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Learning nonequilibrium statistical
mechanics and dynamical phase transitions

Ying Tang 1,2,8 , Jing Liu 3,4,8, Jiang Zhang 4,5 & Pan Zhang 3,6,7

Nonequilibrium statistical mechanics exhibit a variety of complex phenomena
far from equilibrium. It inherits challenges of equilibrium, including accurately
describing the joint distribution of a large number of configurations, and also
poses new challenges as the distribution evolves over time. Characterizing
dynamical phase transitions as an emergent behavior further requires tracking
nonequilibrium systems under a control parameter. While a number of
methods have been proposed, such as tensor networks for one-dimensional
lattices, we lack a method for arbitrary time beyond the steady state and for
higher dimensions. Here, we develop a general computational framework to
study the time evolution of nonequilibrium systems in statistical mechanics by
leveraging variational autoregressive networks, which offer an efficient com-
putation on the dynamical partition function, a central quantity for discover-
ing the phase transition. We apply the approach to prototype models of
nonequilibrium statistical mechanics, including the kinetically constrained
models of structural glasses up to three dimensions. The approach uncovers
the active-inactive phase transition of spin flips, the dynamical phase diagram,
as well as new scaling relations. The result highlights the potential of machine
learning dynamical phase transitions in nonequilibrium systems.

Tracking time evolution and characterizing phase transitions are fun-
damental tasks in nonequilibrium statistical mechanics1, having impli-
cations to a wide range of fields including quantum transport2,
molecular machines3, quantitative biology4,5, and complex networks6.
For example, the glassy behavior has been explored in kinetically
constrained models (KCM) of spin flips on a lattice7, where each spin
can facilitate the flip of its neighbor spins. The stochastic dynamics of
spin flips give insights into the dynamical heterogeneity of the glass
transition8. Another example is the voter model9 describing consensus
formation, where voters located on a network choose the opinion
basedon their neighbors and can formcharacteristic spatial structures.

Despite tremendous efforts, studying the dynamical phase tran-
sition remains challenging in general. First, it requires tracking the

evolving probability distribution ofmicroscopic configurations, which
is exponentially increasing with the system size and can be computa-
tionally prohibitive from sampling trajectories10. Second, the phase
transition is induced by a control parameter, and the corresponding
dynamical operator governing the time evolution, known as the “til-
ted” generator11, does not preserve the normalization condition of the
distribution. Thus, one needs to estimate the normalization factor, i.e.,
the dynamical partition function, a central quantity in nonequilibrium
systems12. Third, studying nonequilibrium dynamics at an arbitrary
time is even more challenging, because it demands estimating the
whole spectrum of the tilted generator, rather than computing only
the largest eigenvalue in the long-time limit13,14 based on the large
deviation theory11,15. Analytically, it is intractable except for rare
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cases16–18; numerically, the major difficulty of studying time evolution
beyond the steady state arises from expressing the high-dimensional
probability distribution with a growing complexity when the correla-
tion builds up over time.

In this work, we develop a general framework to track none-
quilibrium systems over time by variational autoregressive networks
(VAN), which offers an ideal model for describing the normalized joint
distribution of configurations19. The VAN was previously shown
effective to investigate equilibrium statistical mechanics20–22, quantum
many-body systems23–25, chemical reaction networks26 and computa-
tional biology27. However, evaluating the dynamical partition function
and characterizing dynamical phase transitions have not been
achieved in these applications of the VAN. Here, we leverage the VAN
to propose an algorithm for tracking the evolving probability dis-
tribution, leading to an efficient computation of the dynamical parti-
tion function. The latter serves as the moment-generating function of
dynamical observables, which uncovers the phase transition over
time (Fig. 1).

We apply the approach to representative models in none-
quilibrium statistical mechanics. We first validate the method in the
voter model, by comparing with the analytical result6. To demonstrate
that our approach can reveal unknown dynamical phenomena, we
investigate KCMs of spin flips for glassy dynamics, including the
Fredrickson-Andersen (FA)model28 and variants of the Eastmodel29, in
one dimension (1D), two dimensions (2D), and three dimensions (3D).
Previously, the dynamical active-inactive phase transition in space and
time30–32 was investigated mainly at the steady state in the long-time
limit, where KCMs have two phases with extensive or subextensive
spin-flipping activities. However, the phase transition in the full-time
regime was seldom investigated. For the 1D finite-time problem, our
results agree with the recent study by matrix product states33. For 2D
and 3D cases, where the phase transition at arbitrary time was not
obtained either analytically or numerically, our method uncovers the
dynamical phase diagram versus time the control parameter of the
counting field, and the critical exponent of the finite-time scaling. We
also observe the emergence of characteristic spatial structures over

time, extending the steady-state result34. We further discuss the
applications to nonequilibrium systems with other types of dynamics
and topologies.

