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Statisticsofmodal condensation innonlinear
multimode fibers

Mario Zitelli 1 , Fabio Mangini1 & Stefan Wabnitz 1

Optical pulses traveling through multimode optical fibers encounter the
influence of both linear disturbances and nonlinearity, resulting in a complex
and chaotic redistribution of power among different modes. In our research,
we explore the phenomenon where multimode fibers reach stable states
marked by the concentration of energy into both single and multiple sub-
systems. We introduce a weighted Bose-Einstein law, demonstrating its suit-
ability in describing thermalized modal power distributions in the nonlinear
regime, as well as steady-state distributions in the linear regime. We apply the
law to experimental results and numerical simulations. Our findings reveal
that, at power levels situated between the linear and soliton regimes, energy
concentration occurs locally within higher-order modal groups before transi-
tioning to global concentration in the fundamental mode within the soliton
regime. This research broadens the application of thermodynamic principles
to multimode fibers, uncovering previously unexplored optical states that
exhibit characteristics akin to optical glass.

Multimode (MM) optical fibers1–3 have experienced a resurgence in
interest over the last decade. This renewed enthusiasm is driven by the
potential to enhance transmission capacity through spatial-division
multiplexing (SDM) techniques4,5, aswell as theopportunity to scale up
the pulse energy delivered by fiber lasers6.

In recent years, a thermodynamic interpretation of beam propa-
gation in multimode optical fibers and systems has been developed7,8.
To illustrate this concept using the example of a graded-index (GRIN)
MM fiber, photons are considered as indistinguishable energy packets.
The equilibrium distribution of these energy packets among degen-
eratemode groups, characterized by the samepropagation constant βj
(m−1), can be estimated using statistical mechanics. This equilibrium
distribution corresponds to the points of extrema of the entropy S
associated with the mode population. This thermodynamic perspec-
tive offers a significant simplification for the analysis of complex
multimode systems and fibers, providing a powerful tool for designing
multimode fiber transmission systems affected by disorder and non-
linear modal interactions.

Conversely, it is widely recognized that when optical pulses pro-
pagate within a MM fiber in the linear regime, they are subject to the

influence of random-mode coupling (RMC)9–11, which arises from
imperfections in the fiber, such as micro and macro-bending. In con-
sequence, pulses carried by modes belonging to degenerate groups,
having either identical or very similar propagation constants, become
temporally separated due to inter-modal dispersion. This separation
leads to the broadening of spatiotemporal pulses carried by each
group, primarily due to intra-modal or chromatic dispersion
(see Fig. 1a).

In the linear regime, the effects of RMC can be effectively
described by power-flow equations9,12,13, which predict the diffusion of
energy from intermediate mode groups into both lower-order and
higher-order modes. These models, when applied to several hundred
meters of fiber propagation, result in a steady-state mode power dis-
tribution characterized by a gradual decrease in power as the mode
order increases.

At higher pulse energies, within MM fibers exhibiting anomalous
chromatic dispersion, a distinctive optical phenomenon emerges: the
formation of optical solitons with a specific pulse width denoted as
TFWHM. The width of these solitons, TFWHM, depends on the pulse’s
wavelength, as described in ref. 14. The soliton energy, denoted as Es,
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can be calculated using the equation:

Es =
1:76λjβ2ðλÞjw2

e

n2TFWHM
: ð1Þ

Here, λ represents the pulse wavelength, β2(λ) (s
2/m) the chro-

matic dispersion, n2 (m2/W) the Kerr nonlinear coefficient, and we the
modal effective waist. At the telecom standard of λ = 1550 nm, TFWHM

corresponds to a pulse width of 120 fs. As the pulse energy increases,
pulses associated with different modal groups undergo a reduction in
widthwhile their peak power intensifies. This phenomenon occurs due
to the influence of Kerr and Raman nonlinearities, which gradually
transfer energy from each group to the fundamental mode15. This
energy redistribution process involves a gradual condensation of
energy into the fundamental mode. As pulses become temporally
separated, the mode coupling process is sustained by the interplay of
random-mode coupling (RMC) and inter-modal four-wave mixing (IM-
FWM). After traveling over hundreds of meters within the fiber, what
remains is a succession of fundamental soliton bullets. These solitons
experience Raman soliton self-frequency shifting16,17, as depicted in
Fig. 1c. This intricate process can be viewed as a fission mechanism
mediated by modal dispersion, and it will be further elucidated in
this work.

In the intermediate energy range, typically spanning from 20% to
80%of the soliton energy Es, a fascinating optical phenomenonoccurs:
the emergence of quasi-solitons. These quasi-solitons are character-
ized by individual pulses carried by distinct modal groups within the
fiber. Initially, these pulses overlap, and their pulse widths approach
the value observed in solitons. The primary mode of power exchange
in this regime is governed by IM-FWM, and the Raman self-frequency
shift does not significantly alter the pulse wavelength. Consequently,
we can still consider the optical wave propagation as a conservative
system. In this regime, the modes exhibit a characteristic distribution,
characterized by the local condensation of energy among the lower-
order mode groups (see Fig. 1b). This observed local condensation
phenomenon within MM fibers bears similarities to phenomena
observed in disordered lasers18 and Bose-Einstein condensation19. It
showcases the intricate and rich behavior that can arise in optical
systems under specific conditions and energy regimes. The quasi-
solitons addressed in this work should not be confused with the qua-
sisoliton pulses emitting Cherenkov radiation in single-mode fiber20.

In the upcoming sections, we will delve into the demonstration of
a weighted Bose-Einstein (BE) equation, which corresponds to the
extrema of the entropy within an optical multimode system. Our
exploration will encompass experiments conducted over extended
lengths of graded-index (GRIN) multimode fibers, spanning from the
linear regime to the soliton regime. We will scrutinize the modal
content emerging from the fiber using the weighted BE equation to
determine the attainment of either local or global condensation states.

We will conduct numerical power-flow simulations within the
linear regime, followed by an analysis using the weighted BE equation.
Furthermore, wewill employ numerical simulations involving coupled-
mode generalized nonlinear Schröedinger equations (GNLSE). These

simulations will incorporate nonlinearity and an original model for
RMC, enabling a comparison with experimental data.

The weighted BE equation will prove to be highly accurate in
describing soliton condensation in the anomalous dispersion regime
and self-cleaned thermalized states within the normal dispersion
region. It will also exhibit good accuracy in depicting steady-state
distributions within the linear regime. In Note A of the supplementary
material, we will perform a comparison between the weighted BE
equation and the well-known Rayleigh-Jeans law (RJ)7,8, particularly
when analyzing thermalized states. The former, although more com-
plex to fit, will demonstrate superior accuracy. Furthermore, we will
discover newsteady states in thequasi-soliton regime. These stateswill
be characterized by local condensates, akin to a glassy state21,22. In this
context, a glassy state refers to a condition where the energy becomes
localized within modal groups distinct from the ground state. This
condition will manifest itself as an intermediate state between the low-
energy disordered state and the high-energy, highly condensed
soliton state.

