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The genetic basis of autoimmunity seen
through the lens of T cell functional traits
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Kazuyoshi Ishigaki 1,2,3,4,6, Aparna Nathan 1,2,3,4,5,7 &
Soumya Raychaudhuri 1,2,3,4,5,7

Autoimmune disease heritability is enriched in T cell-specific regulatory
regions of the genome. Modern-day T cell datasets now enable association
studies between single nucleotide polymorphisms (SNPs) and a myriad of
molecular phenotypes, including chromatin accessibility, gene expression,
transcriptional programs, T cell antigen receptor (TCR) amino acid usage, and
cell state abundances. Such studies have identified hundreds of quantitative
trait loci (QTLs) in T cells that colocalize with genetic risk for autoimmune
disease. The key challenge facing immunologists today lies in synthesizing
these results toward a unified understanding of the autoimmune T cell: which
genes, cell states, and antigens drive tissue destruction?

Genetic risk variants for autoimmune disease are enriched in T cell-
specific regulatory regions of the genome1,2 and aredisproportionately
close to genes with T cell-specific functions3. These findings imply that
T cells are critically important to the development of autoimmune
disease. To understand how T cells change to enact autoimmune
destruction, we can identify quantitative trait loci (QTLs). A QTL is a
location in the genome in which someone’s DNA sequence helps to
explain some quantifiable characteristic of the individual. These
characteristics range from general traits such as birthweight4 to
detailedmolecular traits such as the expression level of a certain gene.
By using molecular sequencing data, we can now conduct QTL studies
to search for the T cell molecular traits (e.g., gene expression, chro-
matin accessibility) that mediate risk for autoimmunity.

An expression QTL (eQTL) is a QTL that explains a statistically
significant proportion of variance in the expression of a gene. The
mechanism for this change in gene expression largely depends on how
close the eQTL is to the target gene. Located near their target genes,
cis-eQTLs impact expression often by altering transcription factor
binding in a proximal regulatory element5, or altering the rate ofmRNA
degradation6. By contrast, trans-eQTLs may regulate distant gene tar-
gets by first altering the expression of a nearby transcription factor

(cis-eQTL mediation)7. However, trans-eQTLs can also emerge from
unusual mechanisms. For example, trans-eQTLs in the major histo-
compatibility (MHC) locus on chromosome 6 ultimately affect the
expression of TCR genes on chromosomes 7 and 148. Most likely, these
trans-eQTLs alter which antigenic peptides can be bound and pre-
sented by HLA, which in turn shapes the thymic selection of TCRs9.

eQTLs may help to identify genes that mediate genetic risk for
autoimmune disease. For example, rs3087243 is a single-nucleotide
polymorphism (SNP) (reference allele: “G”, alternate allele: “A”) near
the gene for CTLA4, a vital negative regulator of T cell activation10. An
individual can have 0, 1, or 2 copies of the “G” allele. Since each addi-
tional copy of the “G” allele corresponds to a decrease in the expres-
sion of the nearby gene CTLA411,12, rs3087243 is a cis-eQTL. The “G”
allele for rs3087243 not only corresponds to decreased expression of
CTLA4, but also elevated risk for Graves’ disease, rheumatoid arthritis
(RA), and type-1 diabetes (T1D)13–15. This overlap at rs3087243 suggests
that decreased expression of CTLA4 is in part responsible for auto-
immune destruction in Graves’, RA, andT1D. Analogously, trans-eQTLs
for TCR genes raise the possibility that the MHC locus shapes risk for
autoimmunity by promoting the thymic selection of autoreactive
TCRs9. In this review, we will examine recent approaches to identify T
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cell QTLs, and discuss how to connect numerous types of T cell QTLs
to autoimmune disease.

Expression quantitative trait loci (eQTLs): the
importance of T cell state
Unfortunately, most risk variants for autoimmune disease do not
coincide with the eQTLs identified through bulk RNA sequencing
(RNAseq)16. While rs3087243 clearly implicates CTLA4 gene expression
in RA pathogenesis, cases such as these are quite infrequent.
Accounting for linkage disequilibrium (LD), only 25% of neighboring
(<100 kb) autoimmune and eQTL associations actually appear to share
underlying genetic causes (“statistical colocalization”), using bulk
RNAseq data16.

