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Understanding the interactions between small, submicrometer-sized colloidal
particles is crucial for numerous scientific disciplines and technological
applications. In this study, we employ optical tweezers as a powerful tool to
investigate these interactions. We utilize a full image reconstruction technique
to achieve high precision in characterizing particle pairs that enable
nanometer-scale measurement of their positions. This approach captures
intricate details and provides a comprehensive understanding of the spatial
arrangement between particles, overcoming previous limitations in resolu-
tion. Moreover, our research demonstrates that properly accounting for
optical binding forces to determine the intrinsic interaction potential is vital.
We employ a discrete dipole approximation approach to calculate optical
binding potentials and achieve a good agreement between the calculated and
observed binding forces. We incorporate the findings from these simulations
into the assessment of the intrinsic interaction potentials and validate our
methodology by using short-range depletion attraction induced by micelles as

an example.

Directly measuring interaction potentials between colloidal particles is
essential for scientific studies and practical applications'. Under-
standing the nature and strength of particle interactions provides
valuable insights into the behavior and properties of colloidal systems
and enables advances in various scientific disciplines and technologi-
cal fields. From a scientific perspective, studying the interaction
potentials between colloidal particles contributes to our fundamental
understanding of the forces and mechanisms that govern their
assembly, aggregation, and self-organization®. It deciphers the intri-
cate interplay of various physical and chemical factors such as elec-
trostatics, van der Waals forces, steric effects, depletion forces, and
solvent properties®>. By accurately measuring these potentials,
researchers gain insights into the stability, phase behavior, and struc-
tural transformations of colloidal systems, paving the way for devel-
oping theoretical and predictive models®’.

Beyond basic research, measuring interaction potentials has
immense practical significance for applications in various fields.

Colloidal systems have wide-ranging applications in materials science,
food, pharmaceuticals, biotechnology, and nanotechnology®’.
Understanding and controlling the interactions between colloidal
particles is crucial for developing and optimizing the properties and
functions of colloid-based materials, including advanced composites,
drug delivery systems, photonic materials, and structural colors'. By
accurately characterizing the interaction potentials, researchers can
tailor the properties of colloidal systems to achieve desired outcomes,
such as increased stability, controlled self-assembly, and tailored
rheological behaviour”. Furthermore, the ability to measure and
manipulate interaction potentials in colloidal systems has implications
for developing new technologies. For example, colloid-based sensors,
actuators, and microfluidic devices rely on precise control of inter-
particle or particle-wall interactions to achieve desired functions and
performance* ™,

Scattering and microscopy techniques are generally unable to
measure the interactions between colloidal particles directly.
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However, they can provide insights into the structure and spatial
correlations within large particle assemblies, allowing for extracting
the pair correlation function and the potential of mean forces®.
Notably, there is an exception regarding direct light scattering mea-
surements of forces between paramagnetic colloids, where the ani-
sotropy of dipole forces causes particles to form chains'. The Atomic
Force Microscope (AFM) and the Surface Force Apparatus (SFA) offer a
means to probe the forces between surfaces coated with colloidal
particles directly or by attaching a colloid to the tip of an AFM"'%, Total
internal reflection microscopy provides a high-precision method to
measure the interaction potential between a colloidal particle and a
wall*?,

One of the most versatile approaches for directly measuring
particle-particle interaction potentials is through optical tweezers?® %,
These techniques employ focused laser beams to trap and manipulate
one or multiple colloidal particles. By tracking the positions of the
trapped particles and analyzing their thermal fluctuations, one can
infer the inter-particle forces and derive the corresponding interaction
potentials. Optical tweezers offer flexibility and enable measurements
over a wide range of conditions, making them a valuable tool in
studying colloidal interactions?2°,

Previously, the measurement of colloidal interaction potentials
using optical tweezers was limited to center-to-center distances larger
than the wavelength of light. This limitation was addressed by tuning
long-range interaction potentials when studying small particles** or
using particles with diameters larger than the wavelength?. However,
both choices severely restrict the kind of colloidal systems that can be
studied. Two main challenges existed in studying interactions between

smaller particles at short distances. Firstly, accurately tracking small
particles was challenging due to the overlap of their (diffraction-lim-
ited) images, making it difficult to localize or track the particle centers
precisely; see also Fig. 17, As a consequence, previous tweezer
measurements encountered issues with tracking errors, which resulted
in biases in certain experiments and raised doubts about the reliability
of the outcomes”. Secondly, optical binding forces that arise from
scattering become significant for particles smaller than the wavelength
of light®*2, Although these forces are well-known, their exact model-
ing in the present framework has not been attempted so far’®. We
address both of these issues in the present work. Our method relies on
full image reconstruction for particle tracking and quantitative mod-
eling of optical binding forces using a discrete dipole approximation
(DDA)*. It enables reliable and meaningful measurements of colloidal
interaction potentials in previously unexplored parameter regimes by
overcoming the challenges of precise particle tracking and accounting
for optical binding forces.