Results
Nonequilibrium statistical mechanics
We consider a continuous-time discrete-state Markovian dynamics of
sizeN. Each variable has ds states (ds = 2 for binary spin systems), giving
total M =dN

s configurations. With configuration states ∣xi �
ðx1, x2, . . . , xNÞ forming an orthonormal basis, the system at time t is
described by the probability vector ∣Pti=

P
xPtðxÞ∣xi. It evolves under

the stochastic master equation35:

d
dt

∣Pti=W∣Pti, ð1Þ

where W=
P

x,x0≠xwx,x0 ∣x0i xh ∣�P
xrx∣xi xh ∣ is the generator, wx,x0 is

the transition rate from ∣xi to ∣x0i, and rx =
P

x0≠xwx,x0 is the escape rate
from ∣xi.

Dynamical partition function. Studying dynamical phase transitions
emerging from microscopic interactions relies on evaluating dynami-
cal observables. In general, a quantity of interest is the time-extensive
dynamical observable K̂ incremented along a trajectory
ωt = fxt0

! xt1
� � � ! xtg, with time-step length δt, t = Jδt and total J

time steps. Theprobability of observing the dynamical observablewith
a value K is obtained by summing over all possible trajectories:
PtðKÞ=

P
ωt
pðωtÞδ½K̂ðωtÞ � K �, where p(ωt) is the probability of the

trajectory ωt.
To extract the statistics of the dynamical observable, it is useful to

estimate its moment-generating function, i.e., the dynamical partition
function ZtðsÞ=

P
KPtðKÞe�sK =

P
ωt
pðωtÞe�sK̂ðωt Þ, where a control

parameter s is introduced as the conjugate variable to the dynamical
observable. Taking derivatives of Zt(s) to s gives moments of the
dynamical observable’s distribution. The dynamical partition function

Fig. 1 | Uncovering dynamical phase transitions in nonequilibrium statistical
mechanics by machine learning. a The major theme of equilibrium and none-
quilibrium statistical mechanics. b Uncovering dynamical phase transitions
requires studying the “tilted” dynamics underTs with various values of the control
parameter s, where the evolved distribution is no longer normalized (dashed light
blue). As the normalization factors, the dynamical partition function needs to be
learned over time, to discover the dynamical phase diagram. c A proposed

algorithm for learning the dynamical partition function by training the VAN (dis-
tributions with hat) over time. The loss function is given by the KL-divergence
between the VAN at time t + δt with learnable parameters θt+δt and the evolved
distribution learned at t with parameters θt fixed. The algorithm tracks none-
quilibrium dynamics, and reveals dynamical phase transitions, overcoming the
three challenges in (b).
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can be evaluated by30:

ZtðsÞ= h�jetWs jssi, ð2Þ

where �h ∣=
P

x xh ∣, and ∣ssi is the steady-state probability vector under
the generator W. Different from W, Ws is termed as the “tilted”
generator, and its form depends on the dynamical observable K̂ and
control parameter s.

A representative dynamical observable. For the spin-flip dynamics, a
characteristic dynamical observable is the “dynamical activity”30,36,
measuring the number of spin flips. The observable quantifies how
dynamically active the trajectories are: a more active trajectory has a
higher value. The control parameter s is then termed as the “counting
field”. To evaluate the dynamical observable, the generator ismodified
correspondingly as the tilted generator30:

Ws =
X

x,x0≠x

e�swx,x0 ∣x0ihx∣�
X
x

rx∣xi xh ∣, ð3Þ

underwhich theprobability isno longer normalized. Combining Eq. (2)
and Eq. (3), the moments can be calculated, including the average
dynamical activity per unit of time and site:

ktðsÞ= � 1
Nt

d
ds

lnZtðsÞ: ð4Þ

Other dynamical observables can be investigated in a similar way by
using its corresponding tilted generator.