It is possible that eQTLs relevant to disease only occur in some
cells of a given sample. If so, eQTL effects within thesepathogenic cells
may become diluted and undetectable when all cell types are mixed
together for bulk RNAseq. Consistent with this hypothesis, dividing
bulk RNAseq tissue samples into constituent cell types by flow
cytometry17 or in silico deconvolution18 has nominated more eQTLs
that are significantly enriched for disease loci.

Single-cell RNAseq (scRNAseq) data allows researchers to accu-
rately categorize and analyze the different cell types present in a
sample. With scRNAseq, recent studies have confirmed that eQTL
effects can depend on the type of cell under study. For example, in a
study of memory T cells sampled from the peripheral blood of 259
individuals, we observed that additional copies of the “G” allele for the
RA-associated SNP rs7731626 corresponded to a larger increase in
IL6ST expression in regulatory T (Treg) cells compared to non-
regulatory T cells12 (Fig. 1a). Evidence that the functional con-
sequences of rs7731626maybe concentrated inTreg cells could extend
to many other autoimmune-associated SNPs, which are known to be
enriched in certain naïve Treg-specific regulatory regions of the

genome1,2,19. Treg cells, while highly relevant to immune-mediated dis-
ease, constitute a rare cell state (<5% of peripheral T cells20). Thus, it
will be important to continue focused isolation and analysis of the Treg

cell population for eQTL discovery21.
There aremultipleways to represent how eQTL effects depend on

transcriptional context. Our research group uses dimensionality
reduction to identify groups of genes whose expression changes
together, forming a gradient across cells. These transcriptional gra-
dients often approximate the extent of a known T cell state, such
as cytotoxicity. Our research group then identifies cell-state-
dependent eQTLs, where a genotype’s effect on the expression of a
gene varies along the transcriptional gradient12. However, because
transcriptional gradients may correlate with key marker genes, it is
sometimes possible to reframe cell-state-dependent eQTLs as co-
expression QTLs (co-eQTLs)22,23. In the co-eQTL framing, the correla-
tion in expression between gene A and gene B depends on a genotype.
An alternative way to describe this phenomenon is that the genotype’s
effect on gene A depends on the expression of gene B. If gene B is
expressed in a specific cell state, cell-state-dependent eQTL and co-
eQTL are synonymous terms. If gene B does not tag a cell state, the
locus is not a cell-state-dependent eQTL, but would still be considered
a co-eQTL. The co-eQTL framework, therefore, offers a broader defi-
nition of gene expression interaction. The vast number of possible
pairings between genes and their regulatory loci precludes compre-
hensive detection of co-eQTLs, which would be required to estimate
the proportion of eQTLs that are co-eQTLs. Alternatively, by focusing
on cell states rather than individual genes, we were able to estimate
that approximately one third (33%) of eQTLs in T cells depend on
transcriptional state12.

Recent studies have estimated that a substantial proportion of
eQTLs depends on cell state, and that this proportion increases when
considering autoimmune disease loci. Soskic*, Cano-Gamez* et al.24

Fig. 1 | A schematic of quantitative trait loci (QTLs) affecting T cell functional
traits. aAT cell state-dependent expressionQTL (eQTL) at rs7731626 is depicted in
two different T cells: one in a conventional T cell state (Tconv, left) and one in a
regulatory T cell state (Treg, right). Based on eQTL studies, we expect the “G” risk
allele for rheumatoid arthritis andmultiple sclerosis to increase IL6ST expression to
a greater extent in the Treg compared to the Tconv. b The associated molecular trait
for a cdr3QTL is amino acid usage in the T cell receptor (TCR). In this antigen