Results

Assessing colloidal interactions with optical tweezers

We study common spherical colloidal polystyrene beads, radius R,
measuring 2R=500+20nm and 2R=710+20nm in diameter. Our
optical tweezer setup configuration employs a tightly focused near-
infrared laser with a 1=1064 nm wavelength. In optical tweezer con-
figurations, such near-infrared lasers are frequently employed owing
to their cost-effectiveness, minimal absorption in water, and the
advantage of their wavelength not overlapping with the spectra of
common fluorophores within the visible range. In our experiment the
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Fig. 1| Comparison of different particle tracking methods and their accuracy.
a Conventional single particle tracking algorithms utilize a particle-sized filter to
blur the particle image, followed by fitting the blurred image with a Gaussian to
determine the center position *>*. Image overlap introduces tracking errors when
tracking multiple particles in close proximity leading to a systematic error in the
determined position. The plot shows the tracking error as a function of the distance
between a pair of particles, polystyrene beads of size (diameter) 2R=500 nm. b A
masking approach, considering only the parts of the image that are non-over-
lapping, can be employed to improve the tracking accuracy”’. While the masking
approach outperforms the conventional method, it becomes ineffective for small
particles where the residual area reduces to zero. ¢ An alternative, model-
independent approach for tracking two or more particles involves generating a
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synthetic image of the particle assembly using the individual particles' known
image or shape function. The shape function can be acquired by imaging the par-
ticles before bringing them close together. The difference between the measured
image (upper panel) and the reconstructed image (lower panel) is minimized by
varying the particle positions. The arrows on the images indicate the corresponding
intensity gradient. The full reconstruction method shows minimal bias across the
entire distance range. The positional accuracy is about + 2 nm or <107R close to
contact, comparable to the statistical noise limiting the tracking precision (indi-
cated by the shaded area). d The color-coded map displays pixel-by-pixel the
residual (target error function, Eq. (3)), for the case with the best match. e The mean
of the residuals as a function of the mismatch between a chosen and optimal
position where the residuals become minimal. Scale bars are 1 pm.
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Fig. 2 | Comparison of experimental and numerical results for the optical
binding potential Uog(r). The symbols denote experimental data U(r) - Urap(r)
with Uy, (r) >~ 0 (hard-spheres). The solid lines are derived from numerical DDA
calculations as explained in the methods section. Dashed lines are from a fit with Eq.
(2). a Optical binding potentials for a pair of 2R = 500 nm polystyrene beads with a
refractive index of n, =1.59 in water (5 mM KCl, nop =1.33). b Same comparison for a
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larger particle size of 2R =710 nm. The OB-potential is well-described by Eq. (2),
where r denotes the center-to-center distance between the particles, A represents
the wavelength and a ~ 0.8. The A and ¢ values obtained from the best fit are
[2kpT,1.3]; [3ksT,2.8] (left panel, || and 1) and [1.5k;T,0.1]; [2.25k5T,1.2] (right
panel, || and L1).

laser is directed into the sample cell using a holographic spatial light
modulator (SLM) arrangement, previously described in ***. Under
typical experimental conditions, we estimate the laser power in the
focal point to be about 100-150 milliwatts. We note that the laser
power settings cannot be selected arbitrarily but are directly tied to the
forces necessary for particle trapping. If the trapping force becomes
too strong, it restricts the particle’s Brownian motion, which, in turn,
hinders our ability to investigate pairwise interactions. Consequently,
the optical binding forces are also limited to a narrow range of possible
adjustments.

To ascertain the positions of particles in close proximity, we uti-
lize a comprehensive image reconstruction approach described in the
methods section. Briefly, to obtain the image of a single particle, we
trap and observe it, then determine its center position using the
standard centroid tracking method”. Averaging over 1000 images
allows us to obtain a low-noise image of the particle. To determine the
precise center position of two particles nearby, we utilize numerical
simulations to generate images corresponding to various center-to-
center distances r. These simulated images are then compared to the
experimentally captured images as shown in Fig. 1c. Minimizing the
difference between images by varying the particle’s position allows us
to achieve optimal image reconstruction, enabling accurate determi-
nation of the particles’ positions, Fig. le.

