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Nanoparticle enrichmentmass-spectrometry
proteomics identifies protein-altering
variants for precise pQTL mapping
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Proteogenomics studies generate hypotheses on protein function and provide
genetic evidence for drug target prioritization. Most previous work has been
conducted using affinity-based proteomics approaches. These technologies
face challenges, such as uncertainty regarding target identity, non-specific
binding, and handling of variants that affect epitope affinity binding. Mass
spectrometry-based proteomics can overcome some of these challenges. Here
we report a pQTL study using the Proteograph™ Product Suite workflow (Seer,
Inc.) where we quantify over 18,000 unique peptides from nearly 3000 pro-
teins in more than 320 blood samples from amulti-ethnic cohort in a bottom-
up, peptide-centric, mass spectrometry-based proteomics approach. We
identify 184 protein-altering variants in 137 genes that are significantly asso-
ciated with their corresponding variant peptides, confirming target specificity
of co-associated affinity binders, identifying putatively causal cis-encoded
proteins and providing experimental evidence for their presence in blood,
including proteins that may be inaccessible to affinity-based proteomics.

Large-scale studies of the plasma proteome using extensive biobanks
have attracted increasing interest for their potential to inform drug
development through insights gained from genome-wide disease
association studies. Proteogenomic analyses identifying genetic var-
iants associated with protein expression levels (protein quantitative
trait loci, or pQTLs) can reveal proteins involved in key biological
processes that affect complex traits and disease etiology1.

The twomain technologies employed to quantify protein levels in
biological samples are affinity-based proteomics and mass spectro-
metry (MS)-based proteomics. Most large-scale proteomics studies to
date have relied on affinity-based proteomics technologies, utilizing
variations of Olink’s antibody-based Proximity Extension Assays or
Somalogic’s aptamer-based SomaScan platform2–7. The UK Biobank
Pharma Proteomics Project (UKB-PPP) quantified over 2900 proteins

in blood plasma from 54,000 UKB participants using the Olink
platform8, and the deCODE study analyzed 4900proteins inmore than
35,000 individuals using the SomaScan technology9, identifying tens
of thousands of pQTLs.

Affinity-based proteomics approaches can deliver quantitative
readouts for hundreds and even thousands of blood-circulating pro-
teins in a high-throughput manner, but these approaches also possess
certain limitations1,10. Notably, they are exposed to interference from
genetic variants that can change the protein’s epitope (structure) and
modify the antibody or aptamer binding affinities, resulting in
ambiguous or erroneous associations1,10,11. Additionally, establishing
target specificity for affinity binders is challenging and must be
determined on an individual basis under various physiological condi-
tions. Although the literature considers a genetic association at the
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gene locus that encodes the protein targeted by a given affinity-binder
(cis-pQTL) as confirmatory evidence for target specificity, cross-
reactivity with other proteins cannot be ruled out in such cases.
Some protein classes may also be unsuitable for quantification by
affinity binding (e.g., unfolded pro-peptides).

Epitope-modifying variants can result in false-positive associa-
tions between genetic variants and protein expression levels. Addi-
tionally, such variants often have a biological impact on protein
function rather than on protein abundance. A recent study showed
that approximately 50% of putative epitope-modifying variants colo-
calize with GWAS associations, suggesting that these variants modify
protein properties and biological functions rather than protein
abundance5. Consequently, genetic epitope effects caused by non-
synonymous variation pose a significant challenge to the analysis and
application of large-scale, affinity-based proteomics pQTL studies for
drug development, because the effect of an epitope-modifying variant
on the phenotype may not be through the protein expression level.
Thus, therapeutic designs based on protein abundancemight not yield
the desired effect.

MS-based proteomics can help overcome some of the challenges
of affinity-based proteomics by directly measuring variant peptides
originating from protein-altering genetic variants. In a bottom-up MS-
based proteomics approach, peptides (generated either by in silico
digestion of a comprehensive protein database or curated experi-
mentally) arematched againstmass spectra collectedbyMSanalysis of
enzymatically digested proteins. Modern mass spectrometers, cou-
pledwith up-front liquid chromatography and ionmobility separation,
enable the collection of hundreds of thousands of peptide fragmen-
tation spectra at high mass-resolution in a data independent acquisi-
tion (DIA) mode12. MS-based proteomics methods can identify genetic
epitope effects, as they provide peptide-level sequence readouts.
Additionally, they may identify proteins that are not amenable to
affinity binding and resolve potentially disease-relevant protein post-
translational modifications.

However, bottom-up MS-based proteomics approaches also face
some technological challenges related to peptide and protein identi-
ficationandquantification13–15. In the context of pQTL studies, one such
challenge is quantifying protein levels in the presence of genetic
variation16. Current MS-based proteomics analyses typically ignore
genetic variation, because incorporating all possible variants would
significantly increase spectral library sizes and false-positive identifi-
cations. Consequently, standard proteomic libraries fail to detect
variant peptides in homozygous alternate allele carriers and falsely
suggest reduced protein levels in heterozygotes, leading to genotype-
dependent (inaccurate) protein level measurements. This problem is
exacerbated by instrumental and technical effects created by
genotype-specific shifts in fragmentation, ionization, ionmobility, and
liquid chromatography separation properties.

