration features for all methods.

– For eachmethod, integration was performed both with or without
a prior batch-aware scaling of the integration features (scaling + or
– in the result summary), as implemented in the ‘scib’ pipeline.

– Supervised integration with scANVI, scGEN and STACAS were
conducted using noisy input cell type labels. First 15% of the
original cell labels were set to ‘unknown’, then 20% of the
remaining labels were shuffled randomly.

Integration metrics and ranking. We first compared the methods for
their ability to remove batch effect while keeping distinct cell types
separated using the CiLISI and celltype_ASW, respectively.We used the
original cell type labels (i.e. the “true” labels without noise) as ground
truth to compute these metrics. Using the metric aggregation proce-
dure by Luecken et al., we computed for each tool a combined score
where CiLISI and cell type silhouette contribute with 60% and 40%,
respectively. We calculated the mean score across all tasks to obtain a
global score for each tool, which was used to compile a global ranking
of the tools. Additionally, we also employed an alternative scoring
scheme for tools, combining several metrics from the ‘scib’ pipeline:
PCR batch, Batch ASW, graph iLISI, graph connectivity and kBET for
the batch mixing score; NMI/cluster label, ARI cluster label, cell type
silhouette, isolated label F1, isolated label silhouette, graph cLISI, cell
cycle conservation and trajectory conservation (only for the immune
cell atlas) for the bio-conservation score. We chose not to include
HVG overlap as it can only be computed on the corrected matrix
output, which is not available for all methods. As in the Luecken et al.
benchmark, aggregation of metrics and ranking of tools was done by
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combining bio-conservation metrics and batch mixing metrics with a
relative weight of 60% and 40%, respectively. Python methods pro-
ducing a corrected matrix and a corrected integrated space were
evaluated on both outputs, as in the original pipeline. Rmethods were
only evaluated on their returned corrected integrated space (Har-
mony, Fastmnn) or those computed in R after scaling of their
returned corrected feature matrix, as intended by the developers
(Seurat, STACAS).

Robustness to noise of supervised methods. Supervised methods
(scGen, ssSTACAS, scANVI) were further benchmarked using our
pipeline by providing as input shuffled or unknown cell type annota-
tion, with increasing levels of wrong/missing annotations. Shuffled
labels were generated in two alternative ways: i) by random shuffling
between any pairs of cell type labels; ii) by shuffling labels between
neighboring cell types, i.e. pairs of cell typeswith themost similar gene
expression profile. In each scenario, the performance metrics (CiLISI
and celltype_ASW) were evaluated on the “true” cell type labels using
the top 50 principal components. We note that a similar strategy was
applied to assess the impact of incorrect training labels on the per-
formance of transfer learning across single-cell modalities53.

UMAP of the integrated spaces. We calculated the two-dimensional
UMAP for each method output (integrated space or corrected feature
matrix) using the ‘scib’ pipeline. For corrected feature matrix outputs,
a D-dimensional reduced space (D = 30 orD = 50) was calculated using
a PCA of the corrected feature matrix, subsequently reduced to 2
dimensions using the UMAP approximation. For methods directly
producing a D-dimensional integrated space, this was used directly as
an input to calculate the UMAP representation.

scGate prediction models
The scGate package33 allows defining marker-based models for the
annotation of cell types in single-cell datasets. For the annotation
of human CD8 T cell subtypes, we used the collection of CD8_TIL
models found at the scGate_models repository, (https://github.com/
carmonalab/scGate_models, version v0.11). Briefly, the following
literature-based signatures were used as gates to define subtypes:
Naive-like cells: LEF1+CCR7 +TCF7+SELL+TOX- CXCL13-; Effector-mem-
ory: GZMK+CXCR3+; TEMRA: FCGR3A+CX3CR1+FGFBP2+; Precursor-
exhausted: XCL1+XCL2+TOX+GNG4+CD200+; Terminally exhausted:
TOX+PDCD1+LAG3+TIGIT+HAVCR2+; MAIT: TRAV1-2+SLC4A10+. Please
refer to the models repository above for the complete combination
of gates.