In thermal equilibrium, the probability of finding particles at a
distance r is related to the pair interaction potential U(r) through a
Boltzmann distribution: P (r) o exp[—U(r)/kgT]. This enables us to
determine U(r)/kgT by analyzing the histogram of measured particle
distances. The resulting interaction potential, U(r), can be separated
into three components:

U(r) = Uing (1) + Ugrap(r) + Uog(r), @D

where Uy, (r) represents the intrinsic interaction potential of interest
between the particles, Uy,p(r) corresponds to the well-known para-
bolic trapping potential, and Uog(r) describes the optical forces that
emerge when the two particles are brought close to each other. Both
Urrap(r) and Ugg(r) describe optical forces, but the distinction lies in the
fact that Uy,p(r) can be determined by studying the individual particles
and thus can be easily subtracted. On the other hand, Uog(r) only arises
when the particles are in close proximity and cannot be eliminated
using conventional approaches. Consequently, most experiments have
been conducted using particles larger than the wavelength of the laser
light, where optical binding forces are small and were thus ignored. It is
important to note that extensive literature exists on observing and

modeling optical binding forces between tiny particles that otherwise
interact as hard spheres®**.. In our work, we bridge the fields of optical
binding and colloidal interparticle force measurements, allowing us to
extract complex pair potentials for submicrometer-sized particles with
interaction ranges spanning tens of nanometers.

We first examine polystyrene beads that exhibit repulsive inter-
actions governed by a nearly hard-sphere potential. To achieve this, we
suspend polystyrene beads in water containing an electrolyte con-
centration of 5 mM KCI, which results in a Debye screening length of
Ap=~4.3 nm. Studying the interactions between particles behaving as
hard spheres at greater distances enables the experimental determi-
nation of the optical binding potential, which we can then compare to
numerical calculations. Figure 2 displays the experimental data for
U(r) — Urrap(r) obtained for two different particle sizes. It is important to
note that the interaction potential is also influenced by the polariza-
tion of light in the optical tweezer. Using a retardation half-wave plate,
we can adjust the polarization parallel or perpendicular to the long axis
of the trap. Symbols of different colors represent the measured data
sets for both cases. It is evident that the optical binding potential
oscillates with an amplitude on the scale of several kgT, and its binding
energy gradually diminishes as the length scale increases to the
micrometer level. Furthermore, selecting the polarization of the elec-
tric field of the tweezer to be parallel to its long axis reduces the effect,
which is desirable.

Quantifying optical binding potentials

To quantify the interaction energy of optical binding, we implement a
full discrete dipole approximation (DDA) approach, as explained in the
Methods section. The DDA predictions are depicted as solid lines in
Fig. 2. We do not have exact knowledge of the power density of the
incident light fields, so we adjust it to match the experimental data.
Apart from this adjustment and a small level of uncertainty related to
the particle radius, our calculations do not involve any tunable para-
meters and exhibit quantitative agreement with the experimental data
as shown in Fig. 2.

In the presence of an additional potential of interest, with a finite
range, the data at short distances, after subtracting Usrap(r), will consist
of a sum of U, (r) + Ugg(r). Although the DDA approach demonstrates
excellent performance, it would be advantageous to have a straight-
forward analytical expression for describing the optical binding
potential at large r - values and then extrapolating it to smaller dis-
tances. In the subsequent text, we present and validate such an
approach. The optical binding potential is expected to oscillate with a
period determined by the wavelength (1=800 nm in water) and decay
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Fig. 3 | Total interaction potential obtained from optical tweezer experiments
in the absence and the presence of attraction. Panel (a): Grey-filled circles
denote experimental data for U(r) obtained for polystyrene beads with a diameter
of 2R =500 nm suspended in a water-based buffer (PBS 1X, Ap = 0.7 nm)*°. The blue
dash-dotted line shows the optical tweezer (OT) harmonic potential Ugap(r)
determined experimentally. The red solid line shows the fit of the optical binding
potential Ugap(r) + Uog(r) using Eq. (2) and a, ¢-values taken from Fig. 2. Uog(r)
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from the fit is shown as a purple dashed line. Subtracting both contributions (OT
+0B), we obtain the intrinsic particle-particle (PP) potential U (r) shown by green
solid squares. These results reproduce the data shown in Fig. 2a) (|| polarization).
b Same analysis after adding 2 mM of the blockcopolymer pluronic F108 which are
forming micelles and induce depletion attraction. The dash-dotted lines have been
vertically offset for clarity. In both cases, the laser power settings differ, impacting
the parameter ‘A’ in Eq. (2).

