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Single-cell multiomics decodes regulatory
programs for mouse secondary palate
development

Fangfang Yan 1, Akiko Suzuki 2,3,4,7, Chihiro Iwaya2,3,7, Guangsheng Pei 1,
Xian Chen1, Hiroki Yoshioka2,3, Meifang Yu1, Lukas M. Simon 5 ,
Junichi Iwata 2,3,6 & Zhongming Zhao 1

Perturbations in gene regulation during palatogenesis can lead to cleft palate,
which is among the most common congenital birth defects. Here, we perform
single-cell multiome sequencing and profile chromatin accessibility and gene
expression simultaneously within the same cells (n = 36,154) isolated from
mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5.
We construct five trajectories representing continuous differentiation of cra-
nial neural crest-derived multipotent cells into distinct lineages. By linking
open chromatin signals to gene expression changes, we characterize the
underlying lineage-determining transcription factors. In silico perturbation
analysis identifies transcription factors SHOX2 and MEOX2 as important reg-
ulators of the development of the anterior and posterior palate, respectively.
In conclusion, our study charts epigenetic and transcriptional dynamics in
palatogenesis, serving as a valuable resource for further cleft palate research.

The development of the secondary palate is a dynamic, complex, and
highly orchestrated three-dimensional process, involving growth,
horizontal elevation, and fusion of the palatal shelves1. It is initiated
around embryonic day (E) 12.5 in mice, when the palatal shelves arise
from the lateral side of maxillary processes2. The palatal shelves grow
vertically downward along with the tongue around E12.5 to E13.5 and
elevate to the horizontal position at E14.0. Following the elevation, the
bilateral palatal shelves grow toward the midline and fuse into the
intact palate between E14.5 and E16.51,2.

Palatogenesis is regulated by the precise control of gene expres-
sionwhere transcription factors (TFs) bind to the accessible regulatory
elements of the target genes3. Perturbations in palatogenesismay lead
to cleft palate (CP), one of the most common congenital birth defects
that has a significant long-term impact on patients’ life quality4.
Numerous efforts have aimed to uncover and annotate CP-associated

genes5,6, as well as the underlying regulatory mechanisms by inte-
grating gene and microRNA expression data profiled from bulk
tissue7–9. Beyond the bulk tissue level, single-cell RNA-sequencing
(scRNA-seq) technologies have been applied to the soft palate10 and
fusing upper lip11 and revealed large heterogeneity within the tissue
and unique gene expression profile for each cell type.

While scRNA-seq reveals the transcriptional state differences
between cells with high resolution, yet it provides little insight into the
upstream regulations that drive such change12. Single-cell epigenome
assays, such as single-cell assay for transposase-accessible chromatin
with sequencing (scATAC-seq), capture open chromatin signals and
decipher the regulation status13. Computational approaches have been
developed to integrate independent scRNA-seq and scATAC-seq
datasets of the same tissue14. However, inferring “anchors” between
datasets may not fully recapitulate the true molecular processes12.
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More recently, single-cell multiomics technologies have emerged as a
powerful approach to accurately deciphering regulation status. They
profile gene expression and chromatin accessibility simultaneously
within the same cells. Epigenetic changes at the DNA level can be
directly linked to transcriptomic changes at the RNA level to reveal the
interplay between regulatory DNA elements and the expression of
target genes. Several multiomics technologies, such as sci-CAR15,
Paired-seq16, SNARE-seq12, and scCAT-seq17, have been developed and
applied to different tissue types, including human cerebral cortex18,
human lung cancer17, andmouse kidney15. However, there is a lack of a
comprehensive multiomics map of gene expression and its regulation
during mouse secondary palate development at single-cell resolution.

In this study, we performed the single-cell multiome sequencing
using 10x Multiome platform and profiled the transcriptome and epi-
genome simultaneously within the same cells isolated from the
developing mouse secondary palate spanning four critical develop-
mental stages. A total of eight major cell types were identified, which
were defined by canonical marker gene expression. By mapping open
chromatin signals to gene expression changes, we discovered cell-
type-specific regulators with both enriched motif accessibility and
gene expression. We then focused on cranial neural crest (CNC)-
derived multipotent cells, reconstructed five developmental trajec-
tories, and uncovered lineage-determining TFs that control the dif-
ferentiation of each trajectory. This work reports a single-cell
multiomic atlas of the developing mouse secondary palate. Insights
into transcriptome and epigenome changes will increase our under-
standing of the underlying molecular processes, which provides a
valuable resource for the community.

Results
Single-cell multiome dissects palate development
To dissect gene regulation mechanisms at the cellular level in the
developing mouse secondary palate, we performed single-cell multi-
ome sequencing using the 10x Chromium Single Cell Multiome plat-
form. Following major developmental milestones of the mouse
secondary palate as defined by the FaceBase consortium19, we gener-
ated scRNA-seq and scATAC-seq libraries from the same cells at E12.5
(n = 2), E13.5 (n = 3), E14.0 (n = 2), and E14.5 (n = 2) (Fig. 1a). Jointly
applying filters on both assays resulted in 36,154 cells with high-quality
measurements across 32,285 genes and 123,807 accessible peaks
representing potential regulatory elements (Supplementary Fig. 1a and
Supplementary Table 1). The majority of cells had both high tran-
scriptional start site (TSS) enrichment scores and a large number of
fragments (Supplementary Fig. 1b). In addition, we observed nucleo-
some binding patterns (Supplementary Fig. 1c, left) and enrichment of
chromatin accessibility around TSS when compared to the flanking
regions (Supplementary Fig. 1c, right). Together, these results indicate
high-quality scATAC-seq data.

Unsupervised dimension reduction based on either gene expres-
sion (scRNA-seq), chromatin accessibility (scATAC-seq) profiles, or
both modalities combined, consistently revealed similar structures as
visualized using Uniform Manifold Approximation and Projection
(UMAP) (Fig. 1b and Supplementary Fig. 2a). Furthermore, biological
replicates from the same developmental stage showed strong overlap
in the UMAP embedding, indicating high-quality data (Supplemen-
tary Fig. 1d).

Next, we performed clustering analysis followed by cell type
annotation. Compared to scRNA-seq, there is limited knowledge of
cell-type-specific chromatin accessibility. Therefore, cell type annota-
tion is more challenging in scATAC-seq data20. One frequently used
computational approach involves cross-modality integration and label
transfer from reference scRNA-seq data21. Here, single-cell multiomics
technologies eliminate theneed for inferring relationships in silico, but
instead allow direct annotation of scATAC-seq-based clusters using
cell type labels derived from the scRNA-seq data.We observed distinct

clusters in both RNA and ATAC data, representing eight major cell
types (Fig. 1c, d). The annotation results were robust across various
cutoffs for the number of highly variable genes (Supplementary
Fig. 2b). Each cell type was defined by canonical marker gene expres-
sions, including CNC-derived mesenchymal cells (Prrx1, n = 28,529,
78.91%), epithelial cells (Krt14, n = 5866, 16.23%), endothelial (Cdh5,
Cldn5, n = 714, 1.97%), myeloid (Lyz2, n = 397, 1.10%), glial cells (Plp1,
Sox10, n = 307, 0.85%), myogenic precursors (Myf5, n = 200, 0.55%),
neuronal cells (Tubb3, Stmn2, n = 113, 0.31%) and myocytes (Myh7,
n = 28, 0.08%) (Fig. 1d, Supplementary Fig. 3a). We quantified the gene
activity score, a metric defined by aggregating accessible chromatin
regions intersecting the gene body andpromoters in scATAC-seq data.
The above-mentioned markers, which showed cell type-specific
expression, also exhibited similar patterns of chromatin accessibility
in corresponding clusters (Fig. 1e).

To further corroborate our inferred cell type identities, we ana-
lyzed a recently published scRNA-seq dataset of the developingmouse
soft palate10. Following normalization and dimension reduction, we
projected our scRNA-seq data into the published soft palate manifold
using canonical correlation analysis14 (see “Methods”) and observed
high agreement between cell type annotations (Supplementary
Fig. 3b, c).

Cell type-specific multiomic markers
Paired RNA and ATAC measurements from the same cell reveal both
the transcriptional state and the upstream DNA regulatory element
activities, which allows direct mapping of epigenetic gene regulation
to gene expression. We aimed to identify TFs with both enriched
accessibility and expression profiles for a specific cell type, repre-
senting putative markers for that cell type.