Here, we examine these technological challenges and propose
potential solutions for effectively utilizing bottom-up MS-based
proteomics in conjunction with available genetic variation infor-
mation. We use the MS-based Proteograph™ Product Suite (Seer
Inc.) workflow17,18 to quantify protein and peptide intensities in
blood samples from individuals in a multi-ethnic cohort. The Pro-
teograph workflow uses five physicochemically distinct nano-
particles that each enrich for different proteins, thereby
compressing the dynamic range of proteins analyzed downstream
by DIA-MS19. Depending on protein abundance and biophysical
properties, some peptides can be detected with two or more of the
nanoparticles included in the Proteograph Assay. Detections by
distinct nanoparticles can be considered technical replicates and
offer additional internal validation of the data.

To account for genetic variability in peptide sequences, we
implement a data analysis protocol (see Methods) that includes all
single nucleotide protein-altering variants (PAVs) that are present in

the study population at a minor allele frequency (MAF) higher than
10%. Given the size of our cohort, we expect at least 2–3 individuals to
be homozygous for the minor allele at this level. We introduce these
PAVs into the protein database (UniProt), translate the variants to
amino-acid space, andperform in silico digestion.We then create three
spectral libraries: one where we keep only the peptides that corre-
spond to the reference alleles (termed the reference library), onewhere
we include both reference and alternate peptides (termed the PAV-
inclusive library), and one where we exclude all variant peptides,
alternate and their respective reference peptides (termed the PAV-
exclusive library). Note that the reference library corresponds towhat is
currently used in standard DIA-MS analyses. Using the three different
libraries, we then quantify peptide and protein intensities using
DIA-NN15.

Next, we test the presence of the reference or alternate allele of
PAVs for association with the presence or absence of the resulting
variant peptide(s) in the proteome of the respective sample donor
(detected with the PAV-inclusive library) using the Fisher’s Exact test.
Note that a PAV can give rise to multiple matching variant peptides,
including peptides that differ by a single amino acid as well as more
complex situations, e.g., when the PAV involves a trypsin cleavage site
or a protein modification site. We use the term MS-PAV to refer to a
PAV that associates significantly (after correcting for multiple tests)
with itsmatchingMS-detected variant peptide(s).We then askwhether
the identified MS-PAVs also change the corresponding blood protein
intensities. For this purpose, we test for association between the pro-
tein intensities (obtained using the PAV-exclusive library) with the copy
number of the alternate allele of the respective MS-PAV as the
dependent variable, as generally practiced in pQTL studies.We use the
termMS-pQTL to refer to a PAV that associateswith both the detection
of the respective variant peptide (using the PAV-inclusive library) and
the protein intensity (using the PAV-exclusive library). We show that
pQTLs that have been identified by large affinity-based proteomics
studies can be characterized by overlap between MS-PAVs and MS-
pQTLs from MS-based proteomics studies.

Our study comprises the following steps: First, we identify MS-
PAVs and MS-pQTLs using samples from a multiethnic clinical cohort.
Then, we query the summary statistics of the two largest pQTL studies,
which used the Olink and the SomaScan platforms, respectively3,9, to
evaluate the power of this approach in identifying relevant pQTLs.
Finally, we discuss new biological insights derived from this study by
overlapping MS-PAVs and MS-pQTLs with GWAS associations with
other phenotypes (Fig. 1).

Results
We identify 184 MS-PAVs by adding protein-altering variants to
a bottom-up proteomics approach
Citrate plasma samples were obtained from 345 individuals who par-
ticipated in the Qatar Metabolomics study of Diabetes (QMDiab)20,21.
The previously unthawed samples (aliquot of 240 µL per sample) were
processed using the Proteograph Product Suite (Seer, Inc.)17,18 (see
Methods). Briefly, samples were incubated with five proprietary
physicochemically-distinct nanoparticles provided in the Proteograph
Assay kit (Seer, Inc.) for protein corona formation. Nanoparticle-bound
proteins were captured, digested using trypsin, and then analyzed
using a dia-PASEF method12 on a timsTOF Pro 2 mass spectrometer
(Bruker Daltonics). All MS files were processed using the DIA-NN soft-
ware (version 1.8.1) using library-free search with match-between-runs
(MBR) enabled against the UniProt database (reference, accessed June
2022) and the derived PAV-exclusive and PAV-inclusive databases. The
Proteograph workflow quantified 18,603 unique peptides from 2899
proteins detected in more than 20% of the samples (Fig. 2 and Sup-
plementary Fig. 1).

In order to perform internal validation of the data prior to ana-
lysis, we evaluated the correlation between peptides that were
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detected inmore thanone nanoparticle, limiting the analysis to 14,430
unique peptides (42,238 detections) detected using the reference
library that had doubly-charged precursor ions and that were present
in more than 20% of the samples. 3808 (26.4%) of these peptides were
detected within a single nanoparticle fraction, while 4129 (28.6%) were
detected in all five. 73.6% were detected more than once. The median
Spearman correlation between a peptide measured in two or more
nanoparticle fractions was rho = 0.67, and the Spearman correlation of
a peptide measured in exactly two fractions was rho = 0.56 (Supple-
mentary Fig. 2 and Supplementary Data 1).