inversely with the distance between particles. One simple approach
would be to use the Ansatz Uqg(r) =A cos[(2mr/A+ )] /r. However, it
is known that this Ansatz fails when considering distances comparable
to the particle diameter, 2R. In light of this, we explored an alternative
expression

Uog(r)=Acos[(2mr/A+ )] /(r/2R — a) )
The adjustable parameters for the fit are the amplitude, A, the phase, ¢
and an empirical parameter a of order one. We demonstrate the
excellent agreement between the experimental data and our semi-
empiric expression for Upg(r) in Fig. 2. From the fit, we derived a value
of a approximately equal to 0.8, and ¢ values contingent on the size
and polarization. The specific values are provided in the caption of
Fig. 2. Consequently, throughout this study on polystyrene particles in
water, we maintain these determined values constant.

Accurate determination of intrinsic potentials

Having successfully modeled Uog(r), we investigate a system of inter-
est exhibiting short-range attraction on the order of a few kgT. To
achieve this, we introduce the block-copolymer Pluronic F108 as a
depletant. Under the specified conditions, F108 creates spherical
micelles that induce attractive interactions between the polystyrene
beads. In Fig. 3, we present experimental data for polystyrene particles
with a diameter of 500 nm. The particles are suspended in a water-
based buffer solution (PBS 1X) containing 2 mM pluronic F108 at a
temperature of T=40". The polarization of the electric field of the
tweezers is set to be parallel to its long axis to minimize the amplitude
of UOB(r).

First, we subtract the trapping potential Uy ,p(r). Subsequently,
we fit the resulting potential at distances r>2R, as illustrated in
Fig. 3. Finally, we subtract the optical binding potential
Upg(r)=Acos[(2mr/A+¢)]/(r/2R—0.8) to extract the intrinsic
potential. The results depicted in Fig. 4, are obtained for two different
particle sizes and two micellar concentrations above the critical
micelle concentration (CMC).

Depletion forces arise in mixtures of large and small colloids, such
as micelles or non-adsorbing polymers, where the small colloids act as
depletants. The distance between the surfaces of the particles is
denoted as h. Whenever h is smaller than the diameter of the depletant
micelle, the depletant particles are expelled from the region between
the large spheres. Consequently, the concentration of depletant

particles becomes reduced in this region compared to the bulk, lead-
ing to an effective osmotic pressure that causes a net attraction
between the large spheres. Asakura and Oosawa provided a quantita-
tive explanation for this phenomenon®. According to their calculation,
the change in the free energy can be expressed as
Uh)= — %nnR(dm - h)z, in the case of d,, < R, where n represents the
number density of the depletant, A is the surface-surface distance of
the large particles, and d,,, is the diameter of the depletant micelle. The
Asakura-Oosawa (AO) model considers the depletant (small) particles
to behave like an ideal gas, and therefore, it is most accurate when
applied to low to moderate particle densities. The interaction potential
becomes oscillatory at larger depletant concentrations due to the
liquid structuring®**, see Supplementary Material.

We observe a remarkable level of agreement between the mea-
sured potential U;,..(r) and the theoretical model for depletion inter-
actions among the polystyrene beads. The parameters of the Asakura-
Osawa (AO) model consist of a micellar diameter of approximately 22
nanometers, as determined through dynamic light scattering, and an
aggregation number of 45 polymers per micelle. This aggregation
number aligns closely with the value reported in the literature, as
indicated by reference *°. To accommodate minor fluctuations in the
size of the larger polystyrene beads, slight adjustments were necessary
concerning the center-to-center distance between the particles d, as
illustrated in Fig. 4.