presenting cell (APC),HLA-DRB1 is transcribed, translated, and loaded with antigen
while harboring a genetic variant at amino acid position 13. This genetic variant in
HLA-DRB1 appears to affect amino acid usage in the TCR, by influencing which
T cells survive in the thymus. The blue star indicates the location of the cdr3QTL, at
the level of HLA-DRB1 DNA as well as HLA-DRB1 protein. QTL quantitative trait
locus, ref reference, alt alternative, CDR3 complementarity determining region 3,
MHC major histocompatibility complex. Created with BioRender.com.
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profiled CD4+ T cells over a time course of anti-CD3/anti-
CD28 stimulation, and found that 2265 of 6407 (35%) eQTLs depended
on the activation state of the T cell. They then queried whether each
eQTL statistically colocalized with genetic risk for immune-mediated
disease. 60% of the colocalizing eQTLs were specific to T cell activa-
tion, and would have been missed if they did not account for this cell
state dependence24. In a similar study, Yazar*, Alquicira-Hernandez*,
Wing* et al.25 applied scRNAseq to PBMCs at steady state, and scanned
for eQTLs that colocalized with genetic risk for autoimmune disease.
They observed that 68% of the T cell eQTLs colocalizing with disease
loci were detected in only one of the T cell states25. Evidently,
accounting for T cell states has substantially enhanced disease-
relevant eQTL discovery in T cells. The majority of autoimmune
GWAS associations, however, still remain unexplained.

Genetic regulation of T cell functions
While gene expression is an important molecular trait, any quantity
that varies across people and is measured by molecular assays can be
studied as a quantitative molecular trait. Expansion of multimodal
single cell technologies has prompted an ever-growing list of quanti-
tative molecular traits and genomic loci that regulate them. Other
types of QTLs are steadily gaining recognition, such as chromatin
accessibility QTLs (caQTLs), histone modification QTLs (hQTLs), DNA
methylation QTLs (meQTLs), splicing QTLs (sQTLs), and protein QTLs
(pQTLs) (Fig. 2). These QTLs are conceptually analogous to eQTLs,
with gene expression substituted for some other molecular trait; par-
ticular approaches are comprehensively reviewed elsewhere26. We and
others have identified cell morphologyQTLs (cmQTLs)27 bymeasuring
thousands of morphological phenotypes (e.g. size of mitochondria,
granularity of endoplasmic reticulum) in vitro through multiplexed
staining and imaging. cmQTLs can connect genetic variants to cellular
function in human-derived, disease-relevant cell types.

In general, QTL studies query thousands of molecular traits
simultaneously. Such investigations are relatively unbiased, data-dri-
ven, and can be readily applied to any cell type. However, the number
of hypotheses considered imposes a substantial statistical multiple
testing burden. As a result, studies often limit eQTL searches to SNPs
within 1 Mb of the target gene (cis-eQTLs), and are only powered to
detect eQTLs with relatively large effects28.

For T cells, canwesearch forQTLs in away that takes advantageof
known T cell functions? In the 1970’s, the observation that activated

lymphocytes secrete proteins which markedly impact other lympho-
cytes spurred a series of supernatant studies, identifying soluble
cytokines29. These formative studies led to a common framework, in
which the immune system can be understood through cytokine sig-
naling. Cytokine signaling facilitates important T cell functions,
including the attack of foreign antigens—or self-antigens, in the case of
autoimmunity. Thus, identifying cytokine QTLs (cQTLs) may be an
efficient and biologically interpretable way to search for disease-
relevant molecular traits.

In a recent demonstration of the power of cQTLs, Nath et al.30

analyzed 11 circulating cytokines, each of which may functionally
represent the coordinated activity of thousands of genes. By starting
with a curated set of molecular traits (n = 11), Nath et al. had enough
statistical power to scan the entire genome and find genetic regulation
in trans. Rather than applying a univariate GWAS framework to each of
the 11 cytokines separately, Nath et al. considered the 11 cytokines
jointly through a multivariate GWAS framework. The multivariate fra-
mework finds an optimal linear combination of input traits (cytokine
levels) regulated by each locus, a powerful strategy to detect QTLs
from potentially redundant trait measurements. This approach iden-
tified eight cQTLs, one of which significantly colocalizes with genetic
risk for ulcerative colitis (UC)30.

