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Humoral profiles of toddlers and young
children following SARS-CoV-2 mRNA
vaccination
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Naomi Dulit-Greenberg4, Tina Chen 1, Abigail S. Kane4,5, Zoe Swank6,7,
Jameson P. Davis 5, Melina Demokritou4, Anagha P. Chitnis5,
Alessio Fasano 4,5,6, Andrea G. Edlow 6,8,9, Nitya Jain4,5,6,
Bruce H. Horwitz 6,10, Ryan P. McNamara1, David R. Walt 6,7,
Douglas A. Lauffenburger 2, Boris Julg 1,6, Wayne G. Shreffler 4,6,
Galit Alter1,6,12 & Lael M. Yonker 4,5,6,12

Although young children generally experience mild symptoms following
infection with SARS-CoV-2, severe acute and long-term complications can
occur. SARS-CoV-2 mRNA vaccines elicit robust immunoglobulin profiles in
children ages 5 years and older, and in adults, corresponding with substantial
protection against hospitalizations and severe disease. Whether similar
immune responses and humoral protection can be observed in vaccinated
infants and young children, who have a developing and vulnerable immune
system, remains poorly understood. To study the impact ofmRNA vaccination
on the humoral immunity of infant, we use a system serology approach to
comprehensively profile antibody responses in a cohort of children ages 6
months to 5 years whowere vaccinated with themRNA-1273 COVID-19 vaccine
(25μg). Responses are compared with vaccinated adults (100 μg), in addition
to naturally infected toddlers and young children. Despite their lower vaccine
dose, vaccinated toddlers elicit a functional antibody response as strong as
adults, with higher antibody-dependent phagocytosis compared to adults,
without report of side effects. Moreover, mRNA vaccination is associated with
a higher IgG3-dependent humoral profile against SARS-CoV-2 compared to
natural infection, supporting that mRNA vaccination is effective at eliciting a
robust antibody response in toddlers and young children.

Despite the early misconception that children were spared from
COVID-19, children continue to account for approximately twenty
percent of all documented cases of COVID-19 infection in the
United States, with infants and children under 5 years of
age disproportionately affected by high rates of hospitalization1. While
most children experience mild symptoms with acute SARS-CoV-2
infection, severe complications can ensue, even in the youngest

children, and myocarditis, cardiomyopathy, renal failure, as well as
coagulation and hemorrhagic disorders occur at increased rates with
COVID-192. Concerningly, COVID-19 deaths in children far exceed
deaths from influenza3 and COVID-19 is a leading morbidity and mor-
tality in children in the United States4.

SARS-CoV-2-targeting mRNA vaccines have become available for
individuals six months of age and older5–11. These vaccines have
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provided substantial protection against hospitalizations and severe
disease in children ages 5–17 years5,7,10,12. Moreover, detailed humoral
profiling of children and adolescents reveals that mRNA COVID-19
vaccines elicit robust, highly functional humoral immune responses in
children in a dose-dependent manner13, with strong cross-reactivity
against variants of concerns (VOC)13,14. In children under 5 years of age,
mRNA vaccination results in neutralizing immunoglobulin titers
comparable to vaccinated adults and vaccination protects against
symptomatic infection11. However, detailed humoral profiling in this
age group has not yet been investigated. As an individual’s humoral
immune response evolves with age15, age-related differences in mRNA
vaccine responses must be fully characterized to fully understand the
impact of mRNA vaccination in infants and toddlers.

In order to characterize the activation of humoral immunity in
young children after SARS-CoV-2-specific mRNA vaccination, we used
an unbiased system serology approach to analyze antibody levels and
Fc-mediated functions in individuals ages 6 months through 5 years.
We comprehensively profiled their antibody response following vac-
cination with the mRNA-1273 COVID-19 vaccine (25μg) and compared
it with antibody profiles of vaccinated adults (100μg), as well as chil-
dren infected with SARS-CoV-2. Our results reveal a strong activation
of humoral immunity post-vaccination in these young children, with a
highly functional and cross-reactive humoral immunity in comparison
to adults and naturally infected infants.