Tracking nonequilibrium statistical mechanics and dynamical
phase transitions
A natural approach of studying nonequilibrium dynamics is tracking
the evolution equation, Eqs. (1) and (2). Unfortunately, the exact
representation of ∣Pti requires a computational effort that is expo-
nential in the system size. Hence we need an efficient method to
approximately represent ∣Pti. Here, we consider a neural-network
model, the VAN19, as a variational ansatz for ∣Pti. The VAN maps con-
figurations to the probability distribution Pt(x) in ∣Pti as the product of
conditional probabilities:

P̂
θ

t ðxÞ=
YN

i = 1

P̂
θ

t ðxijx1, . . . , xi�1Þ, ð5Þ

where the hat symbol denotes the parameterization by the neural
network with learnable parameters θ.

For lattice systems, we start from an initial site and traverse the
lattice in a predetermined order to acquire all the conditional prob-
abilities (Methods). Each conditional probability P̂

θ

t ðxijx1, . . . , xi�1Þ is
parameterized by a neural network, where the input is the sites visited
earlier fxi0<ig and the output is xi associated with a probability under
proper normalization19. The parameters of the neural network can be
shared among sites37 to increase computational efficiency. Since all the
conditional probabilities are stored, one can efficiently generate
samples associated with normalized probabilities, which can be used
to compute quantities such as energy and entropy and to construct
loss functions to update the parameters.

The VAN is capable of expressing strongly correlated
distributions20,22, including equilibrium distributions in statistical
mechanics19, steady state distributions of KCMs in nonequilibrium
statistical mechanics34 and quantum systems21. Here, we find it
effective to learn the time-evolving distributions. The expressivity
of the VAN and training time depends on the architecture, as well
as the depth and width of the neural network (Supplementary
Information Sect. VD). Typical neural-network architectures can

be employed, including MADE38, PixelCNN39,40 or RNN41. For
example, we have used RNN for KCMs in 1D and 2D, PixelCNN for
2D, and MADE for 3D. In 1D, we find RNN more accurate than
MADE. In 2D, RNN has a comparable accuracy with PixelCNN but
takes a longer computational time. The VAN can be further
improved by cooperating with more advanced neural network
architectures and sampling techniques.

The advantages of the VAN over the tensor network model in
representing ∣Ptimainly come from its generality. The neural network
ansatz can be used in systems with various topologies, in contrast to
the matrix product states designed for one-dimensional systems. On
the one hand, the VAN is suitable for systems with arbitrary topology
without modifying the structure of VAN19; on the other hand, we can
design the VAN to fit the topology. For example, in 2D or 3D, one can
use convolutional networks42, as in image recognition; for sparse net-
works, graph neural networks are efficient43.

Based on the VAN representation, we evaluate Eq. (2) by applying
the operator eδtWs sequentially at each of the total J time steps:

ZtðsÞ≈ h�jðTsÞ J jssi (Suzuki-Trotter decomposition44), where the tran-

sition operator Ts = ðI+ δtWsÞ≈ eδtWs , I denotes the identity opera-
tor. Without loss of generality, we consider the one-step evolution

from a normalized probability vector ∣P̂
θj
j i at time step j ( j =0,…, J − 1)

with parameters θj. Under the tilted generator, the evolved probability

vector Ts∣P̂
θj
j i becomes unnormalized. Still, since the VAN provides a

normalized probability vector, we can use it to represent ∣P̂
θj + 1

j + 1 i at time

step j + 1 and approximate the normalized probability vector

∣Q̂
θj
j i=Ts∣P̂

θj
j i=Zj + 1ðsÞ, by minimizing the Kullback-Leibler (KL) diver-

gence,

DKL P̂
θj + 1
j + 1

����Q̂θj
j

h i
=Lj + 1 + ln Zj + 1ðsÞ, ð6Þ

Lj + 1 =
X
x

P̂
θj + 1
j + 1 ðx, sÞ ln P̂

θj + 1
j + 1 ðx, sÞ � lnTsP̂

θj
j ðx, sÞ

h i
: ð7Þ

Minimizing the KL-divergence is equivalent to minimizing Lj + 1, which
plays a role analogous to the variational free energy in equilibrium
statistical mechanics. Since the VAN supports unbiased sampling in
parallel to compute Lj + 1, we estimate the gradients with respect to
parameters θj+1 by the REINFORCE algorithm45:

