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MAIVeSS: streamlined selection of
antigenically matched, high-yield viruses for
seasonal influenza vaccine production

ChengGao1,2,3,4,14, FengWen5,14,Minhui Guan1,3,4, BijayaHatuwal1,2,3,4, Lei Li 6,7,
Beatriz Praena1,3,4, Cynthia Y. Tang 1,3,4,8, Jieze Zhang 9, Feng Luo 10,
Hang Xie 11, Richard Webby 12, Yizhi Jane Tao13 & Xiu-Feng Wan 1,2,3,4,5,8

Vaccines are the main pharmaceutical intervention used against the global
public health threat posed by influenza viruses. Timely selection of optimal
seed viruses with matched antigenicity between vaccine antigen and circu-
lating viruses and with high yield underscore vaccine efficacy and supply,
respectively. Current methods for selecting influenza seed vaccines are labor
intensive and time-consuming. Here, we report the Machine-learning Assisted
Influenza VaccinE Strain Selection framework, MAIVeSS, that enables stream-
lined selection of naturally circulating, antigenically matched, and high-yield
influenza vaccine strains directly from clinical samples by using molecular
signatures of antigenicity and yield to support optimal candidate vaccine virus
selection. We apply our framework on publicly available sequences to select
A(H1N1)pdm09 vaccine candidates and experimentally confirm that these
candidates have optimal antigenicity and growth in cells and eggs. Our fra-
mework can potentially reduce the optimal vaccine candidate selection time
from months to days and thus facilitate timely supply of seasonal vaccines.

Vaccination is a major strategy for preventing influenza virus infec-
tions. However, hemagglutinin (HA), the primary target of these
vaccines, can undergo antigenic change, enabling virus to evade
existing host immunity elicited by natural infections and/or vacci-
nations. Annual updates of vaccine composition are conducted to
matchbetween vaccine and circulating viruses. This is a resource and
time-consuming process that requires global private and public
collaboration coordinated through the World Health Organization

(WHO) Global Influenza Surveillance and Response System
(GISRS)1,2.

A major activity of GISRS is to make global recommendations for
the most appropriate vaccine viruses and to provide corresponding
candidate vaccine viruses (CVVs) for distribution to manufacturers of
live attenuated and inactivated vaccines.Once sourced,manufacturers
then further optimize CVV growth properties for use in vaccine man-
ufacture. An ideal CVVmust have the appropriate antigenicproperties,
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maintain these properties through the production pipeline, and have a
high growth phenotype. Timely selection of an effective high-yielding
CVV is critical for optimal seasonal influenza vaccinemanufacturing. In
the 2003–2004 influenza season, an A/Fujian/411/2002-like virus was
preferred as the recommendedA(H3N2) vaccine virus, but the inability
to identify CVVs led to a vaccinemismatch3. During theA(H1N1)pdm09
pandemic, vaccine supply was delayed due to the poor yield of initial
CVVs4, and a global vaccine campaign was not initiated until better
yielding viruses were obtained which was after the second pan-
demic wave5.

Efforts to generate high-yield CVVs for vaccinemanufacturing in
embryonated chicken eggs or cultured cells continue year-round
even before recommended vaccine viruses are finalized for the
upcoming influenza season. The conventional strategy to achieve
high yield often involves additional passages in eggs or cells6, and
genetic approaches rely on reassortment with a donor strain that
exhibits high yield traits in eggs or cells7. Both approaches may take
up to 6 months as well as have limitations. Egg or cell adaptation can
result in undesired antigenic changes due to additional mutations in
HA and reassortment strategies do not always lead to substantial
improvements in yield8–11. Therefore, identifying influenza vaccine
viruses with high-yield phenotypes directly from sequences obtained
from clinical samples would be ideal and could potentially accelerate
vaccine production timelines.

Over the past few years, several computational models12–14 have
been developed to identify influenza antigenic variants using
genomic sequences (See the discussion section in Supplementary
Information (SI)). However, none of these models can be used to

directly identify antigenic match and high-yield viruses based on
genetic sequences.

In our study, we propose an approach to overcome challenges in
influenza vaccine strain selection.We introduceMAIVeSS, a framework
that employs machine learning algorithms, to predict antigenic and
yield phenotypes using viral genomic sequences from clinical samples.
We validatedMAIVeSS by screening A(H1N1)pdm09 for ideal CVVs and
confirmed the high yield nature of the identifiedCVVs in both cells and
eggs. Our results show that thatMAIVeSS can facilitate the selection of
naturally circulating influenza vaccine strains with matching anti-
genicity and high-yield as seed viruses for influenza vaccine
production.

Results
Machine-learning assisted influenza vaccine strain selection
framework
This study aimed to design MAIVeSS to learn genetic features asso-
ciatedwith three key influenza virus biological properties: antigenicity,
growth, and receptor-binding (Fig. 1). We implemented and compared
a set of machine learning models within MAIVeSS and found that the
multi-task learning group-guided sparse learning model (MTL-GGSL)
outperformed other state-of-the-artmodels for predicting antigenicity
and glycan binding, while the generalized hierarchical sparse model
(GHSM) outperformed other models for assessing growth (see Sup-
plementary Data 1–3).

