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COVID-19 immune signatures in Uganda
persist in HIV co-infection and diverge by
pandemic phase

A list of authors and their affiliations appears at the end of the paper

Little is known about the pathobiology of SARS-CoV-2 infection in sub-Saharan
Africa, where severe COVID-19 fatality rates are among the highest in theworld
and the immunological landscape is unique. In a prospective cohort study of
306 adults encompassing the entire clinical spectrum of SARS-CoV-2 infection
in Uganda, we profile the peripheral blood proteome and transcriptome to
characterize the immunopathology of COVID-19 across multiple phases of the
pandemic. Beyond the prognostic importance of myeloid cell-driven immune
activation and lymphopenia, we show that multifaceted impairment of host
protein synthesis and redox imbalance define core biological signatures of
severeCOVID-19,with central roles for IL-7, IL-15, and lymphotoxin-α in COVID-
19 respiratory failure. While prognostic signatures are generally consistent in
SARS-CoV-2/HIV-coinfection, type I interferon responses uniquely scale with
COVID-19 severity in persons living with HIV. Throughout the pandemic,
COVID-19 severity peaked during phases dominated by A.23/A.23.1 and Delta
B.1.617.2/AY variants. Independent of clinical severity, Delta phase COVID-19 is
distinguished by exaggerated pro-inflammatory myeloid cell and inflamma-
some activation, NK and CD8+ T cell depletion, and impaired host protein
synthesis. Combining these analyses with a contemporary Ugandan cohort of
adults hospitalized with influenza and other severe acute respiratory infec-
tions, we show that activation of epidermal and platelet-derived growth factor
pathways are distinct features of COVID-19, deepening translational under-
standing of mechanisms potentially underlying SARS-CoV-2-associated pul-
monary fibrosis. Collectively, our findings provide biological rationale for use
of broad and targeted immunotherapies for severe COVID-19 in sub-Saharan
Africa, illustrate the relevance of local viral and host factors to SARS-CoV-2
immunopathology, and highlight underemphasized yet therapeutically
exploitable immune pathways driving COVID-19 severity.

The COVID-19 pandemic is the greatest global health crisis in over a
century1. In high-income countries (HICs), clinical outcomes for
patients with severe COVID-19 have improved substantially over time,
in part due to targeted administration of immunomodulatory

therapeutics (i.e., corticosteroids, interleukin-6 and JAK1/2 antago-
nists) and widespread SARS-CoV-2 vaccine uptake2–7. Effective use of
immunomodulatory agents was driven by a multitude of basic and
translational investigations in HICs that identified dysregulated pro-
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inflammatory immune responses, particularly myeloid cell-driven
induction of innate immune signaling and high-levels of inflamma-
tory cytokines and chemokines, as key pathobiological features in
severe COVID-198. Despite this, host responses across the clinical
spectrum of SARS-CoV-2 infection are heterogeneous, and interplay
between inflammatory, metabolic, and microvascular pathways in
COVID-19 immunopathology remains incompletely understood9,10.
The contribution of SARS-CoV-2 variants and HIV co-infection to
COVID-19 pathobiology, factors which vary substantially across geo-
graphic and income settings worldwide, is also poorly defined.

In sub-Saharan Africa, a low-income region where SARS-CoV-2
vaccine coverage remains poor and critical care capacity is limited,
fatality rates for severe COVID-19 are among the highest in the
world11–15. Although the immunological landscape of the region is
unique due to young age demographics, high HIV burden, and dis-
tinctive SARS-CoV-2 variants, mechanisms that mediate immuno-
pathology and drive COVID-19 severity in sub-Saharan Africa remain
largely unknown16. In this context, comprehensive immune profiling
across the severity spectrum of COVID-19 is essential to reinforce
biological rationale for therapeutic immunomodulation, determine
the importance of locally relevant viral and host factors, and identify
prognostically-important molecular signatures that may represent
potential treatment targets.

In a nationally-representative prospective cohort study inUganda,
we apply multimodal methods to dissect the immunopathology of
COVID-19 across three variant-driven phases of the pandemic. We
show that while prognostic immune signatures are generally con-
sistent in SARS-CoV-2/HIV co-infection, Delta phase COVID-19 is
defined by exaggerated pro-inflammatory myeloid cell and inflam-
masome activation andNKandCD8+ T cell depletion. Combining these
analyses with a contemporary Ugandan cohort of adults hospitalized
with influenza and other severe respiratory infections, we show that
activation of epidermal and platelet-derived growth factor pathways
are distinguishing features of COVID-19, deepening translational
understanding of mechanisms potentially underlying pulmonary
fibrosis and other clinical sequelae of SARS-CoV-2 infection.

Results
Study site, capacity, and patient population
Weconductedaprospectiveobservational cohort study (Research in the
Epidemiology of Severe and Emerging Infections in Uganda—Cor-
onavirus disease 2019; RESERVE-U-C19) of patients with laboratory
(PCR)-confirmed SARS-CoV-2 infection admitted to Entebbe Regional
Referral Hospital (ERRH), a 200-bed public hospital in central Uganda.
During the study period, ERRH functioned as a national referral hospital
for COVID-19; patients with SARS-CoV-2 infection nationwide were
referred to the facility for management. Details on study site capacity
and available respiratory support are provided in the Methods section.

As part of RESERVE-U-C19, we prospectively obtained clinical
data, serum, and whole-blood RNA samples from adults (age ≥ 18
years) with laboratory-confirmed SARS-CoV-2 infection admitted to
ERRH fromMarch 22nd, 2020 to July 14th, 2021 (SupplementaryData 1,
Supplementary Fig. 1). Both males and females were enrolled; there
was no preference for enrollment by self-reported sex. At the conclu-
sion of enrollment, <5% of the Ugandan population was fully vacci-
nated against SARS-CoV-211. Among enrolled participants (N = 306),
most were young adult males and 11% (33/302) were living with HIV
(PLWH), of whom 83% (24/29) had suppressed viral loads. Malaria or
tuberculosis co-infection was rare (Supplementary Data 1).

Based on World Health Organization (WHO) criteria, we stratified
patients into four groups of clinical severity: asymptomatic (N = 66
[21.6%]), mild (N = 149 [48.7%]), moderate (N = 21 [6.9%]), and severe
(N = 70 [22.9%]) (Supplementary Data 1; see SupplementalMethods for
specific criteria)17. Among patients with severe COVID-19, of whom
90.0% (63/70) received oxygen therapy and 88.6% (62/70) received

corticosteroids, 17.1% (12/70) died in hospital or were transferred to
Uganda’s highest level public referral hospital (where more advanced
respiratory support was available) due to progressive illness severity.

SARS-CoV-2 variant-driven pandemic phases
Using national genomic and epidemiologic surveillance data gener-
ated by the Uganda Virus Research Institute (UVRI) and WHO, we
divided our study period into three pandemic phases defined by
dominant circulation of different SARS-CoV-2 variants (various A/B
lineages, A.23/A.23.1, Delta) and trends in national SARS-CoV-2 case
counts (Supplementary Data 1, Fig. 1a)18–20. While patients of varying
clinical severity were enrolled during each pandemic phase, a high
proportion of patients hospitalized during the Delta variant-driven
phase, during which time up to 90% of nationally sequenced samples
were the Delta B.1.617.2 and AY sub-lineages, had severe COVID-1918.

Increased COVID-19 severity in Uganda is dominated by
mediators of innate myeloid cell and Th1/Th17 pathways
that persist in PLWH
To determine the relationship between COVID-19 severity and key
domains of the host response to viral respiratory infection, we per-
formed targeted profiling of the peripheral bloodproteome,measuring
48 soluble immune mediators in serum using a multiplexed immu-
noassay (N = 306). Across the clinical spectrum, patients with more
severe illness exhibited a pro-inflammatory immune signature domi-
nated by mediators of monocyte/macrophage and NK cell activation/
chemotaxis and Th1/Th17 pathways (e.g., IL-6, IL-7, IL-15, IL-17F, CXCL9,
CXCL10, lymphotoxin-α, TNF). In parallel, patients with severe
COVID-19 showed reducedconcentrationsof keyTh2-relatedmediators
(MDC, IL-5) and likely compensatory production of the anti-
inflammatory mediator IL-10 (Fig. 1b, c, Supplementary Table 1). More
severe COVID-19 was also associated with higher concentrations of key
pro-fibrotic mediators of epithelial regeneration/repair (TGF-α), and
endothelial activation/permeability (VEGF-A) (Fig. 1b, c). No significant
differences in IFN-α2 or IFN-γ concentrations were observed across
severity groups (Supplementary Table 1). Findings were consistent in
Benjamini-Hochberg [BH]-adjusted multivariable proportional odds
models including age, self-reported sex, HIV co-infection, SARS-CoV-2
variant phase, and pre-enrollment symptom duration, the latter inclu-
ded when asymptomatic individuals were excluded (Supplementary
Tables 2, 3).

Given the considerable number of mediators associated with
COVID-19 severity, we determined the importance of each in distin-
guishing patients with severe COVID-19 using a gradient-boosted
machine classifier model and Shapley additive explanations (SHAP)
values. This classifier reinforced theprognostic importanceofmonocyte/
macrophage, NK cell, and Th1-pathway activation, with prediction of
severe COVID-19 driven by higher concentrations of IL-7, CXCL10, IL-15,
andCXCL9, and lower concentrations ofMDCand IL-5 (Fig. 1d, e). TGF-α,
a key mediator of the EGFR pathway, was also a high-ranking driver of
model prediction, suggesting that concurrent activation of pro-fibrotic
epidermal growth factors are important features of severe COVID-19.