Results
mRNA-vaccinated infants and toddlers generate robust
Immunoglobulin G (IgG) responses
Our first objectivewas to profile vaccine-induced humoral immunity in
infants and toddlers ages 0.6 through 5 years (n = 18) after completion
of the two doses of the pediatric mRNA-1273 vaccination series (vac-
cine dose: 25mcgmRNA-1273) and compare these serologic responses
to those generated by fully vaccinated adults (n = 13; vaccine dose:
100mcg mRNA-1273). In both groups, plasma samples were collected
2months after the first vaccine dose (1 month after the second dose of
the vaccine). Demographics of participants are included in Table 1;

mean age of vaccinated pediatric participants was 2.2 years (range
7 months- 4.5 years). None of the vaccinated adults or children
reported SARS-CoV-2 infections prior to or during their vaccine series,
which was supported by the absence of elevated nucleocapsid
responses (Fig. S1).

Our results demonstrate that despite their young age and receipt
of only one quarter of the adult dose, total anti-Spike and anti-RBD
IgG levels and IgG subclass in young children were similar to adults
(Figs. 1A, S2). Interestingly, in contrast to IgG, this young population
displayed lower levels of vaccine-induced anti-Spike and anti-RBD
IgM and IgA1, which shows the distinct isotype selection between
adults and children (Fig. 1A). We then compared the binding of spi-
ke and RBD-specific antibodies to Fc receptors (FcR), as well as anti-
body effector functions, including antibody-dependent cellular
(monocyte) phagocytosis (ADCP), antibody-dependent neutrophil
phagocytosis (ADNP) and antibody-dependent complement deposi-
tion or activation (ADCD) in young children and adults. We saw that
infants and children less than 5 years old were able to produce anti-
bodies with strong FcγR2A, FcγR2B, FcγR3A, and FcγR3B binding at
similar levels as adults, and remarkably, anti-RBD antibodies exhibited
stronger ADCP and ADNP effector functions in young children than in
adults (Figs. 1B, C, S1). Antibodies from vaccinated young children
displayed similar neutralization capacity as compared to vaccinated
adults (Fig. S3).

To determine cross-reactivity of the vaccine-induced humoral
response against variants of concerns (VOCs), we quantified antibody
levels and FcR binding against Spike and RBD for six different SARS-
CoV-2 VOCs including wild type (WT), Alpha, Beta, Gamma, Delta, and
Omicron. While IgM, IgA1, and the FcR for IgA1 (FcαR) were higher in
adults across the different SARS-CoV-2 variants, IgG response was
essentially indistinguishable between young children and adults. In
fact, the only exceptions were total IgG against RBDOmicron and IgG4
against SpikeGamma, RBDAlpha, RBDDelta, and RBDOmicron, which
were significantly increased in young children (Fig. 1D).

To further characterize the capacity of the pediatric population to
generate a broad SARS-CoV-2-specific humoral response following
mRNA-1273 vaccination, we calculated a Spike and RBD protein
breadth score. The breadth score highlights that infants and children
less than 5 years old are able to induce a humoral response as robust as
adults, with a strong recognition of different VOCs while IgM- and IgA-
specific immunity is higher in adults (Fig. 1E). Taken together, these
results show specificities regarding isotypes selection between young
children and adults, with overall similar to enhanced antibody func-
tionality against SARS-CoV-2 proteins in infants and toddlers less than
5 years old compared to adults.

