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Floquet parity-time symmetry in integrated
photonics

Weijie Liu 1,7, Quancheng Liu 2,7, Xiang Ni3,4,7, Yuechen Jia 1,
Klaus Ziegler 5, Andrea Alù 4,6 & Feng Chen 1

Parity-time (PT) symmetry has been unveiling new photonic regimes in non-
Hermitian systems, with opportunities for lasing, sensing and enhanced light-
matter interactions. The most exotic responses emerge at the exceptional
point (EP) and in the broken PT-symmetry phase, yet in conventional PT-
symmetric systems these regimes require large levels of gain and loss, posing
remarkable challenges in practical settings. Floquet PT-symmetry, which may
be realized by periodically flipping the effective gain/loss distribution in time,
can relax these requirements and tailor the EP and PT-symmetry phases
through the modulation period. Here, we explore Floquet PT-symmetry in an
integrated photonic waveguide platform, in which the role of time is replaced
by the propagation direction. We experimentally demonstrate spontaneous
PT-symmetry breaking at small gain/loss levels and efficient control of
amplification and suppression through the excitation ports. Our work intro-
duces the advantages of Floquet PT-symmetry in a practical integrated pho-
tonic setting, enabling a powerful platform to observe PT-symmetric
phenomena and leverage their extreme features, with applications in nano-
photonics, coherent control of nanoscale light amplification and routing.

Engineering the interplay between gain and loss is at the basis of parity-
time (PT) symmetry1–5, which has recently received extensive attention,
both for fundamental research6–10 and advanced technologies11–19. The
concept of PT-symmetry has originated from the study of open quan-
tum systems, which are invariant under combined parity-time sym-
metry transformations, and can exhibit a real-valued energy spectrum
described by non-Hermitian quantum theory20–22. PT-symmetry has
found fertile grounds in classical wave physics, from photonics to
acoustics, triggering the exploration of various counterintuitive phe-
nomena, such as anyonic-PT-symmetry controlled lasing23, unidirec-
tional invisibility24, negative refraction25, power oscillations26 and non-
reciprocal transmission27. Several experimental platforms, including
electronics28, acoustics29, and matter waves30, have been proposed

and implemented to showcase the wave phenomena enabled by
PT-symmetry in classical wave systems. In particular, the analogy
between the paraxial Helmholtz wave equation of coupled waveguide
systems in space and the Schrödinger equation in the time domain has
inspired various setups capable of practically demonstrating PT-
symmetric phenomena both in linear and nonlinear regimes31–39.

Conventional PT-symmetric systems require balanced distribu-
tions in the space of gain and loss. Alternatively, passive PT-symmetric
systems can be implemented in photonic waveguides by adding a
uniform loss offset, and spatially tailoring the loss in a balanced way,
e.g., using curved waveguides40,41. These strategies of adding loss have
been implemented to control phase transitions between broken and
unbroken PT-symmetry phases without requiring gain.
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Periodic driving of PT-symmetric systems breaks time transla-
tional symmetry and allows for enriched phase transitions42–45. For
example, periodic modulation of the non-Hermiticity parameter was
introduced in a two-level Rabimodel, leading to abrokenPT-symmetry
phase at arbitrary levels of gain/loss46. On the other hand, non-
Hermitian systems subject to periodicmodulation, without possessing
PT symmetry, have the potential to enter the pseudo-PT-symmetry
phase47 or achieve an effective real spectrum48. Additionally, Floquet
PT-symmetric systems with time-periodic dissipation and couplings
have been realized in active circuit resonators49 and ultracold atoms18,
demonstrating PT-symmetry phase transitions at small dissipation
regimes. Recently, a novel topological phase of the Floquet PT-
symmetric SSH model was discovered, in which the Floquet modula-
tion is realized through the modulation of hopping terms in the SSH
lattice50. However, these platforms either have used active elements or
need intricate setups to achieve the desired periodic driving.