To determine if severity-related host responses were consistent in
PLWH, we repeated our analyses using two approaches: restricting
between-group comparisons to PLWH and including an interaction
term between HIV status and each mediator concentration in multi-
variable proportional odds models of COVID-19 severity. Although
limited by the relatively small proportion of PLWH enrolled in our
study, analyses using both methods were consistent with those in the
larger cohort, suggesting that prognostic host responses in COVID-19
are generally conserved in PLWH (Supplementary Table 4 and Sup-
plementary Fig. 2).While further limited by the small number of PLWH
with severe illness, interaction models also suggested that higher
concentrations of IFN-α2, IL-6, CCL3, IL-1a, and IL-1Ra were associated
withmore severeCOVID-19 in PLWH (Fig. 1f and Supplementary Fig. 3).
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Whole-blood transcriptional profiling reinforces
pro-inflammatory myeloid cell-driven immune activation
and variable lymphocyte signatures in severe COVID-19
Of the 306 adults prospectively enrolled in RESERVE-U-C19, RNAseq
was performed for a subset of 100 who had whole-blood RNA samples
collected simultaneously with serum during each phase of the pan-
demic. These 100 patients spanned the COVID-19 severity spectrum

with demographics, HIV and Delta phase prevalence, and WHO
severity classifications comparable to the larger cohort (Supplemen-
tary Data 2). Gene set enrichment analysis (GSEA), structured on dif-
ferential gene expression between patients with and without severe
COVID-19 (adjusted for age, self-reported sex, HIV co-infection, and
SARS-CoV-2 variant phase), was used to infer biological pathway
enrichment associatedwith COVID-19 severity. At a falsediscovery rate
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(FDR) q value threshold of 0.10, GSEA reinforced a severe COVID-19
immune signature defined by broad activation of key pro-
inflammatory innate immune pathways (e.g., TLR4, NF-κB, STAT,
complement) and cell populations (neutrophils, macrophages, den-
dritic cells), in addition to increased production of IL-6, IL-8, and TNF
superfamilymediators (Fig. 2a). Patients with severe COVID-19 showed
evidence of dynamic changes to the lymphocyte compartment. This
included concomitant upregulation of Th1 cell differentiation path-
ways andT cell activation alongwith reduced quantities of CD8+ T cells
andNK cells, as inferred fromdigital cytometry deconvolution (Fig. 2a,
Supplementary Table 5, Supplementary Fig. 4).

Oxidative stress, endothelial glycocalyx regeneration, and
impaired host protein synthesis define the metabolic signature
of severe COVID-19
In patients with severe COVID-19, GSEA identified a metabolic profile
dominated by upregulated macromolecule catabolism, phagocytic
respiratory burst, and production of reactive oxygen species (ROS)
(Fig. 2b). While integral to antimicrobial defense, exaggerated produc-
tion of these species and resulting redox imbalancemay induce changes
to endothelial and epithelial barrier integrity, propagating recruitment
of pro-inflammatory innate cells and amplifying pulmonary and extra-
pulmonary tissue injury during severe viral respiratory infection21,22.
Supporting prognostic interplay between pro-inflammatory immune,
microvascular, and thrombotic pathway activation, patients with severe
COVID-19 showed consistent evidence of endothelial activation and
regeneration of key glycocalyx-anchoring proteoglycans (heparan and
chondroitin sulfates), with concomitant upregulation of coagulation
pathways and platelet aggregation and activation (Fig. 2b).

In vitro data from infected human alveolar epithelial cells suggest
that SARS-CoV-2 and other coronaviruses subvert host protein synth-
esis to enhance viral replication and impede host antiviral defense23.
Although derived from peripheral blood RNAseq, GSEA showed con-
sistent evidence of impaired transcription and translation in patients
with severe COVID-19, including downregulation of RNA polymerase
activity, RNA methylation, ribosome biogenesis, and translational
initiation (Fig. 2c). Patients with severe COVID-19 also showed upre-
gulation of pathways involved in viral cell entry and trafficking,
including proteolysis, endocytosis and phagocytosis, autophagosome
organization and lysosome pH maintenance24.

Neutrophil, plasma cell, and activated CD4+ and CD8+ T cell
abundance correlate with key indicators of COVID-19
respiratory failure
In parallel with GSEA, we inferred the abundance of key immune cell
populations using digital cytometry deconvolution and determined
relationships between immune cell populations, soluble mediator

concentrations, and COVID-19 severity. Principal component analysis
(PCA) applied to immune cell subsets revealed separation of patients
with severe COVID-19 across the first principal component, with neu-
trophils, NK cells, and activated CD4+ and CD8+ T cells identified as the
main drivers of immune cell variance (Fig. 2d). Hierarchical correlation
analysis restricted to symptomatic patients suggested positive rela-
tionships between neutrophil, monocyte, plasma cell, and activated
CD4+ T cell abundance, indicators of COVID-19 respiratory failure
(oxygen saturation, respiratory rate), and severe morbidity (lower
Karnofsky Performance Status [KPS]) (Fig. 2e). Conversely, higher
CD8+ T cell abundance correlated with higher KPS. Further reinforcing
the relevance of pro-inflammatory myeloid cell activation and CD4+/
CD8+ T cell dynamics in severe COVID-19, we observed relationships
between these cell types and soluble mediators centrally implicated in
COVID-19 severity (Fig. 2f). This included correlations between neu-
trophils and IL-6, IL-8, MDC, TGF-α, and VEGF-α, between activated
CD4+ cells and lymphotoxin-α, IL-6, and IL-7, and between CD8+ T cells
and IL-1Ra, IL-6, and MDC.

Differential innate mononuclear cell-, Th1, and profibrotic host
responses are apparent early and throughout the course of
severe COVID-19
Considering that patients were enrolled at various time points fol-
lowing symptomonset, we leveraged our cohort to explore changes in
soluble mediators over the reported course of illness. For many of the
most importantmediators identified in predictivemodels of COVID-19
severity, concentrations appeared divergent early and throughout the
course of symptoms, including IL-7, IL-10, lymphotoxin-α, TGF-α,
VEGF-A, and MDC (Fig. 3a).

As most symptomatic patients were enrolled after a week of ill-
ness (median 9 days), we determined if severity-stratified mediator
concentrations differed in patients who presented earlier in their
course. Among patients enrolled within 7 days of symptom onset,
evidence of pro-inflammatory monocyte/macrophage (IL-1Ra, IL-1β,
IL-6, CXCL10), NK cell (IL-15), Th1/Th17-pathway (IL-7, IL-15, IL-17F), and
endothelial (VEGF-A) activation were apparent in patients with severe
COVID-19 (Fig. 3b, Supplementary Table 6). Moreover, patients with
severe COVID-19 had higher concentrations of EGF and TGF-α, sug-
gesting concurrent activation of pro-fibrotic epidermal growth factor
pathways within the first week of illness.

Multi-pathway immune profiles diverge across SARS-CoV-2
variant-driven pandemic phases
Although in vitro and computational experiments suggest that SARS-
CoV-2 variants may differentially induce innate immune signaling and
pro-inflammatory cytokine production, little remains known about
these relationships in vivo25,26. Across three study phases distinguished

Fig. 1 | COVID-19 pandemic phases and relationships between soluble immune
mediators and COVID-19 severity. a Epidemic curve of study enrollment period;
enrolled patients (N = 306) assigned to epidemic weeks based on date of hospita-
lization and colored according to World Health Organization (WHO) clinical
severity classification. Right-sided y-axis reflects national SARS-CoV-2 case counts
asper theWHOCOVID-19Ugandadashboard. Pandemic phasesweredefinedbased
on dominant circulation of different variants and trends in national SARS-CoV-2
case counts (Varied A/B lineage phase, N = 97; A.23/A.23.1 phase, N = 141; Delta
phase, N = 68). *Delta variant includes B.1.617.2 and AY.1, AY.4, AY.33, AY.39, AY.46,
AY.46.4 sublineages. b Heatmap of 45 soluble immune mediator concentrations
(values log10-transformed, centered, and scaled) stratified byWHO clinical severity
classification with rows split by k-means clustering (N = 306). Individual patient
columns are ordered based on differences inmean z-score and annotated with age,
self-reported sex, HIV status, and dominant SARS-CoV-2 variant at time of hospi-
talization. IL-3, GM-CSF, and G-CSF omitted from heatmap given large proportion
of values below the lower limit of quantification. c Solublemediator concentrations
stratified by WHO clinical severity classification (N = 306). Concentrations across
groups compared using Kruskal-Wallis H test followed by Dunn’s test for multiple