Results
Weighted Bose-Einstein Law
We commence our analysis by considering an optical multimode sys-
tem comprising Q groups of degenerate modes, each distributed
across gj/2 modes and encompassing two polarizations (gj represents
the group degeneracy, with j = 1, 2, . . ,Q). In the specific case of a GRIN
multimode fiber, the degeneracy values are gj = 2, 4, 6, . . . , 2Q. Within
this context, we denote by nj the population of energy packets asso-
ciated with the j-th group, accounting for both polarizations. In prac-
tical applications, the number of indistinguishable energy packets
involve values of nj ranging from approximately 105 to 109, corre-
sponding to the number of photons in a fiber modal group.

To derive the optimal modal power fractions within the system,
we employ an entropy extremization approach, incorporating the
appropriate Lagrange multipliers. This leads us to the weighted Bose-
Einstein distribution, which characterizes the distribution of power
among different modes (for detailed methodology, see Section The-
ory).

jf ij2 =
2ðgi � 1Þ

giγ
1

exp � μ0 + ϵi
T

� �
� 1

: ð2Þ

In Equation (2), thequantity ∣fi∣2 represents themeanmodalpower
fraction across twopolarizations. It is calculated as 2nj/(γn0gi), where γ
corresponds to the total number of energy packets N as γ =N/n0, and
n0 serves as a reference number of packets, often taken as the value at
the lowest tested power. The index i refers to the mode within the j-th
group. For a GRIN fiber, there are 2M =Q(Q + 1) modes and polariza-
tions, and i takes on values such as i = 1 for j = 1, i = 2, 3 for j = 2, i = 4, 5, 6
for j = 3, and so forth. The values of gi are given by the sequence
[2, 4, 4, 6, 6, 6, . . . , 2Q], and ϵi = βi − βj=Q represents the differential
modal eigenvalues, with βi (m

−1) being the propagation constants cal-
culated according to Equation 16 in ref. 13.

Equation (2) is derived under the reasonable condition that n0 is
significantly larger than expð� μ0 + ϵi

T Þ � 1. This equation can effectively

Fig. 1 | Optical modal bullets that emerge following extended propagation
through graded-index (GRIN) fiber. a Linear, b nonlinear, and c soliton regimes.
Blue (yellow) bullets correspond to the propagated lower-order (higher-order)

modes. The three thermodynamic states (gas, glassy, solid) are creatively illu-
strated in orange color.
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replicate the modal power distribution both in the linear regime,
where RMC primarily governs power exchange among modes, and in
the nonlinear regime, where inter-modal four-wave mixing (IM-FWM)
takes precedence.

The chemical potential μ0 (m−1), temperature T (m−1), and the
normalized power γ constitute the three degrees of freedom for fitting
Equation (2) to experimental data. The only constraint imposed on γ is
that it scales with the input power while also adhering to the con-
servation law

PM
i = 1 jf ij2 = 1.

The accuracy of the thermodynamic approach represented by
Equation (2) can be checked by considering the state equation pre-
sented in Section Theory, specifically Equation (19). This equation can
be reformulated as follows:

SE =
XQ
j = 1

βj jjf j j2 +μ0 � βj =Q + ð2M �QÞT
γ
=0; ð3Þ

The calculation of an experimental error related to the state
equation can be expressed as:

ϵSE =
SEPQ

j = 1 βj jjf j j2 � μ0 � βj =Q + ð2M � QÞ Tγ
� � : ð4Þ

In Equation (3), it’s essential to note that the first term in the sum,
which represents the normalized energy, must remain constant. The
parameters μ0 and T/γmust be scaled tomaintain the remaining part of
the equation constant. It’s notmandatory for the parametersT/γ andμ0

to remain individually constant.
In cases involving short fiber spans and low power levels, where

both RMC and IM-FWM are negligible, we can assume that the modal
distributions at the input and output of the fiber are equal, i.e.,
jf ðinÞj j2 = jf ðoutÞj j2. Given that the input modal distribution remains
unchanged at high power, we can use Equation (3), along with jf ðoutÞj j2
measured at low power, to predict the thermodynamic parameters of
the system at high power when thermalization or condensation is
achieved23.

However, in the case of long spans of fiber at low power, RMC
introduces a discrepancy such that jf ðinÞj j2 ≠ jf ðoutÞj j2. In such scenarios,
thermodynamic parameters are determined by fitting Equation (2) to
the experimental distribution at a specific power level. While Equa-
tion (3) can be used to validate the thermodynamic consistency of
the fit, it is not employed to predict parameters from low-power
experiments.

The validity of Equation (2) is also contingent on the constraints
of negligible variations in power P and internal energyU, as outlined in
the Method Section Theory. Linear losses are generally negligible at
the telecom wavelength for fiber lengths up to a few kilometers.
Raman nonlinearity causes a frequency shift in the pulse spectrum,
leading to variations in packet energy. In soliton propagation, Raman
self-frequency shift (RSFS) induces a red-shift in the spectrum without
distortion; the propagation constant of the soliton changes accord-
ingly, and so does the Hamiltonian. Assuming a 5% tolerance on the
internal energy change, an 80 nm red-shift at a 1550 nm wavelength
can be tolerated in the experiments.

Chromatic dispersion significantly broadens pulses in the linear
regime, reducing thepulsepeak power P. However, in the quasi-soliton
and soliton regimes, thepropagatingpulse train retains its pulsewidth,
and negligible power changes can be assumed over substantial fiber
lengths.

RMC also introduces negligible energy variations. For instance,
consider propagation at 1550 nm in a GRIN fiber, where RMC leads to a
complete power transfer from group 10 to the fundamental mode.
This represents a worst-case scenario, and even in such instances, the
fractional energy change is approximately (β1 − β10)/β1 = 0.0078. In
practical scenarios, strong RMC results in internal energy variations

that are negligible and comparable to the linear losses over a few
meters of fiber. Consequently, we can assume that the presence of
strong RMC does not invalidate the thermodynamic approach.

Experimental modal distributions that are well-fitted by
Equation (2) correspond to the extrema of the entropy S, indi-
cating the achievement of a steady state, which may be char-
acterized by either local or global condensation. Power
fluctuations related to local condensation do not invalidate the
equation, as it is used to fit the power distribution of the modal
groups as a whole. In the following section, Equation (2) will be
applied for this purpose.

Experiments
To determine the mode power distribution at the output of GRIN MM
fibers, we employed the mode-decomposition method introduced in
ref. 24. Our experimental setup is elaborated upon in Section Experi-
mental setup. We systematically varied the input pulse energy Ein,
allowing us to investigate the full spatio-temporal propagation regime,
ranging from linear to nonlinear cases. We utilized 250 fs full-width-at-
half-maximum (FWHM)pulses at 1400 nmwavelength, generatedwith
a repetition rate of 100 kHz. The input beam was circularly polarized
and coupled with a waist of 13 μm, introducing a 10 μm lateral shift
relative to the fiber axis. This configuration was designed to enhance
the population of higher-order modes (HOMs) while minimizing
power exchange between polarizations. Our experiments employed
commercial OM4 GRIN fibers (Thorlabs GIF50E) with lengths of 1 m,
830 m, and 5 km, respectively, spooled on a support structure with a
radius of curvature greater than 8 cm.