In this work, we leverage periodic spatial modulation of loss in an
integrated waveguide configuration to realize Floquet PT-symmetry in
integrated photonics. We unveil unprecedented control of phase
transitions and effective amplification regimes based on Floquet non-
Hermitian photonics. By properly tailoring the Floquet period, we
demonstrate PT-symmetry phase transitions with adjustable levels of
gain/loss. Remarkably, in our platform we also demonstrate extreme
control of the response of the system through the excitation ports,
switching suppression/amplification regimes in real time. Our study
opens exciting possibilities for advanced manipulation and control of
light propagation based on Floquet PT-symmetry, with exciting
applications in integrated photonics and nanophotonics.

Results
In non-Hermitian PT-symmetric systems, we candefine a directionality,
stemming from the broken parity-symmetry. For instance, a PT-
symmetric structure with loss in the bottom and gain in the top can be
defined as up, while down indicates gain in the bottom and loss in the
top. Hence, the PT-symmetric HamiltoniansH"

pt andH#
pt correspond to

loss/gain and gain/loss, respectively (Fig. 1a)

H"
pt =

iΓ κ

κ �iΓ

� �
,H#

pt =
�iΓ κ

κ iΓ

� �
, ð1Þ

where Γ denotes the non-Hermiticity parameter and κ the coupling
strength. Both these Hamiltonians are invariant under the PT

symmetry operator, PTH"
ptPT =H"

pt and PTH#
ptPT =H#

pt , where

P =
0 1
1 0

� �
denotes spatial inversion, and T, represented by complex

conjugation, reverses the direction of time. In a static PT-symmetric

system consisting of H"
pt or H

#
pt , the response is in the PT-symmetry

phase when Γ < κ, i.e., for small gain/loss, and its amplitude remains
constant in time. In the broken phase Γ < κ, one of the modes is
amplified exponentially, while the other decays.

In our setting, the Floquet PT-symmetric system is designed by
periodically swapping the locations of loss and gain in time (Fig. 1b),
while preserving PT-symmetry at each time instant. We note there are
alternative definitions of Floquet PT symmetry in the literature18,24,50,
which are also valid. Our system is represented by H"

pt for time τ↑ and
then H#

pt for time τ↓, i.e., H(t + T) =H(t) where T = τ↑+τ↓ (Fig. 1c). The
period controls output of the system in nontrivial ways. The Hamil-
tonian H(t) describing this Floquet process is PT-symmetric, i.e.,
PTHðtÞPT =HðtÞ, while its properties are remarkably different com-
pared to the two static PT-symmetric systems forming its evolution, as
we discuss in the following.Weobserve thatH(t) exhibits PT symmetry
at all instants in time, regardless of the initial condition (whether t = 0
or not) of the system. We experimentally demonstrate our findings in
an integrated photonic platform by replacing time with the propaga-
tion direction in a periodically varying evanescently coupled wave-
guide array consisting of alternative straight (lower loss) and tailored
curved (higher loss) waveguide sections (Fig. 1d).

H↑
pt = (iΓ κ

κ −iΓ) H↓
pt = (−iΓ κ

κ iΓ)
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Fig. 1 | Schematic plot of a PT-symmetric model and its analog in integrated
photonics. a Definition of the PT-symmetric Hamiltonians H"

pt and H#
pt . b Time-

dependent Hamiltonian HðtÞ consisting of periodically swapped up and down
PT-symmetric Hamiltonians. c Schematic plot of the PT-symmetric system with

periodic modulation. d Schematic plot of the waveguide arrays for the experi-
mental realization of Floquet PT-symmetric systems. Here the straight waveguide
forms the gain portion, and the curved waveguide realizes the lossy portion.
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Following Floquet theory, the stroboscopic dynamics of our Flo-

quet Hamiltonian are described by the time-evolution operator over a

complete driving period, i.e.,U",# =Te�i
R T

0
H tð Þdt , whereT executes the

time ordering, and T is the temporal period. We calculate the effective
Hamiltonian Heff of the Floquet PT model given by
Heff = i log U",# Tð Þ� �

=T . In Fig. 2a, we show the quasi-energy spectra
(real part, red; imaginary part, blue) for T = 3.626/κ, compared to the
spectrum in Fig. 2b (red curve, red; imaginary part, blue), corre-
sponding to the static scenario. The Floquet bands repeat themselves
in quasifrequency dimension because the discrete time translation
symmetry is preserved up to the period T. It is evident that the PT-
symmetry phase transition, in which the spectrum evolves from real-
valued to complex-valued through exceptional points (EPs), occurs at
much smaller values of Γ for the Floquet system compared to the static
regime. To explain this finding, we translate the static PT-symmetric
energy spectrum (red line) by the Floquet frequency Ω = 2π/T, result-
ing in band crossing of different Floquet orders. The interaction of
these Floquet bands under the periodic modulation leads to the

emergence of new EPs, and PT-symmetry phase transitions in the
Floquet quasi-energy spectra of Fig. 2a. Hence, the crossing points and
resulting EPs can be tuned through the Floquet frequency Ω, and the
Floquet PT-symmetric system can be in the broken phase even for
vanishingly small non-Hermiticity parameter, provided that the Flo-
quet frequency matches the bandwidth of Hermitian energy Ω ≈ 2κ.
Overall, the Floquet PT-symmetric system enables wide control over
EPs and phase transitions through the modulation period, facilitating
the implementation of exotic wave phenomena.

When entering the broken phase, coherent control of the ampli-
fication and decay of the input signals can be efficiently realized. The
time-evolution of the Floquet system can be formally written in terms
of the time-evolution operator |ψ(nT)〉 = (U↑,↓)n|ψ0〉, with |ψ0〉 being the
initial state of the system and U",# being the eigenmodes of the time-
evolution operator. We study a special example in which the effective
Hamiltonian can be analytically studied (see details in Supplemen-
tary S3) and the eigenstates of U↑,↓ are |ξam〉 = {1/√2, −i/√2} and |
ξsu〉 = {−i/√2, 1/√2}, with eigenvalues ξam = (1 + Γ)/(−1 + Γ) and
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Fig. 2 | Floquet quasi-energy spectrum, PT-symmetry phase transition and
dynamic evolution of the Floquet PT-symmetric system. a Imaginary (blue) and
real (red) parts of the quasi-energy spectrum of the effective Hamiltonian Heff for
the Floquet PT-symmetric systems. where the breaking of PT-symmetry appears at
the EP with small Γ. b Real part energy spectra and its translation in frequency for
ordinary PT-symmetric system. The dashed line denotes its imaginary part of the
energy spectrum. c, d Evolution of the amplification |ξam〉 and suppression |ξsu〉

modes of the two outputs of the PT-symmetric system (total intensity in the inset).
They have the same magnitude in two locations but different phases on the Bloch
sphere. Here Γ =0.2 and T = 5π/(2√6) (see details in SI-3(S10)). e Imaginary (blue)
and real (red) quasi-energy of Floquet PT-symmetric system versus periodicity Tκ.
f Simulated (based on beam-propagation method) light output intensity versus
length of Floquet periodicity in the waveguide array.
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ξsu = (−1 + Γ)/(1 + Γ), corresponding to amplified and suppressed states,
respectively. These states have a π/2 difference in phase on the Bloch
sphere of a two-dimensional Hilbert space. When |ψ0〉 = |ξam〉, the
evolution of the system reads jψðnTevolÞi= ðU",#Þnjξami= ξnamjξami and
the total intensity at the output is I nTevol

� �
= ξ2namI0 (Fig. 2c). Since

ξam > 1, the PT-symmetric system exponentially amplifies this mode,
and the amplification magnitude can be precisely controlled by the
parameter Γ. On the contrary, when |ψ0〉 = |ξsu〉, we have
jψðnTevolÞi= ðU",#Þnjξsui= ξnsujξsui and I nTevol

� �
= ξ2nsu I0, due to the fact

that ξsu < 1, such initial state is exponentially dampened by the PT-
symmetric system (Fig. 2d).