∇θj + 1
Lj + 1 =

X
x

P̂
θj + 1
j + 1 ðx, sÞ ∇θj + 1

ln P̂
θj + 1
j + 1 ðx, sÞ

n

� ln P̂
θj + 1
j + 1 ðx, sÞ � lnTsP̂

θj
j ðx, sÞ

h io
,

ð8Þ

where the summation is over the samples from the VAN.
As an essential outcome of the algorithm, the dynamical partition

function is computed as a product of the normalization constants at
each time step ZtðsÞ≈

QJ
j = 1 ZjðsÞ (Supplementary Information

Sect. IIA). For each normalization constant, the nonnegativity of the
KL-divergence ensures that Eq. (7) provides a lower bound as:

lnZj + 1ðsÞ≥ � Lj + 1: ð9Þ

The equality holds when the VAN faithfully learns the evolved dis-
tribution and achieves zero KL divergence. Then, to evaluate the
dynamical partition function our algorithm starts from the steady state
of the non-tilted generator and tracks the distribution under the tilted
generator (Eq. (2)). The renormalization procedure over time points
enables to extraction of the dynamical partition function under the
tilted generator, beyond the algorithm of only tracking the evolving
distribution under the non-tilted generator26.

Article https://doi.org/10.1038/s41467-024-45172-8

Nature Communications |         (2024) 15:1117 3



Algorithm
The pseudocode of tracking the dynamical partition function and
dynamical phase transitions by the VAN is summarized below:

• Input: The system size and dimension, the model type, the
boundary condition, time steps, values of the counting field s.
Choose an initial distribution, such as the steady state of the
non-tilted dynamics.

• Every time step j =0,…, J − 1:

1. Learn the next-step VAN P̂
θj + 1
j + 1 ðxÞ: for every epoch,

(a) Draw samples {x} from P̂
θj + 1
j + 1 ðxÞ;

(b) Calculate relevant matrix elements of the transition operator
Ts to get TsP̂

θj
j ðxÞ;

(c) Train the VAN by minimizing the loss func-
tion: Lj + 1 =Ex∼ P̂

θj + 1
j + 1

½ln P̂θj + 1
j + 1 ðxÞ � lnTsP̂

θj
j ðxÞ�.

2. Calculate the variational free energy at each time step:
F θj + 1

j + 1 ðsÞ=Lj + 1 after training.

• Estimate the dynamical partition function: ZtðsÞ≈
QJ

j = 1 ZjðsÞ,
ln ZjðsÞ≈F

θj
j ðsÞ; and moments of dynamical observables.

• Output: The evolved probability distributions, dynamical par-
tition function, and dynamical observables.

The computational complexity of tracking the dynamical phase
transition depends on the number of training steps Ntrain and the
number of counting-field values Ns. Under a fixed system size, the

computational time of studying the steady-state phase transition34 has
the order of OðNsNtrainÞ, and the finite-time study without the phase
transition25 has OðNtrainJÞ for J total time steps. Here, to uncover the
phase transition at any time, the computational complexity becomes
OðNsNtrainJÞ, where largerNtrainmay be required to reachhigh accuracy
for larger system sizes (Supplementary Fig. 4). Despite the high com-
putational complexity, the result under the chosen lattice sizes fulfills
to uncover the finite-time scaling of the phase transition for 2D and 3D
KCMs, as demonstrated below.

Applications
The present approach is generally applicable to systems in none-
quilibrium statistical mechanics. Since the computational cost is pro-
portional to the number of allowable state transitions at each time step
in Eq. (2), the cost is greatly reduced when compared with tracking the
full distribution exponentially proportional to the system size. This is
computationally feasible when the number of allowable transitions
scales polynomially on the system size, including the voter model6

which validates our method of tracking the distribution (Supplemen-
tary Fig. 1). Another representative class of systems is KCMsmodeling
glasses8. The KCMs exhibit rich phenomena of phase transitions
(Fig. 2), where the 2D and 3D cases were unexplored either analytically
or numerically, and are our focus.