Discussion

In this study, we have employed optical tweezers as a powerful tool to
investigate the interaction potential between submicron-sized colloi-
dal particles with short-range interactions. Such interactions are
common in model systems, practical applications, and natural sys-
tems. Therefore, it is crucial to characterize interactions between
particles with subwavelength sizes, typically around 300-700 nm in
diameter (or less), interacting on length scales of 20-40 nm. Pre-
viously, however, this specific configuration space has been largely
unexplored due to limitations in available techniques, particularly
optical tweezer technology. In this article we demonstrated that
optical binding forces are important and must be considered when
describing the total interaction potential and deriving the intrinsic
potential, which refers to the potential in the absence of light fields.
Using a discrete dipole model, we quantitatively describe binding
forces for various particle sizes and incident wave polarizations. Based
on these findings, we propose a straightforward analytical expression
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Fig. 4 | Depletion interaction potential between polystyrene beads in Pluronic
F108 (1 mM and 2 mM) water-based (PBS 1X) solutions (7 =40 °C). a, b We show
experimental results for U(r) (squares and circles) for two different particle sizes,
2R ~500 nm and 2R ~ 710 nm. Every experimental dataset was obtained by
selecting a distinct pair of particles. Dash-dotted lines show predictions by the
Asakura-Oosawa model, calculated using U(h) = — %nnR(d,,, — h)?, where nis the
number density of the depletant micelles, A is the surface-surface distance. h=0
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sets the contact distance between the particle’s centers d ~ 2R. We find a best fit for
d=505nm (ImM) and d =502 nm (2mM) in panel (a) and d =722 nm (1 mM) and
d=715nm (2 mM) in panel (b). d,, =22 nm, the diameter of the depletant micelles,
as obtained from dynamic light scattering (DLS). n is calculated from the pluronic
F108 concentration assuming an aggregation number of 45 for a best fit. Solid lines
show the Asakura-Oosawa model prediction blurred by experimental errors, as
described in the methods section.

to describe the binding potential. The few parameters in this analytical
expression can be adjusted to match experimental data by fitting the
potential at sufficiently large distances where the intrinsic potential
becomes negligible. Through an example involving depletion forces
induced by polymer micelles, we illustrate how accurately accounting
for binding forces allows us to determine the intrinsic interaction
potential.

The big advance we make with our approach is that it allows us to
measure interaction potentials at small particle-particle distances,
encompassing the case of particles with a small radius compared to the
wavelength of light used for tracking and imaging. In contrast to
conventional particle tracking algorithms, our approach does not
impose a fundamental lower limit on the particle size or the surface-to-
surface distance. The tracking approach and the DDA modeling could
also be applied to plasmonic metallic or absorbing particles. Equally,
the method can easily be extended to three or more particles as long as
the computational cost of reconstructing images is not prohibitive.
Studying three or more particles would allow us to assess the influence
of multi-body interactions in dense particle assemblies*’. The model-
ing of optical binding forces in our approach is limited to pairs of
dielectric particles, but an extension to several particles or metallic
particles is feasible, at least numerically, and should be addressed in
future work.

While our tracking method delivers impressive positional
accuracy, typically within the range of 2-3 nanometers, the
center-to-center distance d between two randomly selected par-
ticles in contact may exhibit a variation of 10-15 nanometers. This
variation can be attributed to residual particle size differences,
even when the size polydispersity is minimal, in our case just a
few percent. Consequently, we were compelled to introduce
minor adjustments to the center-to-center contact position
(where ‘h=0’) in order to achieve a precise alignment between
the measured interaction potential and the theoretical model, in
scenarios involving short-range depletion interactions. While this
introduces an additional degree of freedom into the fitting pro-
cess, it’s important to acknowledge that attaining higher preci-
sion would only be feasible if particle size measurements could be
carried out ‘in-situ’ with an accuracy of 3 nanometers or better.
Whether using, e.g. the approach of Bierbaum et al.* would allow
achieving this particle sizing-precision under standard brightfield
illumination and imaging is currently unknown and has to be
addressed in future work. Despite the outstanding accuracy of

our tracking method, we still find a systematic deviation of
2-3nm near contact and a statistical noise of comparable mag-
nitude. While small, these finite deviations become visible in the
model comparison, as shown in Fig. 4. Despite these residual
challenges, our work substantially extends the range of particle
sizes for which interaction potentials can be measured, covering
the significant domain of submicron-sized particles. Our research
will provide researchers with new tools to study interactions
between functionalized colloids, opening up possibilities for
research in colloidal sensing, diagnostics, and other
applications***,