Using the features learned, MAIVeSS scores CVVs using a query
HAprotein sequence basedon twoproperties: (1) antigenic properties,
and (2) yield properties in eggs and/or cells (HYcell, high-yield in cells;

Fig. 1 | Machine-learning Assisted Influenza VaccinE Strain Selection frame-
work (MAIVeSS).Thismodel hasbeendeveloped to select high-yield vaccine seeds
thatmatch the antigenicity of circulating influenza strains. To achieve this, a library
of viruses with mutations in the receptor binding sites of the HA protein is gener-
ated and analyzed for their serological reactivity, replication efficiency in eggs and
cells, and glycan profiling using microarrays. A sparse learning model will then be

applied to identify genetic features that correlate with these phenotypes. Based on
these features, a predictivemodel will be developed to quantify antigenic distances
from the currently used vaccine strains and the yield ability in eggs and cells using
HA protein sequences as input data. This strategy can be adapted for other sub-
types of influenza viruses, and the model can also be modified to incorporate NA
sequences. Part of this figure was created with BioRender.com.
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HYegg, high-yield in eggs; HYboth, high-yield in both cells and eggs; LYcell,
low-yield in cells; LYegg, low-yield in eggs; LYboth, low-yield in both cells
and eggs). In this study, the WT virus is defined as a reassortant with
wild-type HA and NA genes from A/California/04/2009(H1N1pdm09)
(CA/04) and six internal genes fromA/PuertoRico/8/1934(H1N1) (PR8).
High-yield is defined as a > 10-fold increase in TCID50/mL compared to
the WT on the same substrate. By leveraging these predictive models,
MAIVeSS can rapidly identify influenza viruses that are both anti-
genicallymatched andhigh-yielding fromgenomesequencesobtained
during surveillance. MAIVeSS is accessible through both GitHub
(https://github.com/FluSysBio/MAIVeSS) and a webserver (http://
sysbio.missouri.edu/software/MAIVeSS).

In this study, we demonstrated the effectiveness of our machine
learning models using A(H1N1)pdm09 viruses as an exemplary appli-
cation, but the same principles can be readily applied to other sub-
types of influenza viruses.

Development of an A(H1N1)pdm09 mutant library for machine
learning
To enhance the reliability of feature selection for high-yield viruses, we
established a randommutant virus library that targets the HA receptor
binding site (RBS) of CA/0415. All the mutants were subjected to anti-
genic analyses using hemagglutination inhibition (HAI) assays, yield
analyses in both MDCK cells and embryonated chicken eggs, and
receptor-binding profiling through glycan microarrays. The pheno-
typic data collected were then used as training and testing data in
MAIVeSS to identify the molecular features associated with anti-
genicity and yield and to establish predictive models.

In total, we generated 822 HA-containing plasmids, each carry-
ing one to seven random mutations within or near the HA RBS
(residues 119–241, H1 numbering; 126–244, H3 numbering). Using
these mutant plasmids, we then generated corresponding mutant
viruses via reverse genetics. Rescued mutant viruses had an HA from
the mutant pool, a NA gene from CA/04, and the remaining 6 gene
segments from PR8. To increase the likelihood of successful virus
rescue, the transfection products underwent three passages. If none
of the three passages yield positive results, we will conclude that the
mutant cannot be rescued.

As a result, a total of 189 mutant viruses bearing unique amino
acid substitutions with different biochemical properties were suc-
cessfully generated (Supplementary Fig. 1). Of the mutant viruses that
were successfully rescued, 96 had substitutions within the 119–190
region of the HA, 15 had substitutions within the 190–241 region, and
78 had substitutions in both regions. The positions of the substitutions
overlapped with the reported HA antigenic sites Sa (n = 11), Sb (n = 9),
Ca1 (n = 7), and Ca2 (n = 7). For consistency, specific amino acid posi-
tions in the mutants described in the following context are numbered
according to the H3 numbering system. Eighty of the mutant viruses
had a single substitution, 80 had two, and 29 had three or more.
Interestingly, all substitutions present in the rescued viruses were
located outside of the receptor binding site (RBS) and did not directly
interact with the receptor molecule (Fig. 2A). In contrast, virus rescue
was unsuccessful when substitutions were present within the RBS
pocket.

Most mutations did not alter antigenic properties
To determine the antigenic properties of the mutant viruses gener-
ated, we performed HAI assay using post-infection ferret antisera. Out
of 189 mutant viruses, only 5 mutants had a ≥ 4-fold reduction in their
HAI titers relative to the antisera’s homologous virus (Supplementary
Data 4). These 5 antigenically distinct mutants had at least one sub-
stitution in known HA antigenic sites, with other substitutions mostly
present within or close to the Ca1, Ca2, Sa, or Sb regions16–19. Of note,
ferret antisera generated against WT CA/04 were unable to neutralize
the triple mutant HA D131E-S193T-A198S.

We integrated the serological data of the 189 mutants with
archived public data for seasonal A(H1N1) (1977-2009) and A(H1N1)
pdm09 viruses (2009–2016)20. By using these integrated HA sequence
and serological data, we utilized MAIVeSS to identify residues that
were associated with antigenic changes. The results showed that 30
residues were associated with the antigenicity of A(H1N1) viruses
(Table 1 and Supplementary Data 5), and most of these residues were
located within or close to the antigenic sites, particularly Ca1, Ca2, Sa,
and Sb (Fig. 2B). Of these 30 residues, only position 225 has been
reported in the literature to potentially harbor an egg-adapted sub-
stitution for 2009 H1N1 viruses (Table 1 and Supplementary
Information).

Amino acid substitutions near the HA RBS can result in high-
yield traits in both cells and eggs
We next assessed how the amino acid substitutions introduced
affected virus yield in both cells and eggs bymeasuring the infectious
titers (TCID50) for each mutant after growth. We identified 14 HYcell

mutants that showed at least a 10-fold increase in virus yield com-
pared to theWT virus as well as 29 LYcell mutants that showed at least
a 10-fold decrease (Supplementary Fig. 2 and Supplementary Data 4).
The highest yield was observed in the HAN159D-K166Imutant, with a
yield of 1.52 × 107 TCID50/mL, which was about 100-fold higher than
WT. Additionally, 33 HYegg mutants and 19 LYegg mutants were iden-
tified. The HA D131E-S193T-A198S, HA N159D-K166I, and HA I169F-
D225G mutants had the highest titers in eggs, which were approxi-
mately 800-fold higher than the WT virus. Of note, these three
mutants also exhibited high-yield traits in cells and were thus
designated as HYboth.