Human CD8 TIL datasets
T cell scRNA-seq data were obtained from the ‘utility’ dataset collec-
tion (https://github.com/ncborcherding/utility), which collates data
and harmonizes metadata from multiple studies and cancer types.
Individual datasets were pre-processed using standard quality control,
and homogenizing gene symbols according to Ensembl version 105.
After filtering pure CD8 T cells, we applied UCell54 to remove cycling
cells (UCell score > 0.1) and outliers in terms of interferon response
(UCell score > 0.25). We applied the CD8_TIL scGate models (see sec-
tion above) to obtain a preliminary annotation of subtypes in each
dataset andestimate subtypediversity. Basedon these annotations, we
selected 20 “seed” datasets with a large number of cells and high
subtype diversity, and used them for the construction of the reference
map. For all versions of STACAS, we calculated 800 variable features,
and further reduced the dimensionality of the data to 50 principal
components. All other parameters were used as default values. The
remaining samples in the ‘utility’ collection were then sequentially
integrated using the default STACAS pipeline, specifying the “seed”
integrated map as the base dataset using the reference parameter. Cell
type labels were transferred from the annotated “seed” map to all

remaining cells by k-nearest neighbor similarity using the annotate.-
by.neighbors() function implemented in STACAS. scANVI6 integration
on the 20 seed datasets was performed using the parameters recom-
mendedby scvi-tools, except for the dimensionality of the latent space
which was set to 50 to match the number of PC dimensions used by
STACAS. LIGER47 was run in onlinemode by storing individual samples
in.h5 files, and then executing ‘online_iNMF()’ and quantile_norm()
on the list of.h5 files, as indicated in LIGER tutorials. We used
default parameters except for k = 50 to match the dimensionalities
usedbySTACASand scANVI. Reproducible code for theseexperiments
can be found at: https://github.com/carmonalab/CD8_human_TIL_
atlas_construction

Synthetic data
We generated five synthetic datasets with different levels of batch
effect using the Splatter package, which applies a gamma-Poisson
model to simulate gene expression distributions resembling real
single-cell transcriptomics data55. Each dataset was composed of 1000
cells, and consisted of three batches and two cell types. The ‘batch0’
dataset had the three subtypes in equal proportions and zero batch
effects (batch.facLoc=0 in splatSimulate); ‘batchMild’ was generated
by specifying batch.facLoc=0.06 and batch.facScale=0.06; ‘batch-
Strong’ was generated by specifying batch.facLoc=0.10 and batch.-
facScale =0.10; the ‘overcorrected’ dataset was simulated to have no
differentially expressed genes between cell types by setting de.fa-
cLoc=0 and de.facScale=0. In all datasets the two cell types were set to
have equal proportions.

Statistics & Reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. For bench-
marking, the human pancreas atlas, the human immune cell atlas and
the human lung atlas, collated by Luecken et al. 14., were downloaded
fromfigshare (https://doi.org/10.6084/m9.figshare.12420968.v8)56. The
mouse T cell atlas by Andreatta et al. 21. is available from figshare
(https://doi.org/10.6084/m9.figshare.12478571)57. The T cell processed
scRNA-seq dataset collection (“uTILity”) used in this study was down-
loaded from https://doi.org/10.5281/zenodo.632560358. References to
theoriginal studies andassociatedmetadata are also available at https://
github.com/ncborcherding/utility. The integrated CD8 T cell reference
map is available as a Seurat object at https://doi.org/10.6084/m9.
figshare.2360830859. Source data are provided with this paper.