Methods

Sample preparation

We studied two sizes of polystyrene (PS) beads (Bangs Labs, USA) with
500 +20 nm and 710 + 20 nm diameter (supplier specifications), sus-
pended in a water-based buffer solution. We either added 5 mM KCI to
an aqueous suspension to screen electrostatic double-layer interac-
tions, ensuring a nearly hard-sphere-like system due to the small Debye
length (Ap = 4.3 nm)*. Alternatively, we employed PBS 1X buffer for
depletion measurements to maintain a pH of 7.4. In the PBS buffer, the
Debye length is approximately A5 = 0.7 nm*®. We used a depletant
system based on copolymer Pluronic F108 micelles to induce short-
range attractive interactions and performed measurements at two
different F108 concentrations. As shown in *, the critical micelle
concentration (CMC) of F108 is temperature-dependent, necessitating
us to conduct our work at temperatures above the CMC value. We used
dynamic light scattering (DLS) at a scattering angle of 90° (3D Nanolab,
LS Instruments Switzerland) to investigate the micelle formation and
size of micelles at various temperatures. At 40 ‘C, micelle formation
was complete, and the hydrodynamic diameter of the micelles was
measured to be d,,;=22+1nm for both copolymer concentrations
studied, namely 1 mM and 2 mM cases. Our findings are consistent with
ref. 39. The latter estimated the micelle aggregation number between
35-61. For a value of 45 we obtain a number density of micelles
1.3 x10* um™ and 2.6 x 10* pm™ for 1mM and 2 mM of F108, respec-
tively. Consequently, the effective volume fraction of micelles
p=nx % correspond to 7% and 14%.

Optical Tweezers experimental setup
We employ a Nikon Ti2 inverted microscope with an objective CFI Apo
TIRF 100XC Oil. The numerical aperture (NA) of this objective is 1.49.
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For optical tweezing, we use a 1=1064 nm fiber laser (YLR-10-LP, IPG
photonics). The laser beam first passes a spatial filter and is subse-
quently expanded and collimated to match the size of the Spatial Light
Modulator’s (X10468, Hamamatsu) active area (12 mm x 16 mm). After
undergoing modulation with a computer-designed hologram, two
Keplerian telescopes project the laser beam, which exits the Spatial
Light Modulator (SLM), into the back aperture of the objective lens.
The telescopes are organized in a 4f configuration, ensuring that the
SLM chip and the back aperture of the objective align in conjugate
planes. The hologram produced by the SLM consists of two compo-
nents: the first part is dedicated to wavefront correction, employing
the technique described in reference *'. The second part is designed to
generate a line trap, which can be either a Gaussian line or a combi-
nation of two truncated Gaussian lines, using the approach developed
by Roichman and Grier*.

We generate an optical potential as a Gaussian line to trap two
particles simultaneously, enabling us to measure the pair potential
between particles positioned close to each other. To ensure a suffi-
ciently strong force that brings the particles together, we carefully
adjust the stiffness of the trap*®. We utilize two truncated Gaussian
short-line traps to measure the pair potential at greater distances. This
approach becomes necessary to maintain the particles at a desired
average position and prevent them from getting trapped in local
energy minima along the trap line. In both setups, we employ an
sCMOS (scientific Complementary Metal-Oxide-Semiconductor) cam-
era (Prime 95B, Teledyne Photometrics) to capture videos with an
exposure time of 100 ps. Individual videos of single particles in each
trap are recorded separately for the configuration using two truncated
Gaussian traps. Using the particle tracking algorithm described below,
we can extract distributions of the center-to-center distance (in the
case of two particles) and the position distribution (for single parti-
cles). The latter distribution is subsequently utilized to calculate the
potential of the optical trap, denoted as Ugap.

Particle tracking algorithm

We employ a full image reconstruction method to determine the
position of particles in close proximity. Prior image reconstruction
algorithms have tried to assess particle size and have also been
employed in fluorescent image analysis of micron-sized particles**°.
Each of these approaches presents distinct strengths and limitations.
In our work, we propose an approach to precisely pinpoint the particle
coordinates in brightfield imaging, particularly for particles with a size
smaller or roughly equal to visible light wavelengths. The image of a
single particle is obtained by trapping and observing it, and the center
position is determined using the standard centroid tracking method*.
By averaging over 1000 images, we obtain the particle’s image, char-
acterized by the shape function S. When dealing with spherical parti-
cles with a narrow size distribution, S remains unchanged for all
particles except for a size-dependent scaling factor. In the optical trap,
a particle retains limited mobility along the z-direction, causing its z-
position to deviate from the trapping plane during image acquisition.
This results in a small change in the apparent size. Consequently, we
can directly deduce S for each particle from multi-particle images,
assuming that the S for individual particles can be derived by merely
rescaling it to match their apparent size. Employing this procedure,
our tracking algorithm is sped up significantly and can also be
extended efficiently to assemblies of three or more particles. We
have verified that the results are equivalent to measuring each parti-
cle’s shape function. Since there are no interference patterns
when using white light illumination, we can represent an image con-
taining multiple particles as a sum of individual images
Reconstruction = Y ;S(x;, y;, size;, intensity;), where x; and y; are the posi-
tions of the particles. size; and intensity; take into account the slight
changes in apparent size and intensity. In practice, we utilize gradients
in the x and y directions, represented as G* and @, to describe the