By using the HA protein sequence and their associated yield
data, we applied MAIVeSS and identified 38 residues were associated
with virus yield (Table 2 and Supplementary Data 6). The majority of
these residues were located on the surface of the HA trimer and in
close proximity to the RBS pocket (Fig. 2C). Interestingly, we
observed that different substitutions at the same position could lead
to different outcomes. For example, a change from small polar amino
acids to nonpolar amino acids at residue 142 was predicted to
enhance virus yield, whereas substitution to polar/charged amino
acids at the same position was predicted to reduce virus yield in eggs
and cells (Table 2).

Diversified glycan binding facilitates virus replication in cells
and eggs
To investigate if the high-yield trait correlateswith glycan substructure
binding properties,we analyzed the receptor-binding properties of the
189 mutant viruses using glycan microarrays comprising of 75 glyco-
forms (Supplementary Fig. 3). The binding signals to these glycan
isoforms varied widely among the mutants (Supplementary Fig. 4).
Notably, all mutants exhibited strong binding avidity to glycans that
were terminated with SA2,6 Gal, as we had expected.

We further used a matrix of 27 glycan substructure features to
group the glycans based on their internal and terminal substructures
as well as their linkers (Supplementary Fig. 5). Our analysis revealed
that HYcell mutants displayed elevated binding avidities to glycans
terminated with Neu5Acα2-6Galβ1-4GlcNAc (6′SLN), but not to
Neu5Acα2-3Galβ1-4GlcNAc (3′SLN), Neu5Aca2-3Galβ1-4(Fuca1-3)
GlcNAc (sLeX) or Neu5Gcα2-3Galβ1-4GlcNAc. In contrast, HYegg and
HYboth mutants (such as HA D131E-S193T-A198S and HA I169F-D225G)
showed increased binding affinities to glycans terminated with 3′SLN
and sLeX. Interestingly, a few HYegg and HYboth mutants also exhibited
significant increases in binding avidities to a glycan that is terminated
with Neu5Gcα2-6Galβ1-4GlcNAc or Neu5Gcα2-3Galβ1-4GlcNAc.

By employing biolayer interferometry analyses (BLI) for glycan
binding profiling, we confirmed the broadened binding specificity of
the HYboth mutant HA D131E-S193T-A198S. Specifically, we
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demonstrated that this mutant not only binds to 6′SLN, but also to 3′
SLN and sLeX (Supplementary Fig. 6).

We used MAIVeSS (see Online Methods) to identify the glycan
substructures associated with yield traits in cells and eggs associated
with binding preference to these glycan substructures (Supplementary
Data 7–11). Our analysis revealed several glycan terminal substructures
thatwere significantly associatedwith high-yield traits, including6′SLN,
3′SLN, sLeX, and Neu5Gcα2-6Galβ1-4GlcNAc. Additionally, we found
that certain internal substructures, such as core lactose, GlcNAcb1-2,
and Galα1-4Galβ1-4GlcNAc, had a significant impact on glycan binding.

A subset of antigenically matched A(H1N1)pdm09 epidemic
viruses were high-yield in both cells and eggs
We utilized MAIVeSS to predict both yield in eggs and cells and anti-
genic properties of sequenced A(H1N1)pdm09 viruses (2009–2020,
n = 11,424) (Supplementary Data 12). Using the antigenic distance
matrix generated by MAIVeSS, we created a sequence-based antigenic
cartography map, which revealed two antigenic clusters, CA/09 and
WI/19 (Fig. 3). The acquisition of N159K in the Sa antigenic site was
predicted to cause an antigenic drift of the A/Wisconsin/588/

2019(H1N1) (WI/19) HA from that of CA/09, which was consistent with
those reported in other studies21,22.

Using MAIVeSS as the prediction tool, a total of 155 viruses were
identified as potential HYegg, 433 asHYcell, and 761 as HYboth. Of the 1349
viruses identified as high-yield variants, 897 had HA sequences that
were directly generated from clinical swabs, while the remaining
sequences were generated from viruses grown either in cells (n = 331)
and eggs (n = 83). The virus source forHA sequencewasunclear for the
remaining 38 high-yield variants.

Among predicted as HYboth, 294 were CA/09-like viruses (38.6%),
while 467wereWI/19-like viruses (61.4%). These high-yield strains were
not geographically clustered and were scattered across the phyloge-
netic trees, without clear association with any particular HA lineages
(Fig. 3B). However, the number of HYboth strains increased significantly
after the emergence of WI/19-like variants (Fig. 3D). Specifically, 256
out of 2,198 (11.65%) viruses in 2019 and 386 out of 895 (43.13%) viruses
in 2020 were estimated to be HYboth strains. MAIVeSS analysis pre-
dicted that the vaccine strain WI/19 has an increase of approximately
105-fold and 23-fold in virus yield in cell and eggs, respectively com-
pared to CA/04.

A
SaSb

Ca1

Cb

Ca2

SaSb

Ca1

Cb

Ca2

130-loop220-loop

150-loop
190-helix

130-loop220-loop

150-loop
190-helix

Conserved residues

plas�c residues

C 190-helix 198
159

157

169

138

225

229

219
214 193189

142

188
192

141
140

205
167

166

169

178

126

131

132225

142141

149

198

214

144

140
146

182

190-helix

220-loop

150-loop

130-loop

150-loop

B Sb
Sa

Ca2
Ca1

Cb

46
45

271
273 274

60
6365

96 142

144

133

129

158159
198

219

193

290

212

208
165

129
160

189
188

193
194

214

198 159
158

142

144

219

53

Side view

Top viewweivkcaBweivtnorF

Fig. 2 | Characterization of mutant viruses targeting the receptor-binding site
of the HA protein. The HAof A/California/04/2009(H1N1) (CA/04) was used as the
template to develop the error-prone PCR mutant library. A The regions in the HA
receptor-binding site where viable mutant viruses were obtained are shown in
green, while the regionswhereno viablemutant viruseswereobtained are shown in
red. The receptor binding pocket includes the 130-loop, 150-loop, 190-helix, and
220-loop. B The key residues associated with antigenicity are located in five HA

antigenic sites: Sa (in purple), Sb (in raspberry), Ca1/Ca2 (in green), andCb (in blue),
as well as outside these antigenic sites (in orange). C The key residues associated
with virus yield in cells and eggs are located near the receptor binding site or
outside the receptor binding site. The residues are shown in two views of the
structures, and the overlapped residues are boxed. The HA protein structure was
modeled using PyMOL with the CA/04HA protein structure from the Protein
Databank (PDB) 3LZG as the template.
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Multiple amino acid substitutions associated with high yield were
observed in the HYboth strains, but the specific amino acid substitu-
tions varied across influenza seasons and evenwithin the same season,
depending on the strain (Supplementary Data 13). However, after the
2018–2019 influenza season, viruses with HA K133aN, N159K/D/S,
K166Q, S206T, and/or K214R were more likely to be high-yield
strains (Fig. 4A).