Figure 2 presents the normalized instantaneous output power
(left) and the near-field (right) after 830m of GRIN fiber. The observed
time delay among pulses carried by different groups of degenerate
modes is a consequence of modal dispersion. It’s noteworthy that the
sub-pulses exhibit equal temporal spacing, owing to the uniform spa-
cing of mode propagation constants in GRIN fibers. The pulse carried
by theHOMsexperiences the greatest delay, causing it to appear in the
trailing portion of the output waveform.

Employing a sufficiently long fiber to temporally separate differ-
entmodegroups allows us todirectlymeasure the outputmodepower
distribution. This distribution arises from the combined effects of
linear andnonlinearmode coupling. The nonlinear interactions among
different modal groups are primarily concentrated in the initial seg-
ment of the fiber, where pulses temporally overlap. Consequently, we
can assume negligible linear losses over the interaction length,
enabling a valid thermodynamic interpretationof the results.While the
linear interaction is indeed significant over the entire length of fiber
propagation, asmentioned in SectionWeighted Bose-Einstein Law, it’s
important to emphasize that it does not undermine the validity of the
thermodynamic approach, in the caseswhere the peak power of pulses
is not affected. The thermodynamic model remains applicable and
provides valuable insights even in the presence of substantial linear
interactions.

In the linear regime, we estimate that chromatic dispersion (CD)
causes individual pulseswithin each group to broaden up to a duration
of 110 ps after traveling 830 m, considering the nominal chromatic
dispersion of− 12 ps2/km. Modal dispersion introduces a time delay of
206 ps between adjacent group pulses.

Our experiments involve varying the optical pulse energy from
the linear regime (0.1 nJ) to the soliton regime (4.5 nJ). The quasi-
soliton regime is achieved within the energy range of 1.0 to 4.1 nJ,
characterized by the presence of trains of short pulses. The Raman
soliton regime is reached at 4.5 nJ, with no observed Raman delay or
spectral shift up to 4.1 nJ. Therefore, we assume a conservative system
behavior up to 4.1 nJ.

In the linear regime (as shown in Fig. 2a), the distribution of
energy among the mode groups at the output is primarily determined
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by the linear disorder. For an input energy of 0.81 nJ, the effective
length of the fiber, considering both weak linear losses and the rapid
decrease in pulse peak power due to chromatic dispersion-induced
temporal broadening, is as short as Leff = 12 m. This implies that, for
most of the distance, power exchange among pulses carried in dif-
ferent modes is predominantly influenced by RMC.

In Figure 2a, c, e, we sample the photodiode traces at points
corresponding to the relative group delay of each modal group (indi-
cated by the orange circles). This allows us to perform a mode power
decomposition, as described in ref. 24. In this approach, considering
the firstQ = 10modal groups, which corresponds toM =Q(Q + 1)/2 = 55
modes per polarization, we directly measure the mode group powers
Pj. Subsequently, we calculate the mean modal power fraction carried
by each mode within the group as ∣fi∣2 = 2Pj/(giPtot), assuming power
equipartition within each group (for detailed methodology, see
Methods Section Power-flow numerical model).

In the linear propagation regime (i.e., for Ein ≤0.81 nJ), Fig. 2a
illustrates that most of the pulse energy is primarily carried by the first
6mode groups, particularly concentrating in the second group, under
the experimental coupling conditions.

Conversely, as depicted in Fig. 2c, for Ein= 2.45 nJ, lower-order
modes start attracting power from the HOMs due to the increasing
influence of IM-FWM. This energy level corresponds to a strongly
nonlinear quasi-soliton regime.

At 4.10 nJ pulse energy (Fig. 2e), the fundamental mode has cap-
tured half of the total power, and the propagation is approaching a
multimode soliton. However, the soliton has not fully formed and lacks
the characteristic Raman delay of a complete soliton regime14. For this
reason, we can disregard the presence of Raman scattering and other
dissipative effects up to approximately this level of input pulse energy.

In our experiments, we also observed that for Ein ≥ 4.6 nJ (not
shown), a soliton forms in the fundamental mode. With higher values
of Ein, the soliton becomes further delayed in time and separates from
the remaining pulse carried by the HOMs, owing to the Raman soliton
self-frequency shift16,17,25,26.

As depicted in Fig. 2b, d, the output mode power distribution
yields a relatively broad and speckled output beam intensity profile at
both low and intermediate values of Ein. However, as we approach the
soliton regime, where most of the energy is attracted by the funda-
mental mode, Fig. 2f shows that the beam brightness significantly
increases at its center. This results in the formation of a bell-shaped
beam with a waist close to that of the fundamental mode, surrounded
by a background of HOMs. Such a beam profile is a characteristic
signature of beam self-cleaning, where the fundamental mode dom-
inates and effectively eliminates the influence of other modes, leading
to a cleaner and more focused output beam27.

Figure 3 provides a log-scale representation of the average output
power fractions ∣fi∣2 as a function of their corresponding mode

Fig. 2 | Measured photodiode traces and near-fields. (Left) normalized traces sampled at a 206 ps interval to yield group power fractions. The corresponding near-field
intensities (right) are also shown after 830 m of GRIN fiber, considering input pulse energies of: a, b) 0.81 nJ, c, d) 2.45 nJ, e, f) 4.10 nJ.
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eigenvalues ϵi, using the accurate decomposition method. The input
pulse energy in Fig. 3 spans from Ein =0.2 nJ, where mode mixing is
primarily influenced by RMC, to Ein = 4.1 nJ, where IM-FWM becomes
the dominant mechanism for transferring energy among non-
degeneratemodes. This comprehensive range of input energies allows
us toobserve the evolutionof themodepowerdistribution as different
nonlinear effects come into play27.

The output modal distributions are fitted using Eq. (2), ensuring
that the constraint for the normalized power γ is respected. In parti-
cular, γ,T, andμ0 are initially determined from thefit at an intermediate
pulse energy. For other energy values, γ scales with the pulse energy
Ein, while T and μ0 are determined from the fits.

At low pulse energy (Fig. 3a), the weighted BE distribution
approximates a straight line, which is in good agreement with pre-
dictions obtained by numerically solving the power-flow equations9,12.
This agreement highlights the validity of the Bose-Einstein law in
describing the mode of power distribution in the linear regime (see
Sec. Linear disorder).

For a pulse energy of 0.81 nJ (Fig. 3b), the propagation is initially
nonlinear and later becomes dominated by RMC. The weighted Bose-
Einstein distribution properly fits the experimental data up to the 9th
group order, with μ0 = � 58:2 mm−1, T = 8.71 mm−1, and γ = 3.60. In the
figure, it can be observed that group 2 has a larger energy fraction
compared to the fitting equation. It will be shown later that at this
power level, there is a local condensation of energy into lower groups.

On the other hand, Fig. 3c, d show that as soon as Ein ≥ 2.45 nJ, the
population of the fundamental mode increases, and it preferentially
acquires power from HOMs as a consequence of IM-FWM. In both
cases, theweightedBE distributionfits the experimental data up to the
soliton regime, with μ0 = � 53:1ð�52:2Þmm−1, T = 8.71(10.14) mm−1, and
γ = 10.8(18.0) for Ein = 2.45(4.10) nJ, respectively. The BE distribution
represents a new equilibrium state induced by strong nonlinearity,
which accumulates over the entire fiber length.