Of the 345 analyzed samples, 325 were also genotyped on the
Illumina Omni 2.5 platform and had imputed genotype data
available2,22. Using the PAV-inclusive library, we identified 492 unique
variant peptides that correspond to 2341 individual signals when
accounting for detections related to different nanoparticles, precursor
charges, and missed cleavages (Supplementary Data 2). These variant
peptides mapped to 317 distinct genetic variants in 251 genes. To filter
to a set of reliably detected variant peptides and avoid false positives,
we asked whether each peptide’s detection matched the individual
blood donor’s genotype. A total of 1000 of the 2341 variant peptide
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detections were significantly associated with the genotype of the
coding variant in a Fisher’s Exact test at a Bonferroni level of sig-
nificance of p < 2.1 × 10−5 (0.05/2341). Note that most of the non-
significant variant peptides had a low detection frequency and did not
provide sufficient statistical power to reach the required significance
level; 512 had seven or less detections, while only peptides with eight
or more detections reached Bonferroni significance. The 1000 sig-
nificant associations corresponded to 306unique variant peptides that
were generated by 184 unique MS-PAVs. These MS-PAVs were located
in 137 different genes (Supplementary Data 3).

Robust pQTLs can be identified by excluding variant peptides
from the spectral library
In MS-based proteomics, protein intensities are generally inferred
from the intensities of one or multiple peptides that are derived from
that protein. When peptides map ambiguously to multiple proteins,
inference algorithms group them together into so-called protein
groups and quantify them jointly. When a peptide that is used for
protein quantification contains anamino acid-changing genetic variant
(anMS-PAV), the resulting protein level will reflect the genotype of the
sample donor and result in a spurious pQTL; this phenomenon can be
considered the MS equivalent of an epitope effect in affinity-based
proteomics. We counter this issue by excluding variant peptides from
the protein quantification process. This exclusion will not necessarily
reduce pQTL sensitivity for MS-PAVs that directly alter the corre-
sponding blood protein level or for those MS-PAVs in linkage dis-
equilibrium with regulatory variants controlling the protein’s gene
expression (MS-pQTL). In these cases, all peptides derived from the
protein that do not overlap with the position of the MS-PAV are
expected to vary in the samewayas the genotype and to equally reflect
the protein level.

Figure 3 demonstrates the impact of including or excluding PAVs
in the process of protein quantification in the example of the Factor V
(F5)protein.Whenusing thePAV-exclusive library, nopQTL is observed
at the protein level, which is consistent with the absence of pQTLs on
thenon-PAV containing peptides.Whenusing the PAV-inclusive library,
the two F5 MS-PAV isoforms that correspond to a K >R substitution
(rs4524) are identified as pQTLs. This is also expected, as we are con-
sidering the expression level of each isoform separately in this case. No
pQTLs are identified for any of the other peptides. However, when
using the reference library, a pQTL is found, which is incorrect because
the overall level of F5 protein does not vary with genotype. This is an
example of the MS equivalent of an epitope effect in affinity-based
proteomics, but here, in contrast to affinity-based proteomics, MS-
based proteomics can easily capture and interrogate these effects. We

performed a pQTL analysis at the 184 MS-PAVs and calculated their
associationswith their corresponding protein intensities derived using
the PAV-exclusive library (Supplementary Data 3). Fourteen MS-PAVs
reached a genome-wide significance level of p-value < 5 × 10−8 and are
considered asMS-pQTLs (Table 1). Four of thesewere not identified by
either Olink or SomaScan in the largest pQTL studies conducted with
each; seven were cross-verified by SomaScan; and eight were cross-
verified by Olink.

We then compared the association statistics with those obtained
using the reference library. RobustMS-pQTLs areon the diagonal of the
scatterplot presented in segment 1 of Fig. 4. Instances in which non-
significant results from the PAV-exclusive library overlap with sig-
nificant results in the reference library indicate situations where the
current standard approach fails (segment 2 in Fig. 4). If these variants
overlap with cis-pQTLs from affinity-based proteomics studies, they
reveal potential epitope effects. MS-PAVs that do not reach sig-
nificance using either library are MS-PAVs that do not lead to detect-
able changes in protein expression in our cohort (segment 3 in Fig. 4);
however, our cohort size is relatively small, and larger sample sizes are
needed to reach the statistical power required to determine whether
theseMS-PAVs are alsoMS-pQTLs. These observations suggest that: a)
MS-PAVs can be detected at the peptide level by using the PAV-
inclusive library and conducting a Fisher’s Exact test performed on the
presence/absence of the coding variant versus MS detection/non-
detection of the corresponding variant peptide; and b) using a PAV-
exclusive library to generate pQTLs is essential to prevent false-positive
pQTL identifications (i.e., avoid theMS equivalent of epitope effects in
affinity-based proteomics).

Overlap of pQTLs from affinity-based proteomics platforms
We then investigated which of the 184 MS-PAVs had been identified
in previous pQTL studies and which were new (Supplementary
Data 3). We identified overlapping pQTLs using summary statistics
from the deCODE (SomaScan)9 and UKB-PPP (Olink)3 studies
(Table 2 and Supplementary Fig. 4). To identify overlapping eQTLs
and pQTLs that were not covered by these two large studies, we
further annotated the 184 MS-PAVs using Phenoscanner23 (r2 = 0.8
using linkage data from the EUR population, accessed 21 Jan 2023)
and omicsciences.org6.