Code availability
STACAS is available as a R package at https://github.com/carmonalab/
STACAS and https://doi.org/10.5281/zenodo.1040205460. The imple-
mentation of the performance metrics used in this work can be
installed as a package from the following repository: https://github.
com/carmonalab/scIntegrationMetrics also available at https://doi.org/
10.5281/zenodo.1040213161. The snakemake pipeline that reproduces
the results of our benchmark, basedon the ‘scib’pipeline by Luecken et
al., is available at https://github.com/carmonalab/scib-pipeline and
https://doi.org/10.5281/zenodo.1040202362. The code to construct,
annotate and use the CD8 T cell reference map is available at: https://
github.com/carmonalab/CD8_human_TIL_atlas_construction.

Article https://doi.org/10.1038/s41467-024-45240-z

Nature Communications |          (2024) 15:872 11

https://github.com/carmonalab/scGate_models
https://github.com/carmonalab/scGate_models
https://github.com/ncborcherding/utility
https://github.com/carmonalab/CD8_human_TIL_atlas_construction
https://github.com/carmonalab/CD8_human_TIL_atlas_construction
https://doi.org/10.6084/m9.figshare.12420968.v8
https://doi.org/10.6084/m9.figshare.12478571
https://doi.org/10.5281/zenodo.6325603
https://github.com/ncborcherding/utility
https://github.com/ncborcherding/utility
https://doi.org/10.6084/m9.figshare.23608308
https://doi.org/10.6084/m9.figshare.23608308
https://github.com/carmonalab/STACAS
https://github.com/carmonalab/STACAS
https://doi.org/10.5281/zenodo.10402054
https://github.com/carmonalab/scIntegrationMetrics
https://github.com/carmonalab/scIntegrationMetrics
https://doi.org/10.5281/zenodo.10402131
https://doi.org/10.5281/zenodo.10402131
https://github.com/carmonalab/scib-pipeline
https://doi.org/10.5281/zenodo.10402023
https://github.com/carmonalab/CD8_human_TIL_atlas_construction
https://github.com/carmonalab/CD8_human_TIL_atlas_construction


References
1. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Com-

putational principles and challenges in single-cell data integration.
Nat. Biotechnol. 39, 1202–1215 (2021).

2. Tran, H. T. N. et al. A benchmark of batch-effect correction
methods for single-cell RNA sequencing data. Genome Biol. 21,
12 (2020).

3. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,
421–427 (2018).

4. Hie, B., Bryson, B. & Berger, B. Efficient integration of hetero-
geneous single-cell transcriptomes using Scanorama. Nat. Bio-
technol. 37, 685–691 (2019).

5. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902.e21 (2019).

6. Xu, C. et al. Probabilistic harmonization and annotation of single-
cell transcriptomics data with deep generative models. Mol. Syst.
Biol. 17, e9620 (2021).

7. Dong, J., Zhang, Y. & Wang, F. scSemiAE: a deep model with semi-
supervised learning for single-cell transcriptomics. BMC Bioin-
forma. 23, 161 (2022).

8. Liu, Y.,Wang, T., Zhou, B. & Zheng,D. Robust integration ofmultiple
single-cell RNA sequencing datasets using a single reference
space. Nat. Biotechnol. 39, 877–884 (2021).

9. Azizi, E. et al. Single-cell map of diverse immune phenotypes in
the breast tumor microenvironment. Cell 174, 1293–1308.e36
(2018).

10. Büttner, M., Miao, Z.,Wolf, F. A., Teichmann, S. A. & Theis, F. J. A test
metric for assessing single-cell RNA-seq batch correction. Nat.
Methods 16, 43–49 (2019).

11. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-
cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

12. Rand, W. M. Objective criteria for the evaluation of clustering
methods. J. Am. Stat. Assoc. 66, 846–850 (1971).

13. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J. Comput. Appl. Math. 20,
53–65 (1987).

14. Luecken, M. D. et al. Benchmarking atlas-level data integration in
single-cell genomics. Nat. Methods 19, 41–50 (2022).