Active-inactive phase transition over time for KCMs. The previous
studies of KCMs focused on equilibrium properties46 or the active-

Fig. 2 | A schematic on kinetically constrained models and dynamical phase
diagram. a The rule of spin flips for the 2D SE and FA models, as demonstrative
examples. The filled (unfilled) circle is up (down) spin. The flipping rate of each spin
(red) depends on f, the number of up spins at certain nearest neighbors (green). The
SE model counts the left and above neighbors, and the FA model counts all nearest
neighbors. Theflip-upprobability is c.bAn illustrativedynamical phasediagram,with
active and inactive phases of spin flips depending on the counting field s and time.
The active (inactive) phase has more (less) spin flips over time, giving large (small)

dynamical activity kt(s) in Eq. (4). c The two architectures of the VAN used in 2D
(Methods). The left panels have a schematic of the gated recurrent unit cell (GRU)57.
For 2D lattice systems, a zigzag path for transmitting variables is employed, allowing
the hidden state to propagate both vertically and horizontally. The right panels are
PixelCNNs. The vanilla PixelCNN39 encounters an issue of the “blind spot'', i.e., the
black lattice point is not conditioned on the lattice points within the blind spot area
under a 3 × 3 causal convolution layer. This issue is solved in the gated PixelCNN40 by
splitting the model into two parts: vertical and horizontal stacks.
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inactive phase transition in the long-time limit30–32,34. For the phase
transition at arbitrary time, besides the recent result in 1D33, the cases
with lattice dimension greater than 1 have not been revealed. Here, the
VANprovides thephase transitionover timeof KCMson 1D, 2D, and 3D
lattices in a unified way.

We consider twoparadigmatic KCMs, namely, FA28 and variants of
East29 models, on a lattice of size N = L in 1D, N = L2 in 2D, and N = L3 in
3D, with binary spins xi =0, 1 for i = 1,…,N, ds = 2 and 2N configurations
in total. The Markovian generator is

W=
XN

i = 1

f i½cσ +
i + ð1� cÞσ�

i � cð1� xiÞ � ð1� cÞxi�, ð10Þ

where σ ±
i are the Pauli raising and lowering operatorsflipping site i up

and down, and c∈ (0, 0.5] controls the rate of flipping up. The up spin
number xi acts as the operator xi = σ

+
i σ

�
i , and the terms 1 − xi, xi

separately represent the escape transitions out from the down, up
spins at site i. The fi equals the number of up spins at certain direc-
tions of the nearest neighbors (Fig. 2a): the FA model counts all
directions, the 1D East counts the left, the 2D South-East (SE) counts
the left and above, and the 3D South-East-Front (SEF) counts the left,
above and back. We consider open boundary conditions for the
convenience of comparing results with the literature. The boundary
sites are up for 1D33 and down for 2D34 and 3D. For the 2D FA model,
the configuration with all down spins is excluded to avoid this
disconnected configuration. To access the largest ergodic element in
the configuration space, the first spin is fixed up for 2D and 3D East

models. Note that all the figures of configurations do not include
boundary sites.

The generator acts on each configuration and at each time step
contributes to the case with only one spin flip between two config-
urations. Each configuration has N connected configurations that
transit into or out from. The probability distribution is updated by
using only the connected configurations of batch samples in Eq. (8).
This procedure reduces the complexity frommultiplying the transition
matrix with the probability vector, both of which are exponentially
large, to counting anorder ofOðNÞ transitions linear to the system size.

The VAN shows a high accuracy in revealing the phase transition.
The obtained dynamical partition function coincides with the
numerically exact values available for the small system sizes (Supple-
mentary Fig. 5). Our result at long time matches with the steady-state
estimation from the variational Monte-Carlo method34 (Supplemen-
tary Fig. 6). For the finite-time regime which was previously explored
only for 1D, our result (Supplementary Figs. 2, 3) agrees with tensor
networks33. For the unexplored 2D and 3D KCMs at finite time, we
obtain the dynamical activity kt(s) as a function of time t and the
counting field s with s >0, showing two phases with extensive or sub-
extensive activities (Fig. 3a). The critical point sc(N, t) as a function of
system size and time canbe identified numerically by the peakpoint of
the dynamical susceptibility χt(s) = dkt(s)/ds. We conduct a scaling
analysis of the critical point sc(N, t). In the long-time regime, the scaling
of system size sc(N) ~N −α gives the exponent α ≳ 1 for 2D and 3D
(Fig. 3b). By inspecting the short-time regime, the critical point
approximately scales as sc(t) ~ t−1 for the two models. These two