It’sworth noting that for Ein = 4.1 nJ, ðμ0 + ϵ1Þ=T ’ �0:13, indicating
that the RJ approximation to the BE law (i.e., jf ij2 / �T=ðμ0 + ϵiÞ) is
appropriate around the fundamental mode with i = 1.

Figure 3 in Note B of the supplementary material overlaps the
measured power fractions in linear scale, for a direct comparison at
different energy levels.

Table 1 presents the values of the optical temperature T, differ-
ential potential μ0, factor γ, and state equation error ϵSE for the
experiment depicted in Fig. 3. As the input energy Ein increases, the
temperature T rises from 7.11 mm−1 to 10.36mm−1. Correspondingly, μ0

decreases from −65.42 mm−1 to −52.08 mm−1. The factor γ scales pro-
portionally to the input energy, and the error in the state equation
decreases from 7.9% and 3.2% in the linear regime to 0.3% in the
nonlinear regime. These variations in the thermodynamic parameters
highlight the changing behavior of the multimode system as it transi-
tions from linear to nonlinear regimes. The r-squared figure of merit
for the fits increases with energy from 0.954 to 0.999, demonstrating
excellent accuracy for the weighted BE distribution when fitting ther-
malized states, and acceptable accuracy for the linear steady-states.
This indicates that the weighted BE provides a reliable description of
the mode power distribution over a wide range of input energy levels,
capturing both the thermalization process and the steady-state beha-
vior in multimode optical fibers.

Let us now provide additional information on how the relative
power fractions for groups of nondegenerate modes, or j ⋅ ∣fj∣2, evolve
with input energy. Figure 4a, b illustrate the behavior of these power
fractions as a function of group index j for different input energies.
This provides a clear visual representation of howenergy is distributed
among different mode groups as the input energy increases and the
system transitions from linear to nonlinear regimes.

In Fig. 4a (experimental data), it’s interesting to observe local
and global condensation phenomena as the input energy increases.
When passing from 0.16 nJ to 0.82 nJ input energy, the power of
group 2 increases, followed by an important decrease for 1.65 nJ
of input energy or higher values. At the intermediate energies of
0.82 nJ there is local condensation into group 2 at the expense of
HOMs. At higher energies (1.65 nJ and 3.29 nJ), local condensation
into group 4 is observed. Finally, as the system approaches the
soliton regime (4.61 nJ), the fundamental mode gains a larger share of

Fig. 3 | Average mode power fraction ∣fi∣2 (black circles) as a function of modal
eigenvalue ϵi for various input pulse energies Ein. a 0.16 nJ; b 0.82 nJ; c 2.45 nJ;
d 4.10 nJ. Error bars corresponding to an estimated 15% error are added. In each
plot, you can observe the corresponding fits obtained using the weighted BE

distribution, represented by the solid orange curve. These fits provide a good
match to the experimental data and demonstrate the applicability of the weighted
BE distribution in describing the mode power distribution for different input pulse
energies.
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the total output pulse energy, at the expenses of groups 2-4
and HOMs.

In Fig. 4b (numerical simulations), a similar trend is observed. At
1.0 nJ, there is local condensation in group 2. At 3.0 nJ, there is local
condensation in group 3. Finally, at 5.0 nJ, there is global condensation
in group 1.

These results provide valuable insights into how energy distribu-
tion among differentmode groups evolves inmultimode optical fibers
as the input energy and nonlinearity increase. They also demonstrate
the utility of the weighted BE distribution in describing these phe-
nomena. Additionally, the validation against independent experi-
mental data23 in the supplementary section further supports the
accuracy of the approach.

Simulations
Lineardisorder. In the linearpropagation regimeofmultimodeoptical
fibers, modal power exchange primarily originates from RMC. In
multimode optical fibers, after a certain propagation distance repre-
sented by zSSD, RMC alone can produce a steady-state output mode
power distribution (SSD). This SSD arises as a result of the power
exchange among different modes within the fiber due to RMC.
Importantly, once this steady-state output mode power distribution is
achieved, further propagation beyond zSSDdoes not significantly affect
the modal distribution.

Power-flow equations are a well-known model used to simulate
the linear coupling among modes in a GRIN optical fiber. These
equations describe the power exchange and propagation of optical
modes within the fiber, taking into account factors like modal dis-
persion, coupling between modes, and other linear effects. They are a
set of differential equations that helppredict how thepower carried by
different modes changes as the optical signal travels through the
fiber.12,9 (see Sec. Power-flow numerical model). The power-flow
equations involve a bi-directional flow of power among different
mode groups within the optical fiber. This flow of power can occur in
both directions, from group j to group j − 1 and from group j to group
j + 1, allowing for energy transfer between adjacentmode groups. Over
multiple integration steps, this process can lead to a cascading effect,
where power flows into non-adjacent mode groups as well.

One key aspect of these equations is that the mode coupling
coefficients, which govern the power transfer between different mode
groups, are not necessarily symmetrical in both directions. This
property applies among groups, and does not apply to the individual
modes into groups. As discussed in Methods Sec. Power-flow numer-
ical model, this lack of symmetry can result in a preferential transfer of
power from HOMs into lower-order modes within the optical fiber.

The numerical solution of the power-flow equations in Fig. 5
provides a visual representation of how power propagates among the
first 10 mode groups in a multimode optical fiber. This simulation
considers a specific scenario with the same coupling conditions of the
experiment in Fig. 2, which involves the following parameters: wave-
length: 1400 nm; fiber length: 830 m of GRIN fiber; linear loss:
2.6 dB/km; coupling coefficient:D = 0.01m−1 for a glass GRIN fiber with
bending28,29; we also included weak modal losses: A = 1 × 10−4 m−1. The
simulation shows how power is transferred between these mode
groups as they propagate through the fiber.

The simulation and the experiment of Fig. 5 provide valuable
insights into the power distribution and mode coupling dynamics in
themultimode optical fiber. Figure 5a is a simulation showing how the
powerofdifferentmodegroups evolves as theypropagate through the
optical fiber. The net flow of power is in the direction of lower-order
mode groups, indicating that power is transferred from higher-order
modes to lower-order modes as they travel through the fiber. This is a
characteristic feature of RMC in multimode fibers, when HOMs are
stimulated at the input end. Figure 5b compares the simulation with
the experiment of Fig. 3a at 0.16 nJ input energy; it illustrates how the
mean modal power fraction ∣fi∣2 changes as a function of the mode
eigenvalue. As power flows from higher-order modes to lower-order
modes, the mean modal power fractions increase for the lower-order
modes, indicating that they accumulate more power during propaga-
tion. Figure 5b also reports the simulationwith nomodal losses (A = 0),

Table 1 | Thermodynamic parameters obtained by fitting the
data from Fig. 3 using theweighted Bose-Einstein distribution

Ein [nJ] T [mm−1] μ0 [mm−1] γ ϵSE R2

0.16 7.11 −65.42 0.72 0.0793 0.954

0.41 7.76 −60.92 1.80 0.0318 0.951

0.82 8.71 − 58.19 3.60 0.0177 0.949

1.23 9.32 − 56.52 5.40 0.0122 0.962

1.64 9.05 − 54.74 7.20 0.0085 0.984

2.06 9.53 − 54.17 9.00 0.0069 0.987

2.45 8.71 − 53.10 10.80 0.0058 0.990

3.29 9.75 − 52.81 14.40 0.0041 0.991

4.11 10.14 − 52.29 18.00 0.0035 0.998

4.61 10.36 − 52.08 20.16 0.0035 0.999

The errors on the state equation (ϵSE) and the figure of merit (R2) of the fits for the data are also
reported. These values indicate the accuracy of the fits using the weighted BE distribution in
describing the experimental data. As the input energy increases and the system transitions to a
nonlinear regime, both the error on the state equation and the figure ofmerit of the fits improve,
indicating a closer agreement between the model and the experimental results.