Interestingly, by tuning the Floquet periodicity of our system we
can tailor the signal amplification for given non-Hermiticity parameter
Γ. For example, choosing the gain/loss parameter Γ =0.2κ, we calculate
the quasi-energy of the Floquet PT-symmetric system as a function of
the temporal periodicity. As shown in Fig. 2e, the Floquet period canbe
tailored to enter the broken PT-symmetric phase, and for T = 3.15/κ
maximum imaginary quasi-energy is obtained, implying maximum
amplification/decay of the signal at the output.

To verify our theory, we performed beam-propagation simulations
in Floquet waveguide arrays, in which the temporal dimension is
replaced by the direction of propagation. By varying the winding as in
Fig. 1d, we can effectively build a Floquet PT-symmetric system, and we
can tailor the spatialmodulation period to control the output at the end
facets of the waveguide array (Supplementary S1, Fig. S1). The weakly
guidedpropagation (along z) of optical waves in such awaveguide array
follows the Schrödinger-type paraxial wave equation
�i∂ψðx,y;zÞ=∂z = ½∇2

?=2k +Δnðx,y;zÞk=n0�ψðx,y;zÞ=Hψðx,y;zÞ, where
∇2
? =∂2

=∂2x +∂2
=∂2y,ψ is the envelope of the lightfield ofwavelength λ,

corresponding to the wavenumber k= 2π/λ, n0 is the substrate refrac-
tive index, andΔn(x, y; z) is the indexmodulation51–54. This equation can
be mapped to the conventional Schrödinger equation for z→ t and
−Δn→V. Hence, the time-evolution of a Hamiltonian system in Eq. (1)
can be mapped to optical wave propagation along z in the waveguide.
When light propagates in the curved waveguide section, additional
bending loss is experienced. This process effectively introduces an
imaginary term to the optical potential in the paraxial Helmholtz

equation. We calibrate the decay rate Γsw of the curved waveguide
sections with independent experiments (see details in Supplemen-
tary S2 and Fig. S2). By offsetting an additional common loss term,
present in both the straight and curved sections and given by the pas-
sive nature of the system -iΓswσ0/2 = -iΓσ0 (σ0 is the 2 × 2 identity
matrix)55,56, our platform realizes a passive PT-symmetric Hamiltonian
and allow precise control over the Floquet period. The straight sections
with no additional loss correspond to effective gain regions, and the
curved sections with additional loss Γsw to lossy regions, and the non-
Hermiticity parameter of the system is the Γsw/2. The parameters are
chosen such that Γ< κ, hence each static PT-symmetricHamiltonian is in
the PT-symmetry phase, for which the energy spectrum would be real.
By periodically swapping the effective gain and lossy region in z with
periodicity L, we realize a passive Floquet PT-symmetric system emu-
lating our theoretical model. As the length L changes from 4mm to
6.75mm, the system enters the broken PT-symmetry regime, and we
obtain maximum output at L = 5.1mm, as shown in Fig. 2f, indicating
maximum signal amplification in the photonic platform, details in
Fig. S3. When L is less than 4mmor larger than 6.5mm, the system is in
the PT-symmetry regime and it exhibits oscillatory behavior as the
periodicity varies, because of its real eigenspectra. These simulations in
both broken and unbroken PT-symmetry regimes are consistent with
our theoretical results and validate the mapping of our model into an
integrated photonic platform.

To experimentally demonstrate Floquet PT-symmetry and its
remarkable features, thepreparationof excitation states jξami and jξsui
is important. We can use two coupled straight waveguides (labeled by
WG1 and WG2) to feed the Floquet PT-symmetric lattice shown in
Fig. 3, with length L = TR/4, where TR denotes the Rabi oscillation
period of the coupled straight waveguides (Fig. 3). Using a 633-nmHe-
Ne laser to excite the system from WG1, the state of light, after a
propagation length TR/4, is the amplified initial state, i.e.,
jψð0:25TRÞWG1i= jξami (Fig. 3a). When we excite the system fromWG2,
the system attains the state jψð0:25TRÞWG2i= jξsui after a length TR/4
(Fig. 3b). In both instances, straight waveguides of 2.5mm mutual
coupling length are employed to make sure that the initial states jξami
and jξsui impinge on the PT-symmetric integrated photonics for
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Fig. 3 | Experimental realization of Floquet PT-symmetric systemand static PT-
symmetric system. a, b Straight waveguides of 2.5mmmutual coupling length are
employed to prepare initial states |ξam〉 and |ξsu〉. The panel above the first structure
shows the light intensity distribution of the initial state. In figure a, b, both straight
and curved waveguides are periodically flipped, each unit bearing a length L = T/
2 = 5.1mm. The array is independently excited from the right/left waveguide for
amplification/suppression modes. Light traverses the PT-symmetric system for
three periods, covering a total length Ltotal = 3 T = 30.6mm, with light distribution