15. Cao, Y. et al. scDC: single cell differential composition analysis.
BMC Bioinforma. 20, 721 (2019).

16. Lun, A. T. L., Richard, A. C. & Marioni, J. C. Testing for differential
abundance in mass cytometry data. Nat. Methods 14,
707–709 (2017).

17. Maan, H. et al. The differential impacts of dataset imbalance in
single-cell data integration. 2022.10.06.511156 Preprint at https://
doi.org/10.1101/2022.10.06.511156 (2022).

18. Richards, L. M. et al. A comparison of data integration methods for
single-cell RNA sequencing of cancer samples. 2021.08.04.453579
https://www.biorxiv.org/content/10.1101/2021.08.04.453579v1
10.1101/2021.08.04.453579.(2021)

19. Sikkema, L. et al. An integrated cell atlas of the lung in health and
disease. Nat. Med. 29, 1–15 (2023).

20. Vieira Braga, F. A. et al. A cellular census of human lungs identifies
novel cell states in health and in asthma. Nat. Med 25,
1153–1163 (2019).

21. Andreatta, M. et al. Interpretation of T cell states from single-cell
transcriptomics data using reference atlases. Nat. Commun. 12,
2965 (2021).

22. Kang, J. B. et al. Efficient and precise single-cell reference atlas
mapping with Symphony. Nat. Commun. 12, 5890 (2021).

23. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by
transfer learning. Nat. Biotechnol. 1–10. https://doi.org/10.1038/
s41587-021-01001-7 (2021).

24. Bassez, A. et al. A single-cell map of intratumoral changes during
anti-PD1 treatment of patients with breast cancer. Nat. Med. 27,
820–832 (2021).

25. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infil-
tration and clinical response. Nature 579, 274–278 (2020).

26. Eberhardt, C. S. et al. Functional HPV-specific PD-1+ stem-like CD8
T cells in head and neck cancer. Nature 597, 279–284 (2021).

27. Caushi, J. X. et al. Transcriptional programs of neoantigen-specific
TIL in anti-PD-1-treated lung cancers. Nature 1–7. https://doi.org/10.
1038/s41586-021-03752-4 (2021).

28. Liu, B. et al. Temporal single-cell tracing reveals clonal revival and
expansionofprecursor exhaustedTcells during anti-PD-1 therapy in
lung cancer. Nat. Cancer 3, 108–121 (2022).

29. Banta, K. L. et al. Mechanistic convergence of the TIGIT and PD-1
inhibitory pathways necessitates co-blockade to optimize anti-
tumor CD8+ T cell responses. Immunity 55, 512–526.e9 (2022).

30. Pauken, K. E. et al. Single-cell analyses identify circulating anti-
tumor CD8 T cells and markers for their enrichment. J. Exp. Med
218, e20200920 (2021).

31. Krishna, C. et al. Single-cell sequencing linksmultiregional immune
landscapes and tissue-resident T cells in ccRCC to tumor topology
and therapy efficacy. Cancer Cell 39, 662–677.e6 (2021).

32. Yost, K. E. et al. Clonal replacement of tumor-specific T cells fol-
lowing PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

33. Andreatta, M., Berenstein, A. J. & Carmona, S. J. scGate: marker-
based purification of cell types from heterogeneous single-cell
RNA-seq datasets. Bioinformatics btac141. https://doi.org/10.1093/
bioinformatics/btac141 (2022).

34. van der Leun, A. M., Thommen, D. S. & Schumacher, T. N. CD8+ T
cell states in human cancer: insights from single-cell analysis. Nat.
Rev. Cancer 20, 218–232 (2020).

35. Martos, S. N. et al. Single-cell analyses identify dysfunctional CD16+
CD8 T cells in smokers. Cell Rep. Med 1, 100054 (2020).

36. Godfrey, D. I., Koay, H.-F., McCluskey, J. & Gherardin, N. A. The
biology and functional importance of MAIT cells.Nat. Immunol. 20,
1110–1128 (2019).

37. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol.
1–10. https://doi.org/10.1038/s41577-019-0221-9 (2019).