Two thirds of the MS-PAVs (124) overlapped with cis-pQTLs pre-
viously identified by affinity-based proteomics pQTL studies, thus
confirming the target specificity of the affinity binders. An additional
42 MS-PAVs overlapped with trans-pQTLs (and not cis-pQTLs) in
affinity-based proteomics studies, thus identifying the putatively cau-
sal cis-encoded protein and providing experimental evidence for its
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2,113NP 5
2,899Joint

DetectedNano
10,337NP 1
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Pep�desProtein groups

Fig. 2 | Proteins and peptides detected in > 20% of the samples by the Proteo-
graph™workflow.Data is for protein and peptide identification usingDIA-NNwith
the reference library using the match-between-runs (MBR) option (see

Supplementary Fig. 1 for the dependence between number of detections and %
missingness).
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presence in blood. The remaining 18MS-PAVswere novel and included
proteins thatmay be inaccessible to affinity-based proteomics, such as
a variant in the incretin pro-peptide (Gastric Inhibitory Polypeptide,
GIP) which plays a central role in type 2 diabetes and cardiovascular
disease pathologies.

Out of the 184 MS-PAV variants, 145 shared a pQTL with at least
one target of the SomaScan platform. In 87 cases, these were cis-
pQTLs. For Olink, we identified 148 overlapping pQTLs, 89 of which
were located in-cis. 59MS-PAVs were cis-pQTLs in both the Olink and
SomaSan study, and 117 were cis-pQTLs on at least one platform. Of
67 MS-PAVs with no matching cis-pQTL, neither in the deCODE nor
the UKB PPP study, seven matched a cis-pQTL in another study as
identified by Phenoscanner or omicsciences.org. This leaves a total
of 60 MS-PAVs detected using the Proteograph workflow that were
not previously identified as cis-pQTLs in any large-scale affinity-
based pQTL studies. These 60 novel MS-PAVs were located within 52
unique genes.

Taken together, the observations highlight the complementarity
between the affinity- and MS-based proteomics approaches.

Specific findings using the proteograph workflow
We annotated the 184 MS-PAVs with overlapping expression QTLs
(eQTLs), metabolomics QTLs (mQTLs) and GWAS associations (Sup-
plementary Data 3). Out of the 184 MS-PAVs, 121 match an eQTL
reported in Phenoscanner, suggesting that these variants not only
influence the peptide sequence but also alter the corresponding gene
expression levels. 90 MS-PAVs overlap a GWAS hit (not counting
metabolite/protein levels and body height), including 27 of the var-
iants that do not have a cis-pQTL on the SomaScan andOlink platforms
(Table 3).

For example, variant rs2291725 corresponds to an S > G amino
acid exchange in the Gastric Inhibitory Polypeptide (GIP). This var-
iant is in the GIP gene, which codes for an incretin hormone and
stimulates insulin secretion. The amino acid exchange occurs in a
peptide consisting of ten amino acids (ALELA[S/G]QANR) on the
incretin pro-peptide (aa98-107). This part of the protein is not part
of the processed incretin hormone. The variant peptide corre-
sponding to the alternate allele is detected in 130 out of 223 carriers
of the alternate allele, together with five false-positive detections in

levelnietorPleveleditpeP

reference

21 out of 169
false posi�ve

detec�ons

LLSLGAGEFK

LLSLGAGEFR

ref

alt
SWYLEDNINK TWNQSIALR ……

Fig. 3 | Boxplots by genotype rs4524 for selected Factor V (F5) protein and
peptide intensities. This figure shows the effect of using the different libraries at
the example of the Factor V (F5) protein. Similar plots are provided in Supple-
mentary Fig. 3 and asSourceDatawith this paper for all 184MS-PAVs; Theboxes are
color-coded as following: using thePAV-exclusive library (green), using the reference
library (blue), and using the PAV-inclusive library (red). Protein intensities are in
dark colors, and peptide intensities are in light colors. The grey horizontal boxplots
on top of the plots represent the range of the data shown in that plot compared to
the 5–95% range of the entire data for that protein. Units on the y-axis are engine-
normalized intensities as providedbyDIA-NN. Thex-axis labels indicate the number
of detected peptides/proteins followed by a colon and the number of samples with
the given genotype (order: reference/major allele homozygote, heterozygote,
alternate/minor allele homozygote). The first line of the subtitle identifies the

protein (Uniprot ID and rsID,when applicable) or the peptide sequence followedby
the nanoparticle used in that analysis. The second line shows the number of data
points included in generating the plot (N). Significance levels (p-values) for the
following hypothesis tests are given: (1) Fisher’s Exact test on detected/non-
detected versus presence/absence of the major (p-maj) or minor (p-min) allele,
where the stronger of the two associations is shown (indicating MS-PAV detection
significance), and (2) a linear regression of peptide intensity versus genotype
(coded 0-1-2) with missing values set to zero (pX), and for proteins a linear model
including relevant covariates using inverse-normal scaled protein intensities
(excluding missing values) against genotype (pY; indicating pQTL significance).
Protein name, chromosome, chromosome position (GRCh37), and major and
minor alleles are indicated in boldface on top of the boxplots.
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102 reference allele homozygotes (p = 1.2 × 10−22, Fisher test). This
variant is associated with several body fat traits, coronary artery
disease, and diabetes in the GWAS catalog, consistent with GIP’s
function and suggesting a causal role for this variant in these clinical
phenotypes. This GIP variant has not been reported by any affinity-
based proteomics GWAS before, possibly because GIP is too small or
transiently folded and may not be detected by affinity binders. GIP
agonism has recently gained renewed attention as a satiety-
suppressing drug (similar to GLP-1 inhibitors, but with possibly
less severe side effects such as nausea)24. Hence, this variant may
serve as a potential genetic instrument to further investigate the
potential effects of GIP inhibition.