To this end, we first conducted differential gene expression ana-
lysis between cell types and identified 6573 differentially expressed
genes (DEGs) (adjusted P value < 0.05 and log Fold change >0.1). To
find regulatory elements for each DEG, we conducted peak-gene
linkage analysis by calculating the Pearson correlation coefficient
(PCC) between chromatin accessibility and gene expression while
accounting for peak size and fragment count. Positively linked peak-
gene pairsmay represent enhancer-gene interactions. A total of 15,018
pairs were identified, including 12,596 regulatory elements sig-
nificantly linked to 3787 cell type-specific genes (Fig. 2a, correlation
>0, adjusted P value < 0.05). Each cell-type-specific gene was linked to
a median of three peaks (min = 1, max = 28, mean = 3.966).

As an example, in CNC-derived mesenchymal cells, the locus at
chr12: 33,957,146–33,958,061 was mapped to the promoter region of
Twist1 and showed the most significant association (correlation =
0.315, adjusted P value = 1.70 × 10−8). Both the expression level of
Twist1 and accessibility of chr12: 33,957,146–33,958,061 were
increased inCNC-derivedmesenchymal cells compared to all other cell
types (Fig. 2b). Genome browser visualization of the Twist1 locus
revealed that chr12: 33,957,146–33,958,061 partially overlaps the
transcription start site (TSS) of Twist1. Therefore, chr12:
33,957,146–33,958,061 most likely acts as an enhancer that upregu-
lates the expression of Twist1 in CNC-derived mesenchymal cells
(Fig. 2b). Another exemplary peak-gene pair was Tie1 and locus chr4:
118,489,480–118,490,171, showing significant enrichment in endothe-
lial cells (correlation = 0.369, adjusted P value = 3.88 × 10−14, Supple-
mentary Fig. 4).

To nominate TFs that control each major cell type, we identified
enriched motifs of these peaks. The following criteria were then
applied to define cell-type-specific TFs: (1) TF expression was enriched
at the RNA level, and (2) TF bindingmotif accessibility was enriched in
the ATAC measurements. In total, we discovered 81 putative markers
for the eight major cell types (adjusted RNA P value < 0.05 and adjus-
ted motif P value < 0.05, Table 1). For example, in CNC-derived
mesenchymal cells, both the RNA expression of Twist2 (RNA P
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value = 3.00 × 10−241) and chromatin accessibility of the Twist2 binding
motifMA0633.1 (motif P value = 0)were significantly enriched (Fig. 2c).
In agreement with our data, previous studies show that mice deficient
for both Twist1 and Twist2 exhibit CP22,23.

CNC-derived subtypes reflect in vivo anatomical locations
Among the cell types in the developing palate, CNC-derived
mesenchymal cells are the most abundant and are considered an
important cell lineage for palate development24. To understand the
heterogeneity within CNC-derivedmesenchymal cells, we isolated this
cluster and conducted an independent analysis, including normal-
ization, clustering, and dimension reduction (Fig. 3a, left panel). In the
dimension-reduced data manifold, we observed a continuous pro-
gression from E12.5 to E14.5 (Fig. 3a and Supplementary Fig. 5a). Cells
from the early stage (E12.5) were more homogeneous compared to
cells from later stages and accordingly resided near the center of the
low-dimensional manifold. Cells from the late stage (E14.5), on the

other hand, resided at the edge of the manifold, most likely repre-
senting more differentiated cell states.

Cell subtype annotation was conducted through extensive man-
ual curation of marker genes. Notably, we identified seven subtypes
characterized by specific gene expression signatures (Fig. 3a, right
panels). For example, anterior palatal mesenchymal cells exhibited
high expression of ALX Homeobox 1 (Alx1) (Supplementary Fig. 5b).
Chondrogenic cells were characterized by high expression of Sox9 and
Col12a1 while osteoblasts had high expression of Runx2 and Sp7.
Dental mesenchymal cells exhibited high expression of Dlx2, Sostdc1,
and Tfap2b. Posterior palatal mesenchymal cells had high expression
of Tbx22. Progenitor-related genes were highly expressed in cluster 5,
such as Dach1, Lmo4, Hmgb2, Hmgb3, and Runx1t1 (adjusted P
values < 2.2 × 10−16). Gene Set Enrichment Analysis (GSEA) revealed that
these genes were significantly associated with the regulation of stem
cell proliferation [GO: 0072091, false discovery rate (FDR) = 2.58 × 10−3,
enrichment ratio = 92.87] and enriched in neural progenitor cells
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Fig. 1 | Single-cell multiome assays dissect transcriptome and epigenome
changes of thedevelopingmouse secondarypalate. a Schematic plot depicts the
development of mouse secondary palate (pink) spanning embryonic day (E) 12.5
(n = 2), E13.5 (n = 3), E14.0 (n = 2), and E14.5 (n = 2). The isolated nuclei were sub-
jected to 10x Chromium Multiome sequencing to profile scRNA-seq and scATAC-
seq simultaneouslywithin the same cells.b, cUniformmanifold approximation and

projection (UMAP) visualization of 36,154 cells based on RNA assay (b) or ATAC
assay (c). Each dot represents one cell and is colored by the developmental stage
(left) and annotated cell types (right). d, e Dot plot illustrates marker gene
expression (x axis) (d) andgene activity (e) (x axis) across cell types (y axis).Dot size
is proportional to the percent of expressed cells. Colors indicate low (purple) to
high (yellow) expression.
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(FDR = 2.68 × 10−3, enrichment ratio = 13.97) (Supplementary Fig. 5c),
suggesting cluster 5 represented CNC-derived multipotent cells.

Of note, gene expression patterns aligned with in vivo anatomical
locations (Fig. 3b). For example, Shox2 and Msx1 were specifically
expressed in anterior regions. In contrast, expression of Meox2 and
Tbx22 was restricted to posterior regions25. Even though expression

patterns of Shox2 andMeox2have been studied, themajority of region-
specific genes we identified in the developing palate in this study have
not been well characterized yet (Table 2).

To validate the gene signatures of anterior and posterior sub-
populations, we performed bulk RNA-sequencing (RNA-seq) after
isolating RNA from the microdissected anterior 1/3 (n = 3) and
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posterior 1/3 regions (n = 3) of the developing secondary palate at
E14.0. The expression patterns in the bulk RNA-seq data confirmed our
scRNA-seq results. The majority of genes (75/86, 87.21%) that were
upregulated in the scRNA-seq anterior cluster were alsoupregulated in
bulk RNA-seq from anterior tissue (Fig. 3c). Fisher’s Exact test revealed
significant enrichment between scRNA-seq DEGs and bulk RNA-seq
DEGs (odds ratio = 1354.47, P value < 2.2 × 10−16). For example, Shox2

and Msx1 were significantly higher expressed in the anterior region
(bulk RNA-seq adjusted P value = 9.12 × 10−49, scRNA-seq adjusted
P value < 2.20 × 10−16), while Meox2 and Tbx22 exhibited higher
expression in the posterior region (bulk RNA-seq adjusted
P value = 1.69 × 10−94, scRNA-seq P value < 2.20 × 10−16, Fig. 3d).
Although the highly significant correspondence between bulk and
single-cell levels, several differentially expressed genes with large fold
changes in bulk RNA-seq were not detected in the scRNA-seq data.
These genes tended to be expressed at low levels in bulk RNA-seq,
suggesting that the limited sensitivity of lowly expressed transcripts in
the scRNA-seq assay may obscure the signals (Supplementary Fig. 6).

To further validate these results, the top five region-specific genes
for the anterior (Shox2, Satb2, Inhba, Cyp26b1, and Nrp1) and the
posterior subpopulations (Meox2, Prickle1, Sim2, Efnb2, and Trps1)
were analyzed with quantitative reverse-transcription polymerase
chain reaction (qRT-PCR) using E14.0 anterior and posterior palatal
shelves (Fig. 3e). Furthermore, RNAscope in situ hybridization con-
firmed expression patterns of these genes (Fig. 3f). Shox2, Satb2, and
Nrp1 were expressed mainly in the anterior and middle regions of the
palate, but not in the posterior palate. The expression of Cyp26b1 was
restricted to the anterior region and Inhba was restricted to beneath
the epithelial layer in the anterior and middle region. In contrast,
Meox2, Prickle1, and Efnb2 were mainly expressed in the posterior
region of the palate. Interestingly, Sim2 and Trps1 were expressed
medially in the anterior half of the posterior region of the developing
secondary palate. Overall, these results validated our subtype anno-
tations of CNC-derived mesenchymal cells which corresponded to
anatomical locations.

