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Macrolactones exhibit distinct conformational and configurational properties
and arewidely found in natural products,medicines, and agrochemicals. Up to
now, the major effort for macrolactonization is directed toward identifying
suitable carboxylic acid/alcohol coupling reagents to address the challenges
associated with macrocyclization, wherein the stereochemistry of products is
usually controlled by the substrate’s inherent chirality. It remains largely
unexplored in using catalysts to govern both macrolactone formation and
stereochemical control. Here, we disclose a non-enzymatic organocatalytic
approach to construct macrolactones bearing chiral planes from achiral sub-
strates. Our strategy utilizes N-heterocyclic carbene (NHC) as a potent acyla-
tion catalyst that simultaneously mediates the macrocyclization and controls
planar chirality during the catalytic process. Macrolactones varying in ring
sizes from sixteen to twenty members are obtained with good-to-excellent
yields and enantiomeric ratios. Our study shall open new avenues in accessing
macrolactones with various stereogenic elements and ring structures by using
readily available small-molecule catalysts.

Macrolactones, cyclic carboxylic esters with over twelve-membered
rings, are broadly present in natural and synthetic functional
molecules1. Representative examples of bioactive macrolactones
include medicinally important macrolide antibiotics such as ery-
thromycin, and agrochemicals like avermectin and Spinosad
(Fig. 1A)2–4. The unique conformational (and configurational) proper-
ties posed by the macrocyclic structures are critical for these mole-
cules to display the right bioactivities5,6. Therefore, the preparation of
macrolactones has received significant attention over the past
decades1,7, and new synthetic methods continue to emerge in recent
years8,9. One class of such methods starts from substrates with car-
boxylic ester moieties pre-installed on the main chains and uses var-
ious transformations (such as those based on transition metal-
catalyzed bond formations) to close the respective macrocycles10–13.
The other type of methods, primarily a classic strategy, relies on the
formation of carboxylic esters from the corresponding carboxylic
acids and alcohols as the ring-closing step (Fig. 1B)14–18. Indeed, this

lactonization method still constitutes as the most prevalent, reliable
approach, and holds clear promise especially since the selective acyl
transfer reactions have been well explored through activation of acyl
donors by both small-molecule19–23 and enzyme catalysts24–26. In the
past, studies on macrolactonization mainly focused on developing
new carboxylic acid/alcohol coupling reagents andmethods to ensure
the lactone formations, in which the stereochemical course is mostly
controlled by the inherent pre-existing chirality of substrates. There
are fewer studies on using catalysts to simultaneously govern the
lactonization reaction and stereochemical controls. In 2020, Collins
and co-workers showed that the reaction between di-carboxylic acids
(tethered with aliphatic linkers) and ortho-substituted benzylic diols
can be mediated by the Candida antarctica lipase B (CALB) enzyme
catalyst to formmacrolactones (Fig. 1C)27. Due to rotational constraints
posed by the macrocycles, the macrolactone products feature planar
chirality and are obtained with excellent enantioselectivities under the
control of theCALB enzyme catalyst. Additionally, it is noteworthy that
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chiral frameworks with planar stereogenicity are not only of high
interest in their distinctmolecular chirality, but also broadly present in
natural products and utilized in asymmetric catalysis and materials
(Fig. 1A)28–30. Despite this elegant work27, examples to address the long-
standing challenge of catalytic approach toward planar chiral cyclo-
phane molecules remains largely unexplored31–38.

We are interested in exploring N-heterocyclic carbene (NHC) as a
small-molecule catalyst to address synthetic challenges in complex
molecules39. NHC is, in principle, a class of excellent acylation catalysts
that can offer multiple handles to modulate reactivity and chemo/
regio/stereo-selectivities40–45. In thiswork,wedisclose anon-enzymatic
organocatalytic strategy for efficient access to planar chiral macro-
lactones (Fig. 1D). The reaction of the NHC catalyst with aldehyde
moiety of the bifunctional hydroxyl aldehyde substrate 1 under oxi-
dative conditions effectively leads to an NHC-bound acyl azolium
intermediate46–49. This intermediate then reacts with the alcohol moi-
ety of the substrate to close the lactone ring. The pro-chiral arene
planes from substrate 1 in the intermediate are well differentiated by
stereo-control of the chiral NHC catalyst, leading to the planar chiral

macrolactones 2with good yields and excellent enantiomeric ratios. In
the long round, our study shall open new avenues in accessing mac-
rolactones with various chirality styles and ring structures by using
readily available small-molecule catalysts.