Fig. 3 | Characterization of the dynamical active-inactive phase transition of
kinetically constrainedmodels.The top,middle, and bottompanels are the 2DSE
model, 2D FA model and 3D SEF model. a The dynamical activity kt(s) denoted by
color reveals the phase transition versus time t and the counting field s, with L = 5
for 2D and L = 3 for 3D. b The critical point sc(N, t) over time, giving critical

exponents α from sc(N) ~N
−α at the steady state (the horizontal dotted lines and the

inset) and β from the finite-time scaling t−β (the black dashed line). c The scaled
phase transition lines, with sc(N, t)/sc(N) and time scaled as Nαt−β, are collapsed
together, indicating theproper scaling relation. Parameters: c =0.5,L = 4, 5, 6 for 2D
and L = 2, 3, 4 for 3D.
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regimes motivate to approximate sc(N, t) ≈ sc(N) + sc(t). We then esti-
mate the scaling of time by fitting ln½scðN, tÞ � scðNÞ� versus � lnðtÞ,
giving sc(t) ~ t−β with β ≈ 1 for 2D and 3D, which confirms the speculated
value. The finite-time scaling in 2D and 3D has a similar critical expo-
nent as in 1D33, implying that the transition point evolves with time
similarly in all the dimensions for KCMs. By dividing sc(N, t) with sc(N)
and time as Nαt−β, sc(N, t) curves are collapsed together (Fig. 3c).

The emergence of active phases for 2D KCMs. We further analyze
the emergence of characteristic spatial structures over time, beyond
the steady state34. For 2D SE and FA models, with a small c =0.05, we
discover that the average density of up spins 〈n(t)〉ν (versus ν ≡ 1 − es) of
the 2D SE model gradually shows piecewise density plateaus (Fig. 4a),
which are absent in the 2D FA model (Fig. 4c). For the average spatial
profile of configurations, the 2D SE model forms structures with up-
spin diagonal bands separated bydown-spin bands, and the number of
bands varies over ν (Fig. 4b). The 2D FA model does not have such
characteristic bands (Fig. 4d), even when its first spin is also fixed up.

Discussion
We have presented a general framework to track dynamics of none-
quilibrium statistical systems based on neural networks, and devel-
oped an efficient algorithm to estimate the dynamical partition
function. This extends applications of the VAN from equilibrium19 to
nonequilibrium, from the steady state34 to arbitrary time, and from the
absence of phase transitions25 to phase transitions, the approach
enables to reveal of the unexplored active-inactive phase transition at
finite time and scaling relations in KCMs on 2D and 3D lattices, as well
as the emergence of characteristic spatial structures.

The error, such asquantified by the relative error of the dynamical
partition function in Eq. (16), does not keep increasing (Supplementary
Figs. 4, 5), because the time evolution of the distribution does not have
adramatic change for all timepoints. The accumulationof errormainly
occurs when the dynamics change dramatically over time, e.g., when
the active-inactive phase transition occurs. Identifying these time
points by trial and error helps find themost efficient way of increasing
epochs for accuracy at certain time points. An alternative way of
resolving the issue is to project the evolution into two parts: one fol-
lows the largest eigenvalue of the tilted generator, and the other fol-
lows from amodified tilted generator (Supplementary Sect. IIA).When
the modified generator reaches a steady value, one can stop the
simulation and extrapolate it by using the largest eigenvalue.

Capturing the active-inactive transition requires an efficient
sampling of rare inactive configurations with few up spins, which is
accessible by the importance sampling (Supplementary Sect. IIIA). This
important sampling is on the configurations fromadistribution at each
time point, different from the sampling on trajectories, which may be

harder to sample as the trajectory space grows exponentially with time
points. Besides, learning themultiple probability peaks can be affected
by the mode-collapse: For rugged distributions, not all modes of the
target distribution may be directly captured by the VAN47. To alleviate
the mode-collapse, besides the importance sampling used here, tem-
perature annealing19 and variational annealing48 can be employed.

When the system size increases, the computational time reaches
the order of Oð102Þ h for one value of the counting field (Supplemen-
tary Table 1). Larger system sizes require longer computational time to
reach high accuracy (Supplementary Fig. 4). Evaluating the phase
transition needs to scan various values of the counting field. Thus,
although the method is generally applicable, computing the scaling
relation for larger system sizes meets the practical challenges of
available computational resources. However, this can be alleviated by
optimizing the efficiency of tracking the distribution, with the help of
the time-dependent variational method49 and by paralleling multi-
ple GPUs.