Cell fate analysis unveils lineage-determining regulators
Single-cell data from discrete time points can be considered “snap-
shots” of the underlying continuous developmental process26. To
connect static snapshots into a “movie” and computationally recon-
struct the molecular dynamics during the differentiation of CNC-
derived mesenchymal cells, we applied Wadding-Optimal Transport
(WOT)27,28, an algorithm designed for trajectory analysis of time series
scRNA-seq data. WOT connects adjacent time points by finding the
most probable cell transition paths using the mathematical theory of
optimal transport29. The resulting trajectories can be used to model
cell fate decisions with high resolution.

As chondrocytes originate from the pterygoid plate of the sphe-
noid bone and are not considered as part of the secondary palate10, we
excluded them from downstream analysis (Fig. 4a). Simulated random
walks based on the WOT-derived cell transition matrix showed that
most trajectories started from CNC-derived multipotent cells (black
dots) and terminated at various subpopulations at later stages (yellow
dots) (Fig. 4b, left panel). We then quantified the terminal state like-
lihood of each cell and defined those with high likelihoods as terminal
state cells (Fig. 4b, right panel). Next, we computed the probabilities
that an early cell would transition towards any terminal cell states.
Overall, we discovered five distinct trajectories, representing the
continuous differentiation of multipotent cells into (1) anterior palatal

Fig. 2 | Integration of chromatin accessibilitywith gene expression reveals cell-
type-specific multiomic marker genes. a Heatmap shows normalized chromatin
accessibility (left) and gene expression (right) of 15,018 significantly linked peak-
gene pairs. Each row represents a positively linked pair of regulatory elements and
genes. Bar on the top represents major cell types. b Left: Genome Browser visua-
lization of aggregated chromatic accessibility at the chr12: 33.96–33.97 (Mb) locus
for each major cell type, coupled with Twist1 gene expression. Arcs at the bottom
denote positively linked peak-Twist1 pairs. The linkage between Twist1 and chr12:
33,957,146–33,958,061 is highlightedwith gray dottedbox. The Pearson correlation
test is employed for each pair of peak-gene, and multiple test adjustments are
applied. Right: Boxplots show the expression level of Twist1 (top) and accessibility
of the linked peak chr12: 33,957,146–33,958,061 (middle) across cell types. Minima:

Lower limit of the whisker.Maxima: Upper limit of the whisker. Centre: Median line
inside the box. The upper and lower box bounds represent the 25% and 75% per-
centile of data. The scatter plot shows the significant correlation between Twist1
expression and chr12: 33,957,146–33,958,061 accessibility (bottom). Each dot
represents the aggregated gene expression and accessibility of ten cells from
n = 28,529 biologically independent CNC-derived mesenchymal cells. The shaded
areas around the fitted smooth line represent the error bands, indicating the 95%
confidence interval. c UMAP visualizations illustrate the multimodal profiling of
Twist2, including gene expression (left), gene activity (middle), andTWIST2binding
motif MA0633.1 activity (right). The position weight matrix of the MA0633.1 motif
is embedded in the bottom right corner.

Table 1 | Top five putative regulators in each major cell type

Cell type Gene
symbol

RNA. P value Motif Motif.P value

CNC-derived
mesenchymal

Twist2 3.00E-241 MA0633.1 0.00E +00

Lhx8 0.00E +00 MA0705.1 2.01E-61

Foxf1 2.97E-192 MA1606.1 5.41E-133

Shox2 6.76E-211 MA0720.1 1.72E-73

Tcf3 2.01E-05 MA0092.1 2.03E-257

Epithelial Sox2 0.00E +00 MA0142.1 2.94E-88

Sox6 2.16E-225 MA0515.1 2.05E-197

Smad3 1.38E-144 MA1622.1 8.26E-215

Klf12 1.00E-09 MA0742.1 0.00E +00

Runx1 2.58E-233 MA0002.2 1.30E-36

Endothelial Foxo1 8.90E-145 MA0480.1 4.91E-18

Nr2f6 7.22E-07 MA0677.1 3.08E-113

Sox17 0.00E +00 MA0078.1 9.56E-30

Nr5a2 7.58E-145 MA0505.1 5.63E-37

Esrrg 1.69E-15 MA0643.1 1.39E-57

Myeloid Runx1 6.16E-104 MA0002.2 1.24E-08

Nfe2l2 1.67E-65 MA0150.2 5.29E-29

Arnt 4.93E-04 MA0004.1 9.49E-21

Bach1 7.34E-03 MA0591.1 3.27E-23

Nr4a2 1.72E-03 MA0160.1 5.49E-22

Myogenic
precursors

Tcf12 2.09E-06 MA0521.1 1.73E-115

Tcf21 3.08E-68 MA0832.1 5.97E-105

Plagl1 2.07E-16 MA1615.1 1.68E-03

Arx 3.20E-63 MA0874.1 7.88E-06

Nobox 3.39E-04 MA0125.1 4.40E-06

Glial Sox5 8.83E-146 MA0087.1 1.65E-04

Nr4a2 5.35E-48 MA0160.1 2.39E-42

Creb5 1.91E-63 MA0840.1 3.30E-22

Dlx1 1.64E-138 MA0879.1 1.23E-04

Rxra 3.50E-04 MA0065.2 3.97E-52

Neuronal Arid3b 1.37E-06 MA0601.1 3.29E-05

Hmx2 5.68E-177 MA0897.1 8.05E-03

Zic1 1.03E-06 MA1628.1 8.97E-03

The Wilcoxon rank-sum test is utilized, and the Benjamini–Hochberg method is applied for
multiple test adjustment of the P value.
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mesenchymal cells, (2) posterior palatal mesenchymal cells, (3) dental
mesenchymal cells, (4) osteoblasts, and (5) perimysial cells (Fig. 4c and
Supplementary Fig. 7). Next, we calculated RNA velocity, which pre-
dicts future states of individual cells based on the stratification of
spliced and unspliced mRNAs30. As shown in Fig. 4d, the directed
dynamic information based on RNA velocity was consistent with

inferred trajectories. The RNA velocities pointed away from the cells at
E12.5 in the middle of the embedding towards later time points at the
border of the embedding (Fig. 4d).

To more granularly resolve these velocity predictions, we applied
CellRank, which infers initial and terminal state probabilities for each
cell based on RNA velocity28. Consistent with WOT-derived

a

b
RNA UMAP 1

R
N

A 
U

M
AP

 2

E12.5
E13.5
E14.0
E14.5

CNC-devrived 
mesenchymal cells

Developmental stage (E) Cluster Cell subtype

anterior palatal 
mesenchymal

posterior palatal 
mesenchymal

chondrogenic
osteogenic

dental 
mesenchymal

perimysial

CNC-derived
multipotent cells

anterior posterior
Shox2 Msx1 Meox2 Tbx22

c

log2(Fold change)

-lo
g1

0(
ad

ju
st

ed
 p

-v
al

ue
)

d

R
el

at
iv

e 
ex

pr
es

si
on

0

2000

4000

anterior posterior
0

1000

2000

3000

Msx1

anterior

posterior

0

1000

2000

3000

0

200

400

600

Tbx22

anterior posterior

anterior posterior anterior posterior

R
el

at
iv

e 
ex

pr
es

si
on

anterior

posterior

e

30

0

10

20

40

R
el

at
iv

e 
ex

pr
es

si
on

 (%
) 30

0

10

20

Shox2 Satb2 Inhba Cyp26b1 Nrp1 Meox2 Prickle1 Sim2 Efnb2 Trps1

R
el

at
iv

e 
ex

pr
es

si
on

 (%
)

***
***

***

***
*** ***

***

***

***

***

Quantitative RT-PCR 

Nrp1

A
nt

er
io

r
M

id
dl

e
P

os
te

rio
r

Shox2 Satb2 Inhba Cyp26b1

100 μm

100 μm

100 μm

100 μm

100 μm

100 μm

Meox2 Prikle1 Sim2 Efnb2 Trps1

A
nt

er
io

r
M

id
dl

e
P

os
te

rio
r

100 μm

100 μm

100 μm

100 μm

100 μm

100 μm

Anterior-specific genes Posterior-specific genes

Anterior
Middle Posterior

f

scRNA-seq, upregulationscRNA-seq, downregulation

Inhba

Cyp26b1

Shox2
Satb2
Nrp1

Anterior

Middle

Posterior

Sim2
Trps1

Anterior

Middle

Posterior

Efnb2
Meox2
Prikle2

Shox2

Meox2

anterior
posterior

RNA UMAP 1

R
N

A 
U

M
AP

 2

RNA UMAP 1

R
N

A 
U

M
AP

 2

RNA UMAP 1

R
N

A 
U

M
AP

 2

RNA UMAP 1

R
N

A 
U

M
AP

 2

RNA UMAP 1

R
N

A 
U

M
AP

 2

Article https://doi.org/10.1038/s41467-024-45199-x

Nature Communications |          (2024) 15:821 6



trajectories, CellRank found high initial state probabilities in CNC-
derived multipotent cells and high terminal state probabilities in the
late-stage subpopulations (Supplementary Fig. 8). To analyze cell fate
decisions within the progenitor populations within the progenitor
populations, we isolated those with high transition probabilities
toward the anterior and posterior trajectories, respectively.