comparisons with p values adjusted using Benjamini-Hochberg method; *p <0.05,
**p <0.01, ***p <0.001, ****p <0.0001. d Importance of immune mediators in
gradient-boostedmachine classifier for prediction of severe (N = 70) vs. non-severe
(asymptomatic, mild, or moderate, N = 236) COVID-19 as per model split-gain
values; top 20 variables presented in descending order of importance. e Shapley
additive explanations (SHAP) values derived from gradient-boosted machine
model for prediction of severe (N = 70) vs. non-severe (N = 236) COVID-19; SHAP
values > 0 indicate positive impactonpredictionwhile values < 0 indicates negative
impact (e.g., high concentrations of IL-7 have a strong positive contribution to
prediction of severe COVID-19). f Probabilities of COVID-19 severity stratified by
HIV status (N = 302; 4 patients without definitive assessment of HIV status exclu-
ded); shading indicates 95% confidence intervals; probabilities derived from mul-
tivariable proportional odds model including WHO clinical severity as ordinal
dependent variable and age, self-reported sex, and interaction term between HIV
status and log10-mediator concentration as independent variables; p values reflect
two-sidedWald test of interaction term; PLWHpersons living with HIV. Source data
are provided in the Source Data file.
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Fig. 2 | Biological pathway enrichment and immune cell profiles associated
with COVID-19 severity. a–c Differential enrichment of key biological pathways
among patients with severe vs. non-severe COVID-19 at false-discovery-rate (FDR)
q value ≤0.10 (N = 100); pathway enrichment determined using Gene Set Enrich-
ment Analysis applied to differentially expressed gene sets generated in a DESeq2
model of whole-blood RNAseq data adjusted for age, self-reported sex, HIV co-
infection, and SARS-CoV-2 variant phase (2 patients not known to be livingwith HIV
but with missing rapid diagnostic tests analyzed as HIV negative); PRR pathogen
recognition receptor, ROS reactive oxygen species, NOS nitric oxide synthetase,
ERAD Endoplasmic-reticulum-associated protein degradation, ER endoplasmic
reticulum, DDR death domain receptor. d Principal components analysis of
immune cell populations in individual patients stratified by COVID-19 severity
(N = 100); absolute abundance of immune cell populations (naïve and memory B
cells, plasma cells, CD8+ T cells, naïve, resting, and activated memory CD4+ T cells,

resting natural killer cells, monocytes, activated dendritic cells, resting mast cells,
eosinophils, and neutrophils) inferred from whole-blood RNAseq data using
LM22 signaturematrix in CIBERSORTx platform; side panel displays squared factor
loadings for each immune cell type across the first two principal components;
higher loading value indicates greater importance for each cell type in explaining
variance across each principal component. e–f Hierarchical correlation matrices
showing relationships between immune cell abundance, demographics, clinical
variables, and immune mediators in patients with symptomatic COVID-19 (N = 84);
shaded squares reflect Spearman correlation coefficients with a two-sided Benja-
mini-Hochberg adjusted p value ≤0.05; NK natural killer, KPS Karnofsky Perfor-
mance Status, SpO2 peripheral oxygen saturation, Hgb hemoglobin, Temp
temperature, DC dendritic cells, Mem Memory, SBP systolic blood pressure, HR
heart rate, RR respiratory rate, WBC white blood cell count, Plts platelet count.
Source data are provided in the Source Data file.
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by dominant circulation of different SARS-CoV-2 variants, distinct
clinical and host response profiles were apparent, with more severe
illness and higher concentrations of most mediators observed during
periods dominated by A.23/A.23.1 and Delta B.1.617.2/AY variants
(Supplementary Data 3, Fig. 4a, Supplementary Table 7). This included
higher concentrations of multiple mediators closely associated with
severe COVID-19 and reflective of pro-inflammatory myeloid and NK

cell differentiation, activation, and chemotaxis (IL-6, IL-8, IL-15,MCP-3,
G-CSF, M-CSF, CXCL9, CCL3, CCL4, lymphotoxin-α, TNF) (Fig. 4a,
Supplementary Table 7). We also observed evidence of enhanced Th1/
Th17-predominant responses (IL-7, IL-17F) and inflammasome activa-
tion (IL-18), along with higher concentrations of mediators of profi-
brotic epithelial regeneration/repair (FGF-2, EGF, TGF-α) and
endothelial activation/permeability (VEGF-A) in patients hospitalized
during the A.23/A.23.1 and Delta phases (Fig. 4a, Supplementary
Table 7).

As concentrations of most mediators peaked in patients with
Delta phase COVID-19, we determined the importance of each in dis-
tinguishing patients hospitalized during this period using a gradient-
boosted machine classifier model and SHAP metrics. This model
reinforced the importance of myeloid, NK cell, Th1, and platelet acti-
vation in classifying patients with Delta phase COVID-19, with hospi-
talization during this period driven by higher concentrations of
sCD40L, IL-6, IL-15, IL-18, CCL4, and CCL3, as well as compensatory
anti-inflammatory, Th2-related mediators (IL-10, IL-1Ra, IL-5), and
those reflective of pro-fibrotic epithelial regeneration/repair (TGF-α)
(Fig. 4b, c).

To further assess the relationship between host response features
andDelta phaseCOVID-19, we comparedmediator concentrations and
inferred immune cell abundance between patients admitted during
and prior to this period using multivariable linear regression models
adjusted for age, self-reported sex, HIV status, corticosteroid expo-
sure, and WHO severity classification. Suggesting that differences in
the Delta-phase immune profile are independent of these factors,
multivariable models were generally consistent with between-group
comparisons reported above (Fig. 4d, e and Supplementary Tables 8,
9). This included significantly higher concentrations of pro-
inflammatory innate myeloid, NK cell, and Th1-pathway mediators
and profibrotic growth factors. Immune cell models were similarly
consistent, with higher neutrophil and lower NK cell and resting CD4+

and CD8+ T cell abundance in Delta phase COVID-19.

Whole-blood transcriptional profiling identifies inflammasome
assembly as a predominant feature of Delta phase COVID-19
GSEA, structured on differential gene expression between patients
with and without Delta phase COVID-19 and co-variable adjusted as
above, reinforced an immune profile dominated by pro-
inflammatory myeloid cell activation, ROS generation, and impair-
ment of host protein synthesis in patients with Delta phase COVID-19
(Fig. 4f). While activation of many of these processes was observed
in patients with severe COVID-19, inflammasome assembly was
highly enriched in patients with Delta phase COVID-19, with genes
encoding multiple pattern recognition receptors (NLRP6, NLRP1,
TLR6, TLR4, AIM2, TREM2), Pyrin (MEFV), caspase recruitment
domain proteins (CARD8), cytoplasmic stress granules (DDX3X), and
phospholipase C (PLCG2) comprising the core pathway enrichment
set. This suggests that inflammasome activation and pyroptosis may
play a key role in amplifying pro-inflammatory responses following
host detection of Delta-variant SARS-CoV-2 and related danger

Fig. 3 | Immune mediator concentrations over the course of symptomatic
COVID-19. a Immune mediator concentrations over the course of COVID-19
symptoms, with robust regression lines and shaded 95% confidence intervals,
stratified by COVID-19 severity (N = 237; 3 symptomatic patients with extreme
outliers in reported illness duration excluded). As an example, an individual data
point corresponding to day 0 represents the mediator concentration for a patient
whose samplewas collected on thedayof illness onset, while that corresponding to
day 5 represents a patient whose sample was collected on day 5 of illness. b Violin
plots showing immune mediator concentrations among patients enrolled within
7 days of illness onset stratified by COVID-19 severity (N = 85). P values reflect two-
sided Wilcoxon rank sum tests unadjusted for multiple comparisons; Benjamini-
Hochberg-adjustedP values are included inSupplementaryTable6. Sourcedata are
provided in the Source Data file.
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signals. Notably, patients with Delta phase COVID-19 also showed
upregulation of pathways related to viral cell entry and trafficking,
including receptor-mediated endocytosis, plasma membrane
fusion, and syncytium formation.

Integrated clinicomolecular analyses reveal interferon and TNF-
centered immune networks with a coordinated Th1/Th17,

endothelial, and profibrotic host response in COVID-19
respiratory failure
Considering that inter-related biological domains may contribute to
the immunopathology of severe COVID-19, we applied hierarchical
correlation and network analyses to identify structural relationships
between soluble mediators and physiologic indicators of COVID-19
severity and respiratory failure. Among patients with symptomatic