image. Consequently, S=[G", @’], and the image is expressed as
Image= [Gfmage,G,Ymage]. This approach offers two advantages: the
gradient is more sensitive in detecting shape edges and automatically
excludes the background since its gradient is zero. With these gradient

representations, we establish a target error function as:

Er =||/mage — Reconstruction H2

2
3
= H |:G?(mage - Z G Xiir -+ ) Cmage — Z Gy -- ))}

Since we're dealing with two particles, i € [1, 2], the target error func-
tion is a matrix with the same dimension as the image. By starting with
an initial estimate of the coordinates obtained through the conven-
tional centroid tracking method, the algorithm can effectively and
robustly minimize Eq. (3) using a custom made coordinate descent
algorithm®®. We successfully attain the optimal image reconstruction,
enabling us to determine the particles’ positions accurately. Sample
images and the MATLAB (The MathWorks Inc., USA) tracking code can
be accessed from the online repository hosted on Zenodo. We note
that generalizing the particle tracking algorithm by image recon-
struction to three or more particles will be computationally more
costly but otherwise straightforward.

Experimental errors

There are two main contributors to the experimental error: localisation
uncertainty associated static error and dynamic error due to finite
camera exposure time *. In our study, tracking bias and noise were
determined experimentally (see Supplementary Material). Briefly, the
position of an immobile particle B (adsorbed on the coverslip) is
monitored while a second particle C is brought close with optical
tweezers. The coordinate system is calibrated using a fiduciary marker,
particle A, to exclude the influence of possible drifts and vibrations.
Any systematic change of the position of particle B upon approach of C
must come from tracking bias. We find a tracking bias of 2-3 nm at
contact, about an order of magnitude less than conventional approa-
ches. The tracking noise can also be revealed from the statistics of the
localisation of B and amounts to about + 2 nm. The noise interval is
depicted by the width of the gray shaded area in Fig. 1. In a potential
measurement, we look at the distance between two particles. In this
case, the statistical noise on distance (static error) is smaller
than 2 nm x+/2 ~ 2.8 nm.

The dynamic error arises from the finite camera exposure time,
leading to time-averaging of the particle’s position in images.
According to the Stokes-Einstein relation, a single particle with a size of
500 nm, observed over 100 ps, exhibits one-dimensional motion over
distances of approximately 15nm in the case of free diffusion. Con-
sequently, the corresponding relative motion of two particles is
around +/2 x15 nm =20 nm. When the separation between two parti-
cles falls below 20 nm (which is similar to the interaction range of our
depletion potential), their relative motion will reduce to around 10 nm
due to the proximity-induced decrease in the diffusion constant, as
described in refs. 51,52.

These numbers are obtained with the assumption that two parti-
cles are both freely diffusive. In our case, however, the particles are
confined due to depletion attraction which substantially reduces their
relative motion. In an extreme case of infinitely strong attraction, the
particles will be permanently bound. Therefore, their movement is
fully coupled, resulting in zero relative motion. We can assess the
relative motion by analysing its dependency on time delay and extra-
polating the result to the exposure time of 100 ps as shown in the
Supplementary Material. In our depletion measurements, we deter-
mine that the dynamic error remains below 5 nm (at separations, 4, less
than 20 nm) for all measurements.
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The experimental errors blur the measurements of the interaction
potential. Dynamic error leads to a time average over an interval of
particle distances, and a static error adds a Gaussian noise to the
measured distances. For the optical binding measurement (Fig. 2),
these small errors are unimportant since this potential is fairly long-
ranged and relatively smooth. For a short-ranged interaction potential
due to depletion, the influence of blurring is non-negligible (Fig. 4). We
model the influence of dynamic error by first converting the AO
potential (together with the optical potentials) to a probability dis-
tribution P(r)= exp(—U(r)/kg T). We consider the case that the parti-
cles explore a small distance range r + A (A ~ 5 nm), due to their relative
motion within the exposure time. The probability of finding them
exploring this distance range can be written as Q(r) = r’fAA P(a)da.The
variable r is then replaced by the corresponding time-averaged dis-
tance r’, which can be described as the mean distance weighed by the
probability distribution: ' =[ ["* & rP(r)dr]/[ " P(r)dr]. Furthermore,
we take account of the static error by convoluting Q(r’) with a Gaussian
kernel with a half-width of 3 nm. Then we convert the final probability
distribution back to obtain the blurred potential, as shown by the solid
lines in Fig. 4.