Differential gene expression analysis unveiled distinct expression
profiles in these two subpopulations. In the progenitor anterior sub-
population, genes such as Shox2, Satb2, Inhba, Cyp26b1, and Nrp1
demonstrated significantly higher expression levels. Conversely, in the
progenitor posterior subpopulation, genes like Meox2, Prickle1, Sim2,
Efnb2, and Trps1 exhibited elevated expression (Supplementary Fig. 9).
The results align with the expression profile observed in terminally
differentiated anterior and posterior populations, as illustrated in
Fig. 3. Taken together, these analyses generated high-resolution
pseudotemporal trajectories representing the continuous expression
changes that occur during the development of the secondary palate.
Next, we investigated both gene expression and regulation dynamics
of each trajectory. The cells with large diffusion pseudotime values
tended to be derived from late time points (Supplementary Fig. 10).

To validate the accuracy of the inferred trajectories, we con-
ducted a comprehensive analysis of previously published H3K27
acetylation data obtained from both the anterior and posterior
palate31. Leveraging our extensive multiomic datasets, we identified
accessibility peaks associated with the genes along the anterior and
posterior developmental pathways, respectively.We then assessed the
probability of observing enriched overlap between the scATAC ante-
rior and posterior peakswith the corresponding anterior andposterior
acetylation tracks. The results revealed statistically significant enrich-
ment for the anterior trajectory (Fisher’s Exact test, odds ratio = 1.50,
P value = 4.81 × 10−3, Supplementary Fig. 11). The posterior trajectory
also revealed increased enriched overlap, albeit not reaching statistical
significance (Fisher’s Exact test, odds ratio = 1.34, P value = 0.13). Taken
together, these data confirm the reliability of our inferred trajectories.

We first focused on the anterior palatal mesenchymal trajectory.
To pinpoint the driver genes for this trajectory, we conducted asso-
ciation tests between the expression level of each gene and estimated
fate probability to each terminal state. Those with significant
positive correlationsweredefined as driver genes.We identified a total
of 556 driver genes (correlation >0.05 and adjusted P value < 0.05)
(Fig. 4e–h). The top hits included Shox2 (correlation = 0.468, adjus-
ted P value < 2.2 × 10−16), Foxd2os (correlation = 0.391, adjusted
P value < 2.2 × 10−16), and Foxd2 (correlation = 0.333, adjusted
P value < 2.2 × 10−16) (Supplementary Fig. 12a).

To further investigate when and how these driver genes were
regulated along the trajectory, we extracted 7240 cells with high
probabilities to differentiate towards the anterior trajectory (fate
probability >75% quantile) and ordered themby diffusion pseudotime.
We then performed peak-gene linkage analysis as described above and
connected expression trajectories with chromatin accessibility
dynamics. Out of 984 peak-gene linkages, 428 (43.49%) were sig-
nificantly linked (correlation >0 and adjusted P value < 0.05). We
observed consistent gene expression and chromatin accessibility
dynamics along the anterior trajectory (Fig. 4e).

Using k-means clustering, these driver genes were divided into
three groups, showing increased expression specifically at the start,

Fig. 3 | Anterior and posterior subpopulations were identified and character-
ized. a Left: UMAP visualization of the whole dataset with CNC-derived mesench-
ymal cells highlighted in blue. Right: Independent UMAP visualizations of CNC-
derived mesenchymal cells colored by developmental stage, cluster, and cell sub-
type, respectively. b Feature plot shows the expression of representative genes in
the anterior and posterior, respectively. cVolcano plot shows the log2 Fold Change
and negative log10 of adjusted P values for each gene in the bulk RNA-seq dataset
and colored by significance in the single-cell RNA-seq dataset. The Wald test is
employed as a two-sided test, andmultiple test adjustments are applied.d Boxplot
shows the expressionof four representativeDEGs, Shox2,Msx1,Meox2, andTbx22at
the bulk level. n = 6 biologically independent samples. Minima: Lower limit of the
whisker. Maxima: Upper limit of the whisker. Centre: Median line inside the box.
The upper and lower box bounds represent the 25% and 75% percentile of data.
e Bar plot shows quantitative RT-PCR of genes in anterior (red bars) and posterior

(blue bars) regions. ***P <0.001. n = 6 independent experiments. Data are pre-
sented asmean values +/− standard error of themean (SEM). T test, two-sided. The
anterior-specific genes include Shox2 (adjusted P value = 1.10 × 10−11), Satb2 (adjus-
ted P value = 2.27 × 10−11), Inhba (adjusted P value = 1.69 × 10−11), Cyp26b1 (adjusted P
value = 3.95 × 10−12), andNrp1 (adjusted P value = 3.05 × 10−8). The posterior-specific
genes comprise Meox2 (adjusted P value = 1.29 × 10−9), Prickle1 (adjusted P
value = 2.19 × 10−9), Sim2 (adjusted P value = 6.05 × 10−9), Efnb2 (adjusted P
value = 2.94 × 10−8), and Trps1 (adjusted P value = 1.84 × 10−9). Source data are pro-
vided as a Source Data file. f RNAscope in situ hybridization validated gene
expression signature in anterior and posterior subpopulations. Left: microscope
images (100μm) show expression patterns for each gene by in situ hybridization.
Right: anatomical mouse embryo images outline gene expression patterns. This
validation process was conducted in six independent experiments, each yielding
consistent results.

Table 2 | Marker genes in anterior and posterior
subpopulations

Subpopulation Gene symbol Average
log2(fold
change)

Adjusted
P value

Cleft-
related
gene

Anterior palatal
mesenchymal
subpopulation

Shox2 2.48 2.84E-124 Yes

Satb2 1.74 2.49E-105 No

Zfhx4 1.66 4.80E-79 No

Adgrl2 1.22 3.45E-73 No

Alx1 1.21 1.20E-62 Yes

2700069I18Rik 1.05 5.86E-56 No

Eya1 1.24 2.00E-54 Yes

Thsd4 1.27 6.39E-54 No

Mme 1.23 6.44E-50 No

Slit2 1.60 2.81E-47 No

Sox5 1.28 7.45E-46 Yes

Ror1 0.91 6.19E-40 No

Asb4 1.13 6.69E-39 No

Six1 0.86 9.30E-39 Yes

Msx1 0.66 1.71E-34 Yes

Posterior palatal
mesenchymal
subpopulation

Meox2 1.67 1.10E-110 Yes

Dach1 2.17 4.02E-107 No

Pcdh9 2.45 2.59E-97 No

Col25a1 2.20 6.60E-95 No

Inpp4b 2.60 6.64E-90 No

Prickle1 1.47 1.77E-85 Yes

Sim2 1.23 3.38E-78 Yes

Lmo4 1.73 4.50E-75 No

Pcdh15 3.10 1.09E-73 No

Cdh18 1.97 6.17E-68 No

Hs3st5 1.49 2.58E-64 No

Efnb2 1.15 7.93E-64 Yes

Tmtc2 1.58 1.15E-61 No

Fhod3 1.45 7.66E-61 No

Pam 1.22 3.93E-50 No

The Wilcoxon rank-sum test is utilized, and the Benjamini–Hochberg method is applied for
multiple test adjustment of the P value.
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middle, or end of the anterior trajectory (Fig. 4f). The genes upregu-
lated at the start of the anterior trajectory were enriched in
mesenchymal cell proliferation (enrichment ratio = 16.71, adjusted P
value = 0.036), roof of mouth development (enrichment ratio = 12.73,
adjusted P value = 0.022), and chromatin remodeling (enrichment
ratio = 9.90, adjusted P value = 0.035) (Fig. 4g). The genes upregulated

at the middle of the trajectory were enriched in mesenchymal cell
proliferation (enrichment ratio = 11.14, adjusted P value = 2.28 × 10−3)
and response to fibroblast growth factor (enrichment ratio = 5.74,
adjusted P value = 0.027) while the genes upregulated at the end of
the trajectory were associated with the roof of mouth development
(enrichment ratio = 7.49, adjusted P value = 1.04 × 10−6) and
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anatomical structure arrangement (enrichment ratio = 10.49, adjusted
P value = 4.58 × 10−3).