Fig. 4 | Relationships between immunemediators, cell populations, biological
pathways, and COVID-19 pandemic phases. a Violin plots showing immune
mediator concentrations stratified by SARS-CoV-2 variant-driven pandemic phases
(variable A/B lineage, A.23/A.23.1, Delta) at time of hospitalization (N = 306). Con-
centrations across groups compared usingKruskal-Wallis H test followedbyDunn’s
test for multiple comparisons with p values adjusted using Benjamini-Hochberg
method; *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. b Importance of immune
mediators in gradient-boostedmachine classifier for predictionof Delta (N = 68) vs.
non-Delta phase (N = 238; includes variable A/B lineage and A.23/A.23.1 phases)
COVID-19 as per model split-gain values; top 20 variables presented in descending
order of importance. c Shapley additive explanations (SHAP) values derived from
gradient-boosted machine model for prediction of Delta (N = 68) vs. non-Delta
phase (N = 238; includes variable A/B lineage and A.23/A.23.1 phases) COVID-19;
SHAP values > 0 indicate positive impact on prediction while values < 0 indicates
negative impact (e.g., high concentrations of IL-10 have a strong positive con-
tribution to prediction of Delta phase COVID-19). d, e Associations between Delta
phase COVID-19 and log10-immune mediator concentrations (N = 306) and log10-

immune cell abundance (N = 100); coefficients with 95% confidence interval bars
generated in multivariable logistic regression models including hospitalization
during Delta phase as a binary dependent variable (vs. hospitalization during
variableA/B lineage andA.23/A.23.1 phases) and age (continuous), self-reported sex
(binary), HIV co-infection (binary; 4 patients not known to be living with HIV but
with missing rapid diagnostic tests analyzed as HIV negative), exposure to corti-
costeroids (binary), and WHO clinical severity classification (categorical) as inde-
pendent variables; NK natural killer, DC dendritic cells. f Differential enrichment of
key biological pathways among patients withDelta vs. non-Delta phase COVID-19 at
false-discovery-rate (FDR) q value ≤0.10 (N = 100); pathway enrichment deter-
mined using Gene Set Enrichment Analysis applied to differentially expressed gene
sets generated in a DESeq2 model of whole-blood RNAseq data adjusted for age
(continuous), self-reported sex (binary), HIV co-infection (binary; 2 patients not
known to be living with HIV but withmissing rapid diagnostic tests analyzed as HIV
negative), exposure to corticosteroids (binary), and WHO clinical severity classifi-
cation (categorical) as independent variables. Source data are provided in the
Source Data file.
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COVID-19 (N = 240), hierarchical correlation matrices and force-
directed network models identified two groups of strongly corre-
lated mediators centered around IFN-α2/IFN-γ and TNF/lymphotoxin-
α, respectively, with IL-15 appearing as a key inter-group mediator
(Fig. 5a, b and Supplementary Fig. 5). When HIV status was added
as a node, network structure remained consistent (Supplementary
Figs. 6,7).

Within each hierarchical correlation matrix and force-directed
network, we examined relationships between mediator concentra-
tions, overall morbidity (KPS), and physiologic indicators of acute
respiratory failure (oxygen saturation, respiratory rate) (Fig. 5a, b). In
addition to reinforcing associations between monocyte/macrophage,
NK cell, and Th1-pathway activation and COVID-19 severity, network
structures emphasized coordinated Th1/Th17, endothelial, and profi-
brotic host response in COVID-19 respiratory failure, alongside com-
pensatory, anti-inflammatory immune dampening (Fig. 5a, b). This

included strong relationships between IL-7, IL-15, TGF-α, VEGF-A, MDC
and oxygen saturation, with similar associations observed for other
closely linked mediators, including lymphotoxin-α, IL-17F, IL-4, and
IL-10.

Unsupervised clustering reinforces prognostic immune
signatures in COVID-19 that persist in PLWH and diverge by
variant-driven pandemic phase
To further elucidate the presence of prognostic host signatures and
their relationship with HIV co-infection and circulating SARS-CoV-2
variants, we applied consensus k-means clustering to log10-trans-
formed, scaled, and centered mediator concentrations, excluding
clinical variables, to identify immune signatures in patients with
symptomatic COVID-19 (N = 240). Examination of consensus matrices,
cumulative distribution functions, and clustermetrics suggested that a
two-cluster (i.e., two COVID-19 Response Signature [CRS]) model was
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the optimal fit for the cohort (Fig. 5c, Supplementary Table 10 and
Supplementary Fig. 8). Clear between-cluster separation was apparent
across the first principal component of mediator variance (Fig. 5d).
Compared to CRS-1 (N = 142; 59.2%), patients assigned to CRS-2
(N = 98; 40.8%) had elevated concentrations of nearly all mediators,
reflecting a broad, pro-inflammatory innate and Th1/Th17-dominated
host response (Supplementary Table 11). In a gradient-boosted
machine classifier model, prediction of CRS-2 assignment was driven
by higher concentrations of lymphotoxin-α, TNF, IFN-α, IFN-γ and IL-
15, with additional contributions from mediators reflective of mono-
cyte/macrophage (CCL3, CXCL9) and Th1/Th17 pathway (IL-2, IL-17A,
IL-17E, IL-22, IL-1α) activation (Fig. 5e, f).

Clinically, patients assigned to CRS-2 exhibited a severe pheno-
type. This included increasedhypoxemic respiratory failure, withmore
patients requiring oxygen therapy, and among those who did, a sig-
nificantly higher oxygen requirement (Fig. 5g, i, k, Supplementary
Data 4). Cumulative incidence of poor in-hospital outcome (death or
higher-level transfer) was significantly higher among patients in CRS-2
(subhazard ratio 4.52 [95%CI 1.23–16.60], p =0.023), a finding that was
consistentwhenmodelswere restricted topatientswith severeCOVID-
19 (subhazard ratio 2.54 [95% CI 0.70–9.16], p = 0.150) (Fig. 5l). The
proportion of PLWH was similar across CRS 1 and 2 (9.9 and 10.5%,
respectively), and there was no evidence that HIV status significantly
modified the relationship between CRS and COVID-19 severity risk (p
value for interaction =0.329) (Fig. 5j, Supplementary Data 4).

Significant differences in the distribution of SARS-CoV-2 variant-
driven pandemic phases were observed across CRS (Fig. 5h, Supple-
mentary Data 4). Patients assigned to CRS-2 were more frequently
hospitalized during the Delta phase, while patients assigned to CRS-1
were mostly hospitalized during that dominated by circulation of
imported lineage A and B variants. Patients hospitalized during the
A.23/A.23.1 phase were assigned to CRS-1 and 2 in similar proportions.
In a multivariable logistic model adjusted for age, self-reported sex,
HIV co-infection, pre-enrollment illness duration, and WHO severity
classification, the association between Delta phase COVID-19 and CRS-
2 assignment persisted (adjusted odds ratio 2.51 [95% CI
1.29–4.89], p =0.007).

SARS-CoV-2/HIV coinfection is associated with downregulation
of pro-inflammatory innate immune pathways, altered protein
glycosylation, and reduced type I and II interferon responses
Considering that risk of severe COVID-19 and prognostic host responses
appeared generally consistent in PLWH, we directly compared soluble
mediator concentrations and gene expression between PLWHand those
without HIV, hypothesizing that responses would be conserved. After
adjustment for age, self-reported sex, and WHO clinical severity classi-
fication, PLWH exhibited significantly lower concentrations of IFN-α2
and multiple mediators of innate myeloid and NK cell activation/che-
motaxis, as well as those reflecting Th17 pathway and inflammasome
activation. In contrast, PLWHhadhigher concentrations of IL-5,which, in
addition to activating eosinophils, enhances B cell production of
mucosal IgA, a key component of the early neutralizing antibody
response to SARS-CoV-2 (Fig. 6a, Supplementary Table 12)27.

GSEA, filtered by an FDR q value ≤0.10, reinforced down-
regulation of key pro-inflammatory innate immune pathways in PLWH,
including reduced macrophage and FcR stimulatory pathway activa-
tion (Fig. 6b). PLWH also showed reduced O-link protein mannosyla-
tion, a process which may affect SARS-CoV-2 entry and trafficking in
host cells through changes to viral glycoprotein conformational
dynamics28. Although associated with FDR q values > 0.10, PLWH also
showed reduced responses to IFN-α, IFN-β, and IFN-γ, with broad
downregulation of innate immune functions including neutrophil-
mediated immunity, inflammasome assembly, TLR4 signaling, and
complement activation. In contrast, PWLH showed increased activa-
tion of CD8+ T cells, T cell proliferation, and chemotaxis.

Neutrophil, Th17 pathway, and profibrotic mediators differ-
entiate COVID-19 from the host response to severe influenza and
other acute respiratory infections
To determine if immune, endothelial, and growth factor profiles in
COVID-19 were distinct or reflected generalized host responses to
severe acute respiratory infection (SARI), we analyzed, using our
immunoassay panel, cryopreserved serum samples from adults hos-
pitalized with influenza and non-influenza SARI at ERRH from 2017 to
2019 (Supplementary Data 5). We determined the relationship

Fig. 5 | Clinicomolecular profiling of COVID-19 and cluster-derived COVID-19
Response Signatures. a Hierarchical correlation matrix showing relationships
between demographics, clinical variables, and immune mediators in patients with
symptomatic COVID-19 (N = 240); shaded squares reflect Spearman correlation
coefficients filtered by a Benjamini-Hochberg adjusted two-sided p value≤0.05.
KPS Karnofsky Performance Status, SpO2 peripheral oxygen saturation, Hgb
hemoglobin, Temp temperature, SBP systolic blood pressure, HR heart rate, RR
respiratory rate, WBC white blood cell count, Plts platelet count. b Force-directed
weighted correlation network showing relationships between immune mediators
and clinical variables in patients with symptomatic COVID-19 (N = 240); network
structured on weighted correlations with each variable set as a network node and
between-variable correlations significant at a false discovery rate-adjusted two-
sided p value ≤0.05 indicated by weighted edges (blue edges indicate positive
correlation, red edges indicate negative correlation, edge width indicates the
strength of correlation based on Spearman coefficient). KPS Karnofsky Perfor-
mance Status, SpO2 peripheral oxygen saturation, Hgb hemoglobin, Temp tem-
perature, SBP systolic bloodpressure, HRheart rate, RR respiratory rate,WBCwhite
blood cell count, Plts platelet count. c Heatmap of 45 soluble immune mediator
concentrations (values log10-transformed, centered, and scaled) stratified by con-
sensus cluster-derived COVID-19 Response Signatures (CRS; CRS-1, N = 142; CRS-2,
N = 98) in patients with symptomatic COVID-19 (N = 240); rows split by k-means
clustering. Individual patient columns ordered based on differences in mean z-
score and annotated with age, self-reported sex, HIV co-infection, World Health
Organization (WHO) clinical severity classification, and dominant SARS-CoV-2
variant at time of hospitalization. IL-3, GM-CSF, and G-CSF omitted from cluster
derivation analysis and heatmap given large proportion of values below the lower
limit of quantification. d Principal components analysis of immune mediator con-
centrations in individual patients stratified by cluster-derived COVID-19 Response