When looking more broadly at antibody responses against com-
mon respiratory infections, including non-SARS-CoV-2 human cor-
onavirus (HCoV) HKU1 Spike (HKU1), HCoV-OC43 Spike (OC43), and
Influenza haemagglutinin (HA), we see a strong age-related difference.
In contrast to the robust SARS-CoV-2 vaccine-induced humoral
immunity across the age spectrum, young children have significantly
lower antibodies titers against HKU1, OC43, and HA. Multivariate
analysis highlights a clear separation between the two age categories
distributions, as attested by the Partial least squares discriminant
analysis (PLS-DA) (Fig. S5A). The LASSO-selected features that were
used to build the PLS-DA model revealed an enrichment of antibody
levels and FcγR binding against HKU1, OC43, and HA in adults
(Fig. S5B). Co-correlates analysis showed strong connections between
isotypes and FcγR features against non-SARS-CoV-2 antigens
(Fig. S5C), all of which being enriched in older individuals. These
antibody profiles in adults reflect prior exposure to these respiratory
viruses over their lifetime, while these young children may remain
naïve, particularly given the lower circulation of respiratory viruses
observed during the COVID pandemic16–18. Alternatively, the lower
level of antibodies could reflect lower total antigen-specific humoral

Table 1 | Demographics of mRNA-vaccinated and con-
valescent infants and children enrolled

Patient characteristics mRNA-1273 vac-
cinated (n = 19)

COVID-
Recovered
(n = 8)

Total children
enrolled
(n = 27)

Age at Enrollment,
mean (min, max)

2.2 (0.6, 4.5) 3.1 (1, 5) 2.7 (0.6, 5)

Male Sex, number (%) 7 (36.8) 3 (38) 10 (37)

Hispanic, number (%) 8 (42.1) 2 (25) 10 (37)

Race, number (%)

American Indian/
Native Alaskan

1 (5.3) 0 (0) 1 (4)

Asian 0 (0) 1 (13) 1 (4)

Black 2 (10.5) 0 (0) 2 (7)

Other 5 (26.3) 2 (25) 7 (26)

Unknown 2 (10.5) 0 (0) 2 (7)

White 9 (47.4) 5 (63) 14 (52)

Number of Samples per
vaccine time point

Pre vaccine (V0) 14 N/A 14

Post Vaccine #1 (V1) 13 N/A 13

Post Vaccine #2 (V2) 9 N/A 9

6months Post Vaccine
#2 (V6)

8 N/A 8

Post Booster (VB) 3 N/A 3
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responses to prior infection or the non-mRNA influenza vaccine, or
more rapidly waning immunity in these young children.

mRNA-1273 vaccination induces lasting, cross-reactive immu-
nity in young children
In order to evaluate the impact of mRNA-1273 vaccination on the
evolution of humoral immunity in young children, we measured anti-
body levels and Fc functionality prior to vaccination (V0), one month

after the first dose (V1), one month after the second dose (V2), six
months after vaccination (V6), in addition to onemonth after boosting
(Post-boost) (Figs. 2, 3). After just one vaccine dose, strong production
of IgG, IgM, and IgA against Spike WT could be observed in these
infants and children (Fig. 2A), with robust antibody binding to FcγR
(Fig. 2B). Similarly, antibody effector function, characterized by ADCP
and ADCD, was significantly increased at V1 compared to V0 (Fig. 2C).
Peak antibody responses were generally observed 2 months after the
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Fig. 1 | mRNA-1273 vaccination induces a strong humoral immunity in children
less than 5 years old. Antibody levels and functionality were measured in the
plasma of children less than 5 years old (n = 9; purple) and adults (n = 13, green), 2
months after vaccination. A IgG1, IgG2, IgG4, IgG4, IgM and IgA1 against Spike and
RBDWT.B FcγR2A, FcγR2B, FcγR3AandFcγR3Bbinding against Spike andRBDWT.
C Antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neu-
trophil phagocytosis (ADNP), and antibody-dependent complement deposition
(ADCD) against Spike and RBD WT. D Heatmap shows the univariate comparison
between SARS-CoV-2-specific antibody response in children and adults. Difference