Results and discussion
We commenced our investigation with the expeditious preparation of
acyclic substrate 1a (Fig. 2). Substituted naphthol aldehyde 4a was
easily accessed through a reaction sequence involving a formylation
and bromination process from commercially available 1-naphthol (3a).
A side chain was subsequently installed with 5a via a Mitsunobu
reaction, leading to the desired model substrate 1a through mild
deprotection of the TBS group upon treatment with TBAF.

With the acyclic aldehyde 1a in hand, we set out to study the
carbene-catalyzed enantioselective macrocyclization (Fig. 3). Gratify-
ingly, the reaction enabled by achiral NHC A with K2CO3 in toluene at
100 °C gave rise to the desired product 2a in 35% yield, revealing the
feasibility of NHC-catalyzed macrolactonization transformation. Var-
ious chiral carbene catalysts B-H were then carefully screened to

Fig. 1 | Importance of macrolactones and the enantioselective synthesis.
A Examples containing macrolactone motif and representative planar chiral mac-
rocycles; B Typical synthetic strategy via macrolactonization; C Preparation of

planar chiral macrolactones by enzyme catalysis; D Our proposed carbene orga-
nocatalytic strategy for planar enantioselective macrolactonization.
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explore their capability for stereo-control over planar stereogenicity of
the macrocyclic product 2a. Whereas indanol-based catalyst D affor-
ded the product in modest enantioselectivity (entries 2–4), we were
pleased to find that N-2,4,6-trichlorophenyl substituted NHC E was
superior to give the product 2a in a promising 75:25 enantioselectivity
(entry 5). Further introduction of substituents (e.g. Br and NO2) on the
indanol aromatic ring significantly improved the planar enantioselec-
tivity, in which catalyst G furnished the product in 91:9 selectivity,
albeit in a modest yield resulting from the competing intermolecular
lactonization process to form the dimerization side product (see Sup-
plementary Information for details) (entry 7). By evaluation of other
catalysts, bases (entries 8–11) as well as various solvents and tem-
peratures (see Supplementary Table 1, Supplementary Information for
details), we were delighted to achieve the stereoselective synthesis of
planar chiral product 2a with 64% yield and 93:7 er by employment of

catalyst G with DABCO as the base (entry 11). Encouraged by the
successful examples on cooperative NHC and co-catalysts50–55, we
then turned to examine various hydrogen bond donors (HBD), as
well as Lewis acids/Brønsted acids to further enhance the catalytic
performance (Supplementary Table 1, Supplementary Information
for details). Satisfyingly, an optimal condition was obtained utilizing
a cinchona-derived HBD-3 as a cocatalyst in the presence of a mixed
solvent (toluene:n-heptane), furnishing the product 2a in 80% iso-
lated yield and 96:4 er (entry 15). The improved results might arise
from the additional hydrogen-bonding interaction provided by the
thiourea moiety of HBD-3 with the hydroxyl group and NHC-bound
acyl azolium intermediate31–36. Furthermore, the use of enantiomeric
NHCG (ent-G) as the carbene catalyst afforded the product 2a in 70%
yield and a reversed 6:94 er (entry 16), indicating a slight match/
mismatch relationship between NHC G and co-catalyst HBD-3. It is
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also worth noting that the cyclophane product 2a showed a
remarkable configurational stability upon thermal racemization
experiment of macrolactone 2a in mesitylene, in which erosion of
enantioselectivity was not observed even at 150 °C when the title
compound 2a started to decompose.

With the optimal reaction conditions established, we set out to
study the generality of the carbene-catalyzed synthesis of planar chiral
macrolactones (Fig. 4). An array of substituents on the aromaticmoiety
of aldehyde substrate 1 were initially explored in the catalytic stereo-
selective macrocyclization. In addition to bromo group, substrates
with chloro- and iodo-functional units were readily converted
smoothly under the optimal conditions, delivering to the corre-
sponding products 2b and 2c in 61–75% yields with high enantios-
electivities (95:5 and 97:3 er, respectively). Installment of a diverse set
of aromatic substitutions on the naphthalene moiety of 1 was subse-
quently studied. To our delight, the 3-phenyl substituted substrate
afforded the macrolactone 2d with 81% yield and 93:7 er. Various
substituents such as Cl, CH3, OCH3 at the para-position of 3-phenyl
group showed excellent compatibility under this condition, providing
products 2e–g with even higher yields (82–88%) and good stereo-
selectivities. Furthermore, the 3-aryl unit on the naphthalene core of 1
could be replaced with 2-naphthyl (2h) and various heteroaromatic
units such as thienyl (2i), furyl (2j), benzothienyl (2k) andbenzofuranyl
(2l) substituents, which significantly expanded the scope of planar
chiral macrolactone derivatives. Further modification of the
3-substituent to 2-position of the naphthalene scaffold with a simple