The present approach is applicable to other types of Markovian
dynamics, including stochastic reaction networks26,50, where phase
transitions can be analyzed after adding the control parameter. Based
on generality of the VAN, it is adaptable to other topologies, such as
the voter model on graphs51 and epidemic spreading on networks52,
where the architecture of the VAN can be the graph neural network43. It
may also be generalized to the KCMs of various dimensions in the
quantum regime53. Another direction is to leverage the VAN for sam-
pling rare trajectories, with the help of the Doob operator54, active
learning55 and reinforcement learning56.

Methods
Variational autoregressive networks for spin-lattice systems
We use the variational autoregressive network19 to parameterize the
probability distribution. The VAN factorizes the joint probability into a
product of conditional probabilities as Eq. (5), where xi denotes the ds-
state variable of site i (ds = 2 for binary spin systems). The symbol θ
represents the learnable parameters. Theparameterizeddistribution is
automatically normalized, which is also called autoregressive model-
ing in the machine learning community. Since each conditional prob-
ability only depends on previous sites, it supports efficient ancestral
sampling in parallel.

Below, we briefly describe the architecture of the RNN and gated
PixelCNN for our problem. The setting of MADE was the same as19.

Recurrent neural networks. For the recurrent neural network (RNN),
we use a gated recurrent unit57 as the recurrent cell, which is capable of
learning the distribution with long-range correlations. It is more effi-
cient than the long-short time memory (LTSM) model and avoids the
vanishing gradient problem for vanilla recurrent neural networks.

Fig. 4 | The emergence of the active phases. The 2D SE (a, b) and 2D FA (c, d)
models with c =0.05, L = 6 and s <0. a, c The average density in the active phase at
various time points for c =0.05. The grey arrows point to the chosen ν (introduced
for s <0) for (b, d). b, d Time evolution of the spatial profile of configurations at

various time points (rows) for different ν values (columns). For the comparison
between the two models, the left-up corner spin of both models is fixed up. The
color denotes the average number of up spins, with the same color bar in (d).
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For the 1D RNN, the conditional probability is iteratively obtained
over the one-dimensional sites. A recurrent cell processes the infor-
mation from theprevious hidden statehi−1 and the input data xi−1 in the
current cell, generates a new hidden state hi, gives the conditional

probability P̂
θðxijx1, . . . , xi�1Þ based on hi, and passes on the informa-

tion of hi to the next cell. The dimension of the hidden states is

denoted by dh. The GRU has a candidate hidden state ĥi, an update
gate zi interpolating between the previous and candidate hidden
states, and a reset gate ri setting the extent of forgetting for the pre-
vious hidden state. It updates by the following gates:

zi = σðWzxxi�1 +Wzhhi�1 +bz Þ, ð11Þ

ri = σðWrxxi�1 +Wrhhi�1 +br Þ, ð12Þ

ĥi = tanhðWhxxi�1 +Whhðri � hi�1Þ+ bhÞ, ð13Þ

hi = ð1� ziÞ � hi�1 + zi � ĥi, ð14Þ

where Ws are the weight matrices, bs are bias vectors, and σ is the
sigmoid activation function,⊙denotes the Hadamard product.

The conditional probability is obtained from the hidden states.
The output is acted on by a linear transform and a softmax operator

P̂
θðxijx1, . . . , xi�1Þ=SoftmaxðWhi +bÞ, which ensures the normalized

condition for the output probability vector. Given an initial hidden
state h0 and variable x0 (chosen as a zero vector here), the full prob-
ability is obtained by Eq. (5) with the iteratively generated conditional
probabilities. Sampling from the probability distribution is conducted
similarly: given an initial hidden state and variable, the variable x1 is
sampled from the estimated conditional probability, and the proce-
dure is repeated to the last site.

For the 2D RNN, the implementation is more involved. A zigzag
path34,41 is used to transmit the lattice variables, both vertically and
horizontally. For the vertical and horizontal variables (hidden state h
and variable x separately), we first concentrate the two into one and
perform a linear transform (without the bias term) to an intermediate
variable with the original dimension. They are then passed to the next
GRU cell to continue the iteration.