between the median of Z-scored MFI data are represented, where the color cor-
responds to the group that has the highest antibody response. E Breadth score was
calculated by categorizing each antigen response as positive or negative, with
positive response defined as 6 standard deviations above the mean of the COVID-
unexposed controls, then calculating the percentage of positive Spike and RBD
variant antigen responses for each secondary. Non-parametric two-sided Mann-
Whitney U-test was used to calculate statistical significance, followed by Benjamini-
Hochberg correction for multiple testing. *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001. Source data are provided as a Source Data file.
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Fig. 2 | Strong impact of mRNA-1273 vaccination on antibody response over-
time. Antibody levels A, binding to FcγR B, and function C against Spike WT was
analyzed in children at different timepoints: before vaccination (V0, n = 14),
1 month (V1, n = 13) after the first dose of mRNA-1273 vaccine, 2 months (V2, n = 9)
after the first dose of mRNA-1273 vaccine, 6 months (V6, n = 8) after the first
mRNA-1273 vaccine series, as well as 1 month after boosting (post-boost, n = 3).
Connecting lines represent identical individuals that were followed over time, and

statistical differences were calculated between 2 consecutive timepoints. Non-
parametric, two-sided Wilcoxon signed rank test was used to calculate differences
between timepoints for paired data, followed by Benjamini-Hochberg correction
for multiple testing. P values that are <0.05 are indicated on the graphs. ADCP
antibody-dependent cellular phagocytosis, ADNP antibody-dependent neutrophil
phagocytosis, ADCD antibody-dependent complement deposition. Source data are
provided as a Source Data file.
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first dose of vaccination (Fig. 2), as attested by the high antibody levels
and functionality (Fig. 2C). Of note, IgM levels started to wane after V1
(Fig. 2A). In the setting of rising IgG and IgA1 titers, this supports
antibody maturation with efficient class switching. Although the
number of individuals that was included for the post-boost analysis
was low, our results highlighted a strong activation of the immune
system one month after boosting, especially for FcγR binding and
antibody-induced neutrophil activation (Fig. 2B, C).

To evaluate the ability of mRNA-1273 vaccination to elicit broadly
cross-reactive antibody responses and their durability over time in
young children, we compared the antibody responses to Spike anti-
gens from wild type through Omicron variants at each time point
(Fig. 3). Total IgG responses to full-length Spike were similar across all
variants. However, IgG responses to the Omicron RBD were con-
sistently lower post-vaccination for all subclasses and FcγRs (Fig. 3A,
B),which is not unexpected given the large number ofmutations in the
RBD of Omicron in comparison to other variants and is consistent with
cross-reactivity seen in older individuals13,14. To determine the breadth
of antibody responses over time, breadth scores were calculated for
each IgG subclass and each FcγR over the time as described above
(Fig. 3C). Breadth was highest for IgG3, although this response did
wane prior to boost. IgG2 and IgG3 responses both expanded with
boosting, with minimal change in IgG1 responses. FcγR binding
showed similar breadth for each FcγR tested, with a robust initial
response, somewaning in response at 6 months after vaccination, and
increased breadth after boosting. Again, the breadth scores high-
lighted a broad anti-SARS-CoV-2 antibody response shortly after

vaccination that wanes over 6 months, but then appears to re-expand
to peak levels post-boost.