Signature (CRS). e Importance of immune mediators in gradient-boosted machine
classifier for prediction of COVID-19 Response Signature 2 (N = 98) vs. 1 (N = 142) as
per model split-gain values; top 20 variables presented in descending order of
importance. f Shapley additive explanations (SHAP) values derived from gradient-
boosted machine model for prediction of COVID-19 Response Signature 2 (N = 98)
vs. 1 (N = 142); SHAP values > 0 indicate positive impact on prediction while
values < 0 indicates negative impact (e.g., high concentrations of lymphotoxin-α
have a strong positive contribution to prediction of COVID-19 Response Signature
2). g, h Mosaic plots showing distribution of COVID-19 severity and pandemic
phases among patients assigned to COVID-19 Response Signature (CRS) 1 (N = 142)
or 2 (N = 98); column width reflects frequencies of patient assignments to each
signature. i Upset plot showing frequency of severe COVID-19, receipt of oxygen
therapy, severely impaired functional status (Karnofsky Performance Status
[KPS]≤ 50), and inability to ambulate among patients assigned to COVID-19
Response Signature (CRS) 1 (N = 142) and 2 (N = 98). j Predicted probabilities of
COVID-19 severity classifications stratified by HIV co-infection (N = 236; 4 patients
without definitive assessment of HIV co-infection excluded); probabilities with 95%
confidence interval bars derived from multivariable proportional odds model
includingWHO clinical severity as ordinal dependent variable and interaction term
between COVID-19 Response Signature assignment and HIV co-infection status as
independent variable; p value reflects two-sided Wald test of interaction term.
kDensity plot of peak oxygen flow-rates received by patients assigned to COVID-19
Response Signature 1 and 2; dashed lines indicatemedian oxygen flow-rate for each
group (N = 34; patients without documented peak oxygen therapy flow-rate
excluded). l Cumulative incidence of poor hospital outcomes (death or transfer
considering discharge alive as a competing risk) for patients with symptomatic
(N = 240) and severe (N = 70) COVID-19 stratified by COVID-19 Response Signature.
Source data are provided in the Source Data file.
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between mediator concentrations and diagnoses of COVID-19 or
influenza/non-influenza SARI using multivariable linear regression
models, including age, self-reported sex, HIV status, and WHO clinical
severity classification. Although concentrations of many mediators
were similar across SARI etiology, those reflective of neutrophil che-
motaxis and Th17 pathways (IL-8, CCL3, IL-17E) were significantly

higher in patients with COVID-19. COVID-19 patients also showed
reduced concentrations of IL-27, which may augment emergency
granulopoiesis and neutrophil migration during acute viral respiratory
infection (Fig. 7a, b, Supplementary Tables 13, 14)29. Consistent with
reports of fibrotic lung abnormalities following SARS-CoV-2 infection,
patients with COVID-19 had significantly higher concentrations of
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multiple epidermal and platelet-derived growth factors, including
TGF-α, EGF, PDGF-AB/BB, and PDGF-AA30. As has been reported in
HICs, concentrations of IL-6 and other pro-inflammatory mediators
were significantly lower in COVID-19 compared to other severe
respiratory infections31. A gradient-boosted machine classifier model
and SHAP metrics reinforced the distinct importance of profibrotic
growth factors and neutrophil and Th17 mediators in the SARS-CoV-2
host response, with higher concentrations of EGF, PDGF-AA, FLT-3L,
and IL-8, and lower concentrations of IL-27 as top drivers of COVID-19
diagnosis (Fig. 7c, d).

Discussion
In a nationally-representative prospective cohort study in Uganda,
we appliedmultimodalmethods to dissect the immunopathology of
COVID-19 across three variant-driven phases of the pandemic.
These analyses identified distinct immune signatures associated
with COVID-19 severity, some of which reflect underemphasized yet
potentially therapeutically exploitable biological pathways. We
show that while prognostic host signatures were generally con-
sistent in SARS-CoV-2/HIV co-infection, Delta phase COVID-19 was
defined, independent of clinical severity, by exaggerated pro-
inflammatory myeloid cell and inflammasome activation and NK
and CD8+ T cell depletion. Combining these analyses with a con-
temporary Ugandan cohort of adults hospitalized with influenza
and other severe respiratory infections, we identified activation of
epidermal and platelet-derived growth factor pathways as distin-
guishing features of COVID-19, deepening translational under-
standing of mechanisms potentially underlying pulmonary fibrosis
and other clinical sequelae of SARS-CoV-2 infection.

Over the course of the pandemic, systems biology-based investi-
gations have dissected the host response to SARS-CoV-2 with high
resolution, revealing immunopathological signatures associated with
COVID-19 severity and potential treatment targets. Consistent with our
findings,multiple single-cell and genomic analyses of peripheral blood
have identified dysregulated myeloid cell immunity as a key feature of
severe COVID-198,32,33. In addition to increased circulation of activated,
IFN-stimulatedmonocytes, emergency granulopoiesis and neutrophil-
driven innate immune activation, often accompanied by expansion of
aberrant, mature neutrophil subsets, has emerged as a common
immunopathological finding in severe COVID-198,32,33. Our multimodal
analyses reinforce a distinct role for neutrophil immunity in COVID-19,
with neutrophil-driven pathways and neutrophil abundance highly
enriched in severe COVID-19, distinguishing this host response to that
of influenza and other respiratory infections. Comprehensive single-
cell analyses across the COVID-19 severity spectrumhave also revealed
increased quantities of circulating plasma cells/plasmablasts and IL-15-
related exhaustion of circulating NK cells in severe COVID-19, findings
consistent with those observed in our cohort33–35. Reported T cell sig-
natures in severe COVID-19 have varied, with both extreme T cell
activation and T cell lymphopenia, particularly of CD8+ cells, asso-
ciated with severe illness and poor outcomes10,36. Our findings support
this profile, with concurrent Th1-pathway upregulation and T cell
activation, along with CD8+ T cell depletion, observed in patients with
severe COVID-19.

Reinforcing the prognostic relevance of myeloid cell and Th1-
driven inflammation among patients with COVID-19 in sub-Saharan
Africa, our findings provide locally-relevant biological rationale for use
for broad and targeted immunomodulatory therapeutics (e.g., corti-
costeroids, anti-IL-6 antagonists, JAK/STAT inhibitors) in this setting.
Although observational data suggest that corticosteroid administra-
tion is associated with improved outcomes for adults with severe
COVID-19 in sub-Saharan Africa, use of HIC-derived treatment strate-
gies for sepsis and other severe acute infections have shown no benefit
or harmwhen implemented in the region14,37,38. Therefore, establishing
pathobiological rationale for useof immunotherapeutics is imperative,
especially since somemay be associated with context-specific adverse
events (e.g., corticosteroid administrationwithout consistent glycemic
monitoring or targeted immunosuppression in individuals at high risk
for reactivation of latent co-infections)38.

We identified IL-7, IL-15, and lymphotoxin-α as central mediators
underlying severe COVID-19, related respiratory failure, and high-risk
immune signatures. Essential for lymphocyte expansion and survival,
stromal-derived IL-7 is a strong inducer of memory and effector CD4+/
CD8+ T cell proliferation and improves lymphocyte function and
metabolic homeostasis39,40. IL-7 also influences production of lym-
photoxin by lymphoid tissue inducer cells, which in turn induces type I
interferons, enhances CD8+ T cell cytotoxicity, and maintains antiviral
integrity in secondary lymphoid organs39,41. IL-15 has a similarly
essential role in development and maintenance of the NK and T cell
compartments, particularly for CD8+ T cells40. During T cell lympho-
penia, a defining feature of severe COVID-19, concentrations of IL-7
increase, likely because of decreased consumption by depleted
lymphocytes39. However, these physiological increases may be insuf-
ficient to adequately replete functional T cell pools, highlighting the
restorative potential of recombinant IL-7 administration in severe
COVID-1942. In contrast, recent studies suggest that prolonged expo-
sure of NK cells to high levels of IL-15 may induce a metabolically
exhausted, apoptosis-prone NK cell phenotype in COVID-1934,43. Given
crucial roles of T and NK cells in modulation of inflammatory
responses, generation of immunological memory, and viral clearance,
further basic and translational studies are needed to define a role, if
any, for IL-7 and IL-15-based therapies that reconstitute and augment T-
and NK cell function in COVID-19.