The gated PixelCNN. For 2D lattice systems, we find that the vanilla
PixelCNN model39 suffers from the blind spot problem. In the worst
case, the blind spot in the receptive field only covers half of the sites
above and to the left of the current site. To circumvent the blind spot
problem, we use the gated PixelCNN40 that combines two convolu-
tional network stacks: the vertical stack and the horizontal stack. The
vertical stack conditions on all the sites left and the horizontal stack
conditions on all the sites above. The activation function is also
replaced by a gated activation unit:

hl + 1 = tanhðWl
1 *h

lÞ � σðWl
2 *h

lÞ ð15Þ

where l is the number of layers, hl is the feature map at the l-th
layer,⊙ is the Hadamard product and * denotes the stacked convolu-
tion operation.

Details of training neural networks
When tracking the dynamics in Eq. (1), shorter Trotter time-step
length generally gives higher accuracy, with the cost of longer
simulation time. For KCMs, the range of time-step length δt∈
[0.01, 0.1] is found suitable, as also reported in the 1D case33. Con-
sidering both the accuracy and efficiency, δt here is often chosen as
δt = 0.1 for 1D and δt = 0.05 for 2D and 3D. The loss usually takes a

number of >Oð103Þ epochs to converge for the first time step of
evolving the system but requires only an order of Oð102Þ epochs for
the following time steps, because the probability distribution only
has a small change after each time step. The smaller number of
epochs after the first time step saves the training time for tracking
the evolution.

Learning rates affect the accuracy of training. Among the tested
learning rates 10−5, 10−4, 10−3, and 10−2, we found that 10−3 typically leads
to relatively lower loss values and better training. It is possible to
encounter general optimization issues such as trapping into local
minima, which may be alleviated by designing schedulers for the
learning rate.

We used the Adamoptimizer58 to perform the stochastic gradient
descent. The batch size was usually set as 1000 for each epoch. To
better estimate the variational free energy, we used the batch from the
last 20% of the training epochs, where the loss converges. This average
gives a more accurate estimate by using approximately
1000 × 100× 20% (batch size, epochs at each time point, last percent
of the training epochs) batch samples.

The relative error
We estimate the error of the VAN for each system separately. To
quantify the accuracyof theVAN,we calculated the relative errorof the
dynamical partition functions between the VAN and the numerically
exact result. The numerically exact result of the dynamical partition
function was obtained by summing up probabilities of all possible
states, which is feasible only for systems with small sizes, e.g.,
approximately L ≤ 10 for 1D, L ≤ 4 for 2D, and L ≤ 2 for 3D.

The relative error er is defined as:

er =
lnZtðsÞ � lnZtðsÞexact

lnZtðsÞexact

����
����, ð16Þ

where lnZtðsÞexact is the numerically exact result by summing up
probabilities of all possible states, which is feasible for systems with
small sizes. The error is shown in the inset of Supplementary Fig. 2a for
1D and Supplementary Fig. 5 for 2D and 3D. All the figures show that
the relative error is usually smaller than Oð10�3Þ compared with the
numerically exact result, validating the accuracy of the VAN. Based on
the accuracy and efficiency, we chose the more appropriate VAN for
each dimension: the RNN in 1D, the gated PixelCNN in 2D, and the
MADE in 3D.

For larger system sizes, the numerically exact result is not acces-
sible which then demands the use of the present algorithm. Thus, we
can only evaluate the error from the loss function Eq. (7) based on the
KL-divergence: the lower value of the loss function implies more
accurate training, with the lower bound given by the dynamical par-
tition function. We remark that the loss function will not reach zero,
evenwhen the VAN is accurately learned because the probability is not
normalizedunder the tilted generator.Under this case, it is not feasible
to estimate the KL divergence of the two probability distributions at
consecutive time points as a quantification of accuracy. Besides, the
value of the loss function decreases with a larger number of epochs
and increases with the system size (Supplementary Fig. 4), indicating
the requirement for more epochs and longer computational time
when the system size increases.

Data availability
The authors declare that the data supporting this study are available
within the paper.

Code availability
A PyTorch implementation of the present algorithm can be found in
Supplementary Data 1 and at the GitHub repository (https://github.
com/Machine-learning-and-complex-systems/DPT).
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