Vaccination produces greater IgG3 than natural infection in
young children
To evaluate whether natural infection induces equivalent immunity
compared to vaccination, we compared anti-Spike and anti-RBD titers,
and Fc binding and effector function in serum collected from a group
of 8 children (Table 1:mean age, 3.7 years; range: 1–5 years) one-month
following acute SARS-CoV-2 infection, defined as symptomatic COVID-
19 confirmed by PCR or rapid antigen test at the time of illness, and a
second group of children one month after completion of their first
dose of vaccine (V1). We did not detect a significant difference in total
IgG levels (Fig. 4A), FcγR binding (Fig. 4B), and antibody functionality
(Fig. 4C) between the naturally infected group and the vaccinated
group at this one month timepoint (Fig. S4). This suggests that the
induction of humoral immunity following vaccination is as strong as
the response induced by natural SARS-CoV-2 infection in infants and
toddlers. Interestingly, the IgG3 response to both Spike and RBD
was significantly higher in vaccinated young children compared to
infected children (Fig. 4A). Levels of IgG3, a highly potent IgG subclass
with the greatest levels of functionality19–21, correlate strongly with
neutralization22,23, suggesting that in young children vaccination
induces a more mature and potent antibody response than natural
infection with SARS-CoV-2. Further, this robust vaccine-induced IgG3
response is consistently elevated across different VOCs (Fig. 4D)
highlighting the benefit of cross-reactivity gained by vaccination
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compared to natural infection. As expected, anti-nucleocapsid anti-
body responses induced by natural infection were absent in children
vaccinated with the mRNA-1273 vaccine as the vaccine does not
encode for nucleocapsid (Fig. 4D). Of note, the elevated IgG1 levels
against theDelta strain of Spike in the infectedgroup reflect the VOCat
timeof infectionbased on the timing of samples collected (eight of ten
of the children were infected with SARS-CoV-2 prior to the Omicron
surge) highlighting the specificity of response in natural infection.
Notably, vaccine-induced IgG3 levels still remained significantly higher
than natural infection, even for the Delta strain. Taken together, these
results show that mRNA-1273 vaccination in infants and children less
than 5 years of age elicits strong humoral activation, with production
of a highly mature and developed antibody response, suggesting a

more effective humoral response following vaccination in comparison
to natural infection with SARS-CoV-2.

Discussion
The availability of novel mRNA vaccine technology represented a key
inflection point in the COVID-19 pandemic, dramatically reducing
hospitalizations and deaths caused by SARS-CoV-2. However, with the
novelty of the mRNA vaccine strategies, the impact on immune
response in pediatric populations remains largely unknown, while
several studies have described vaccine-dependent humoral activation
in adults24–26. Thus, the risk/benefit ratio of vaccinating young children
must be thoroughly analyzed; comprehensive profiling of the humoral
immune response following vaccination, including characterization of
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antibody response profiles and cross-protective potential is critical.
While in-depth antibody titers and effector function have been
described for mRNA-vaccinated adults and children ages 5 years and
older13,14, limited information exists for younger age groups.

Humoral responses are known to varywith age27, with the capacity
to generate antibodies increasing over time, including following
administration of SARS-CoV-2mRNA vaccines13,14. Remarkably, despite
receiving only a quarter of the adult dose, our study suggests that
infants and toddlers younger than 5 years are capable of generating
titers of anti-SARS-CoV-2 IgG that are comparable to adults. The
impact of diminished IgA and IgM in children in the setting of SARS-
CoV-2 is not clear. In adults with COVID-19, elevated levels of anti-
SARS-CoV-2 IgA immune complexes are associated with severe
disease28 and in children with MIS-C, anti-SARS-CoV-2 IgA immune
complexes activate intravascular neutrophil extracellular traps which
may contribute to endothelial damage29. Circulating IgA does not
directly correlatewithmucosal IgA30,31 and in this study, we did not test
for presence of antibodies at the mucosal surface. Future studies will
be needed to fully characterize mucosal immunity following vaccina-
tion and to compare mucosal responses in children and adults.

Fc binding capacity of anti-SARS-CoV-2 IgG may play important
protective functions including enhanced activation of monocytes and
neutrophils. Here we demonstrated that vaccinated young children
display comparable Fc binding capacity as compared to vaccinated
adults, while significantly higher antibody functionality was observed
in the younger population in comparison to adults, showing apotential
impact of age-dependent antibody glycosylation on the induction of
phagocytosis32. The pediatric nasal passages contain higher quantities
of neutrophils than adults and these pediatric neutrophils tend to be
primed for anti-viral responses33. Thus, the combination of these
activating antibodies and primed neutrophils may lead to efficient
containment of the virus at the nasal surface. Direct humoral profiling
of the pediatric mucosal surface may reveal important differences
between children and adults with potential implications for current
vaccine strategies, as well as the development of mucosal vaccination
strategies for COVID-19.