Computational analysis of optical binding forces

We numerically solve the optical binding problem by treating all light-
matter interaction with the Discrete Dipole Approximation (DDA)*. In
the DDA, scatterers are discretised in small cubes whose optical
response is characterized by the polarizability of an equivalent point-
dipole with the appropriate polarizability. Indeed, the approach is
recognized for its ability to reach the precise solution®, with its
accuracy being solely constrained by limitations in time and memory.
The latter limits the maximum number of dipoles to be used in
the DDA.

We consider two identical spherical particles with diameters
2R =500 nm or 2R =710 nm and refractive index n =1.59. The particles
are placed in a background medium with refractive index n,=1.33. In
both cases, particles are illuminated by an external input field, £,
modeling the linear trap, which is a beam with constant intensity
profile along the x-axis, Gaussian intensity profile on y-axis and pro-
pagating along the z-axis.

Without loss of generality, the first particle (particle A) is centered
at the origin of the coordinate system, while the other one, particle B, is
placed at a surface-to-surface distance, h, on the x-axis. To calculate
the optical forces induced by the external field, the optical response of
each sphere is modeled in the DDA with N=1365 small cubes with an
edge length D= (41R> /3N)’. The polarizability of each cube, a;, is given
by the Clauiius-Mossotti model with radiative corrections®. Thus, the
total field, £ ,, exciting each dipole can be self-consistently calculated
as a function of the input field. To evaluate the precision and con-
vergence of our DDA simulations at reduced length scales, we com-
pared results using a smaller number of dipoles, from 251 to 895
instead of 1365 dipoles per sphere. We examined the resultant forces at
these levels of discretization. Our findings demonstrate that forces
measured at distances less than 20 nm exhibit an accuracy exceeding
4%, extending down to a range of just a few nanometers.

The scattering problem can be represented as a system of 3N x 2
(N dipoles per sphere) linear equations, where the three equations for
the i-th dipole read:

. . N o

E'=E)+ 12 ZG(’/)ajEtU), 4)
J#i
0 —0 .

being £, and E, the total and external fields (resp.) at the i-th

dipole, and G @ the Green tensor that connects dipole i andj. Equation

(4) states that the total polarizing field at dipole i is the sum of the

external field plus the field scattered by the rest of the dipoles.

Once the total polarizing field at each dipole is known, the time-
averaged force along the x-axis, F,(h), acting on particle B is computed
using

ne, —B) 9 —B)
X(h):”TOZ<Re{a,-Et o Ee }> o)

where ?iB') stands for the total field on the i-th dipole of particle B.
After computing the force in the inter-particle distance range h € [0,
60 um], the pair interaction potential is obtained by numerical
integration of the force, U(x) = f(foﬂm F(h)dh, such that the force is
F=-0U/ox.

The line trap is implemented by integrating its angular spectrum >,
In the case of the electric field in x-polarization, the total input electric
field reads

k
7 a i +
Ey pa(r)= /4( Exfpol(ky)el(kyy k’z)dky, (6)
where k, = +/k* — k;, and
. E a2
Ex—pol(ky) = ﬁ ei¥ux (7)

Analogously, for the y-polarized line trap, we use

k
- . .
E y—pol(xry’z) = ‘/7k Eyfpol(ky)el(ky,V*kzZ)dky (8)
with
R E, %41
Ey_poiky)= —Zﬁe 7 k_z {kzuy — kyuz] ) 9
being u; the unit vector along the i — axis. We notice that k is the wave

number in the host medium, and we use wy=200nm in the
manuscript.

Data availability

All experimental and numerical data generated in this study have been
deposited in the the repository Zenodo under accession code
10245934 and 10245965. All additional data sets generated during and/
or analysed during the current study are available from the corre-
sponding author upon request.

Code availability

Sample images and the MATLAB (The MathWorks Inc., USA) tracking
code can be accessed from the same online repository hosted on
Zenodo under accession code 10053674. The other codes used to
produce the DDA-results of this study are based on a proprietary
software library as described in detail in the manuscript.
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