Another key protein relevant to cardiovascular disease is APOB.
PreviousGWAS studies associated genetic variation inAPOBwithmany
relevant lipid-related traits,with leadassociationswith LDL-cholesterol
(LDL-C) and Apolipoprotein B (ApoB) levels measured by clinical
biochemistry25. We found that the variant rs1367117 (chr2:21263900)
associated with the alternate and also the reference allele of the ApoB
variant peptide TSQC[T/I]LK (p-value = 1.0 × 10−68 and 3.5 × 10−16,
respectively; Fisher’s Exact test), but we did not detect a significant
association signal at the protein level (p-value > 0.02). To analyze this
association in its genetic context, we computed the associations
between the detection of peptide TSQCILK and all variants in the
vicinity (+/−250kb) of this MS-PAV, retrieved GWAS data for the
associations with clinical biochemistrymeasures of LDL-C and ApoB in
the UK Biobank, and generated regional association plots (see Meth-
ods, Fig. 5). The regional association plots show that rs1367117 has the
strongest LDL association, but they also indicate the presence of at
least one additional equally strong association between a variant in the
promoter region of APOB with both LDL and ApoB levels. This obser-
vation suggests the presence of two distinct signals, one likely acting
via a structural change in the ApoB protein itself, and a second that
may be attributed to changes in ApoB protein levels. Interestingly, we
previously found that these two signals also lead to distinct pheno-
types in lipoprotein composition26. Our study is the first study that
directly identifies this putatively causal genetic variant of high LDL-C
levels at the peptide level using MS-based proteomics at a population
scale and shows howMS-PAVs can be used to dissect complex genetic
association signals.

Proteome-wide association study of non-genetic determinants
To explore whether using our method also improves associations
with non-genetic determinants, we conducted an association study
of proteins quantified using the reference and the PAV-exclusive
libraries with age, sex, diabetes state, and BMI. We included 3,657
protein group/nanoparticle combinations in the analysis that were
detected in > 80% of the shared samples. We found that the majority
of proteins (3183, 87.0%) correlated strongly between the two
methods (Spearman rho > 0.8) while only few (91, 2.5%) changed
substantially when using the different libraries (Spearman rho < 0.5)
(Supplementary Fig. 5). We then computed linear models including
age, sex, diabetes state, BMI, and the first three genotype principal

Table 1 | MS-pQTLs

Gene UniProtID rsid SNP MAF p-value beta cis-pQTL

MST1 G3XAK1 rs3197999 3:49721532:G:A 23.4% 2.6E-18 −0.716 Both

ITIH1 P19827 rs1042779 3:52821011:A:G 37.7% 1.2E-11 0.545 Both

KNG1 P01042 rs2304456 3:186445052:T:G 16.0% 4.8E-21 0.911 SomaScan

HLA-C A2AEA2 rs707908 6:31238053:G:C 21.8% 2.0E-10 0.630 None

CFB B4E1Z4 rs12614 6:31914179:C:T 18.5% 1.2E-13 −0.590 Both

PON1 P27169 rs662a 7:94937446:T:C 37.4% 4.6E-09 −0.424 Olink

PON1 P27169 rs854560a 7:94946084:A:T 27.4% 2.7E-10 0.499 Olink

PON2 A0A0J9YXF2 rs12026 7:95041016:G:C 30.6% 1.3E-36 −0.998 Olink

FGL1 Q08830 rs3739406 8:17739538:T:C 49.2% 1.8E-11 0.512 Both

GALC G3V255 rs34362748 14:88442712:C:T 11.5% 1.0E-15 0.887 None

SERPINA10 G3V2W1 rs2232700 14:94756450:T:A 30.8% 1.5E-22 0.741 SomaScan

SERPINA1 P01009 rs709932 14:94849201:C:T 23.1% 3.8E-08 0.431 Both

DSC3 Q14574 rs276938b 18:28610988:C:T 41.4% 2.1E-08 −0.422 None

DSC3 Q14574 rs276937b 18:28611061:A:T 41.2% 1.5E-08 −0.429 None

Associations of MS-PAVs that are significantly (p < 5 × 10−8) associated with protein levels derived using the PAV-exclusive library; detection of a cis-pQTL on the SomaScan and/or Olink platform is
indicated.
acorrelation between rs662 and rs854560 is r2 = 0.20.
bcorrelation between rs276938 and rs276937 is r2 = 0.99.

12

3

Fig. 4 | Scatterplot of the protein-level associations (p-values) for the 184 MS-
PAVs using the reference and the PAV-exclusive libraries. Three regimens are
labeled: (1) variants that remain associated with protein levels after removal of the
variant peptides from the library (MS-pQTLs), (2) variants where the association
signal with the protein levels disappears after removal of the variant peptides (the
MS equivalent of an epitope effect), and (3) variants that do not associate with
protein levels in either case (MS-PAVs that may become significant in more highly
powered studies). Plot data is in Supplementary Data 3. P-values (unadjusted) are
from linear model as described in the methods section.
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components as determinants and inverse-normalized protein levels
as outcome. We found many previously reported associations, such
as associations between leptin and sex and CRP and BMI, and also
new associations that are biologically plausible, such as LIPL and
LIPE with diabetes status (Supplementary Fig. 6). However, we did
not find evidence that using the PAV-exclusive library strengthens
the associations between proteins and these non-genetic determi-
nants. The fact that we did not see an improvement with these non-
genetic determinants is likely because these variations may affect
individual peptides/protein quantifications in a substantial manner
so as to affect the number and spread of pQTLs found, but their
effects may be too granular to affect phenotype. We provide these
associations in Supplementary Data 4.