In addition to this strong and functional antibody response in
young children two months after the first dose of vaccination, our
results showed that this pediatric population was able to maintain
functional humoral immunity for at least 6months. We observed signs
of efficient antibody class switching34,35, as IgM levels rapidly decreased
1 month after vaccination, when IgG and IgA continued to be pro-
duced, in addition to increasing FcR binding and Fc-mediated func-
tionality.Moreover, the analysis of vaccine-induced humoral immunity
against VOC highlighted a strong and sustained antibody response
over time with Alpha, Beta, Gamma, and Delta, while Omicron-specific
immunity tended to be slightly lower, as reported previously13. It has
been hypothesized that the naïve pediatric immune system facilitates
the evolution and adaptation of immune response to allow broader
immunity against future viral exposures36,37, which might explain the
more robust VOCs-specific antibody response in infants compared to
adults. Of the IgG subclasses, though, IgG3 declined the most by
6months but respondedwell to boosting, highlighting the importance
of boosters in maintaining effective protection against SARS-CoV-2
over time. Collectively, thesedata suggest that the vaccine can provide
long-term immunoprotection against COVID-19 in young children,
with likely efficacy against emerging VOCs.

Studies in adults show that COVID-19 vaccination elicits a more
robust antibody response compared to infection38–40, with higher FcR
binding capacity and functionality25. In the young cohort described in
this project, the main difference observed between infection and
vaccination at the one month timepoint included higher IgG3 levels
against different VOCs after vaccination. With IgG3 being the most
functional IgG subclass19–21,41,42, these data show that vaccination in this
young population elicits a stronger and potentially more functional

humoral immune response compared to natural infection. Additional
analyses with larger cohorts would be needed to further characterize
the age-dependent clinical impact of vaccination versus infection on
antibody functionality, particularly with the study of antibody glyco-
sylation profile, which is known to play a key role in the modulation of
antibody functionality. Moreover, to address the question regarding
which group is associated with superior clinical protection against
COVID-19, further studies involving pharmacokinetic aspects, such as
IgG3 half-life and the stability of this isotype in the blood of this
pediatric population, as well as correlations between clinical features
and antibody functionality, would be valuable in determining whether
mRNA vaccination confers superior protection than SARS-CoV-2
infection. We also observed that the antibody response against
Delta, which is the strain that was circulating at the time of sample
collection, was higher in the infected group. This suggests that
adapting vaccine strategies to incorporate genetic variations that
appear in emerging respiratory viruses will be an important strategy to
maintain vaccine efficacy.

While our study is limited in size, the overall population of vac-
cinated young children is limited in part because of parental/guardian
vaccine hesitancy, as well as the current reduced uptake of the COVID
vaccine following the relaxation of restrictions. Additionally, routine
phlebotomy presents numerous challenges in children. However, our
data set advances thedepthof understandingof antibody responses to
the mRNA vaccine in young vaccine-eligible children and helps inform
the risk/benefit ratio for providers and parents/guardians. As vaccines
result in a dramatic improvement in morbidity and mortality of adults
related to COVID-19 following mRNA vaccination43, and we see com-
parable- if not improved- vaccine responses in young children, we
expect vaccines will also reduce severe disease and long-term com-
plications in this young population as well. As COVID-19 has become
one of the leading infectious causes of death in children, and infected
children can suffer from post-COVID complications44, vaccination
strategies for these young children, as well as their impact on the
maturing immune system, need to be studied in depth. Overall, our
data suggest that vaccination offers robust protection against future
SARS-CoV-2 infections, potentially superior to natural infection, and
thus supports the notion that mRNA vaccination of this youngest
group is highly effective. These results also provide insight into the
design of future mRNA-based vaccine technologies for this pediatric
population.

Methods
Participant enrollment
Families with children 6 months to 5 years of age who received the
Moderna 25 µg mRNA1273 vaccine (n = 13) at Massachusetts General
Hospital (MGH) were approached for enrollment in the MGH Pediatric
COVID-19 Biorepository (IRB: 2020P000955) (Table 1). Vaccination
schedule was performed in accordance with CDC guidelines. Families
with children (n = 8) who were infected with SARS-CoV-2 in the past
5 weeks (average = 5.3 weeks ± 2 weeks), during the Delta wave, and
were presenting toMGH for a well-child visit or hospital visit were also
approached and offered enrollment in the MGH Pediatric COVID-19
Biorepository. Parents/guardians provided informed consent prior to
participation. An adult cohort was also included in this project, which
was described previously45.