To validate the predictions of our model, we synthesized the HA
and NA genes of 4 viruses predicted as having desirable features, and
subsequently generated 4 reassortant viruses (i.e. rgSP/16, rgCQ/17,
rgBRU/19 and rgMAS/20) with PR8 as the backbone and determined
their antigenic and yield phenotypes. Antigenically, 2 reassortant
viruses were experimentally confirmed to be CA/04-like and the other
2WI/19-like (Fig. 4B). All 4 reassortant viruses grew tofinal titersof >108

TCID50/mL in both eggs and cells, which were at least 100-fold higher
than the WT virus, which is a reassortant with wild-type HA and NA
genes from CA/04 and six internal genes from PR8. (Fig. 4C). These
results corroborated both antigenicity and yield predicted by the
MAIVeSS model.

Taken together, our findings indicate that the high-yield trait of
A(H1N1)pdm09 viruses was distributed across different genetic clus-
ters and has become more prevalent since 2018. Our experimental
results confirm MAIVeSS’s ability to identify antigenic matches and
high-yield vaccine strains for A(H1N1)pdm09 viruses.

Diversifying influenza virus glycan binding profile facilitates the
acquisition of high-yield properties
It is well-documented that CA/04 exhibits an exclusive binding pre-
ference for 6′SLN and does not bind to 3′SLN23. Here we hypothesized
that a small portion of naturally circulating A(H1N1)pdm09, such as
those we predicted as CVVs, acquired high-yield properties by binding
to additional sialylated glycan receptors, particularly 3′SLN, or by
increasing their glycan binding avidity to 6′SLN. To test this, we con-
ducted BLI for 6A(H1N1)pdm09 variants, including LYboth MI/15 and
HYboth WI/19, as well as 4 HYboth vaccine candidates predicted by MAI-
VeSS. The results showed that 3 of the MAIVeSS predicted CVVs, rgSP/
16, rgCQ/17 and rgMAS/20, bound to both 3′SLN and 6′SLN, whereas
MI/15, WI/19, and one predicted CVV, rgBRU/19, bound only to 6′
SLN (Fig. 5A).

Of the residues linked to the high-yield traits ofWI/19 and the four
MAIVeSS selected viruses, only about half were conserved (Fig. 4A).
However, HA N159K, K166Q, and S206T were consistently present in
most of the naturally occurring high-yield strains (Supplementary
Data 12) and high-yield mutants from our mutagenesis study (Sup-
plementary Data 4).

We further investigated the effect ofHAN159K, K166Q, andS206T
on glycan binding affinity by conducting structuralmodeling based on
the crystal structure of CA/04 HA complexed with 6′SLN and 3′SLN
(Fig. 5B). In both complex structures, N159was substituted with K, and
energy minimization was performed to detect any possible allosteric
structural changes that could affect ligand binding. In the HA:3′SLN
structure, the sidechain of K159 flips toward the 190-helix, forming
hydrogenbondswith the sidechains of bothQ196 andQ192. This could
cause a shift or tilt in the orientation of the 190-helix, resulting in a
more compact receptor binding pocket and stronger binding with 3′
SLN. In contrast, 6’SLN in the HA:6′SLN complex closely interacts with
the 190-helix even in the original CA/04 structure, so the K159 muta-
tion does not significantly enhance the binding of 6’SLNbinding toHA.
Additionally, K166Q may impact the conformation of the 130-loop,
while S206T substitution has the potential to modify the structural
conformation of the 220-loop (Supplementary Fig. 7), thus affecting
the binding of HA to glycan receptors. Therefore, our modeling ana-
lysis supported that these three substitutions in HA can substantially
increase the binding affinity of 3′SLN without major impact on the
binding of 6′SLN.

In summary, diversity at theHARBSof A(H1N1)pdm09 viruses can
enhance virus yields in both cell and egg substrates by increasing
sialylated glycan binding avidity or diversifying virus binding to dif-
ferent sialylated glycan receptors.

Discussion
In this study, we developed MAIVeSS, a machine learning based fra-
mework, that can accurately predict both antigenicity and growth
phenotypes based on HA protein sequences. The training dataset
consisted of a library of 189mutant viruses generated by epPCR-based
reverse genetics targeting residues 126–244 (H3 numbering). We
observed that acquisition of HAN159K, a keymarker for antigenic drift
according to our model, led to changes in antigenicity from CA/09 to
WI/19, as determined by post-infection ferret antisera, consistent with
published reports21,22 and facilitated acquisition of the high-yield trait
in a significant proportion of A(H1N1)pdm09 epidemic strains during
recent influenza seasons (Fig. 3E). While our current model focuses on
HA, it is important to note that antigenic drift of neuraminidase (NA)
has also been well-documented in A(H1N1) and A(H3N2) influenza
viruses24,25. In addition, it’s worth noting that the antigenicity data used
in ourmodel trainingwerederived from ferret antiseragenerated from
native ferrets. While the antigenicity data reflected by sera generated
from native ferrets and human sera without virus priming (such as
infants) are generally comparable, it’s important to note that they can
differ from those generated from individuals with pre-existing