Fig. 4 | Normalized power of the groups of modes. a Experimental group power
fraction j ⋅ ∣fj∣2 plotted against the group index j for input pulse energies ranging
between 0.16 nJ and 4.61 nJ. b Simulated simulated group power fraction under
similar conditions to the experiments. One notable observation is that local power

condensation is observed in groups 2–4 at intermediate energy levels. This phe-
nomenon suggests that energy condensation occurs in these lower-order groups as
the pulse energy increases, which is a characteristic behavior of the multimode
system under these conditions.
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demonstrating that RMC alone is able to promote the lower-order
modes. Modal losses eventually enhance the effect, further depleting
the higher-order modes. The agreement between the power-flow
simulation and the experimental data, aswell as the successful fit using
the weighted BE law, indicates that this approach is adaptable and
suitable for describing the steady-statemode power distribution in the
linear regime, especially up to the 8thmodal group, provided the error
on the state equation ϵSE is below a few percent. This demonstrates the
effectiveness of the weighted BE law in capturing the dynamics of
mode coupling and power flow in multimode optical fibers, even in
complex and nonlinear regimes.

Linear disorder and nonlinearity. The use of coupled-mode GNLSEs,
which include wavelength-dependent linear losses and an original
model for RMC derived from power-flow equations12, as explained in
Method Sec. GNLSE numerical model, is a comprehensive approach to
capture the experimentally observed intricate dynamics of mode
coupling in multimode optical fibers30. This modeling strategy allows
us to consider both linear and nonlinear effects in a physically accurate
manner. These simulations can provide valuable insights into the
mode coupling dynamics, power distribution, and energy transfer
processes, helping to validate and extend the understanding of
our experimental results. Modal losses were neglected in the
simulations.

Our approach to save computation time by propagating a
reduced number ofmodes (28modes) over a shorter distance (100m)
of the GRIN fiber is a reasonable strategy for numerical simulations.
This approach allows us to focus on a subset of relevant modes while
still capturing key aspects of the mode coupling dynamics and

nonlinear effects. We considered an input 250 fs pulse at 1400 nm,
with the samecoupling conditions as in the experiments.Modes 1 to 28
correspond to the Laguerre-Gauss modes LG01, LG11e, LG11o, LG21e,
LG21o,…, and LG04, respectively.

Setting the RMC coupling coefficient and the RMC step appro-
priately is crucial for achieving accurate simulation results. Adjusting
these parameters to match the physical characteristics of our
specific fiber, permits us to obtain simulations that closely resemble
real-world behavior. Specifically, we set the RMC coupling coefficient
D = 0.003m−1, which introduces a significant amount of linear disorder
over the considered distance. The RMC stepwas equal to Lc = 6mm, to
ensure appropriate simulation accuracy.

It’s also noteworthy that we have considered typical parameters
for an OM4 GRIN fiber at 1400 nm, such as chromatic dispersion,
modal dispersion, Kerr and Raman nonlinearities, and linear losses.
Theseparameters are essential for accuratelymodeling thebehaviorof
optical pulses in MM fibers and ensuring that simulations provide
meaningful insights into the observed phenomena.

The simulated results in Fig. 6 provide a clear visual representa-
tion of how the temporal dynamics of the outputmodal power change
with varying input pulse energy in the linear, nonlinear, and soliton
regimes. Here are some key observations: Linear Regime (Ein =0.02 nJ,
Fig. 6a): Pulses in each mode group experience broadening (up to
13 ps)due to chromaticdispersion. Pulses in differentmodegroups are
separated in time by inter-modal dispersion. This regime shows typical
linear behavior with minimal nonlinear effects. Nonlinear Regime
(Ein = 3.0 nJ, Fig. 6b): Pulses within each mode group are significantly
compressed in time. This compression is primarily due to self-phase
modulation (SPM) and anomalous dispersion. Pulses do not exhibit

Fig. 5 | Power-flow simulation in the linear regime. a Power of the mode groups
vs. distance, andb corresponding input andoutputmeanmodal power fractions vs.
the modal eigenvalues, compared to the experiment; simulation with no modal
losses is also included (Sim. no loss). The good agreement between the simulated

and experimental data in terms of the mean modal power fractions further vali-
dates the use of the weighted BE law in describing the steady-state mode power
distribution in the linear regime.

Fig. 6 | Coupled-modeGNLSE simulations.Outputmodal power for Ein equal to a0.02nJ,b 3.0 nJ and c 5.0 nJ, respectively, with the same input coupling conditions as in
the experiment.
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Raman delay, indicating that they haven’t reached a full soliton regime
yet. Power transfer occurs, with lower-order modes gaining energy
through IM-FWM. Soliton Regime (Ein = 5.0 nJ, Fig. 6c): Ultrashort
Raman delayed soliton pulses (170 fs duration) are formed. A sig-
nificant portion (nearly 90%) of the power is concentrated in the fun-
damental mode. This regime represents a state of highly condensed,
stable soliton-like pulses.

The observation of a new fission mechanism in Fig. 6c is quite
interesting. Here’s a breakdown of thismechanism:Modal Dispersion
Separation: As a consequence of modal dispersion, pulses within
different mode groups are separated in time. This separation is due
to the differences in group velocities of these modes. RMC-Induced
Repopulation: The action of RMC has the effect of redistributing
power among modes. It appears that RMC is causing some energy to
be transferred to lower-order modes even in pulses that originally
corresponded to high-order mode groups. This redistribution is
indicated by the increased power in the lower-order modes. IM-
FWM: after RMC has repopulated the fundamental and lower-order
modes in all propagating pulses, the IM-FWM, a nonlinear process,
boosts transfer of power from the HOMs to the fundamental mode
into the individual pulses. Formation of Soliton-Like Pulses: After
100 m of propagation in the simulation, the combined effects of
RMC, IM-FWM, and modal dispersion result in the formation of a
train of fundamental solitons. These solitons are characterized by
their stability and well-defined temporal characteristics. This
mechanism highlights the complex interplay between linear and
nonlinear effects in multimode fibers. The interaction of modal dis-
persion, RMC, and IM-FWM can lead to unexpected behavior, such as
the formation of soliton-like pulses and the repopulation of lower-
order modes within high-order mode-group pulses. Understanding
these mechanisms is crucial for designing and optimizing optical
fiber systems for various applications.