We then applied an analogous approach to the posterior palatal
mesenchymal trajectory and identified 586 driver genes, such as
Col25a1 (correlation = 0.518, adjusted P value < 2.2 × 10−16), Meox2
(correlation = 0.496, adjusted P value < 2.2 × 10−16), and Inpp4b (cor-
relation = 0.400, adjusted P value < 2.2 × 10−16) (Supplementary
Fig. 12b). Among them, 216 genes were significantly regulated by 353
regulatory elements (Fig. 4h). Pathway enrichment analysis of these
genes revealed the involvement of neuron-related pathways in the
early stage (enrichment ratio = 11.30, adjusted P value = 8.99 × 10−5),
mesenchymal development (enrichment ratio = 5.42, adjusted P
value = 1.37 × 10−4), and tissue migration (enrichment ratio = 3.57,
adjusted P value = 4.09 × 10−4) in the intermediate and late stages of
the trajectory (Fig. 4i, j).

We next investigated underlying transcriptional regulators by
motif enrichment analysis. We characterized a list of lineage-
determining TFs that are potential candidates to control each trajec-
tory by binding to regulatory elements to regulate the expression of
the above-mentioned driver genes. Shox2 was identified as an impor-
tant regulator at the start of the anterior trajectory (motif adjusted P
value = 6.09 × 10−3, motif fold change = 4.21, gene adjusted P
value < 2.2 × 10−16, gene fate correlation = 0.47) (Fig. 5a). MEOX2
showed potential regulatory roles in the middle (motif adjusted P
value = 0.024, motif fold change = 2.87) and end of the posterior tra-
jectory (motif adjusted P value = 1.85 × 10−3, motif fold change = 2.06,
Fig. 5b). To experimentally validate these predictions, we conducted
chromatin immunoprecipitation followed by sequencing (ChIP-seq)
experiments. SHOX2 and MEOX2 ChIP-seq data were generated from
anterior and posterior palate tissue, respectively. We calculated the
likelihood of observing a ChIP-seq peak near the genes that were
upregulated at the start of the anterior trajectory and themiddle of the
posterior trajectory. As computationally predicted, the likelihood of
observing a SHOX2 peak was increased for genes upregulated at the
start of the anterior trajectory. Correspondingly, the likelihood of
observing a MEOX2 peak was increased for genes upregulated at the
middle of the posterior trajectory (Fig. 5c). Despite limited statistical
power given the use of duplicates, these results showed marginal sig-
nificance (One-sided t test, anterior start P value = 0.055, posterior
middle P value = 0.09). For example, we observed a ChIP-seq binding
peak for SHOX2 but not MEOX2 in the predicted SHOX2 target Nfia (P
value = 2.29 × 10−4, signal = 3.01, Fig. 5d). Simultaneously, a MEOX2
binding peak was observed upstream of the predicted MEOX2 target
Has2 (P value = 1.53 × 10−4, signal = 2.82, Fig. 5e).

To further validate these predictions, we first examined the odds
ratio distribution of fate probabilities towards anterior versus poster-
ior trajectories. As expected, Shox2-positive cells had high prob-
abilities to differentiate towards the anterior palatal mesenchymal
trajectory (Supplementary Fig. 13a, left panel) while Meox2-positive
cells had high probabilities to differentiate towards the posterior tra-
jectory (Supplementary Fig. 13b, left panel). Those terminally

differentiated cells at E14.5 emerged from the multipotent cells at the
early stage (E12.5) (Supplementary Fig. 13a, b, right panels).

In addition, we observed a significant negative correlation of fate
probabilities between the anterior and posterior trajectories (PCC
Rho = −0.427, P value < 2.2 × 10−16, Supplementary Fig. 13c). For exam-
ple, the topdriver gene for the anterior trajectory Shox2wasnegatively
correlatedwith the posterior trajectory (correlation = −0.333, adjusted
P value < 2.2 × 10−16). On the other hand, Meox2, a top driver gene for
the posterior trajectory, was negatively correlated with the anterior
trajectory (correlation = −0.288, adjusted P value < 2.2 × 10−16). The
osteoblast and dental mesenchymal trajectories shared a list of driver
genes, exhibiting high fate probabilities of both trajectories, such as
Runx2 and Zfpm2 (Supplementary Fig. 13d). Collectively, these data
validated the inferred trajectories and driver genes.

In silico perturbation analysis finds important regulators
Next, we applied CellOracle to assess the impact of perturbing specific
regulators on the development of the secondary palate32. This algo-
rithm leverages single-cell multiomics data to deduce gene-regulatory
networks. It then conducts in silico perturbations to simulate how
these changes affect cellular development, relying solely on unper-
turbed data. Our analysis focused on the cells within the anterior and
posterior trajectories. Independent data analysis was conducted,
including normalization, clustering, and dimension reduction using
PAGA33 and force-directed graphs, followed by diffusion pseudotime
calculation. Themanifold revealed two distinct trajectories originating
from the multipotent cells towards the anterior and posterior cells
(Fig. 6a). We then calculated perturbation scores for all detected TFs.
High perturbation scores indicate that in silico knockout of the TF
significantly decreased the development of the trajectory, suggesting
that the TF is an essential regulator of the trajectory. Interestingly,
while theCellOracle perturbation scoreswere correlated formanyTFs,
SHOX2 and MEOX2 showed relatively high specificity for the anterior
and posterior trajectories, respectively (Fig. 6b). The regulatory net-
works predicted by CellOracle for all TFs can be found in Supple-
mentary Data 1. Indeed, in silico perturbation of Shox2 and Meox2
reversed the developmental velocities for the anterior and posterior
trajectories, respectively (Fig. 6c, d and Supplementary Fig. 14).

To further confirm the relevance of Shox2 and Meox2 in sec-
ondary palate development, we applied an additional computational
algorithm, SCENIC+34, to infer major regulators of the developmental
trajectory (Supplementary Fig. 15). This analysis identifiedMeox2 as the
top regulon for the posterior trajectory. Due to limited annotation,
SCENIC+ does not contain a Shox2 regulon. However, the top regulon
for the anterior trajectory was Nfia, which targets Shox2 based on the
Scenicplus annotation. These results further confirmed the impor-
tance of both Shox2 and Meox2 in the anterior and posterior trajec-
tories, respectively.

For SHOX2 and MEOX2, CellOracle predicted 11 and 4 target
genes, respectively (P value < 0.001). It is noteworthy that among these
predicted targets, Satb235,36, Prrx137,38, and Prickle139,40 have previously

Fig. 4 | Reconstruction of CNC-derived mesenchymal trajectories by Optimal
Transport reveals lineage-determining transcription factors. a UMAP visuali-
zation of CNC-derived mesenchymal subpopulations with chondrocytes removed.
b UMAP visualization colored by (left) WOT-based random walks and (right)
terminal states. The random walks are based on the WOT-derived cell–cell transi-
tionmatrix. Black dots represent the start points of the trajectory, while yellowdots
represent endpoints. c UMAP visualizations show fate probabilities to each tra-
jectory. Cells are colored by probabilities (high: yellow, low: purple). d UMAP
visualization with streamlines and arrows shows RNA velocity-derived information.
Each point represents one cell and is colored by developmental stages. Streamlines
and arrows represent the future directions for each cell. e Heatmap shows paired
chromatin accessibility and gene expression (rows) for the anterior trajectory