gauged at the array’s terminus. The Beam-Propagation Method is utilized to
simulate light evolution, with corresponding simulated and experimental out-
comesdisplayedon the right. c,dWaveguide arrays and light intensity for static PT-
symmetric cases. Light is introduced from the right in figure c and from the left in
figure d, each corresponding to the cases displayed in figure a, b, respectively. The
panel below the last structure shows the experimental micrograph of the facets of
the waveguide arrays.
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excitation of one of the ports. Subsequently, the light propagates in
the Floquet PT-symmetric system, with a waveguide separation of
d = 10 μm. According to the simulation, the Floquet periodicity length
is chosen as T = 10.2mm such that the maximum amplification/
decaying of broken PT-symmetry phase is achieved, with κ = 314m−1,
and Γ = 50.2m−1 (SI, Fig. 2). The output modal profiles correlated with
light propagation are then monitored. Figure 3c, d demonstrate the
static PT-symmetric cases, where one is a straight (low-loss) wave-
guide, and the other is curved (high-loss). Straight waveguide arrays
are still employed ahead of the static PT-symmetric system to generate
the two initial states.

As depicted in Fig. 3, the geometries of four different waveguide
arrays are shown in the left panel. The experimental and simulated
light distribution at the output of the array for the Floquet
PT-symmetric system and static PT-symmetric system are plotted in
the middle and right panels, respectively. Despite both systems

starting from identical light intensity, the light intensity in the ampli-
fication regime of Floquet PT-symmetric photonics vastly surpasses
one of the static PT-symmetric systems. Light intensity in the sup-
pression regime decays more rapidly compared to the static PT-
symmetric case. These experimental findings are consistent with the-
oretical predictions, validating the intriguing features of Floquet PT-
symmetric systems in tailoring the PT-symmetry phase transition and
maximizing the amplification/decay regime for a given level of non-
Hermiticity parameter.

Figure 4a demonstrates experimental (right panel) and simulated
(left panel) intensity distributions versus propagation distance z for
the Floquet PT-symmetric system, showing amplification and sup-
pression modes, and the static PT-symmetric scenarios for compar-
ison, consistent with Fig. 3. As the light propagates through the
waveguide array, the light intensity in the amplification mode sub-
stantially exceeds the one observed in the static PT-symmetric geo-
metries, whereas the light intensity in the static PT-symmetric system
surpasses the one of the suppressed modes. The experimental data
aligns well with the simulations. Figure 4b shows the theoretical
(depicted by lines, utilizing Eq. (1)) and experimental (portrayed by
dots) demonstration of light intensity within the system versus pro-
pagation distance. The light intensity for the amplification, suppres-
sion modes, and the static PT-symmetric system are shown. As
illustrated in the figure, it can be observed that the amplificationmode
of the light intensity surpasses that of the static PT-symmetric system
scenarios and the suppressionmode. The suppressionmode exhibits a
decay rate swifter than the static PT-symmetric system. These findings
underscore the control over PT-symmetry breaking through Floquet
mechanisms, thereby empowering control over both amplification and
suppression, even in the case of small gain/loss regimes.