Discussion
To our knowledge, this is the first cohort proteogenomic analysis in
which genetic variation has been systematically investigated at the
peptide level using amass spectrometry-based, bottom-upproteomics
approach. We show that MS-based proteomics has the potential to
access genetic variation in proteins at the peptide level and to com-
plement affinity-based proteomics pQTL studies by: a) providing
additional information on protein identity and potential epitope
effects, b) assessing proteins that are not accessible to affinity binding,
and c) incentivizing future applications that elucidate post-
translational modifications and protein group resolution.

Our study also has limitations. First, by excluding peptides from
the PAV-exclusive library, some of the MS spectra remain unaccounted
for and canyield false-positivematches to other peptides in the library.
Future approaches could remove variant peptides only during the
protein quantification step. This would also reduce the effort needed
for identifying peptides with multiple libraries. In addition, new
quantification algorithms could use data from all nanoparticles in
parallel.

Another limitation is the choice of the MAF cutoff. Rarer variants
are not detected, because including lower-frequency variants could
lead to a significant increase in false-positive detections. The inclusion
of rare variants may also lead to multiple amino acid changes within
the same peptide simultaneously, which we do not presently account
for. Using sample-specific libraries that account for individual genetic
variants can mitigate this problem in the future. If these libraries
additionally used phased genotype data, potential issues when two
variants are located on the same peptide could be addressed.

We observe some cases where the detected variant peptide does
not match the PAV, and a few isolated cases where the alternate and
reference alleles are both detected in all samples, such as an E >D
substitution in Complement Factor H (CFH peptide SPP[E/D]ISHGV-
VAHMSDSYQYGEEVTYK). These false positive identifications (Supple-
mentary Fig. 7) can be attributed to uncertainties or shortcomings in
the algorithms that match the MS2 spectra of alternate and reference
peptides that occur in the same DIA-MS window and share many

Table 3 | MS-PAVs that overlap with disease-relevant GWAS hits

Gene UniProtID rsID Fisher P Peptide GWAS trait

WDR1 O75083 rs13441 4.8E-37 FTIGDHSR Atrial fibrillation and flutter

PIP4K2A H7BXS3 rs2230469 2.2E-48 IYIDDNSK Body fat composition

CHID1 Q9BWS9 rs6682 5.9E-59 MVWDSQASEHFFEYK Body mass index

SCFD1 A0A7I2V362 rs229150 1.8E-28 FGQDIISPLLSVK Amyotrophic lateral sclerosis

SPTB P11277 rs229587 9.6E-14 ETWLNENQR Red blood cell phenotypes

LOXL1 H3BUV8 rs1048661a 1.0E-70 EVAVGDSTGMALAR Exfoliation glaucoma

LOXL1 H3BUV8 rs3825942a 5.5E-57 HGDSASSVSASAFASTYR Coronary artery disease, Exfoliationglaucoma

GIP P09681 rs2291725 1.2E-22 ALELAGQANR Coronary artery disease, Type II diabetes

SelectedMS-PAVs that have not been reported as cis-pQTLs in previous pQTL studies and that overlapwith a clinically relevantGWAS catalog entry (edited for brevity, see Supplementary Data 3 for
details).
acorrelation between rs1048661 and rs3825942 is r2 = 0.12.

Table 2 | Overlap of PAVs with cis- and trans-pQTLs on the SomaScan and Olink platform

deCODE (SomaScan) UKB-PPP (Olink) In either studies In both studies

# of assayed proteins 4660 2908 - -

# samples in study 35,446 51,637 - -

Overlapping PAV variants 182a 184 184 182

PAV proteins assayed by platform 127 100 143 84

PAV proteins not assayed by platform 55 84 41 98

Overlapping significant association with PAV protein (cis-pQTL)b 87 89 117 (124d) 59

Overlapping association with another protein, but not the PAV protein (trans-pQTL)c 58 59 87 30

Overlapping significant association with any protein (trans- or cis-QTL) 145 148 166 143

No overlapping pQTL 37 36 41 18

No overlapping cis-pQTL 95 95 125 67 (60d)

No overlapping cis-pQTL found, although the PAV protein was assayed 40 11 6 45

No overlapping cis-pQTL found, because the PAV protein was not assayed 55 84 119 22

Data and further details supporting these numbers are in Supplementary Data 3.
aVariants 3:52853480:T:A and 6:32552029:A:T were missing from the deCODE summary statistics.
bcis-pQTL in Supplementary Data 3; p-value < 0.05/182 for SomaScan and <0.05/184 for Olink.
ctrans-pQTL in Supplementary Data 3; p-value < 0.05/182/4660 for SomaScan and <0.05/184/2908 for Olink.
dincluding 7 cis-pQTLs identified by PhenoScanner and omicsciences.org.
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common fragments. Due to the very low error rate in today’s geno-
typing platforms, genetic variants can comparatively be considered a
ground truth to calibrate peptide detection algorithms. These false
positive identifications are an inherent challenge for all bottom-upMS
data analysis softwares and are not specific to our workflow. We sug-
gest that these algorithms may be improved in the future by using
combined genetic and proteomic data from studies like ours as a
benchmark.