(columns). Each row represents a putative pair of genes and linked regulatory
elements. Bars on the top represent diffusion pseudotime, fate probabilities to the
anterior palatal mesenchymal trajectory, terminal state likelihood, and develop-
mental stage. Columns are ordered by diffusion pseudotime. f Scatter plot with
fitted lines shows the expression pattern for each group of driver genes along the
trajectory. The shaded areas around the fitted smooth line represent the error
bands, indicating the 95% confidence interval. gDot plot shows enriched pathways
(y axis) for each driver gene group (x axis) upregulated at the start, middle, and end
of anterior palatal mesenchymal trajectory. Dot is scaled by enrichment ratio and
colored by significance. h–j Similar visualizations to (e–g) for the posterior palatal
mesenchymal trajectory.
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been linked to CP (Fig. 6e). We expanded the MEOX2 network, by
utilizing a less stringent P value threshold (P value <0.01) and identified
a total of 39 target genes. Next, we integrated this list of genes with the
CleftGeneDB database5 which collects curated genes with

experimental evidence for relevance in cleft palate. Importantly, 6 of
these 39 MEOX2 targets have previously been associated with cleft
palate,which represents a significantly larger overlap than expectedby
chance (Fisher’s Exact test, P value = 0.0002, odds ratio = 9.2,
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Supplementary Fig. 16a). For instance, Cacna1d has been reported to
be related to orofacial cleft in the GWASdb SNP-Phenotype Associa-
tions dataset41. In addition, Foxp2 is linked to nonsyndromic cleft lip
and/or palate through genome-wide linkage analysis42. Notably, our
MEOX2CHIP-seq data provided further evidence ofMEOX2 binding to
promoter regions of these genes (Supplementary Fig. 16b).

To validate the predicted gene-regulatory dynamics, we re-
analyzed published bulk RNA-seq data derived from the E14.5 ante-
rior hard palatal tissues of Shox2Cre/− mice, wherein the Shox2 gene had
been knocked out31. Among the 11 predicted SHOX2 targets, 8 genes
exhibited significantly altered expression following Shox2 knockout
(adjusted P value < 0.05) (Fig. 6f). As expected, genes predicted to be
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positively regulated by Shox2 demonstrated decreased expression
upon Shox2 knockout (Fig. 6e, f). Correspondingly, genes predicted to
be negatively regulated displayed increased expression upon Shox2
knockout (Fig. 6e, f). Taken together, these results suggest that SHOX2
andMEOX2 serve as crucial regulators driving the development of the
anterior and posterior secondary palate, respectively.

Discussion
Dynamic gene expression patterns, driven by the dynamic activity of
TFs and accessibility of their binding sites, underlie the formation of
the secondarypalate. In this study, we generated time-series single-cell
multiomics datasets of themouse secondary palate from E12.5 to E14.5
to dissect lineage-determining TFs that govern the developmental
process. Our study profiled multiple modalities of developing mouse
secondary palate within the same cells at single-cell resolution.

Cell-type annotation is challenging due to the rareness of data for
secondary palate development. The lack of reference data makes
automated cell type annotation approaches on scRNA-seq data, such
as SingleR43 and deCS44, not applicable. In this study, we defined cell
types through extensivemanual curation of marker genes, which were
validatedusing an independent scRNA-seqdataset taken froma similar
tissue10. We discovered subpopulations in CNC-derived mesenchymal
cells that align with the in vivo anatomical locations, which were vali-
dated using in situ hybridization, quantitative RT-PCR, and bulk RNA-
seq. The established cell types and subtype-specific gene expression
profiles, together with the chromatin accessibility profiles, can be used
as a reference to facilitate cell-type annotations in future analyses.

Trajectory analysis in time-series scRNA-seq datasets requires
integration of pseudotime with time-point information, where tradi-
tional pseudotime approaches are not applicable45. In this study, we
applied the Wadding-Optimal Transport algorithm27 to connect cells
between adjacent time points and reconstructed five trajectories,
demonstrating the continuous developmental landscape of cell states.
We identified several driver genes which were previously linked to
craniofacial biology. Msx1, a driver gene for dental mesenchymal tra-
jectory, was shown to regulate the cell proliferation of dental
mesenchymal cells46 and tooth morphogenesis47. Runt-related tran-
scription factor 2 (Runx2) is known to regulate tooth and bone for-
mation during the differentiation of CNC-derived cells48, which
exhibited high fate correlations to both dental and osteoblast trajec-
tories in our study. Another key regulator during the middle of the
anterior palatal trajectory, Runx1, was reported to regulate the fusion
and its deficiency caused cleft in the anterior palate49. Dlx1 and Dlx2
were identified as the top regulators for the posterior palatal
mesenchymal trajectory. Concordant with our findings, Dlx1/2 double
knockout mice developed CP due to the vertical growth failure of
posterior palatal shelves50.

Inference of gene-regulatory networks followed by in silico per-
turbation revealed several regulators of the anterior and posterior
trajectories. We focused our analysis on the predicted regulators
SHOX2 and MEOX2 and experimentally validated our predictions.
Meox2 was predicted to be a driver gene for the posterior palatal tra-
jectory and Meox2 null and heterozygous knockout mice exhibited
posterior CP due to post-fusion breakdown of palatal shelves51. Con-
sistent with our results, Shox2 null mice exhibited CP that were

confined to the anterior region52. Importantly, the posterior palate in
Shox2 null mice was intact, underscoring the gene expression and
regulation differences along the anterior-posterior axis of the palate.
Our analysis solidifies the role of Shox2 in establishing the anterior-
posterior polarity of the palatal shelves and provides insight into the
underlying mechanisms at single-cell resolution.

While our analysis focused on these two important regulators of
secondary palate development, our results provide additional infor-
mation at genome-scale using a single-cell multiome approach. In
addition to Shox2 and Meox2, we provide inferred regulatory net-
works for several additional transcription factors, which represent a
valuable resource to the research community (Supplementary Data 1).

Although our study revealed dynamic gene regulation programs,
it has limitations in explaining the three-dimensional processes, such
as the reorientation of palatal shelves. Therefore, it would be inter-
esting to integrate our results with spatial information, such as 10x
Genomics Visium technology that overlay gene expression data with
the morphological context in tissues53, to reveal spatial expression
patterns and elucidate the mechanisms of palatal elevation and reor-
ientation at the molecular level. Single-cell proteome data can also be
integrated to quantify the downstream protein levels during
development54. Furthermore, in vivo validations in developing mouse
embryos are needed to confirm the regulatory role of identified
lineage-determining TFs, such as the knockout of specific TFs or line-
age tracing experiments.

In conclusion, our single-cell multiomics atlas of the developing
mouse secondary palate charted epigenetic and transcriptional
dynamics during palatogenesis and provides a unique resource for the
community to facilitate future research of CP.

Methods
Tissue preparation, dissociation, and nuclei extraction
All animal procedures and study protocols were approved by the
Animal Welfare Committee (AWC) and the Institutional Animal Care
and Use Committee (IACUC) of UTHealth (AWC 22-0087). Palatal
shelves were isolated from time-mated C57BL/6J mice (000664, Jack-
son Laboratory) at four distinct developmental timepoints, including
embryonic day (E)12.5, E13.5, E14.0, and E14.5. Specifically, at E12.5, we
primarily captured the early stages of palatal shelves, during which
they emerge as outgrowths from the maxillary processes. E13.5 cor-
responds to a phase characterized by palatal shelf downgrowth
towards the tongue. At E14.0, our samples included palatal shelves in
the process of elevation. At this stage, they undergo a significant
transformation, transitioning into a more horizontally oriented posi-
tion above the tongue. Finally, at E14.5, we isolated palatal shelves
during the fusion stage, representing the point at which these struc-
tures come into contact and ultimately merge along the midline. All
mice were maintained in the animal facility of UTHealth under a 12-h
light/dark cycle and access to food/water ad libitum.