38. Jin, H.-T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell
exhaustion during chronic viral infection. Proc. Natl Acad. Sci. 107,
14733–14738 (2010).

39. Held, W., Siddiqui, I., Schaeuble, K. & Speiser, D. E. Intratumoral
CD8+ T cells with stem cell-like properties: Implications for cancer
immunotherapy. Sci. Transl. Med. 11, eaay6863 (2019).

40. Kallies, A., Zehn, D. & Utzschneider, D. T. Precursor exhausted
T cells: key to successful immunotherapy? Nat. Rev. Immunol. 20,
128–136 (2020).

41. Andreatta, M., David, F. P. A., Iseli, C., Guex, N. & Carmona, S. J.
SPICA: Swiss portal for immune cell analysis.Nucleic Acids Res 50,
D1109–D1114 (2022).

42. Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell
perturbation responses. Nat. Methods 16, 715–721 (2019).

43. Lütge, A. et al. CellMixS: quantifying and visualizing batch effects in
single-cell RNA-seq data. Life Sci. Alliance 4, e202001004 (2021).

44. Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using
K-nn graph partitions. Genome Biol. 20, 206 (2019).

45. Bilous, M. et al. Metacells untangle large and complex single-cell
transcriptome networks. BMC Bioinforma. 23, 336 (2022).

46. Hie, B., Cho, H., DeMeo, B., Bryson, B. & Berger, B. Geometric
Sketching Compactly Summarizes the Single-Cell Transcriptomic
Landscape. Cell Syst. 8, 483–493.e7 (2019).

47. Gao,C. et al. Iterative single-cellmulti-omic integrationusingonline
learning. Nat. Biotechnol. 39, 1000–1007 (2021).

48. Pagès, H. HDF5Array: HDF5 backend for DelayedArray objects. R
package version (2020).

Article https://doi.org/10.1038/s41467-024-45240-z

Nature Communications |          (2024) 15:872 12

https://doi.org/10.1101/2022.10.06.511156
https://doi.org/10.1101/2022.10.06.511156
https://www.biorxiv.org/content/10.1101/2021.08.04.453579v1
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41587-021-01001-7
https://doi.org/10.1038/s41586-021-03752-4
https://doi.org/10.1038/s41586-021-03752-4
https://doi.org/10.1093/bioinformatics/btac141
https://doi.org/10.1093/bioinformatics/btac141
https://doi.org/10.1038/s41577-019-0221-9


49. Andreatta, M. & Carmona, S. J. STACAS: Sub-Type Anchor Correc-
tion for Alignment in Seurat to integrate single-cell RNA-seq data.
Bioinformatics 37, 882–884 (2021).

50. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K.
Cluster: cluster analysis basics and extensions. (2012).

51. Zhang, Y., Parmigiani, G. & Johnson,W. E. ComBat-seq: batch effect
adjustment for RNA-seq count data. NAR genomics and bioinfor-
matics 2, lqaa078 (2020).

52. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep
generative modeling for single-cell transcriptomics. Nat. Methods
15, 1053–1058 (2018).

53. Lin, Y. et al. scJoint integrates atlas-scale single-cell RNA-seq and
ATAC-seq data with transfer learning. Nat. Biotechnol. 40,
703–710 (2022).

54. Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-
cell gene signature scoring. Comput. Struct. Biotechnol. J. 19,
3796–3798 (2021).

55. Zappia, L., Phipson, B. & Oshlack, A. Splatter: simulation of single-
cell RNA sequencing data. Genome Biol. 18, 174 (2017).

56. Luecken, M. et al. Benchmarking atlas-level data integration in
single-cell genomics - integration taskdatasets. 20125347347Bytes
https://doi.org/10.6084/M9.FIGSHARE.12420968.V8 (2022).

57. Andreatta, M. & Carmona, S. J. ProjecTILs Reference Atlas: murine
tumor-infiltrating T cells, version 1. https://doi.org/10.6084/m9.
figshare.12478571 (2020).