The level of MS-PAV detection (137 out of 2899 quantified pro-
teins) is in linewith expectations for several reasons. The entire protein
library contains 61,075protein entries, ofwhichonly 13,577 (22.2%) had
at least one peptide with a coding variant with MAF > 10%. We detect
variant peptides in492 (17.0%) of the 2899proteins. Thedifferencecan
be explained by peptides that do not ionize well enough to reach the
detector or that do not contain suitable cleavage sites with Trypsin/
Lys-C enzymatic digestion to form peptides that can be detected with
MS. The fact that 137 of the 492 detected peptides reached the
required Bonferroni level of significance in the Fisher exact test can be
explained by statistical power, as most of the non-significant variant
peptides had less than 10 detections.

Our study highlights both the complementarity and the com-
plexity of affinity- and MS-based proteomics in pQTL discovery and
suggests a new approach to analyzing MS-based proteomics data in

the presence of genetic variation. We propose to use naturally occur-
ring genetic variation for the development of future and more pow-
erful MS-based proteomics data analysis tools. Deployed at scale, this
approach can provide valuable new insights for drug target prior-
itization and repurposing.

Methods
Ethics
This study was approved by the institutional research boards of Weill
Cornell Medicine – Qatar under protocol #2011-0012 and of Hamad
Medical Corporation under protocol #11131/11 and complies with all
relevant ethical regulations. For forthgoing work with the study a non-
human subjects research determination was obtained. The study
design and conduct complied with all relevant regulations regarding
the use of human study participants (in this case, humanmaterial and
data) and was conducted in accordance to the criteria set by the
Declaration of Helsinki.

The QMDiab study
The Qatar Metabolomics study of Diabetes (QMDiab) was conducted
in 2012 at the dermatology department of Hamad Medical Corpora-
tion, the major public hospital in Doha, Qatar, with the primary aim to
studymetabolic differences in individuals with andwithout diabetes in

APOB variant peptide TSQCILK

Fig. 5 | Regional association plots for the APOB region. Association of the
detection of the alternate variant peptide TSQCILK of APOB (pc2, nanoparticle 1)
with the presence/absence of the matching genetic variants at the APOB locus
(top), GWAS associations of Apolipoprotein B (middle) and LDL-cholesterol (bot-
tom) measured by clinical biochemistry methods in blood samples from 343,621

participants of the UK Biobank study. The highlighted variant rs1367117
(chr2:21263900) is the MS-PAV in TSQC[T/I]LK. Linkage (LD) between variants is
indicated color, gene positions are below. P-values (unadjusted) are from linear
models generated by the respective studies.
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adult female and male participants of Arab and Asian ethnicities20,21. A
total of 391 study participants were enrolled, samplematerial from 345
of them was assayed on the Seer Inc. proteomics platform. Cases and
controls, males and females, Indian, Arab and Filipino ethnicities were
represented in equal proportions covering an age range from 18 to 80.
Multiple aliquots of blood, urine and saliva sampleswere collected and
stored at −80 °C without further freeze-thaw cycles.

Genotyping
DNA from QMDiab samples was extracted and genotyped using the
Illumina Omni 2.5 array (version 8) and imputed using the SHAPEIT
software with 1000 Genomes (phase3) haplotypes. PAVs were identi-
fied in the imputed variant dataset using the Ensembl Variant Effect
Predictor (VEP)27 and filtering to MAF > 10%. Genotyping data was
available for 325 of the 345 analyzed samples.

Gene model alignment
The gene model was constructed using the June 2022 version of
the UniProt.fasta file and the UniProt genome annotation tracks
UP000005640_9606 [https://ftp.uniprot.org/pub/databases/uni
prot/current_release/knowledgebase/genome_annotation_tracks/
UP000005640_9606_beds/UP000005640_9606.proteome.bed]
(UniProtgenome, accessed June 2022). To create the gene model,
we aligned the.bed with the.fasta they provide. We kept UniProt
IDs that unambiguously mapped to one sequence. For those that
mapped to multiple sequences, we preferentially selected those
sequences that aligned perfectly when translating the.bed coor-
dinates using the GRCh37.fasta file. For those that did not map to
the.fasta, we preferentially selected sequences that started with
Methionine and were in-frame. We removed ambiguity in UniProt
IDs that had sequences in multiple chromosomes by picking the
canonical one if available, and then alphanumerically if not. For those
UniProt IDs that had multiple canonical sequences within the same
chromosome, we picked the first sequence within the gene model.

Library construction
The gene model file from UniProt was used to generate reference
sequences for every UniProt ID. Common (MAF > 10%) protein-altering
variants were identified using the Ensembl Variant Effect Predictor
(VEP)27 and injected into the corresponding reference protein
sequences. We digested the reference and alternate sequences in a
manner akin toDIA-NN in silico (i.e., on tryptic [K/R] amino acids; with/
without one missed cleavage; and peptide length between 7 and
30AAs) to generate constituent peptides per UniProt sequence. We
then compared the digests from the corresponding reference and
alternate gene sequences. If peptides were of equal length, shared
their initial positionwithin the full gene, anddiffered in sequence, then
the peptides were declared a reference-to-alternate match; otherwise,
they were annotated as complex (indicated in Supplementary Data 3).
We repeated this processwith andwithout 1missed cleavage. All other
mismatched injected variant sequences (which were a result of the
introduction or deletion of a K/R), were discarded. For each variant, a
protein entry with the corresponding amino acid exchange was also
added to the PAV-inclusive library as an isoform using the protein
identifier (UniProt ID) followed by the variant identifier (rsID). Simi-
larly, the corresponding reference sequences were discarded from the
PAV-exclusive library. Genetic variants were considered independent,
and only one variant per protein was considered at a time to avoid
combinatorial growth of the library.