Beyond these specific mediators, our findings deepen in vivo
understanding of COVID-19 pathobiology by elucidating a central role
for interplay between redox imbalance, innate immune, and micro-
vascular pathways in severe COVID-19. Neutrophil-driven phagocy-
tosis, a key feature of antiviral defense in COVID-19, plays a
fundamental role in the generation of reactive oxygen/nitrogen spe-
cies (ROS/RNS) through respiratory burst, while viral respiratory
pathogens areknown to inhibit expressionof antioxidant transcription
factors (e.g.,Nrf2)21,44,45.Moreover, recent data suggest that production
of ROS/RNS and resulting redox imbalancemayperpetuate SARS-CoV-
2 replication and tissue damage through changes to ER stress and
unfolded protein responses, processes we observed to be upregulated
in severe COVID-1946,47. By inducing alterations to vascular endothe-
lium and glycocalyx function, which were common features of severe
COVID-19 in our cohort, ROS/RNS may also be crucial drivers of

Fig. 6 | Immunemediators and biological pathway enrichment in SARS-CoV-2/
HIV co-infection. a Associations between HIV co-infection and log10-immune
mediator concentrations in patients with SARS-CoV-2 infection (N = 302; persons
living with HIV, N = 33; patients living without HIV, N = 269; 4 patients without
definitive assessment of HIV co-infection excluded); coefficients with 95% con-
fidence interval bars generated in multivariable linear regression models including
log10-transformed mediator concentration as dependent variable and HIV co-
infection (binary), age (continuous), self-reported sex (binary), and WHO clinical
severity classification (categorical) as independent variables. b Differential
enrichment of key biological pathways among patients living with HIV (N = 16) vs.

those without HIV (N = 82; 2 patients without definitive assessment of HIV co-
infection excluded); pathway enrichment determined using Gene Set Enrichment
Analysis applied to differentially expressed gene sets generated in a DESeq2model
of whole-blood RNAseq data adjusted for age (continuous), self-reported sex
(binary), and WHO clinical severity classification (categorical). *Differentially enri-
ched pathways at FDR q value ≤0.10; remainder of pathways associated with FDR q
value > 0.10. PRR pathogen recognition receptor, NO nitric oxide, ERAD
Endoplasmic-reticulum-associated protein degradation. Source data are provided
in the Source Data file.
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Fig. 7 | Relationships between immunemediators and severe acute respiratory
infection etiology. a Violin plots showing immune mediator concentrations stra-
tified by severe acute respiratory infection (SARI) etiology (N = 292; 66 patients
with asymptomatic SARS-CoV-2 infection excluded). Concentrations across groups
compared using Kruskal-Wallis H test followed by Dunn’s test for multiple com-
parisons with p values adjusted using Benjamini-Hochberg method; *p <0.05,
**p <0.01, ***p <0.001, ****p <0.0001. b Associations between COVID-19 and
immune mediator concentrations (N = 292; 66 patients with asymptomatic SARS-
CoV-2 infectionexcluded); coefficientswith 95%confidence interval bars generated
in multivariable linear regression models including log10-transformed mediator
concentration as dependent variable and SARI etiology (binary; COVID-19 vs.
influenza/non-influenza SARI), age (continuous), self-reported sex (binary), HIV co-

infection (binary; 4 patients not known to be living with HIV but with missing rapid
diagnostic tests analyzed as HIV negative) and WHO clinical severity classification
(categorical) as independent variables. c Importance of immune mediators in
gradient-boosted machine classifier for prediction of COVID-19 (N = 240) vs non-
COVID-19 (N = 52) SARI as permodel split-gain values; top 20 variables presented in
descending order of importance. d Shapley additive explanations (SHAP) values
derived from gradient-boosted machine model for prediction of COVID-19
(N = 240) vs non-COVID-19 (N = 52) SARI; SHAP values > 0 indicate positive impact
on prediction while values < 0 indicates negative impact (e.g., high concentrations
of EGF have a strong positive contribution to prediction of COVID-19). Source data
are provided in the Source Data file.
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microcirculatory dysfunction48. Collectively, these observations sug-
gest that ROS/RNS scavengers could complement immunomodulation
in severe COVID-19 and support the rationale for clinical trials of these
agents.

In vitro experiments in humanalveolar epithelial cells suggest that
SARS-CoV-2 modulates host protein synthesis, both to enhance viral
mRNA translation and inhibit production of antiviral mediators23.
SARS-CoV-2 nonstructural proteins (e.g., Nsp1) are central to this
process, accelerating degradation of host mRNAs and impairing
nuclear mRNA export to attain a virally dominated mRNA pool23,49. In
parallel, Nsp1 preferentially inhibits host translation, including of type I
interferons and other antiviral mediators, through blockade of mRNA
entry channels and inhibitory binding to ribosomal subunits50. Con-
sistent with these findings, we observed evidence of multifaceted
impairment of cytoplasmic and mitochondrial protein synthesis in
severe COVID-19. While nonstructural proteins of SARS-CoV-2 likely
play a key role in infected alveolar epithelial cells, mechanisms
underlying this observation in peripheral blood cells are unclear.
Although SARS-CoV-2 can infect blood monocytes, we were unable to
evaluate this in our samples. As has been reported in other severe viral
infections, processes independent of viral cell entry, such as those
activated in response to inflammatory or oxidative stress, may have
blunted host translation51. Nonetheless, considering strong in vitro and
in vivo data on the importanceof subvertedprotein synthesis in severe
COVID-19, smallmolecule inhibitors targetingNsp and relatedproteins
deserve attention as adjunctive anti-viral therapeutics.

Four years into the COVID-19 pandemic, the immunological and
clinical impact of HIV co-infection in COVID-19 remain incompletely
understood. While key immunological features of severe COVID-19
(e.g., exaggerated innate immune activation, altered type 1 interferon
responses, T cell lymphopenia), may be exacerbated by HIV-related
immune dysfunction, studies have shown comparable, and in some
cases dampened, immune-inflammatory profiles in SARS-CoV-2/HIV
co-infection52–55. In PLWH in our cohort, most of whom were vir-
ologically suppressed and had similar risk of severe COVID-19, prog-
nostic host responseswere largely consistent when compared to those
without HIV. Interestingly, however, in directly comparative analyses,
PLWHshowed a relatively diminished innate immuneprofile, including
lower concentrations of IFN-α2 and multiple pro-inflammatory med-
iators, with upregulation of cytotoxic T cell activation. Despite these
differences, higher concentrations of IFN-α2, IL-6, and IL-1, all of which
are associated with HIV-related immune activation, differentially
scaled with more severe COVID-19 in PLWH. Given the relatively small
proportion of PLWH in our cohort, these hypothesis-generating find-
ings should be interpreted with caution. Moving forward, larger-scale
immune profiling across the spectrum of HIV-related immunosup-
pression is needed to establish conserved immunopathological
mechanisms in SARS-CoV-2/HIV co-infection, define the role, if any, of
synergistic antiviral strategies, and determine if therapeutic targeting
of specific immune mediators (e.g., via anti-IL-6 or IL-1 receptor
antagonists) has increased benefit in PLWH16.

Throughout the pandemic, emerging SARS-CoV-2 variants have
driven recurrent surges of COVID-19, with global analyses suggesting
that COVID-19 severity and mortality were highest during periods
dominated by Delta variant circulation56–58. In our cohort, patients
hospitalized during the Delta variant phase, who were at high risk for
severe COVID-19, showed a distinctly dysregulated host profile invol-
ving immune, microvascular, and profibrotic growth factor pathways.
Moreover, our analyses suggest that observed host responses are not
merely a reflection of clinical severity. Even after adjusting for WHO
severity classification, among other factors, Delta phase COVID-19 was
associated with upregulation of multiple innate immune pathways,
particularly inflammasome assembly, as well as NK and CD8+ T cell
depletion, ROS generation, and impaired host protein synthesis. These
data are consistent with recent in vitro experiments, in which Delta

spike proteins, compared to those of wild-type and G614 variants,
triggered greaterNF-κB activation inmonocytes andpro-inflammatory
mediator (IL-1β, IL-6, IL-8, TNF) production in macrophages and den-
dritic cells25. Computational analyses suggest that disproportionate
induction of pro-inflammatorymediators in this settingmaybe related
to conformational changes in Delta variant spike RBD, ORF7a, and
ORF8 proteins26. Patients with Delta phase COVID-19 in our cohort also
showed upregulation of plasma membrane fusion, syncytium forma-
tion, and endocytosis, which align with in vitro data suggesting that
Delta spike proteins exhibit increased fusogenic and endocytic
activity25.

Emerging data suggest that severe SARS-CoV-2 infection, as
opposed to influenza, may reprogram macrophages toward profi-
brotic phenotypes comparable to those found in idiopathic pulmonary
fibrosis (IPF)59. Consistent with this work, our analyses support a dis-
tinct, central, and early role for epidermal and platelet-derived growth
factors in the severe COVID-19 host response. This is supported by
unique associations between COVID-19 and high concentrations of
growth factors implicated in IPF pathogenesis (EGF, PDGF-AB/BB,
PDGF-AB/BB, FLT-3L, TGF-α), as well as close relationships between
TGF-α, severe COVID-19, and related respiratory failure. As several of
these growth factor pathways are targeted by established antifibrotic
agents (e.g., nintedanib), our findings reinforce the importance of
clinical trials of their early use in COVID-19.