Single-cell suspensions were prepared from pooled paired sec-
ondary palatal shelves of three embryos at E12.5, two embryos at E13.5,
and one embryo at E14.0 and E14.5, respectively. The microdissected
palatal shelves were treated with 0.25% trypsin and 0.05% EDTA
(150μL) for 5min at 37 °C with gentle agitation (300 rpm). The dis-
sociated cell mixtures were then suspended with 300μL Dulbecco’s

Fig. 6 | In silico perturbation analysis reveals SHOX2 and MEOX2 as important
regulators of the anterior and posterior trajectories, respectively. a Left: UMAP
visualization of CNC-derived mesenchymal subpopulations. Right: Force-directed
graph visualizations of anterior and posterior subpopulations. b Scatter plot shows
in silico TF perturbation scores for the anterior (x axis) and posterior (y axis)
trajectories, respectively. c Left: CellOracle vector field graphic shows the devel-
opmental flow of anterior trajectory. Arrows start frommultipotent cells and point
towards the anterior subpopulation. Right: CellOracle vector field graphic shows
simulated vector shift after in silico Shox2 knockout. The developmental flow

towards anterior cells is reversed upon in silico knockout of Shox2. d Same visua-
lization as in panel C, showing simulated Meox2 perturbation in the posterior
trajectory. e Network graphs visualized using Cytoscape show predicted SHOX2
and MEOX2 regulatory networks. The shape of the arrowheads is based on the
predicted direction of regulation. Target nodes are colored based on regulation in
Shox2-knockout RNA-seq data. f Heatmap shows log2 fold change of RNA expres-
sion in three Shox2 knockout samples normalized to controls. The bulk RNA-seq
data used here was downloaded from ref. 31.
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Modified Eagle’s Medium (DMEM, Millipore Sigma) supplemented
with heat-inactivated 10% fetal bovine serum (FBS). The cells were
centrifuged at 500 g for 5min at 4 °C and the cell pellets were resus-
pended and incubated with chilled 300μL of 0.1× lysis buffer [10mM
Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 1% BSA, 1mM DTT, 1 U/μL
RNase inhibitor, 0.01% Tween-20, 0.01% Nonidet P40 Substitute, and
0.001% Digitonin] for 3min on ice, which was stopped with chilled
300μL wash buffer [10mMTris-HCl pH 7.4, 10mMNaCl, 3mMMgCl2,
1% BSA, 1mM DTT, 1 U/μL RNase inhibitor, and 0.1% Tween-20]. The
cells were then collected by centrifugation at 500× g for 5min at 4 °C,
rinsed with 200μL wash buffer twice, and re-suspended in Diluted
Nuclei Buffer [1× Nuclei Resuspension Buffer, 1mM DTT, and 1 U/μL
RNase inhibitor]. Isolated single-cell nuclei were filtered using a cell
strainer (40-μm pore size) and inspected under a microscope to
ensure they were successfully dissociated into single cells for sub-
sequent sequencing.

Single-cell multiome data generation
The single-cell libraries were constructed by following the 10x Geno-
mics Chromium Next GEM Single Cell Multiome ATAC + Gene
Expression protocol (CG000338). Briefly, nuclei suspensions were
incubated with a transposase, which fragmented the DNA in open
regions of the chromatin and added the adapter sequences to the ends
of the DNA fragments. The transposed nuclei were loaded onto
Chromium Next GEM Chip J (PN-1000234, 10x Genomics, Pleasanton,
CA) with partitioning oil and barcoded single-cell gel beads, followed
by PCR amplification. TheATAC library and thegene expression library
were then prepared separately. The quality of the libraries was exam-
ined using the Agilent High Sensitive DNA Kit (#5067-4626) by Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, USA). The library
concentrations were determined by qPCR using Collibri Library
Quantification kit (#A38524500, ThermoFisher Scientific) on a
QuantStudio3 (ThermoFisher Scientific). We then pooled the libraries
evenly and performed the paired-end sequencing on an Illumina
NextSeq 550 System (Illumina, Inc., USA) using the High Output Kit
v2.5 (#20024907, Illumina, Inc., USA).

Single-cell multiome data processing
The 10x Genomics Cell Ranger ARC (v2.0.0) pipeline was used to
process the multiome data. Raw sequencing data were first converted
to fastq formatusing “cellranger-arcmkfastq”. The rawfiles of RNA-seq
and ATAC-seq libraries from the same sample were aligned to the
UCSC mouse genome (mm10) and quantified using “cellranger-arc
count”. Samples were aggregated using “cellranger-arc aggr” to nor-
malize the sequencing depth.

The raw RNA count matrix and ATAC fragment data were further
processed using R packages Seurat (v4.0.3)55 and Signac (v1.5.0)56,
respectively. Filtering based on RNA-assay metrics
(200<nCount_RNA< 100,000, nFeature_RNA < 7500, percent.mt <20)
and ATAC-assay metrics (200 <nCount_ATAC< 100,000, nucleo-
some_signal <2, TSS.enrichment > 1) resulted in 37,329 cells. The
average depth is 73,521 reads per cell, yielding an average of 2472
genes per cell. The gene expression countmatrix was then normalized
using SCTransform. Principal component (PC) analysis was based on
the top 3000 highly variable features. Uniform Manifold Approxima-
tion and Projection (UMAP) visualization was constructed using the
first 30 PCs.

For the ATAC data, peak calling was performed using MACS2
package with CallPeaks function in Signac. Peaks that overlapped with
genomic blacklist regions for themm10 genomewere removed57. Each
peak represents one potential regulatory DNA element. The peak
count matrix was then normalized using Latent Semantic Indexing
(LSI), including term-frequency (TF) inverse-document frequency
(IDF), and Singular value decomposition (SVD). The first LSI

component is removed from the downstream analysis as it was highly
correlated with sequencing depth. The gene activity was quantified
using GeneActivity function in Signac (version1.5.0), which aggregated
chromatin accessibility intersecting the gene body and promoter
regions.

Projection of external dataset onto our scRNA-seq manifold
To validate the annotated major cell types, we downloaded a scRNA-
seq dataset of mouse soft palate, which is the posterior third of the
palate, from a recent publication10. SCTransform normalization was
conducted, followed by PC analysis. The first 30 PCs were used to find
anchors between these two datasets using FindTransferAnchors func-
tion in the Seurat package. The RunUMAP function was used to cal-
culate the UMAP coordinates of our dataset with parameters stored in
the object (return.model = TRUE). The MapQuery function was then
used to calculate the coordinates of the external dataset using the
same ‘uwot’ model parameters.

In situ hybridization
The E14.5 C57BL/6Jmouse embryos (n = 6) were dissected from a time-
pregnant mother and fixed in 4% paraformaldehyde overnight at 4 °C,
dehydrated in a graded ethanol series, and embedded in paraffin.
Paraffin sections were cut at 4 µm thickness under RNase-free condi-
tions. In situ hybridization was performed using the RNAscope 2.5
Assay platform (ACD, 322360) using specific probes for Cyp26b1 (ACD,
454241), Efnb2 (ACD, 477671), Inhba (ACD, 455871), Meox2 (ACD,
823191), Nrp1 (ACD, 471621), Prickle1 (ACD, 832641), Satb2 (ACD,
413261), Shox2 (ACD, 579051), Sim2 (ACD, 1110401), and Trps1 (ACD,
879001). The color images were obtained under a light microscope
(BX43, Olympus).

Quantitative RT-PCR
The anterior (n = 6) and posterior (n = 6) 1/3 palatal shelves were
microdissected from E14.0 C57BL/6J mouse embryos for qRT-PCR.
Total RNAs isolated from each region were collected using the
QIAshredder and RNeasy mini extraction kit (QIAGEN)58. Gapdh was
used as an internal housekeeping gene control. The PCR primers used
in this study are listed in Supplementary Table 2.

Bulk RNA-seq analysis
The anterior (n = 3) and posterior (n = 3) 1/3 palatal shelves of E14.0
C57BL/6J mice were microdissected, isolated, and then subjected to
bulk RNA-seq. The raw sequenced files were mapped to the mouse
reference genome mm10 using HISAT259. StringTie60 was used to
quantify the counts.We thenusedRpackageDESeq2 (version 1.30.1) to
perform the differential gene expression tests61. To project the bulk
RNA-seq data into the scRNA principal component space, count
matrices from both datasets were first integrated and normalized
using voom function in the R package limma (version 3.46.0). We
performed PCA independently using normalized scRNA data. The
normalized bulk RNA-seq data were then projected into the scRNA
space using identical principal component gene loadings.

Peak-gene linkage analysis
We identified peak-gene links using LinkPeaks function in Signac56

based on the approach originally described by SHARE-seq62. The
Pearson correlation coefficient was calculated between gene expres-
sion and peak accessibility. Only peaks within a certain distance (bp)
from thegeneTSSwere included in themodel (default: 5 × 105). TheGC
content, overall accessibility, and peak size were included in themodel
as covariates to correct the bias. Benjamini–Hochberg method was
used to adjust P values63. Only high-confidence peak-gene links with
adjusted P value < 0.05 and coefficients >0 were retained for down-
stream analysis.
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DNA sequence motif enrichment analysis
A total of 746 position weight matrices were loaded from the JASPAR
2020 database64 using getMatrixSet function in TFBSTools package
(version 1.32.0, collection = “CORE”, tax_group = ‘vertebrates’). For a
set of differentially accessible peaks, we applied FindMotifs function
with default parameters to find enriched motifs. Meanwhile, to facil-
itate the visualization of motif activity, we calculated themotif activity
matrix using ChromVAR (version 1.16.0)65.