An alternative way to leverage immunological knowledge in the
search for disease-relevant QTLs is to focus on cell state abundance
QTLs (csaQTLs). A recent large-scale csaQTL study31 analyzed 118
immune cell populations isolated by canonical surfacemarkers in 3357
individuals. Orrù et al. queried csaQTLs as well as pQTLs and cmQTLs,
resulting in 731 molecular traits. Of the 122 significant association
signals, 51 colocalized with genetic risk for at least one autoimmune
disease. For example, rs72928038 near BACH2 was associated with
increased CD28 expression on CD45RA+ cells (predominantly naïve
T cells) and was in high LDwith risk alleles for autoimmune thyroiditis,
vitiligo, multiple sclerosis (MS) and T1D. Focusing on T cell sub-
populations rather than gene expression helps to reduce the number
of molecular traits under investigation, thereby achieving enough
statistical power to detect some QTLs in trans. In fact, the majority of
significant associations reported by Orrù et al. corresponded to SNPs
and cell state protein markers from different chromosomes31. How-
ever, this sort of study design is restricted to pre-specified T cell states
and functions, since protein markers and gates need to be defined a
priori.

Fig. 2 | Quantitative Trait Loci (QTLs) can regulate diverse molecular pheno-
types. Schematic illustrating molecular phenotypes that could be affected by a
hypothetical quantitative trait locus (QTL). At this hypothetical locus, an individual
may have a “TT” genotype (in purple), an “AA” genotype (in orange), or be het-
erozygous. Along the top row, we see molecular consequences of genotype “TT”.
Along the bottom row, we see molecular consequences of genotype “AA.” We
depict six types of QTLs as examples; this set of six is not comprehensive. From left
to right: For the hypothetical caQTL, individuals with the “TT” genotype exhibit
more closed chromatin than individuals with the “AA” genotype. For the hypo-
thetical meQTL, CpG site X tends to be methylated in individuals with the “TT”
genotype, but tends to be unmethylated in individuals with the “AA” genotype. For

the hypothetical eQTL, individuals with the “TT” genotype exhibit greater expres-
sion of gene Y compared to individuals with the “AA” genotype. For the hypothe-
tical sQTL, RNA splicing in individuals with the “TT” genotype retains all exons in
the transcript of gene Y, while RNA splicing in individuals with the “AA” genotype
excludes themiddle exon from the transcript of gene Y. For the hypothetical cQTL,
individuals with the “TT” genotype exhibit higher levels of cytokine Z (in blue)
compared to individuals with the “AA” genotype. For the hypothetical csaQTL,
individuals with the “TT” genotype exhibit a greater relative abundance of the
yellow cell state compared to individuals with the “AA” genotype. Me methylation,
TF transcription factor. Created with Biorender.com.
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It is now possible to define cell states in the context of high-
dimensional single-cell data. For example, RNA sequencing has
enabled data-driven strategies to refine our understanding of T cell
states. We have found canonical correlation analysis between mRNA
and protein to be effective in identifying T cell states that correspond
to immunologically relevant surface proteins12,32. Szabo et al.33 used a
variant of non-negative matrix factorization (NMF) to identify seven
gene expressionmodules in T cells (e.g. cytotoxicity, proliferation, and
IFN response). In a recent study, Jagadeesh et al.34 identified gene
programs through NMF, and found significant heritability enrichment
for celiac disease in the putative enhancers of a T cell program char-
acterized by ETS1, CD247, and CD28. Close collaboration between
experimental, statistical, and computational scientists will be essential
to interpret genemodules suggested bymodern scRNAseq datasets in
the context of long-established T cell functions. Using these gene
modules to represent T cell state may uncover more eQTLs that are
context-dependent. Ongoing work in our group seeks to define the
genetic regulation of these functional modules, and to what extent
they colocalize with autoimmune disease risk.