Sample collection
Blood was collected prior to vaccination (Pre-vaccine), one month
following the first vaccination (V1), one month following the second
vaccination, (V2), and six months following the second vaccination
(V6). If a booster dose was received, blood was collected prior to
receipt of the booster dose (if greater than six months from first vac-
cination), and one month following the booster (post-boost). Partici-
pants couldopt out of providing blood at any of the timepoints. Blood
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was collected by venipuncture or by capillary microneedle device,
processed for plasma, and stored at −80 °C. All procedures were
approved by the MGB IRB.

Banked samples from adults who had received the Moderna
mRNA1273 vaccine were used for comparison (n = 13). Detailed infor-
mation regarding enrollment and specimen collection for this IRB-
approved study were previously published45.

Antigens
SARS-CoV-2 D614G or variants of concern Spike and RBD proteins, in
addition to NTD, S1, nucleocapsid, HCoV-HKU1 Spike (HKU1), and
HCoV-OC43 Spike (OC43) antigens, were expressed in mammalian
HEK293 cells and purchased from Sino Biological. Influenza hae-
magglutinin (HA) was obtained from Sino Biological. NHS-Sulfo-LC-LC
kit was used for antigen biotinylating, according to themanufacturer’s
instruction (Thermo Fisher Scientific).

Antibody isotype and FcR binding
Antibody isotype and subclass levels, as well as Fc-receptor (FcR)
binding profiles were measured using a custom multiplex Luminex
assay as described previously46–48. Briefly, Luminex microspheres
(Luminex Corp) were coupled to antigens, then incubatedwith diluted
plasma samples between (1:50 for the analysis of IgG2, IgG4, IgA1, IgM,
and FcαR; 1:100 for the analysis of IgG, IgG1, and; 1:500 for the char-
acterization of FcγR binding). After a 2-h incubation at room tem-
perature, Ig isotype and subclasses were detected using phycoerythrin
(PE)-conjugated secondary antibody at 1.3μg/ml (mouse anti-human
IgG, IgG1, IgG2, IgG3, IgG4, IgM, or IgA1 from Southern Biotech).
Concerning FcR binding, PE–streptavidin (Agilent Technologies) was
coupled to recombinant and biotinylated human FcR protein (FcγR2A,
FcγR2B, FcγR3A, FcγR3B, and FcαR) purchased from Duke Human
Vaccine Institute. After 1-h incubation at room temperature with either
subclasses/isotypes or FcRs, immune complexes were washed and the
median fluorescence intensity (MFI) of antibody levels or binding to
FcRs was determined using an iQue analyzer (Intellicyt) (Fig. S6).

Antibody-dependent complement deposition (ADCD)
Complement deposition was performed as described previously49,
using Luminex beads (Luminex Corp). Briefly, Luminex microspheres
were coupled to biotinylated antigens, and immune complexes were
formed using 1:30 diluted plasma samples. After a 2-h incubation at
37 °C, guinea pig complement in GVB++ buffer (Boston BioProducts)
was added to immune complexes for 20min at 37 °C. To stop the
complement reaction, EDTA-containing phosphate-buffered saline
(15mM) was used, then C3 deposition on beads was detected using a
1:100 diluted anti-guinea pig complement C3 antibody (MP Biomedi-
cals). MFI values were analyzed by flow cytometry on an iQue analyzer
(Intellicyt) (Fig. S6).