Results from the numerical simulations of Fig. 6 provide themode
grouppower fractiondistribution j ⋅ ∣fj∣2 of Fig. 4b, which gives valuable
insights into different regimes of multimode fiber propagation:

Linear Regime (Ein= 0.02 nJ or 1.0 nJ): In the linear propagation
regime, the group power decreases following a convex curve (in log
scale). This behavior is indicative of the modemixing effects primarily
driven by RMC. The weighted BE law can accurately fit the output
modal distributions in this regime, suggesting that a steady state is
reached.

Intermediate Energy (Ein = 2.0 nJ to 3.0 nJ): At intermediate energy
levels, there is a departure from the expected linear decreasing shape
of the group power curve. Instead, local energy condensations are
observed into groups 2 and 3. This phenomenon could be a result of a
complex interplay between linear and nonlinear effects, including
RMC and IM-FWM.

Soliton Regime (Ein = 5.0 nJ): When Raman solitons are formed,
the group power decreases following a concave curve (in log scale).
This curve shape is associated with nonlinear irreversible energy
condensation into the fundamental mode, indicating thermalization.
The weighted BE law can fit the output modal distributions in this
regime, suggesting the achievement of a thermalized state.

These observations highlight the dynamic nature of mode power
distribution in multimode fibers and how it evolves with input pulse
energy. The ability of the weighted BE distribution to accurately fit the
simulated output modal distributions in both linear and soliton
regimes further underscores its applicability in describing steady
states and thermalization in multimode fiber systems. For further
details,we refer toNoteCof the supplementarymaterial (Fig. 4),which
also reports the input modal distribution used for the simulations; by
comparing the input and output distribution at low pulse energy,
simulations confirm that lower-ordermodes are promoted by theRMC
even in the absence of modal losses.

Discussion
Our study provides a comprehensive understanding of the
observed mode power distribution and condensation at the out-
put of long lenghts of GRIN MM fibers, and their correspondence
with the weighted BE distribution. Here’s a summary of the key
points:

Steady states in linear, quasi-soliton, and soliton regimes
The mean modal power fractions ∣fi∣2 show the achievement of steady
states in the linear, quasi-soliton, and soliton regimes. Theweighted BE
law accurately fits the distributions reached after long distances,
confirming the existence of steady states even at low power. This
highlights the reliability of the weighted BE law in describing steady
states and thermalization in multimode fiber systems.

Power redistribution mechanisms
RMC scattering plays a significant role in redistributing power among
modes. In the linear regime, RMC contributes to the formation of a BE
distribution. However, in the quasi-soliton and soliton regimes, the
Kerr nonlinearity and anomalous chromatic dispersion considerably
shorten pulses; RMC diffuses power to the lower-order modes, a
process which is boosted by the IM-FWM.

Local energy attraction
Between 0.4 and 2.0 nJ input pulse energy, there is a local attraction
of energy to lower-order groups (groups 2 and 3) at the expense of
HOMs. Globally, thanks to the interplay of RMC and IM-FWM,
energy clusters are formed in the lower-order groups in the quasi-
soliton regime (Figs. 1b, 4 and 6b); a train of quasi-soliton pulses is
produced, each composed by the modes of one group j, plus a
fraction of modes belonging to the lower adjacent groups and of
the fundamental mode; this results in the promotion of the first 3-4
modal groups at theoutput, andpower clustering. In the framework
of such interplay, RMC invalidates the achievement of a global
condensation state as described by a RJ law31; however, the forma-
tion of steady states associated to a local condensation is still
possible, a process which is characterized by a weighted BE modal
distribution.

Global modal condensation
In the soliton regime (Figs. 1c and 6c), global modal condensation to
the ground state is observed in all splitted pulses; nearly 90% of the
power is attracted to the fundamental mode, as a consequence of the
interplay of RMC and IM-FWM. Pulse width reduces to 170 fs, which is
typical of propagated walk-off solitons14. A train of fundamental soli-
tons is eventually produced by a peculiar fissionmechanismmediated
by modal dispersion; then solitons are affected by Raman soliton self-
frequency shift17.

Thermodynamic interpretation
The observed distributions can be interpreted in thermodynamic
terms, where the linear regime corresponds to a gas-like state of
energy packets. In the intermediate nonlinear regime, the system
evolves into a locally condensed or “glassy" state. Finally, in the soliton
regime, a globally condensed “solid" state is achieved32.

Our detailed explanations provide a clear perspective on the
complex interplay of physical mechanisms, and their impact on mode
power distribution in multimode fibers at different power levels.

Methods
Theory
In the context of optical multimode systems, especially when dealing
with a GRIN fiber, we often encounter a scenario where the modes are
organized into Q different groups. These groups are characterized by
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their degeneracy, denoted as gj/2, with j = 1, 2, . . ,Q, and typically
involve two polarizations. In the special case of a GRIN fiber, it is
gj = 2, 4, 6, . . , 2Q; the number of modes and polarizations
is 2M =Q(Q + 1).

To better understand the distribution of energy packets within
this system, a procedure outlined in ref. 7, can be followed. The
population nj of energy packets into the j-th group over 2 polariza-
tions, leads to a total number of combinations across the different
groups and polarizations

W =
YQ
j = 1

ðnj + gj � 1Þ!
ðgj � 1Þ!nj !

: ð5Þ

The multimode system entropy is defined as S = ln(W); by apply-
ing the Stirling approximation, valid for nj + gj − 1 > > 1 we obtain

S=
XQ
j = 1

ðnj + gj � 1Þ lnðnj + gj � 1Þ � 1
h i

� ðgj � 1Þ lnðgj � 1Þ � 1
h i

� nj lnðnjÞ � 1
h i

;

ð6Þ

Global thermalization of the multimode optical system can be
achieved by optimizing Eq. (6). This optimization process involves the
use of Lagrange multipliers to account for the preservation of certain
system properties. In this case, we are concerned with two conserved
quantities: the total number of particles N =∑jnj and the total nor-
malized energy E =∑jβjnj, being βj the modal propagation constants
supposed equal for the degenerate modes.