Our study has limitations. First, our study reflects data collected at
a single center, albeit one that as a national referral center received
patients countrywide with enrollment rates and demographics reflec-
tive of national and regional trends. Second, the cross-sectional nature
of our sample collection precludes in-depth characterization of tem-
poral host response dynamics, which likely vary during COVID-199,34.
Third, although we analyzed immune mediators in a relatively large
number of patients, whole-blood RNAseq data were analyzed in a
subset. However, demographics, HIV and Delta phase prevalence, and
clinical severity in this group were comparable to the larger study
population. Fourth, our analyses were limited to peripheral whole
blood samples. We were unable to isolate mononuclear cells or per-
form single-cell RNAseq given resource-limitations at our study site.
Our RNAseq subcohort was also not powered for cell type-specific
differential gene expression analyses. Fifth, while we divided our study
period into pandemic phases using methods similar to those used by
theU.S. Centers for DiseaseControl and Prevention, wewere unable to
perform patient-level sequencing to confirm variant infections or viral
loads60. As such, we focused our variant-stratified analyses on patients
hospitalized during the Delta phase, during which time up to 90% of
nationally sequenced samples were Delta B.1.617.2 and AY sub-
lineages. Our enrollment period also did not include the Omicron
variant-dominated phase. Next, most patients enrolled in our study
were male. As differences in prognostically-relevant immune respon-
ses may be present betweenmales and females with COVID-19, further
studies are needed to better define the role of sex and gender in SARS-
CoV-2 immunopathology61. Also, while we determined corticosteroid
exposure for all patients, wewere unable to precisely define the timing
of administration relative to enrollment, which could have affected
immune responses. Lastly, while HIV prevalence in our cohort was
comparable to national and regional figures, our HIV-stratified med-
iator analyses could have been underpowered. As nearly all enrolled
PLWH had evidence of virological suppression, immune profiling in
more virologically diverse populations of PLWH is needed.

Throughmultimodal, severity-spanning dissection of SARS-CoV-2
immunopathology in Uganda, we identified distinct immune sig-
natures associated with COVID-19 severity, some of which reflect
underrecognized yet therapeutically exploitable pathways. Our find-
ings advance understanding of the COVID-19 host response in the
immunologically unique landscape of sub-Saharan Africa, elucidate
the impact of circulating variants and SARS-CoV-2/HIV co-infection on
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host immunopathology, and strengthen locally relevant rationale for
use for broad and targeted immunomodulatory therapeutics in this
understudied setting.

Methods
Study design and site
The RESERVE-U-C19 study was conducted at ERRH, a 200-bed public
hospital in central Uganda. During the study period, ERRH functioned
as a national referral center for COVID-19. Patients with SARS-CoV-2
infection nationwide were referred to the facility for management and
monitored isolation, the latter for those with asymptomatic infection
identified through routine screening at designated surveillance points
(e.g., airports, border crossings). Representative of a public COVID-19
treatment unit in sub-Saharan Africa, there was no functional intensive
care unit, invasive mechanical ventilation (IMV), or piped oxygen
available at ERRH during the study period. Oxygen-therapy was typi-
cally provided via nasal cannula and simple or non-rebreathing face-
mask using concentrators (with devices provided by the RESERVE-U-
C19 study program) and/or cylinders. High-flow-nasal-oxygen,
continuous-positive-airway-pressure devices, and chest radiography
were infrequently available. All management decisions, informed by
national COVID-19 treatment guidelines, were made by ERRH
clinicians.

Participants, clinical data collection, and outcomes
Patients were prospectively enrolled in the RESERVE-U-C19 study if
they were: (1) admitted to ERRH during the study period, (2) ≥ 5 years
of age, (3) had laboratory-confirmed SARS-CoV-2 infection by PCR
testing of a naso-/oro-pharyngeal swab sample at a Ministry of Health-
accredited laboratory, and (4) were able to provide written informed
consent or had a surrogate available to do so. Pregnant females were
excluded.

At enrollment, clinical assessmentswereperformedanddatawere
recorded using amodified formdeveloped by the International Severe
Acute Respiratory and Emerging Infection Consortium and WHO. For
all enrolled patients, rapid testing was performed for P. falciparum
malaria (SD Bioline Malaria AG P.f. platform; Alere/Abbott, Abbott
Park, IL, USA) and HIV (Determine HIV-1/2 Ag/Ab, Alere/Abbott;
Chembio HIV 1/2 Stat-Pak, Chembio Diagnostic Systems,Medford, NY,
USA, Uni-gold Recombigen HIV-1/2, Trinity Biotech, Ireland). Although
patients 5-17 years of age were enrolled in the RESERVE-U-C19 cohort,
given variations in normal physiologic parameters, COVID-19 severity
criteria, and SARS-CoV-2 host responses across age groups, for this
analysis, we included only adults (age ≥ 18 years).

The primary clinical outcome of RESERVE-U-C19 was the fre-
quency of severe COVID-19, defined as the proportion of all enrolled
SARS-CoV-2 admissions who fulfilled criteria for severe COVID-19.
Based onWHOguidelines, we considered adult patients to have severe
COVID-19 if they met ≥ 1 of the following criteria: (1) oxygen satura-
tion ≤ 90%, (2) respiratory rate ≥ 30 breaths/min, (3) showed signs of
respiratory distress [chest indrawing, nasal flaring, grunting respira-
tions], and (4) received oxygen-therapy17. Case definitions formild and
moderate COVID-19 and asymptomatic SARS-CoV-2 infection are
included in the Supplemental Methods. The key secondary study
outcome was a composite measure of in-hospital outcome including
death in-hospital or transfer to Uganda’s highest-level referral hospital
(where IMV was available) due to progressive illness severity.

Sample collection
At enrollment, peripheral blood samples were collected into serum
separator tubes and centrifuged, with resulting serum samples stored
at −80 °C. In a subset of patients, whole-blood samples were collected
in PAXgene blood RNA tubes (cat. no. 762165) (PreAnalytiX, Qiagen/
BD, Hombrechtikon, Switzerland) and stored at −80 °C.

Comparative cohort of patients with influenza and
non-influenza SARI
The comparative cohort of patients with influenza and non-influenza
SARI included adults (age ≥ 18 years) from the RESERVE-U-1 study,
which enrolled patients admitted to ERRH with severe, undiffer-
entiated infection from April 2017 to August 2019. Clinical data and
sample collection protocols for RESERVE-U-1 and RESERVE-U-C19 were
similar, with residual serum samples for the former stored at −80 °C.
As part of the RESERVE-U-1 study, naso-/oro-pharyngeal swab samples
were tested via PCR at UVRI for influenza A and B viruses using primers
provided by the U.S. Centers for Disease Control and Prevention.
Among adults enrolled in RESERVE-U-1, we identified those who ful-
filled WHO criteria for SARI (fever [measured temperature ≥ 37.5 °C or
reported fever] plus coughof≤10 days durationwith severity sufficient
to lead to hospitalization)62. We classified patients with influenza and
non-influenza SARI intomild,moderate, and severe clinical strata using
the criteria described above for COVID-19.

Serum immunoassays
In cryopreserved serum samples from patients with COVID-19 and
influenza and non-influenza SARI, we quantified 48 soluble immune
mediators using the Human Cytokine/Chemokine 48-Plex Discovery
Assay Array (HD48; Eve Technologies, Calgary, Alberta, Canada; Milli-
poreSigma, Burlington, MA, USA). Soluble proteins quantified in this
Luminex 200-based system (Luminex, Austin, TX, USA) included:
sCD40L, EGF, Eotaxin, FGF-2, Flt-3 ligand (FLT-3L), Fractalkine, G-CSF,
GM-CSF, GROα/CXCL1, IFN-α2, IFN-γ, IL-1α, IL-1β, IL-1Ra, IL-2, IL-3, IL-4,
IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15, IL-17A, IL-
17E/IL-25, IL-17F, IL-18, IL-22, IL-27, IP-10/CXCL10, MCP-1, MCP-3, M-
CSF,MDC (CCL22),MIG/CXCL9,MIP-1α/CCL3,MIP-1β/CCL4, PDGF-AA,
PDGF-AB/BB, RANTES, TGF-α, TNF, lymphotoxin-α, and VEGF-A. Sam-
ples from different pathogen and severity groups were randomized
across plates and analyzed by technicians blinded to pathogen and
severity status. Mediator concentrations were quantified in duplicate
with the mean used for analysis. Values below the lower limit of assay
quantification were replaced with the lowest value that could be reli-
ably quantified for that particular mediator. Values above the upper
limit of quantification were replaced with the highest standard curve
value for each particular mediator (Supplementary Table 15).