Table 1 | Antigenicity associated residues selected by MAIVeSS for the A(H1N1)pdm09 viruses

Residuea Bootstrapb wglobal c(±SD) Residue Bootstrap wglobal (±SD) Residue Bootstrap wglobal (±SD)

45 100 0.1019 (0.0051) 133a 89 0.0419 (0.0034) 194 (Sb, RBS)d 100 0.0918 (0.0017)

46 93 0.0337 (0.0018) 142 (Ca2) 100 0.1033 (0.0026) 198 (Sb) 100 0.0631 (0.0007)

53 100 0.3728 (0.0018) 144 (Ca2) 100 0.1322 (0.0037) 208 (Ca1) 100 0.0689 (0.0037)

60 100 0.4071 (0.0118) 158 (Sa, Gly) 100 0.2550 (0.0010) 212 100 0.2921 (0.0021)

63 (Gly) 100 0.2220 (0.0067) 159 (Sa) 100 0.3895 (0.0131) 214 88 0.0262 (0.0013)

65 100 0.0748 (0.0035) 160 (Sa) 94 0.0312 (0.0014) 219 94 0.0530 (0.0037)

96 100 0.0424 (0.0015) 165 (Sa) 100 −0.0286 (0.0016) 271 100 −0.0244 (0.0035)

125c 100 0.2380 (0.0024) 188 (Sb) 90 0.1739 (0.0105) 273 100 0.0684 (0.0021)

129 (Gly) 100 −0.1397 (0.0057) 189 (Sb) 100 0.1138 (0.0036) 274 100 0.6435 (0.0050)

133 89 0.5540 (0.0325) 193 (Sb, RBS) 100 0.1502 (0.0017) 290 82 0.0649 (0.0036)

The location of these residues in the HA protein structure are illustrated in Fig. 2B.
SD, standard deviation.
aABS antibody binding sites, RBS receptor binding site, Gly N-linked glycosylation.
bThe bootstrap values were derived from 100 independent experiments, each with 80% of the training data.
cGlobal weight (wglobal) learned from the MTL-GGSL model in the MAIVeSS, and the absolute local weight for each individual task (wlocal) is available from Supplementary Table S5.
dThe position in which a potential egg adapted amino acid substitution L194I was reported to affect antigenic properties60.
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immunity, particularly in adults. This is because adults commonly have
a complicated influenza priming history with multiple infections and/
or vaccinations, which can significantly affect their immune
response26. As such, our ongoing efforts are aimed at expanding the
MAIVeSS prediction capacity to include both HA and NA proteins, as
well as human serological data for training antigenicity analyses.

To determine if the high-yield trait correlates with glycan sub-
structure binding properties, we analyzed the receptor-binding prop-
erties of all 189mutant viruses. Theglycanprofiling analysis conducted
on 43 high-yield mutants suggested that diversifying glycan binding
profiles could enhance virus replication in both eggs and cells. Speci-
fically, increased binding avidities to SA2-6Gal results in higher virus
yield inmammalian cells, while broadening glycan binding capabilities
to SA2-3Gal or sLeX improves virus yield in eggs (Supplementary
Data 4). Our studies indicate that a small subset of A(H1N1)pdm09
epidemic viruses naturally bind to both SA2-6Gal and SA2-3Gal,
allowing them to replicate efficiently in both cells and eggs without
adaptation. On the other hand, similar to CA/04 andMI/15, some high-
yield strains (e.g. WI/19) bind only to 6′SLN but not 3′SLN (Fig. 5A),
indicating that other glycan substructures present in eggs and/or cells
may be involved in the high-yield trait for these epidemic viruses. It
should be noted that both virus and host factors, such as innate

immune responses and virus fitness, in addition to virus-receptor
binding can impact virus replication in mammalian cells. Further stu-
dies are needed to investigate these possibilities.

Both SA2-6Gal and SA2-3Gal receptors are expressed in MDCK
cells and chicken embryonated eggs. However, SA2-3Gal receptors are
predominantly expressed in eggs while MDCK cells contain a similar
amount of SA2-6Gal and SA2-3Gal27. In addition to SA2-3Gal and SA2-
6Gal, neutral glycans such as high-mannose glycans and glycans ter-
minated with Gal and GalcNAc are also commonly found in eggs. Mass
spectrometry analyses showed some glycans in eggs are fucosylated28.
CA/04, the prototype A(H1N1)pdm09 virus which showed poor repli-
cation in both MDCK cells and eggs, had a strong binding preference
for SA2-6Gal and did not bind to SA2-3Gal29. In humans, there is no
direct selection pressure to increase cell-based or egg-based replica-
tion efficiency. Thus, our findings suggested that ad hoc substitutions
at the HA RBS across A(H1N1)pdm09 viruses likely enabled a subset of
these variants to expand their binding preference from SA2-6Gal to
both SA2-6Gal and SA2-3Gal, resulting in the acquisition of a high-yield
trait. This study illustrates the feasibility of selecting HA sequences
from naturally circulating strains as high yield candidates for recom-
binant vaccine development, by eliminating the need for further
engineering.