methyl group furnished the product 2m in 78% yield and 95:5 er.
Noteworthy is that [18]-paracyclophanes 2n and 2o with ortho-dis-
ubstituted phenyl ring could also be prepared with our method,
wherein the NO2 group was compatible under the catalytic conditions
albeit in a slightly dropped enantioselectivity (2o, 90:10 er). Notably,
these planar chiral products exhibit substantial configurational stabi-
lity as well, as demonstrated by product 2o, which did not show
decreased er value upon heating inmesitylene at 150 °C, while the title
compound 2o gradually decomposed.

Next, we turned to examine the length of the ansa chain to pre-
pare paracyclophanes with various ring sizes (Fig. 5). Substrates with a
13-, or 12-membered ansa chain were readily converted to the corre-
sponding planar chiral macrolactones 2p (with a 17-membered mac-
rocycle) and 2q (with a 16-membered macrocycle) in excellent
enantioselectivity. Notably, the absolute configuration of the planar
chiral macrolactone products was established as (Rp)

56 by analogy to
product 2p via X-ray crystallographic analysis. However, further
reducing the ansa chain to 11 members failed to give the corre-
sponding product 2r under the optimal conditions, most likely due to
the unfavorable formation of a rigidified macrocycle. On the other
hand, the side chain could be readily extended to 15 and 16 members,
which produced the products 2s and 2t in 93:7 and 86:14 er, respec-
tively. Furthermore, various functionalized linkers in the ansa chain,
such as thioether (2u), 1,3-diyne (2v) and ether (2w), were compatible
to deliver the corresponding products 2u–w inmodest yields and high
enantioselectivities.
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The optically enriched planar chiral macrolactones prepared in
our approach could readily undergo further synthetic transformations
(Fig. 6). A palladium-catalyzed Suzuki cross coupling reaction between
2a and6 afforded chiral cyclophane 7with 80%yield and94:6 er.Other
transition-metal-catalyzed couplings were also viable to diversify the
catalytically obtained macrolactone products. For instance, a Heck
reactionwith styrene 8 enabled by Pd(OAc)2/PPh3 afforded the alkene-
tethered planar chiral macrocycle 9 in 42% yield and 95:5 er. Addi-
tionally, Sonogashira coupling of 2c with terminal alkyne 10 led to
product 11 in 92% yield and without erosion of er value.

In summary, we have developed a carbene organocatalytic
approach for planar enantioselective macrolactonization. A wide range
of cyclophanes, featuring intriguing configurationally stable planar
stereogenicity owing to the restricted ring flip of the macrocycles, were
obtained efficiently in high yields and excellent stereoselectivities under
oxidativeNHCconditions. Diversification of the chiralmacrocycleswere
readily achieved through a series of coupling reactions to significantly
expand the scope of this method. Furthermore, our approach provides
a (non-enzymatic) organocatalytic approach to address the long-
standing challenge in stereoselective preparation of planar chiral mac-
rolactones. New avenues by carbene organocatalytic approach for
synthetic implementation to access optically enriched planar chiral
frameworks and biologically intriguing macrocyclic scaffolds could be
anticipated. Ongoing studies in our laboratory include development of
the prepared planar chiral macrolactones for chiral catalyst design, and
biological activity evaluation for novel agrochemical discovery.

Methods
To a 100.0mL Schlenk flask equipped with a magnetic stir bar was
added chiral NHC pre-catalyst G (5.2mg, 20mol%), DQ (30.6mg,
150mol%,), DABCO (1.12mg, 20mol%), HBD-3 (5.17mg, 15mol%) and

aldehyde substrate 1 (0.05mmol, 1.0 equiv.). After that, a mixed sol-
vent of toluene / n-heptane (11:9 v/v, 1mM)was added and the reaction
mixture was allowed to stir for 12 h at 100 °C. Then the mixture was
concentratedunder reducedpressure. The resulting crude residuewas
purified by column chromatography on silica gel to afford the desired
planar chiral product 2.

Data availability
The X-ray crystallographic coordinates for structures of the com-
pounds (Rp)-2p reported in this study have been deposited at the
Cambridge Crystallographic Data Centre (CCDC), under deposition
numbers CCDC 1849177. These data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via www.ccdc.
cam.ac.uk/data_request/cif. The full experimental details for the
preparation of all new compounds, and their spectroscopic and
chromatographic data generated in this study are provided in
the Supplementary Information/Source Data file. All data are avail-
able from the authors upon request.
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