Whole-bloodRNA isolation, librarypreparation, and sequencing
Total RNAwas extracted fromwhole blood samples in PAXgene blood
RNA tubes using PAXgene Blood RNA Kits (cat. no. 762164) (Qiagen,
Germantown, MD, USA) in accordance with the manufacturer’s pro-
tocol (Azenta Life Sciences, South Plainfield, NJ, USA). Total RNA
samples were quantified using a Qubit 2.0 Fluorometer (Life Tech-
nologies, Carlsbad, CA, USA) and RNA integrity was checked with a
4200 TapeStation (Agilent Technologies, Palo Alto, CA, USA). Samples
were initially treated with TURBO DNase (cat. no. AM2238) (Thermo
Fisher Scientific, Waltham, MA, USA) to remove DNA contaminants,
after which rRNA and globin depletion were performed using QIAseq
FastSelect−rRNAHMRand −Globin kits (cat. no. 334375) (Qiagen). RNA
sequencing libraries were constructed using the NEBNext Ultra II RNA
Library Preparation Kit for Illumina (cat. no. E7770) (New England
Biolabs, Inc., Ipswich MA, USA). Sequencing libraries were validated
using the Agilent Tapestation 4200 (Agilent Technologies), and
quantified using a Qubit 2.0 Fluorometer (ThermoFisher Scientific) as
well as by quantitative PCR (KAPA Biosystems, Wilmington, MA, USA).
Sequencing libraries were multiplexed, clustered on nine lanes of a
flowcell, and loaded on the Illumina HiSeq 4000 instrument according
to the manufacturer’s instructions (Illumina, Inc., San Diego, CA, USA).
Samples were sequenced using a 2 × 150 paired-end configuration.
Samples were randomized by severity group prior to RNA extraction,
library preparation and sequencing and analyzed by technicians
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blinded to severity status. Raw sequence data were converted into
FASTQ files and de-multiplexed using Illumina’s bcl2fastq 2.17 soft-
ware. One mis-match was allowed for index sequence identification.
Adapters and low-quality bases were trimmed from raw reads using
Trimmomatic v0.3963. Remaining sequencing readswerealigned to the
human genome (GRCh38) using STAR v2.7.10.a, with transcript quan-
tification performed using the quantMode GeneCounts function64.

Analysis of soluble immune mediators
To investigate COVID-19 host responses and immune signatures using
solublemediators, we performed a series of supervised regression and
classification analyses, in parallel with network correlation, clustering,
and PCA. Prior to all analyses, mediator concentrations were log10
transformed to minimize skew, with resulting distributions assessed
visually using histograms and Q-Q plots.

Concentrations of soluble mediators stratified by COVID-19
severity were visualized using standardized heatmaps (Complex-
Heatmap R package). To determine the relationship between soluble
mediator concentrations and COVID-19 severity (asymptomatic SARS-
CoV-2 infection,mild,moderate, severeCOVID-19) we applied Kruskal-
Wallis tests followed by Dunn’s test for multiple comparisons (ggpubr,
rstatix R packages) and generated BH-adjusted multivariable regres-
sion models including COVID-19 severity as an ordinal dependent
variable (ordinal, sjPlot, jtools R packages). To determine mediators
most important in predicting severe COVID-19, we performed feature
selection using gradient-boosted machine classifier models (xgboost,
caret R packages). Select model hyperparameters (learning rate [eta],
tree depth [max_depth], and number of trees [nround]) were tuned
using tenfold cross validation, with remaining hyperparameters left at
default settings. We identified the most important predictive media-
tors using their respective split-gain values and their contribution to
the classifier model using Shapley Additive Explanation (SHAP) values.
We evaluated the relationship between mediator concentrations and
reported duration of illness at enrollment using robust regression,
with patient-level datapoints stratified by COVID-19 severity. We
compared mediator concentrations by COVID-19 severity in sympto-
matic patients enrolled within 7 days of illness using Wilcoxon rank
sum tests. Where specified, we used similar methods to those descri-
bed above (Kruskal-Wallis and Dunn’s tests, multivariable regression
models, hyperparameter tuned gradient-boosted machine classifiers
and SHAP values) to determine the relationship between soluble
mediator concentrations, HIV co-infection, and hospitalization during
different variant-driven pandemic phases.

To elucidate immune signatures in symptomatic COVID-19
patients using unsupervised methods, we performed hierarchical
and force-directed network correlation, clustering, and PCA, inclusive
and agnostic of clinical data. First, to explore the structure of rela-
tionships between mediators and indicators of COVID-19 severity and
respiratory failure, we generated BH-adjusted hierarchical and force-
directed weighted correlation networks (corrplot, qgraph, fdrtool R
packages). For the latter, which were based on the Fruchterman-
Reingold method, mediator and clinical variables were set as network
nodes with between-node correlations significant at a FDR-adjusted p
value ≤0.05 indicated byweighted edges65,66. To identify central nodes
around which networks may be coordinated, we calculated node
strength and expected influence, with higher values of these metrics
indicating that a node is involved in large number of interactions, in
this case, correlation weights.

To identify COVID-19 immune signatures agnostic of clinical data,
we applied consensus k-means clustering to log10-transformed, scaled,
and centered mediator concentrations (ConsensusClusterPlus R pack-
age). Using Euclidean distance and a range of clusters (k) set from k = 2
to k = 12, the consensus cluster algorithm was run over 1000 sub-
samples, with item and feature sampling set at 0.8 and 1, respectively.
We determined the optimal cluster (i.e., signature) partition through

inspection of consensus matrices and cumulative distribution plots,
which we confirmed using over 20 indices of cluster stability and
validity (NbClust R package). We visualized patient-level, between-
cluster variance in mediator concentrations using PCA (FactoMineR,
factoextra, PLSDAbatch R packages) and standardized heatmaps
(ComplexHeatmap R package). Clinical severity indicators across sig-
natures were visualized using upset plots (ComplexUpset R package).
Differences in hospital outcomes were analyzed using cumulative
incidence functions and competing risks regression (tidycmprsk,
ggsurvfit, R packages).

Analysis of whole-blood RNAseq data and digital cytometry
deconvolution
Independent of immune mediator analyses, we analyzed whole-blood
RNAseq data from a subset of enrolled COVID-19 patients. After
removing reads with low abundance (<10 counts), we performed
covariable adjusted differential gene expression analysis to identify
genes that were differentially expressed between key groups of
interest based on log2-fold change and BH-adjusted p values (DESeq2R
package). Between-group comparisons included: patients with severe
and non-severe COVID-19 (adjusted for age, self-reported sex, and HIV
co-infection), patients admitted during and prior to the Delta variant
phase (adjusted for age, self-reported sex, HIV co-infection, corticos-
teroid exposure, andWHO clinical severity classification), and patients
with and without HIV co-infection (adjusted for age, self-reported sex,
and WHO clinical severity classification). Following each comparison,
differentially expressed gene sets (ranked by BH-adjusted p values)
were subjected to GSEA using the Biological Process Gene Ontology
resource (MSigDB; GO biological process, 7763 gene sets) to infer
biological pathway enrichment across respective groups67,68. Enriched
gene sets weremanually reviewed, and those presented were included
to highlight enrichment of pathologically-important and diverse
pathways. To infer overall abundance of immune cell subsets using
bulk RNAseq data, we performed digital cytometry deconvolution via
the CIBERTSORTx platform (absolute mode) and LM22 reference
matrix69. Absolute immune cell abundances across groups were ana-
lyzed using PCA, Wilcoxon rank sum tests, and multivariable regres-
sion models as indicated.

Comparative analyses of patients with COVID-19 and influenza
and non-influenza SARI
To determine the relationship between soluble mediator concentra-
tions and SARI etiology (symptomatic COVID-19, influenza, non-
influenza SARI) we applied Kruskal-Wallis tests followed by Dunn’s
test for multiple comparisons (ggpubr, rstatix R packages), as well as
multivariable linear regression models adjusted for age, self-reported
sex, HIV co-infection, and WHO clinical severity classification (jtools,
sjplot R packages). To determine mediators most important in pre-
dicting COVID-19 (vs. influenza or non-influenza SARI), we performed
feature selection using hyperparameter-tuned gradient-boosted
machine classifier models as described above.

Missing clinical and laboratory data
For symptomatic COVID-19 patients, missing clinical and laboratory
data were multiply imputed using chained equations and predictive
mean matching (mice R package) (Supplementary Table 16). Five
imputed datasets were reviewed for convergence and plausibility after
which one was randomly selected for use.

HIV-1 viral load testing
For study purposes, HIV-1 viral loads were quantitated in residual
cryopreserved serum samples at the Columbia University Center for
Advanced LaboratoryMedicine. Viral loads were quantitated using the
cobas HIV-1 assay via the cobas 6800 System (Roche Diagnostics,
Basel, Switzerland), which has a linear range of detection of 20 to
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1.0 × 107copies/ml. Due to limited residual sample volumes, samples
were diluted 2–5-fold with molecular grade water to obtain the
required testing volume for the assay. As such, we designated patients
as having suppressed viral loads based on limits of detection ranging
from 40 to 100 copies/ml.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw bead-based proteomics data have been deposited in Dryad
under accession code https://doi.org/10.5061/dryad.2bvq83bvd
(https://datadryad.org/stash/dataset/doi:10.5061/dryad.2bvq83bvd).
Raw RNAseq data have been deposited in NIH/NCBI Sequence Read
Archive and dbGaP under accession numbers PRJNA950542 (https://
www.ncbi.nlm.nih.gov/bioproject?LinkName=sra_bioproject&from_
uid=27274595) and phs003246.v1.p1 (https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs003246.v1.p1), respec-
tively. In concordance with participant consent and institutional
certification of genomic data sharing, raw RNAseq data are available
to investigators with an IRB-approved protocol. Requests for access
can be made to the NIH/NIAID Data Access Committee (niaid_data-
sharing@niaid.nih.gov). All other data are available in the article and
its Supplementary files or from the corresponding author upon
request. Source data are provided with this paper.

Code availability
Analytic code is available in GitHub at https://github.com/mjc2244/
Multimodal-immune-profiling-of-SARS-CoV-2-in-Uganda and https://
github.com/mastorkia/bulkRNAseq_COVID-Uganda.
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