Discussion
By periodically swapping non-Hermitian PT-symmetric Hamiltonians,
we introduced a Floquet PT-symmetric model and utilized the Floquet
mechanism to control PT-symmetry phase transitions and exceptional
points, as well as the associated complex spectra and dynamics. Our
analytical and experimental results demonstrate the rich physics of
Floquet PT-symmetric systems can be applied in an integrated pho-
tonic platform, featuring a spontaneous broken PT-symmetry phase
through the Floquet modulation. Intriguingly, our Floquet
PT-symmetricmodel possesses the remarkable ability to exponentially
amplify or suppress input signals, offering a unique means to control
light output in artificial photonic structures and unlocking exciting
possibilities for the development of on-chip devices for light control
(see Supplementary S4 for an example, control by phases and loss
magnitudes are shown in Figs. S4 and S5, respectively). Furthermore,
by carefully selecting the periodicity of the Floquet system, we have
demonstrated maximum signal amplification at the output of our
photonic structures. Our work paves the way for larger control over
Floquet PT-symmetric systems and enables functional and efficient
manipulation of light transport for potential applications in integrated
photonics and nanophotonics.

Methods
Fabrication and characterization
The Floquet PT-symmetric waveguide structures used in this work are
fabricated in commercially available borosilicate glass (EagleXG)using
the well-developed technique of direct femtosecond-laser writing. The
glass is mounted on a computer-controlled 3D x-y-z translation stage
(Hybrid Hexapod, ALIO). A femtosecond laser (Femto YL-25, YSL
Photonics) at a wavelength of 1030 nm, a pulse duration of 400 fs, and
a repetition rate of 2.5MHz is used as the light source. A microscope
objective (50×/0.45 N.A.) is utilized to focus the laser beam at ~230μm
below the substrate surface of the sample. Thepulse energy is adjusted
to ~212 nJ, and the writing speed is set to 1mm·s−1. The laser writing
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Fig. 4 |Measured light intensity forFloquetPT-symmetric systemand staticPT-
symmetric system. a Experimental (left) and simulated (right, employing thebeam
propagation method) light distribution versus propagation distance z for the Flo-
quet PT-symmetric system, featuring amplification and suppression modes, and
conventional PT-symmetric systems. As light propagates through the waveguide
array, the light intensity in the amplification mode considerably surpasses the one
observed in static PT-symmetric system scenarios, whereas the regular PT system
surpasses the suppression mode. This experimental data is in agreement with the
simulations, corroborating the unveiled physics of the Floquet setup.b Theoretical
(represented by lines, with Eq. (1)) and experimental (depicted by dots) distribu-
tions of total light intensity within the system versus propagation distance. The
light intensity for the amplification, suppression modes, and also the static
PT-symmetric case are measured. As illustrated in the figure, the light intensity of
the amplification mode significantly surpasses the one in static PT-symmetric sys-
tems and the suppressionmode. The suppressionmode exhibits a decay rate faster
than the one of the static PT-symmetric system. These findings demonstrate that
the Floquet PT-symmetric system spontaneously breaks the PT-symmetry phase in
a regime where the static PT-symmetric system preserves the PT-symmetry phase,
thus empowering control over both amplification and suppression, even amidst
minimal loss and gain.
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produces typical Type I waveguides with a width of ~ 4μm, and the
refractive index difference Δn between waveguide cores and cladding
is ~10−3. The characterization of the waveguide system is performed by
an end-face coupling system. The coupling strengths are determined
by the spacings of the adjacent waveguides. A He-Ne laser (at a wave-
length of 633 nm) is injected into the selectedwaveguide of the system
by a microscope objective (20×/0.4 N.A.) to excite waveguide modes.
The output intensity distribution (beam evolution) is measured
(monitored) at the output facet using a CCD camera by another
microscope objective (20×/0.4 N.A.). The waveguide losses are deter-
mined to be less than 0.5 dB/cm. The theoretical approach and
numerical method can be seen in Supplementary section S3.

Data availability
Relevant data supporting the key findings of this study are available
within the article, the Supplementary Information file, and the Source
datafile. All the data generated in this study have beendeposited in the
Figshare database under [https://doi.org/10.6084/m9.figshare.
24981819]. Source data are provided in this paper.
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