WOT-based terminal state likelihood analysis
The Wadding-Optimal Transport (WOT) was employed to reconstruct
the trajectories27. Specifically, for a cell at time ti, WOT traced its most
likely ancestors and descendants to recover the trajectories by calcu-
lating the transition probabilities to cells at time ti+1 and ti-1. We
imported WOTKernel from cellrank.external.kernels for the following
analysis28. The growth rates were estimated using the predefined gene
proliferation set. The cell–cell transition matrix between adjacent
time-points was then calculated using compute_transition_matrix
function with default parameters (growth_iters=3, growth_rate_key = “

growth_rate_init”, last_time_point = “connectivities”). The random
walks were simulated (n_sims=300). To compute the macrostates, a
Generalized Perron Cluster Cluster Analysis (GPCCA) estimator was
initialized with WOT connectivity kernel66. The inferred macrostates
were set as terminal states of five trajectories. The fate probabilities to
each terminal state were computed per cell using compu-
te_absorption_probabilities function with default parameters (solver =
“gmres”). To identify driver genes, we computed the correlation
between the fate probabilities and gene expression for each trajectory
using compute_lineage_drivers function. Multiple testing correction
was controlled by the Benjamini–Hochberg method63. Only the genes
with adjustedP values less than0.05 and correlations greater than0.05
were considered driver genes.

Diffusion pseudotime estimation
We used the built-in function of the Python package Scanpy (version
1.9.1) to estimate the diffusion pseudotime67. Specifically, the raw
countmatrixwas loaded in as anAnnData object, followedby standard
preprocessing. The neighborhood graph was calculated using
sc.pp.neighbors function with default parameters (random_state=0).
We specified a randomcell in CNC-derivedmultipotent cells (cluster 5)
as the root cell. The diffusion pseudotime was then estimated using
scanpy.tl.dpt function.

RNA velocity and CellRank analysis
The possorted bam files from Cellranger output were passed to velo-
cyto (version: 0.17.15)30 to estimate the RNA velocities of single cells.
The generated loom file contained data matrices of spliced and
unspliced reads and was further processed by scVelo (version 0.2.4)68.
Seurat-processed gene expression count matrix and UMAP coordi-
nates were converted to “AnnData” object and merged with the
velocyto-derived object using scVelo.utils.merge function. The merged
dataset was filtered using the scVelo.pp.filter_and_normalize with
default parameters (min_shared_counts = 10, n_top_genes = 2000) and
the moments were computed using scVelo.pp.moments. The velocity
was then calculated using scVelo.tl.velocity (mode=stochastic). The
estimated velocity vectors were projected and visualized in previously
calculated embedding. The initial and terminal state likelihood based
on RNA velocity information was estimated using cellrank.tl.termi-
nal_states and cellrank.tl.initial_states functions with default para-
meters (weight_connectivities=0.3).

Trajectory analysis
To identify how and when driver genes were expressed and regulated
along each trajectory, we extracted cells with high fate probabilities
(fate probability >75% quantile). The extracted cells were then ordered

by diffusion pseudotime. The driver genes were cut into three groups
basedonquantiles. For eachgroupofdriver genes,we conductedgene
set enrichment analysis using the R package WebGestalt (version
0.4.4)69. The non-redundant Gene Ontology (GO) Biological Process
terms were used for pathway annotations. The minimum number of
genes in the pathways was set to 5 and the maximum was set to 500.
The Benjamini–Hochbergmethodwas used to adjust P values63. Those
pathways with adjusted P values less than 0.05 were considered sta-
tistically enriched. We also performed peak-gene linkage analysis and
motif enrichment analysis as described above.

In silico perturbation analysis
We applied CellOracle (version 0.12.1) to conduct the in silico pertur-
bation analysis following the tutorial provided by the original authors
(https://morris-lab.github.io/CellOracle.documentation/)32. As recom-
mended, the scRNA-seq data was subsampled to 3000 cells and 3000
highly variable genes for the analysis. Scanpy (version 1.9.3) was used
for re-normalization and clustering. Diffusion maps were computed,
followed by construction of PAGA and force-directed graphs with
default parameters. scATAC-seq data were processed with Cicero
(version 1.16.2) with window= 500,000. We retained only those peaks
with substantial coaccessibility scores (coaccess≥0.8) for down-
stream analysis. After inferring the links, a filtering step was imple-
mented using the following parameters: a significance threshold of
P = 0.001, “coef_abs” as the weight criterion, and a threshold of 2000
for the number of allowable links. To simulate the effects of TF per-
turbations, we defined the expression of the perturbed TF as 0.
Transition probabilities and embedding shifts were calculated with
default parameters (n_neighbors=200, knn_random=True, sigma_-
corr=0.05). The developmental flow was constructed using inferred
diffusion pseudotime. The perturbation effect was then quantified
using the inner product of the developmental flow and the perturba-
tion vector. Predicted gene regulatory networks were visualized with
Cytoscape (version 3.10.1).

Re-analysis of published Shox2 knockout bulk RNA-seq data
Wedownloaded raw counts from theGEOdatabase (accession number
GSE129538). The R package DESeq2 (version 1.30.1) was used to iden-
tify differentially expressed genes between Shox2 knockout and wild
type samples. Subsequently, the log2 fold change and adjusted P
values of predicted SHOX2 and MEOX2 targets were extracted.

ChIP-seq data analysis
The anterior (n = 2) and posterior (n = 2) 1/3 palatal shelves of E14.0
C57BL/6J mice were microdissected, isolated, and then subjected to
ChIP-seq with either SHOX2 antibody (JK-6E) (sc-81955, Santa Cruz),
MEOX2 Antibody (A-8) (Sc-376748, Santa Cruz), or normal rabbit IgG
(2729, Cell Signaling Technology) as a negative control. The ChIP
assays were performed according to the manufacturer’s instructions
using SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads)
(9003, CST). Two independent ChIPs were conducted for library
generation for each group. The raw FASTQ datasets were pre-
processed using FastQC (version 0.12.1) and mapped to the mouse
genome (mm10) using theBowtie2 alignment algorithm (version 2.5.1).
The resulting alignment files were then used as input for MACS2
(version 2.2.9.1) to call peaks with a P value threshold of 0.01. Subse-
quently, the generated bed files were then converted to bigwig files
and visualized using Integrative Genomics Viewer (IGV). Likelihood of
overlap was quantified by calculating the rate of peaks falling within
5 kb of the transcription start site of genes up-regulated at the start of
anterior and middle of posterior trajectories.

Re-analysis of published H3K27 acetylation ChIP-seq data
The raw H3K27 acetylation datasets were downloaded from Sequence
Read Archive (SRA), comprising 2 samples from anterior palate and
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2 samples from posterior palate (SRX6976329)31. The tool fastq-dump
was used to transfer data to FASTQ format. Subsequently, the raw
FASTQ datasets underwent preprocessing through the same pipeline
utilized in ChIP-seq data analysis above. To quantify the overlap
between scATAC anterior and posterior peaks with the corresponding
anterior and posterior acetylation tracks, the findOverlaps function in
the GenomicRanges R package (version 1.50.2) was employed. The
significance of the overlap was assessed using Fisher’s Exact test.

Statistics and reproducibility
All experiments were performed using with at least n = 2 biological
replicates for each group. Statistical significance and strength of
enrichments were determined using theWilcoxon rank-sum test. Cells
with low quality were excluded from analyses. No statistical method
was used to predetermine the sample size.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw and processed single-cell multiome data generated in this
study have been deposited in the Gene Expression Omnibus database
(GEO) under accession code GSE218576. The bulk RNA-seq data gen-
erated in this study are deposited in the GEO under accession code
GSE252592. The ChIP-seq data generated in this study are deposited in
the GEO under accession code GSE250247. The single-cell RNA-seq
data from soft palate is available at the GEO under accession code
GSE155928. The rawH3K27 acetylation ChIP-seq data is available at the
Sequence Read Archive (SRA) under accession code SRX6976329.
Source data are provided with this paper.

Code availability
All R and Python scripts supporting the findings of this paper are
available on theGitHub repository (https://github.com/fangfang0906/
Single_cell_multiome_palate).
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