A

EDC

WI/19

MI/15

CA/04

MAS/20

BRU/19

SP/16
CQ/17

B
HYboth

HYcell

HYegg

Vaccine

CA/04
MI/15

WI/19

CA/04-like

WI/19-like

LY

Fig. 3 | Antigenicity and yield of A(H1N1)pdm09 viruses from 2009 to 2020 as
predicted byMAIVeSS. A Twomajor antigenic variant clusters for A(H1N1)pdm09
viruses were visualizedby antigenic cartography.BVisualization of the distribution
of high-yield viruses within the phylogenetic tree of A(H1N1)pdm09 viruses. Vac-
cine strains, high-yield viruses inboth cell and egg (HYboth), high-yieldviruses in only
cell (HYcell), and high-yield viruses in only egg (HYegg) are indicated by red, orange,
blue, and purple, respectively, in the phylogenetic tree of A(H1N1)pdm09 viruses.
C The number of two antigenically distinct variants, CA/04-like and WI/09-like,
across the 2009 to 2020 influenza seasons.D The proportion ofHYboth, HYcell, HYegg,
and low yield viruses in both cell and egg (LY) across the 2009 to 2020 influenza

seasons. E The presence of N159K substitutions in the HA of pdmH1N1 high yield
viruses from2009 to2020. Shownare the numberofHAsequences analyzedby the
percentage of the indicated mutations. CA/04 A/California/04/2009(H1N1), MI/15
A/Michigan/45/2015(H1N1), SP/16 A/Saint-Petersburg/RII57/2016, CQ/17 A/
Chongqing-Yuzhong/SWL1453/ 2017(H1N1), BRU/19 A/Brunei/25/2019(H1N1), WI/
19 A/Wisconsin/588/2019(H1N1), MAS/20 A/Malaysia/33075487/2020. CA/04-like
denotes A/California/04/2009(H1N1)-like A(H1N1)pdm09 viruses whereas WI/19-
like does A/Wisconsin/588/2019(H1N1)-like A(H1N1)pdm09viruses. Source data are
provided as a Source Data file.
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In summary, the data from the proof-of-concept experiments in
this study confirmed that MAIVeSS enables rapid selection of anti-
genically matched and high-yielding influenza strains directly from
clinical isolates as potential seed viruses to accelerate vaccine pro-
duction and facilitate timely supply of seasonal vaccines.

Methods
Ethics statement
Animal study protocols were reviewed and approved by the Institu-
tional Animal Care and Use Committee at Mississippi State University
(#14-039) and University of Missouri-Columbia (#9656). All animal
experiments were performed in an animal biosafety level 2 (ABSL2)
research facility at Mississippi State University. Standard operating
procedures for work with infectious influenza viruses were approved
by the Institutional BiosafetyCommittee atMississippi StateUniversity
(#16-09 and #022-16) and University of Missouri-Columbia (#19-09)
and performed under BSL2 conditions.

Machine-learning assisted influenza vaccine strain selection
framework (MAIVeSS)
Machine learning models have been shown to be effective in identi-
fying antigenicity associated features in protein sequences from

different subtypes of influenza A viruses30–35, We developed machine
learning models to identify the specific sequence features in HA pro-
teins that determine three important phenotypes: antigenicity, yield in
cells and eggs, and receptor binding. To achieve this, we trained our
models on large datasets of HA protein sequences and associated
phenotype information. We also developed a quantitative function
that allows us to measure the distances between sequences based on
their phenotypic characteristics. Our ultimate goals for thesemachine
learning models are to identify: 1) mutations in the HA RBS that affect
virus antigenicity; 2)mutations in theHARBS that increase or decrease
virus yields in cells and/or eggs; and 3) specific glycan substructures
(glycan motifs) on the surface of cells or eggs that are associated with
increased yields of influenza virus. By achieving these goals, we hoped
to gain a better understanding of the molecular determinants of these
important viral phenotypes and to identify potential targets for the
development of improved influenza vaccines.

We approached the problem of identifying genetic features
associated with influenza virus phenotypes using a sparse learning
model. Mathematically, this model involves a linear regression loss
function with regularization, which allows us to determine the most
relevant genetic features associated with a given phenotype. The
sparse learningmodel combines a least squares loss with a regularized
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Fig. 4 | Validation of the predicted antigenic and yield properties for the
MAIVeSS-selected vaccine viruses. A Amino acids located in the residues asso-
ciatedwith antigenicity and yield properties for three A(H1N1)pdm09 vaccines (i.e.,
CA/04,MI/15, andWI/19) selectedbyWHOand the four vaccine candidates selected
by MAIVeSS. B Antigenic cartography of A(H1N1)pdm09 viruses and the four vac-
cine candidates selected by MAIVeSS. The position of filled circles represents the
antigenic properties derived by the HAI data with ferret antisera (Table 3), and
those inopen circles represent the predictive antigenic properties byMAIVeSS. The
vaccine strains were marked in gold, and the vaccine candidates and other epi-
demic A(H1N1)pdm09 viruses were marked in blue. C Replication efficiency of the
four vaccine candidates selected by MAIVeSS. N = 3 biologically independent
samples were used in the experiments, and data are presented as mean values ±
standarddeviation (SD). rgCA/04A/California/04/2009(H1N1)(HA,NA)xPR8, CA/07

A/California/07/2009(H1N1), UT/09 A/Utah/20/2009(H1N1), MI/15 A/Michigan/45/
2015(H1N1), WI/19 A/Wisconsin/588/2019(H1N1), rgSP/16 A/Saint-Petersburg/RII57/
2016, rgCQ/17 A/Chongqing-Yuzhong/SWL1453/2017, rgBRU/19 A/Brunei/25/2019
(H1N1)(HA,NA)xPR8, rgMAS/20 A/Malaysia/33075487/2020 (H1N1)(HA,NA)xPR8.
CA/04-like denotes A/California/04/2009(H1N1)-like A(H1N1)pdm09 viruses
whereas WI/19-like does A/Wisconsin/588/2019(H1N1)-like A(H1N1)pdm09 viruses.
Antigenic cartography was constructed by using AntigenMap (http://sysbio.
missouri.edu/AntigenMap)61, which employed a low-reactor cutoff of 1:10. To
minimize noise in the HAI data and reflect antigenic distances embedded in the
data, low-rankmatrix completion andmultiple dimensional scaling were utilized to
generate themap. Each unit in the antigenicmap corresponded to a log2 unit In the
HAI titers. Source data are provided as a Source Data file.
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term and takes into account genetic distance matrices among HA
proteins or glycan sequences (denoted as X), phenotypic differences
(denoted as y), and sample numbers (denoted as N). This approach
enables us to identify the key genetic features that contribute to dif-
ferent influenza virus phenotypes, such as antigenicity, yield, and
receptor-binding.