Antibody-dependent cellular phagocytosis (ADCP)
THP-1 monocytes (American Type Culture Collection) were used to
determine ADCP, as previously described50. Briefly, FluoSphere Neu-
trAvidin beads (Thermo Fisher Scientific, 9 × 105 beads per well) were
coupled to biotinylated antigens, followed by an incubation for 2 h
37 °C with 1:50 diluted plasma to form immune complexes. THP-1
(200μl of cell suspension per well) was then added to the immune
complexes, at a concentration of 1.25 × 105 cells/mL. After a 16-h
incubation at 37 °C, THP-1 was fixed with 4% paraformaldehyde and
then analyzed by flow cytometry on an iQue analyzer (Intelli-
cyt) (Fig. S6).

Antibody-dependent neutrophil phagocytosis (ADNP)
For ADNP, primary human neutrophils were used as previously
described51. Similarly to ADCP, immune complexes were formed with

antigen-coupled neutravidin microspheres (Thermo Fisher Scientific,
9 × 105 beads per well) and antibodies from diluted plasma samples
(dilution 1:50). After a 2-h incubation at 37 °C, neutrophils isolated
from healthy donors’ blood were added and incubated for 1 h at 37 °C,
(200μl, at a concentration of 2.5 × 105 cells/mL). Neutrophils were then
surface stained with anti-human CD66b Pacific Blue antibody (BioLe-
gend), fixed with 4% paraformaldehyde, and analyzed by flow cyto-
metry on an iQue analyzer (Intellicyt) (Fig. S6).

VOC breadth score
Spike and RBD protein breadth score were calculated by categorizing
each antigen response as positive or negative and calculating the
percentage of Spike and RBD variant antigen responses for each sec-
ondary (isotype or FcR) at each timepoint. We defined a positive
response as six standard deviations above the mean of the SARS-CoV-
2-unexposed controls for the same antigen and isotype or Fc receptor.

Neutralization assay
Neutralization capacities were measured using previously developed
bead-based competitive inhibition assays52. Recombinant SARS-CoV-2
spike protein was conjugated to 647nm dye-encoded magnetic
beads tomeasure neutralization capacities against thewild-type strain,
and recombinant omicron spike was conjugated to 750 nm dye-
encoded magnetic beads to measure neutralization capacities against
the omicron strain. To validate our reagents, we incubated the spike-
coated beads with biotinylated angiotensin-converting enzyme 2
(ACE2) and two neutralizing antibodies against the wild-type (40592-
R001, Sino Biological) and the omicron (40592-MM117, Sino Biologi-
cal) spike proteins. As the neutralizing antibody concentration
increases, the assay signal decreases to background level, similarly for
each variant.

Statistical analysis
All experimentswere done induplicate and the analysiswas conducted
using the average of the duplicates. Phosphate-buffered saline (PBS)
and plasma from healthy donors were used as negative controls.
GraphPad Prism (v.9.2.0) and RStudio (v.1.3 and R v.4.0) were used to
perform data analyses. We calculated the breadth score by categoriz-
ing each antigen response as positive or negative and calculating the
percentage of positive Spike and RBD variant antigen responses for
each antibody feature at each timepoint. We defined a positive
response as six standard deviations above the mean of the COVID-
unexposed controls for the same antigen and isotype or Fc receptor.
Differences in variant responses were tested by a mixed effects model
with Geisser-Greenhouse correction with time and antibody features
as the two effects that were modeled (Fig. 3).

Multivariate analyses to compare vaccinated adults and children
were built as described previously50,53. Data were normalized using z-
scoring, and then a least absolute shrinkage and selection operator
(LASSO) approachwasused for feature selection. For classification and
visualization, partial least square discriminant analysis (PLS-DA) mod-
els were performed using LASSO-selected features, followed by a ten-
fold cross-validation to assessmodel accuracy. Co-correlates of LASSO
selected features were represented in a network format and identified
using the Spearman method followed by Benjamini-Hochberg
correction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data are included in this manuscript in the Source Data
file. Source data are provided in this paper.
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Code availability
There was no specific custom code used in this manuscript. All code is
publicly available, and the source is indicated in the text and/or the
Methods section. Scripts will be made available upon reasonable
request.
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