Genetic regulation of the immunological synapse
(HLA-TCR)
One of themost critical T cell functions is antigen recognition through
the immunological synapse35. Fragments of antigen presented on HLA
molecules are recognized by the TCR expressed on the surface of
T cells. On both sides of the immunological synapse, genetic variation
has important consequences. On the antigen presentation side, the
MHC locus, which encodes HLA proteins, is among the most poly-
morphic in the human genome. Germline genetic variation in theMHC
locus alters the sequence of HLA proteins, which in turn constrains
which antigenic peptides are presented to the immune system. On the
T cell side, the gene segments that encode the TCR somatically rear-
range separately in each T cell. Newly rearranged TCRs are screened in
the thymus, where their affinity to peptides presented on the host’s
HLA molecules must fall within an optimal range that allows recogni-
tion of foreign antigen whilst limiting self-reactivity36.

How do HLA variants influence thymic selection? Recent work by
our group9 cast TCR amino acid usage as a quantitativemolecular trait,
and used multivariate regression to search for QTLs in the MHC locus.

Due to extreme linkage disequilibrium, the MHC locus is routinely
excluded from QTL studies. However, with careful statistical approa-
ches designed to capture the effects of HLA haplotypes37, the MHC
locus can be robustly investigated for QTLs38. In our cdr3-QTL study9,
the strongest associations linked amino acid usage in CDR3, the
antigen-recognizing region of the TCR, to HLA-DRB1 amino acid
position 13 (“cdr3QTL”, Fig. 1b). HLA-DRB1 amino acid position 13
confers a large fraction of genetic risk for both RA, T1D, and other
autoimmune diseases. cdr3QTLs raise the intriguing possibility that
the thymic selection of autoreactive TCRs plays a critical role in
autoimmune disease.

As studies from our group and others identify the effect of
disease alleles on TCR amino acids, it becomes important to
understand how those TCR amino acid changes alter antigen
recognition, the likelihood of T cell activation, and the resultant T
cell transcriptional state. Predicting cognate antigen from TCR
sequence is a well-recognized problem, currently limited by avail-
able training data. Progress in this space will depend critically on
whether new TCR de-orphanization technologies39 can expand the
available training data to capture the range of antigens recognized
by each TCR. Our recent work40,41 has demonstrated a role for TCR
amino acid features in guiding differentiation of memory and reg-
ulatory T cell states. Perhaps, genetic variants in the MHC region
that confer risk for autoimmune disease promote the thymic
selection of TCRs inclined toward an effector memory T cell state.
Consistent with this hypothesis, Orrù et al.31 reported a csaQTL for
the relative proportion of effector memory CD4+ T cells near HLA-
DRB1 (rs9271536).

Future directions
Building a functional interpretation of a GWAS largely consists of two
tasks: linking loci to genes, and identifying the critical cell state(s).
Identifying disease-critical cell states based on GWAS is a complex
challenge, but recent progress has been made with multimodal
scATAC-RNAseq42. Efforts to link loci to genes have largely focused on
genetic variation between individuals, but limited sample sizes restrict
the power of these approaches. As a promising alternative approach,
we and others have recently leveraged variation between cells in terms
of chromatin accessibility (multimodal scATAC-RNAseq) to construct

Table 1 | Useful resources for the study and interpretation of immune cell QTLs

Name Description URL

ImmPort51 Data sharing portal for published data, encompassing transcriptomic, metabolomic, proteomic, and flow
cytometry-based profiling of immune cells

https://www.immport.
org/home

dbSNP52 Broad collection of genetic polymorphisms, documenting the rsID number, genomic position, reference and
alternate alleles, and possible clinical significance of each polymorphism

https://www.ncbi.nlm.nih.
gov/snp/

GWAS Catalog53 Database with interactive browser for GWAS summary statistics, aggregating results from over 50,000 GWA
studies.

https://www.ebi.ac.uk/gwas/

eQTL Catalogue54 eQTL and sQTL summary statistics from uniform processing of 32 published datasets, including bulk RNAseq
and scRNAseq.