The optimization process essentially aims to reach a state of
thermal equilibrium for the multimode optical system, where the
energy distribution among the differentmodes and groups is in a state
of entropy extremum while satisfying the conservation constraints
imposed by N and E. This leads to

∂
∂nl

S+
XQ
j = 1

a0nj +b
0βjnj

� �" #
=0, ð7Þ

which provides, with no approximations

ln 1 +
gj � 1

nj

 !
+a0 +b0βj =0; ð8Þ

Eq. (8) is valid for

nj

gj � 1
=

1
exp½�ða0 +b0βjÞ� � 1

: ð9Þ

We can choose a0 =μ=ðTn0Þ and b0 = 1=ðTn0Þ, with n0 a reference
number of energy packets (for example the value at the lowest tested
power) and N = γn0. T (1/m) is an optical temperature and μ (1/m) is a
chemical potential. We these choices, Eq. (9) can be written as

nj =
ðgj � 1Þ

exp � μ+ βj

Tn0

� �
� 1

: ð10Þ

An alternative development of Eq. (9) consists of replacing a0 and
b0 with non-factorizable constants a and b defined as

�ða+bβjÞ= ln
1
n0

exp �μ+ βj

T

� �
� 1

n0
+ 1

� �
’ 1

n0
exp �μ+ βj

T

� �
� 1

� �
:

ð11Þ

The approximation in Eq. (11) is valid for ∣a + bβj∣ < < 1, which is less
than 10−5 in the experiments. By replacing into Eq. (9) we obtain

nj =
n0ðgj � 1Þ

exp � μ+ βj

T

� �
� 1

: ð12Þ

The particular choice of a, b, a0 and b0 conserves the system’s
energy and power; in fact it results, for a0, b0

XQ
j = 1

a0nj = �
XQ
j = 1

μðgj � 1Þ
μ+βj

, ð13Þ

XQ
j = 1

b0βjnj = �
XQ
j = 1

βjðgj � 1Þ
μ+βj

; ð14Þ

and

XQ
j = 1

a0nj +b
0βjnj = �

XQ
j = 1

ðgj � 1Þ=Q� 2M: ð15Þ

For a, b it also results

XQ
j = 1

ða+bβjÞnj = �
XQ
j = 1

ðgj � 1Þ=Q� 2M, ð16Þ

hence, the choices of a, b or a0, b0 are equivalent in terms of power and
energy conservation.

In transitioning from Equation (10) to Equation (12) by substitut-
ing a0 and b0 with a and b, the optimization of entropy involves the use
of non-factorizable multipliers that are directly associated with the
eigenvalues of the modal groups. This modification means that the
extrema of entropy now have local significance because both μ and T
are intimately connected to the specific set of βj and cannot be treated
as separate variables. The conservation of the total power and energy
of the system is maintained, much like in the global optimization
approach described in Equation (10).

The solution provided by Equation (12) is well-suited for fitting
experimentalmodal distributions as a whole, without being influenced
by the power fluctuations resulting from local condensates, corre-
sponding to local energy minima within individual modal groups.

Now, let’s consider the i-thmode within the j-th group. In the case
of a GRIN fiber,where there are 2M =Q(Q + 1)modes andpolarizations,
i ranges from 1 toM. Specifically, for j = 1, i = 1; for j = 2, i takes values 2
and 3; for j = 3, i ranges from 4 to 6, and so on. Additionally, the
degeneracy values gi are as follows: gi equals 2 for i = 1, 4 for i = 2 and
i = 3, 6 for i = 4, i = 5, i = 6, and so forth, up to 2Q.

The mean modal power fraction over two polarizations, denoted
as ∣fi∣2, is calculated as ∣fi∣2 = 2nj/(γn0gi), where γ =N/n0. It’s important to
note that γ needs to scale with the experimental power, meaning that
as you vary the experimental power, γ should also adjust accordingly.

Now, by introducing the differential eigenvalues ϵi = βi − βj=Q,
which are referenced to the higher mode, and μ0 =μ+βj =Q, Eq. (12)
yields the weighted Bose-Einstein (BE) modal distribution:

jf ij2 =
2ðgi � 1Þ

giγ
1

exp � μ0 + ϵi
T

� �
� 1

: ð17Þ

The constraints for γ are twofold: it should scale with the input
power, and it must satisfy the conservation law

PM
i= 1 jf ij2 = 1.

Let’s consider the optical powers corresponding to N and n0
energy packets, denoted as P and P0, respectively (for an optical pulse,
this is equivalent to peak power). Thus, we have γ =N/n0 = P/P0. The
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system’s internal energy canbe expressed asU = − ∑jβjnjP/N (in units of
W/m), and the power P can be written as P =∑jnjP/N (in units of W).

Starting from Equations (15) and (16), we can derive the following
relationships:

XQ
j = 1

ða+ bβjÞnj =Q� 2M =
μN
Tn0

+
1

Tn0
�UN

P

� �
, ð18Þ

which provides the state equation

U � μP = ð2M � QÞP0T : ð19Þ

The local extremization problem, which yields Eq. (12), does not
lead to the well-known Rayleigh-Jeans (RJ) distribution7,33 under rea-
sonable approximations. However, from the global extremization
solution, Eq. (9), along with the definitions of a0 and b0, we can obtain
the following relationship:

jf ij2 =
2ðgi � 1Þ
giγn0

1

exp � μ0 + ϵi
Tn0

� �
� 1

; ð20Þ

The presence of N = γn0 at the denominator of Eq. (20) makes the
equation suitable for fitting experimental data only for N < 10. There-
fore, it becomes unusable for larger values of N. This issue can be
resolved under the assumption that jμ0 + ϵij<<jTn0j, which leads
directly to the Rayleigh-Jeans (RJ) distribution:

jf ij2 = � 2ðgi � 1Þ
giγ

T
μ0 + ϵi

: ð21Þ

In terms of fractional power ∣ci∣2 = P∣fi∣2 in [W], by choosing
T 0 =P0T (W/m), Eq. (21) provides.

jcij2 = � 2ðgi � 1Þ
gi

T 0

μ0 + ϵi
: ð22Þ

The RJ distribution is a suitable choice for describing experiments
characterized by global condensation states, such as self-cleaning
experiments. On the other hand, the more general weighted BE dis-
tribution, as given in Eq. (17), is also appropriate for fitting experi-
mental data in cases where local condensed states are achieved,
identifying an accurate trend despite local power fluctuations.

Experimental setup
Optical pulses with a wavelength of 1400 nm and a pulse width of 250
fs are generated using an optical parametric amplifier (OPA) driven by
a femtosecond Yb laser operating at a repetition rate of 100 kHz. The
input beam is attenuated, linearly polarized, and passed through a
quarter-wave plate (λ/4) to generate a circular state of polarization (see
Fig. 5 in Note D of the supplementary material). This circularly polar-
ized Gaussian beam is then injected into variable lengths of OM4
GRINfiber, including spans of 1m,830m,and 5 km,with an initialwaist
(w0) of approximately 13 μm. The induced beam compression factor
(C =2zp=ðπβ0w

2
0Þ) is calculated as 0.305, based on the self-imaging

period (zp =0.55 mm), β0 = 2πn0/λ, and the core refractive index
(n0 = 1.46) of the GRIN fiber34,35. The effective beam waist for deter-
mining the nonlinear coefficient is we =

ffiffiffiffi
C

p
w0 = 7:27μ m35,36, which is

close to the fundamental mode waist. The use of a circular state of
polarization at the input minimizes power exchanges between polar-
izations. The input beam is laterally shifted with respect to the fiber
axis by 10 μm, in order to increase the proportion of higher-
order modes.

Linear losses were measured as α = 6.0 × 10−4 m−1. According to
Gloge theory37, bending losses remain negligible up to the first 10
mode groups (αj < = 8 × 10−10 dB/km for group j = 1, 2, . . , 10, and

α > > 30 dB/km for group j > = 11); in agreement with the theory, 10
modal groups couldbe observed at the output of both 830mand 5 km
fiber spans.