The objective of our sparse learning model is to solve:

min L X ,y,wð Þ+ λR wð Þ, ð1Þ

where LðX ,y,wÞ is the loss function, λ is a pre-defined regularization
parameter, RðwÞ denotes the regularization term, and w denotes the

A

B
190 helix 190 helix

130 loop 130 loop220 loop
220 loop

N/K159

Q196
Q192Q196Q192

K156K156

N/K159

Fig. 5 | Glycan binding properties for the MAIVeSS-selected vaccine viruses.
A The binding avidity to the synthetic glycan analogs, 3′SLN and 6′SLN for two
A(H1N1)pdm09 vaccines (i.e., MI/15, and WI/19) selected by WHO and the four
vaccine candidates selected by MAIVeSS. The virus abbreviations are shown in the
legend of Fig. 4. The virus receptor binding affinities were determined by BLI with
an Octet RED instrument (Pall ForteBio, Menlo Park, CA). Two biotinylated glycan
analogs, Neu5Acα2-3Galβ1-4GlcNacβ-PAA-biotin (3′SLN) and Neu5Acα2-6Galβ1-
4GlcNacβ-PAA-biotin (6′SLN) (Lectinity Holdings, Moscow, Russia) were used. The
glycans ranging from 0.05 to 0.5 ug/ml were preloaded onto streptavidin-coated
biosensors at up to 0.3 µg/ml for 5min in 1 × kinetic buffer (Pall FortéBio, Menlo
Park, CA). Each test virus was diluted to a final concentration of 100pM. Responses
were normalized by the highest value obtained during the experiment, and binding
curves were fitted by using the binding-saturation method in GraphPad Prism 8
(https://www.graphpad.com/scientific-software/prism/). The normalized response
curves report the fractional saturation (f) of the sensor surface as described in
elsewhere58. The horizontal dashed line represents half of the fractional saturation
(f =0.5). Results showed that rgSP/16, rgCQ/17, and rgMAS/20 bound to both 3′SLN

and 6′SLN, whereas MI/15, WI/19, and rgBRU/19 bound only to 6′SLN. The rgBRU/
19 showed an increased binding avidity to 6′SLN (RSL0.5 = 0.085) compared to MI/
15 (RSL0.5 = 0.135). The rgSP/16, rgCQ/17, and rgMAS/20 still exhibited a stronger
binding affinity to 6′SLN (RSL0.5 = 0.147, 0.263, and 0.134, respectively) compared
to 3′SLN (RSL0.5 = 0.498, 0.653, and 0.347). B Structural modeling suggesting the
amino acid substitutionN159K facilitates the binding affinity ofHA to SA2-3Gal. The
three-dimensional structure of HA protein was modeled based on the crystal
structure of CA/04 HA in complex with 6′SLN (PDB ID# 3UBN) and 3′SLN (PDB ID#
3UBQ). Coot was used to introduce the desiredmutation to the three subunits of a
HA trimer. The mutated coordinates were subsequently refined by energy mini-
mization using Phenix. Structure figures were made using Pymol (The PyMOL
Molecular Graphics System, Version 1.3, Schrödinger, LLC). MI/15 A/Michigan/45/
2015(H1N1), WI/19 A/Wisconsin/588/2019(H1N1), rgSP/16 A/Saint-Petersburg/RII57/
2016, rgCQ/17 A/Chongqing-Yuzhong/SWL1453/2017, rgBRU/19 A/Brunei/25/2019
(H1N1)(HA,NA)xPR8, rgMAS/20 A/Malaysia/33075487/2020 (H1N1)(HA,NA)xPR8, 3′
SLN Neu5Acα2-3Galβ1-4GlcNacβ-PAA-biotin, 6′SLN Neu5Acα2-6Galβ1-4GlcNacβ-
PAA-biotin. Source data are provided as a Source Data file.
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numerical weights of individual features (either a single residue or a
group of neighboring residues). Absolute values of the weights
indicate the impact of each mutation of a specific feature to
phenotypes (i.e., antigenic, yield, and receptor-binding properties).
The larger the absolute weight, the greater the impact.

Based on the features learned from sparse learning, we developed
a predictive model to assess antigenic or yield properties given HA
sequences. Specifically,

ŷ = xw, ð2Þ

where ŷ is the predicted phenotypic distance (either antigenicity or
yield) between the two viruses; x is the feature distance vector; andw is
the weight vector for those features, which can be associated with
either antigenicity or yield.

Multi-task learning group-guided sparse learning (MTL-
GGSL) model
To address the challenges associated with integrating serological
data generated from different platforms (e.g., turkey and guinea red
blood cells), we utilized a Multi-Task Learning (MTL) approach with
GroupGraphical Sparse Learning (GGSL) to analyze antigenicity. This
approach allowed us to consider both N-linked glycosylation and
amino acid features when analyzing the data. MTL allows us to learn
multiple related tasks (i.e., analyzing antigenicity from different
serological platforms) simultaneously, while GGSL considers the
dependencies between different groups of features to improve the
accuracy of the analysis. By utilizing MTL-GGSL, we were able to
overcome the challenges associated with integrating data from dif-
ferent platforms and provide a more comprehensive analysis of
antigenicity20,36.

One advantage of using the group LASSO regularization in MTL-
GGSL for antigenicity analyses is that it encouragesmultiple predictors
from related tasks to share a subset of features. This is in contrast to
the LASSO regularization, which may lead to sparse solutions where
only a few features are selected for each task independently. Our
previous study has shown that incorporating information on N-linked
glycosylation can improve the performance of sparse learning models
in predicting antigenic properties of influenza viruses20. By adopting
MTL-GGSL, we are able to integrate information on both glycosylation
and amino acid sequences from serological data generated using dif-
ferent platforms, which can further enhance the accuracy of our pre-
dictive models for influenza antigenicity.