https://www.ebi.ac.uk/eqtl/

GTEx55 Portal Database with interactive browser for the Genotype-Tissue Expression project, which applied bulk RNAseq to
54 non-diseased tissue sites from nearly 1000 individuals. Includes scRNAseq samples from 16 donors for 8
tissues. Open access to eQTL summary statistics and gene count data; access to sequencing data requires
application through dbGaP

https://gtexportal.org/home/

DICE17 Database Database with interactive browser for the DICE project, which applied bulk RNAseq to 15 FACS-sorted immune
cell states (including 11 T cell states) from91 individuals. Interactive browser allowsusers to query by gene, rsID,
or cell state to collect, visualize and download cell-state-dependent eQTL summary statistics.

https://dice-database.org

IMGT56 The International Immunogenetics Information System. Documents
international nomenclature, nucleotide and amino acid sequences for HLA, TCR and Immunoglobulin genes
across 38 species

https://www.imgt.org/

QTLbase257 Curated summary statistics from 377 independent QTL studies and 22 types of molecular QTLs, including
eQTLs, pQTLs, caQTLs, and sQTLs.

http://mulinlab.org/qtlbase

scQTLbase58 Database with interactive browser for eQTLs identified in single-cell datasets.
Includes aweb tool that runs Rpackage “coloc”59 to test for colocalizationbetween the existing single-cellQTLs
and user-supplied GWAS summary statistics for a trait of interest.

http://bioinfo.szbl.ac.cn/
scQTLbase
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gene-enhancer maps43,44 that can link GWAS variants to causal genes
and cell types.

High-throughput screening technologies may drastically expand
our understanding of genetic risk variants. Massively parallel reporter
assays (MPRA) can simultaneously screen thousands of GWAS variants
for regulatory activity, and has recently pinpointed which RA-
associated variant in the BACH2 locus actually reduces expression of
BACH2, promoting effector T cell differentiation45. However, MPRA
assays do not account for chromatin inaccessibility, leading to
potential false positive results. CRISPR-Cas9 screening approaches, on
the other hand, can incorporate chromatin accessibility profiling, and
have recently been applied to primary T cells46. Future work should
extend these genome editing approaches to introduce disease-
relevant genetic variants in primary T cells in a high-throughput
manner, and characterize the molecular traits that result. This would
avoid the complexity of linkage between potential causal variants.
Unconstrained by natural selection, these technologies could open the
door to molecular characterization of highly pathogenic variants.

Molecular characterizations of disease-associated loci will con-
tinue to gain complexity (Table 1). Synthesizing results across different
types of QTLs presents a new challenge that will soon become critical.
For example, how should we interpret a disease-associated locus that
appears to regulate the chromatin accessibility of a gene (caQTL), but
not the gene’s expression (cis-eQTL)? Bossini-Castillo et al. suggest
that we have not yet identified the relevant cell state for the cis-eQTL21.
Another possibility, however, is that the locus is a cis-eQTL, but its
association test just falls short of statistical significance due to limited
power. Statistical methods that boost colocalization power by inte-
grating evidence across multiple ʻ-omicʼ layers are starting to emerge.
The Bayesian method OPERA47, for example, identified 58% more
genes relevant to complex traits after considering six types of QTLs
(e.g. caQTLs, mQTLs, pQTLs) in conjunction with eQTLs. We are eager
to see this approach extended to T cell functional traits, with appro-
priate modeling of cell state dependence.

Tissue-resident T cells may play a crucial role in the development
of autoimmunity. Studies examining T cells from inflamed tissues have
identified disease-relevant T cell states that were not previously
appreciated: for example, IL17+ CD8T cells in UC48 andGZMK+ T cells in
RA49. Single-cell profiling of systemic lupus erythematosus (SLE)
patient samples recently identified specific regulation of ORMDL3 at a
previously difficult to annotate SLE locus50. Hence additional emphasis
on collecting tissue samples from patients with autoimmune disease
and directly sampling tissue sites of inflammation is critical. Similarly,
new studies should query genomic variants that modify the cellular
response to disease-relevant stimuli. Identifying multiple types of
QTLs (eQTLs, pQTLs, cdr3QTLs) relevant to T cell function in inflamed
tissue will bring us closer to understanding how genetic variation
shapes risk for autoimmune disease.
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