58. Borcherding, N. utility: Collection of Tumor-Infiltrating Lymphocyte
Single-Cell Experiments with TCR. https://doi.org/10.5281/
ZENODO.6325603 (2022).

59. Carmona, S., Andreatta, M. & Gueguen, P. ProjecTILs human refer-
ence atlas of CD8+ tumor-infiltrating T cells (CD8 TIL), version 1.
257797783 Bytes https://doi.org/10.6084/M9.FIGSHARE.
23608308 (2023).

60. Andreatta, M., Carmona, S., Berenstein, A. J. & Gueguen, P. car-
monalab/STACAS: STACAS v2.2.0. https://doi.org/10.5281/
ZENODO.10402054 (2023).

61. Andreatta, M. & Carmona, S. carmonalab/scIntegrationMetrics:
scIntegrationMetrics. https://doi.org/10.5281/ZENODO.
10402131 (2023).

62. Hérault, L. et al. carmonalab/scib-pipeline: Pipeline for bench-
marking unsupervised and supervised integration tools for single-
cell RNA-seq. https://doi.org/10.5281/ZENODO.10402023 (2023).

Acknowledgements
We thank Nicholas Borcherding for compiling and maintaining the ‘Uti-
lity’ collection of tumor-infiltrating lymphocyte single-cell experiments
with TCR sequencing data that were used in this study. This work was

supported by the Swiss National Science Foundation (SNF) Ambizione
(180010 to SJC), Swiss Cancer Research foundation (KFS-5409-08-2021
to SJC), and the ISREC foundation (to SJC).

Author contributions
Conceptualization (M.A., S.J.C.), Methodology and Software (M.A.,
A.J.B., S.J.C.), Benchmarking (L.H., M.A.), Data curation (M.A., P.G.),
Writing – original draft (M.A., S.J.C.), Writing – review and editing (M.A.,
L.H., D.G., S.J.C.), Supervision and Funding acquisition (S.J.C.).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45240-z.

Correspondence and requests for materials should be addressed to
Santiago J. Carmona.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45240-z

Nature Communications |          (2024) 15:872 13

https://doi.org/10.6084/M9.FIGSHARE.12420968.V8
https://doi.org/10.6084/m9.figshare.12478571
https://doi.org/10.6084/m9.figshare.12478571
https://doi.org/10.5281/ZENODO.6325603
https://doi.org/10.5281/ZENODO.6325603
https://doi.org/10.6084/M9.FIGSHARE.23608308
https://doi.org/10.6084/M9.FIGSHARE.23608308
https://doi.org/10.5281/ZENODO.10402054
https://doi.org/10.5281/ZENODO.10402054
https://doi.org/10.5281/ZENODO.10402131
https://doi.org/10.5281/ZENODO.10402131
https://doi.org/10.5281/ZENODO.10402023
https://doi.org/10.1038/s41467-024-45240-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Semi-supervised integration of single-cell transcriptomics�data
	Results
	Semi-supervised STACAS uses prior cell type information to guide data integration
	A cell type-aware implementation of the LISI metric to quantify batch�mixing
	Semi-supervised STACAS outperforms state-of-the-art methods
	Semi-supervised STACAS is robust to incomplete and noisy annotations
	Construction of a multi-study reference single-cell transcriptional map for human CD8 T�cells

	Discussion
	Methods
	STACAS integration�method
	Highly variable features and dimensionality reduction
	Calculation and scoring of integration anchors
	Using prior knowledge to filter anchors
	Integration guide�trees
	Performance metrics of data integration
	Comparison to other integration�tools
	Integration�tasks
	Integration procedure
	Integration metrics and ranking
	Robustness to noise of supervised methods
	UMAP of the integrated�spaces
	scGate prediction�models
	Human CD8 TIL datasets
	Synthetic�data
	Statistics & Reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