Modal dispersion is responsible for the time delay among the
different mode groups; the measured delay among groups is 206 ps
over 830 m, and 850 ps over 5 km. Hence, mode groups are time-
resolved at the output, and easily measurable after 830 m of GRIN
fiber. The time delay among groups was found to vary with distance as
Δtj = 1.02z0.79; RMC affecting the experiment is intermediate between
weak (where modal delay scales with z) and strong regime (where it
changes with

ffiffiffi
z

p
)10.

At the fiber output, the near-field is imaged on an InGaAs camera
(Hamamatsu C12741-03); the beam is also directed to a real-time
multiple octave spectrum analyzer with a spectral detection range of
1100–5000 nm (Fastlite Mozza). The output pulse instantaneous
power is detected by a fast photodiode (Alphalas UPD-35-IR2-D) and a
real-time oscilloscope (Teledyne Lecroy WavePro 804HD) with 30 ps
overall response time. An intensity autocorrelator (APEpulseCheck 50)
with femtosecond resolution is also used for the temporal character-
ization of the input pulses. Input and output power aremeasured by a
power meter with μW resolution.

Traditional 2D modal decomposition methods38 are not suitable
for the analysis of the output near-field after hundreds of meters of
pulse propagation, because they donot account for: (i) the phase chirp
which is induced by chromatic dispersion of pulses carried by the
different modes; (ii) the phase delay among modes due to the modal
dispersion; (iii) laser-induced phase noise; (iv) random phase differ-
ences among modes, introduced by the RMC. In this work, we use the
3D modal reconstruction method proposed in24; the mode group
power is measured from the instantaneous power detected by a fast
photodiode; samples are collected with constant delay of 206 ps,
starting from the first peak; a tolerance of ± 25 ps is allowed when
finding the peakaround the theoreticalmodal delay, to account for the
photodiode’s timing jitter. 3D fields are reconstructed with the help of
coupled-mode GNLSE simulations39, as described in ref. 24. Compar-
ison to the measured near-field is performed after 3D reconstruction.
Such method has provided an accurate estimate of the modal dis-
tributions reached in long spans of GRIN, both in linear and nonlinear
regime, up to the 10-th modal group (55 modes per polarization).

Power-flow numerical model
In the linear regime, RMC is properly modeled by the well-known
power-flow diffusive equations. If Pj is the power of the j-th mode
group, the power exchange among adjacent modal groups is descri-
bed by (see ref. 12)

Pjðz + LcÞ=
DLc
Δm2 �

DLc
2mΔm

� �
Pj�1ðzÞ+ 1� 2DLc

Δm2 � ðα0 +Am
2ÞLc

� �
PjðzÞ

+
DLc
Δm2 +

DLc
2mΔm

� �
Pj + 1ðzÞ,

ð23Þ

with m(j) = j − 1, D and α0 (1/m) the coupling coefficient and linear
losses, respectively,A themodal loss coefficient,Δm = 1 themodal step
and Lc the RMC integration step. In themodel of Eq. (23), the first term
describes the power coupled from modal group j − 1 to group j, the
third term the power from j + 1 to j. Power flows in both directions,
from group j down to group j − 1 and up to j + 1; after consecutive
integration steps of Pj, j = 1, . . ,Q, a cascading effect is produced,
causing the coupling of non-adjacent groups. However, since the
weight of the first term is different from the third, the net power flow
promotes the lower-order groups if higher-ordermodes are populated
at the input end. The distance zSSD over which a steady-state mode
power distribution is observed, can be generally calculated using the
power-flow model.
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Mode coupling into groups is neglected, because it is so fast that
statistical modal equipartition into groups can be assumed; it is then
meaningful to calculate the mean modal content into groups as
∣fi∣2 = 2Pj/(giPtot).

Modal power equipartition. As a consequence of Eq. (23), the power
flows asymmetrically between different modal groups of multimode
fibers. It is possible to demonstrate, using the alternative Gibb’s defi-
nition of entropy40, thatmodal power equipartition does not generally
apply among different modal groups. Given, at steady state,
pi = < ∣fi∣2 > the modal occupation probability, and λ1, λ2 two Lagrange
multipliers, extremization of the entropy, while power P and energy E
are conserved, reads

∂
∂pk

�
XM
i= 1

pi logpi + λ1
XM
i= 1

pi � 1

 !
+ λ2

XM
i= 1

piβi � E=P

 !" #
=0; ð24Þ

from Eq. (24), if only the power is conserved (λ2 = 0), we obtain

XM
i= 1

pi =
XM
i= 1

expðλ1 � 1Þ=M expðλ1 � 1Þ= 1, ð25Þ

which brings to the modal equipartition pi = 1/M. However, when
considering also the conservation of the energy, Eq. (24) provides

XM
i= 1

pi =
XM
i= 1

expðλ1 + λ2βi � 1Þ = 1, ð26Þ

whichprovides equipartition only for degeneratemodes, with same βi.

GNLSE numerical model
In the nonlinear (and linear) regime, numerical simulations use the
coupled GNLSEs39, modified to include modal and wavelength-
dependent losses, and linear random-mode coupling (RMC) for
mode p

∂Apðz, tÞ
∂z

= i βðpÞ
0 � β0

� �
Ap � βðpÞ

1 � β1

� � ∂Ap

∂t
+ i
X4
n =2

βðpÞ
n

n!
i
∂
∂t

� �n

Ap �
αpðλÞ
2

Ap

+ i
X
m

qmpAm + in2k0

X
l,m,n

Splmn 1� f R
	 


AlAmA
*
n + f RAl hR* AmA

*
n

� �h ih i
:

ð27Þ

In Eq. (27), βðpÞ
n is the n-th order dispersion term (modal and

chromatic) for mode p, αp(λ) the modal and wavelength-dependent
loss coefficient, n2 (m2/W) the nonlinear index coefficient multiplying
the Kerr and Raman terms, Splmn is an overlap integral among modes,
accounting for IM-FWM, and qmp is the linear RMC coupling coefficient,
from mode m to p, coming from the power-flow equations model12

qmp =

DLc
p�1 1� 1

2ðp�1Þ

� �h i1=2
from modes m with gm = gp � 1

DLc
p+ 1 1 + 1

2ðp�1Þ

� �h i1=2
from modes m with gm = gp + 1,

8><
>: ð28Þ

being gp the degeneracy of modes, p= 1, 2, . . ,M, D (m−1) the RMC
coupling coefficient, and Lc the RMCnumerical step. Degeneratemodes
are not accounted for in Eq. (28), because their coupling is so fast that
power equipartition can be assumed into groups. Themodel of Eq. (28)
holds for single-wavelength transmission; in wavelength-division multi-
plexed systems (WDM), a more complex model should be adopted.

In the main text, fiber parameters at λ= 1400 nm are:
β2 = − 11.8 ps2/km, β3 =0.102 ps3/km for the fundamental mode, α= 2.6
dB/km, negligible modal loss, n2 = 2.7 × 10−20 m2/W, index parabolic
factor g= 2.08, relative index difference Δ=0.010, core radius a=25μm,

D=0.003 (1/m), Lc=6 mm, fR=0.18, Splmn calculated from modal over-
lap integrals.

Data availability
The datasets generated during and/or analysed during the current
study are available from the corresponding author on request.

Code availability
Not applicable
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