Proteomic analysis
240 µL of previously un-thawed citrate plasma were loaded onto the
SP100 Automation Instrument for sample preparation with Proteo-
graph Assay Kits and the Proteograph workflow17,18 (Seer, Inc.) to
generate purified peptides for downstream Liquid Chromatography

coupled with Mass Spectrometry (LC-MS) analysis. Each plasma sam-
ple was incubated with five proprietary, physicochemically-distinct
nanoparticles for protein corona formation. Samples were auto-
matically plated, including process controls, digestion control, and
MPE peptide clean-up control. A one-hour incubation resulted in a
reproducible protein corona around each nanoparticle surface. After
incubation, nanoparticle-bound proteins were captured using mag-
netic isolation. A series of gentle washes removed non-specific and
weakly-bound proteins. The paramagnetic property of the nano-
particles allows for retention of nanoparticles with the protein corona
during each wash step. This results in a highly specific and repro-
ducible protein corona. Protein coronas were reduced, alkylated, and
digested with Trypsin/Lys-C to generate tryptic peptides for LC-MS
analysis. All steps were performed in a one-pot reaction directly on the
nanoparticles. The in-solution digestion mixture was then desalted,
and all detergents were removed using a solid phase extraction and
positive pressure (MPE) system on the SP100 Automation Instrument.
Clean peptides were eluted in a high-organic buffer into a deep-well
collection plate. Equal volumes of the peptide elutionwere dried down
in a SpeedVac (3 h-overnight), and the resulting dried peptides were
stored at−80 °C.Using the results fromthepeptidequantitationassay,
peptides were thawed and reconstituted to a final concentration of
50 ng/µL in the ProteographAssayKitReconstitutionBuffer. 4 µLof the
reconstituted peptides were loaded on an Acclaim PepMap 100 C18
(0.3mm ID x 5mm) trap column and then separated on a 50cm μPAC
analytical column (PharmaFluidics, Belgium) at a flow rate of 1μL/
minute using a gradient of 5–25% solvent B (0.1% FA, 100 % ACN) in
solvent A (0.1% FA, 100% water) over 22min, resulting in a 33min total
run time. The peptides generated from these multi-nanoparticle-
sampled proteins were analyzed using a dia-PASEF method12 on a
timsTOF Pro 2 mass spectrometer (Bruker Daltonics).

Peptide and protein quantification
All MS files were processed using the DIA-NN 1.8.1 software15 and a
library-free search with match-between-runs (MBR) enabled against
the UniProt database (accessed June 2022) and thereof derived PAV-
exclusive and PAV-inclusive libraries, as described above. Peptide and
protein intensities were quantified using the DIA-NN in match-
between-runs mode with flags: --mass-acc-ms1 10, --mass-acc
10, --qvalue 0.1, --matrices,, --met-excision, --cut
K*,R*, --smart-profiling, --relaxed-prot-inf, --reanno-
tate, --threads 32, --predictor, --unimod4, --use-quant,
--peak-center, --no-ifs-removal, and –-reanalyse.

Statistical analysis
Statistical analysis was performed using R (version 4.2.1) basic libraries
(fisher.test and lm) and Rstudio (version 2023.03.0). Significant MS-
PAVs were identified through the construction and analysis of a 2 × 2
matrix. This matrix depicted how many individuals had the genetic
variant at a given genomic location, and the corresponding variant
peptide. We used the Fisher’s Exact test to determine if there was a
non-random association between these two categorical variables.
Those thatwere statistically significant at a Bonferroni-corrected alpha
level (out of 2341 signals) were considered for future analysis. pQTLs
were determined by regressing alternate allele count to protein
quantification intensities using a linear regressionmodel. We followed
previous analysis protocols2; briefly, we used inverse-normalized pro-
tein intensities as dependent variables and included age, sex, BMI,
diabetes status, and the first three genetic principal components as
covariates in a linearmodelwith the copynumber of theminor allele as
dependent variable.

Variant annotation
The web servers snipa.org28, phenoscanner.medschl.cam.ac.uk23 and
omicsciences.org6 were used to identify previously reported pQTLs
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and overlapping information from disease GWAS, and expression and
metabolomics QTLs. LocusZoom29 was used to generate regional
association plots.

APOB analysis
We downloaded UK Biobank GWAS summary statistics for LDL cho-
lesterol (code 30780) and Apolipoprotein B (code 30640) for the joint
male/female analysis with from 343,621 individuals from https://
github.com/Nealelab/UK_Biobank_GWAS, extracted the +/−250kb
region around variant 2:21263900:G:A and visualized the association
data using the LocusZoom server (https://my.locuszoom.org).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MS-proteomics data are available via ProteomeXchange with
identifier PXD042852 (raw and processed data). Consent obtained
from the study participants does not allow deposition of genetic
information in public databases. Researcher affiliated with a research
institution may request access to genetic data on an individual basis
from the corresponding author (Karsten Suhre,Weill Cornell Medicine
–Qatar, Doha, Qatar). Access is subject to approval by the institutional
research board of Weill Cornell Medicine – Qatar. Source data are
provided in the Source Data file. Source data are provided with
this paper.
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