Specifically, we define

L X ,y,wð Þ= 1
2
jjY � XW jj2F , ð3Þ

and

λR Wð Þ= λ1R1 Wð Þ+ λ2R2 Wð Þ+ λ3R3 Wð Þ, ð4Þ

and the model is formulated as:

min
W

1
2
jjY � XW jj2F + λ1

Xp

j = 1

jjWj:jj1 + λ2
Xk

t = 1

Xq

l = 1

αl jjWGl ,t
jj
2

+ λ3
Xk

t = 1

Xq

l = 1

αl jjWGl ,t
jj
1
,

ð5Þ

where λ1, λ2, and λ3 are regularization parameters, j is the subscript for
feature, p is the total number of features,Gl denotes featuregroup, q is
the number of feature groups, αl =

pml is the weight of feature group
Gl ; Wj denotes the weights for the j-th feature among different tasks,
andWGl ,t

as theweight for feature groupGl of the t-th task. Alternating

Direction Method of Multipliers (ADMM)37 was employed to solve the
optimization problem.

The generalized hierarchical sparse model (GHSM)
To consider synergistic effects ofmultiple features on the phenotypes,
we adopt GHSM38 in this study. The GHSM model aims to minimize:
LðW Þ+PK

k = 1
λ
αk jjW kð Þjj1. GHSM model solves the following objective:

min
W

1
2 y� PK

k = 1
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i1 ,���,ik
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where λ and α are two regularization parameters controlling the
sparsity and the decay in the coefficients for interactions of different

orders, zðkÞ<i1 ,���,ik> = xi1
� xi2 � � � � � xik denotes a data vector for the k-th

order interaction corresponding to <i1, � � � ,ik>, an interaction index
<i1, � � � ,ik>, where i1< � � �<ik , is an index to uniquely indicate the
interaction among the covariates i1, � � � ,ik , W denotes the set of para-

meters fwðkÞgKk = 1,wðkÞ 2 R
d
kð Þ for k = 1, � � � ,K is a vector of length

d
k

� �
= d!

k! d�kð Þ! with wðkÞ
<i1 ,���,ik> as its element corresponding to the index

<i1, � � � ,ik>, jj � jj2 denotes l2 norm of a vector and � denotes the ele-
mentwise product of two vectors. The constrains associatedwith each
covariate i have a chain of ðK � 1Þ inequality constraints, and there is a
total of d chains. The application of these models for antigenicity,
yield, receptor-binding are detailed as below.

Antigenicity analyses
In this study, we used eight individual tasks, each corresponding to an
individual HAI dataset, including those for seasonal A(H1N1) viruses
(1977–2009), A(H1N1)pdm09 viruses (2009–2020), swine A(H1N1)
viruses, and mutants generated from this study. In each task, the low-
rank matrix completion algorithm was used to minimize data noise
and the challenges derived from low reactors andmissing values in the
HAI datasets, and antigenic cartography was then used for antigenic
distance calculation20,39. Two groups of features (i.e., amino acid
mutations and N-glycosylation sites) were used in the model to
quantify influenza virus antigenic distances. We defined 327 residue
features and 6N-glycosylation site features. GETAREA software (http://
curie.utmb.edu/getarea.html) was used to predict whether these resi-
dues were on HA’s surface. The A(H1N1)pdm09 three-dimensional HA
structure (ProteinDataBank [PDB] identifier [ID] 3LZG)was used as the
template. A total of 138 residueswerepredicted to be located at theHA
protein’s surface (Supplementary Data 14). All amino acid residues,
with a variant rate >10%, were considered as non-conserved sites and
included in the machine learning model. Finally, a total of 86 residues
with 4 N-glycosylation sites were used as features in the machine
learning model.

Yield analyses
In this study, we analyzed the yield of 189 mutants compared with the
parentWTCA/04, which is 6:2 reassortant virus, in both cells and eggs.
To analyze the data, we utilized two groups of features: amino acid
substitutions andN-glycosylation sites. Furthermore,we employed the
GHSM approach to identify synergistic amino acid substitutions
associated with virus yield in eggs or cells. Specifically, to ensure the
feasibility of our analyses, we constrained the highest order to 3. It’s
worth noting that there were 3468 second-order interactions and
12,337 third-order interactions in our GHSM analyses.

Glycan binding analyses
In this study, we used a glycan microarray with 75 glycoforms (Sup-
plementary Fig. 1), which were grouped based on their internal and
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terminal substructures and linkers into a matrix of 27 glycan sub-
structure features. We then utilized the Multi-Task Learning with
Group Graphical Sparse Learning (MTL-GGSL) approach to determine
the substructures associated with yield traits in cells and eggs. In the
model, we employed three groups of features, including terminal
substructures (n = 16), internal substructures (n = 8), and base sub-
structures linked to the array (n = 3).

Model comparison, parameter optimization, and bootstrapping
analyses
In order to ensure the robustness of our analyses on antigenicity, yield,
and glycan binding, we compared MAIVeSS with five other sparse
learningmodels, including the L1-norm regularizedmethod (LASSO)40,
the L2-norm regularized method (RIDGE)41, the sparse group LASSO
method (SGL)42, the L1- and L2-norm regularizedmethod43, and the L1-
and L∞-norm Composite Absolute Penalties method (iCAP)44 (Sup-
plementary Data 1–3). The latter two models incorporate both L1- and
L2-norm regularization.

For antigenicity analyses, our comparison additionally included
three primary machine learning models mentioned in the literature,
alongwith three deep learning approaches. The conventionalmachine
learning methods consist of Support Vector Machine (SVM)45–47, Naïve
Bayes14,48–50, and Random Forest35,51,52. The deep learning methods
include Gated Recurrent Unit (GRU), Long Short-Term Memory
(LSTM), and Transformer. As the source codes for these models from
the literature are not publicly accessible, we utilized the machine
learning models available in MATLAB package (R2023a) for
comparison.

Todevelop and evaluate ourmodels,we allocated 90%of our data
for training and validation, and the remaining 10% for testing. The
testing dataset was excluded from parameter optimization to avoid
potential overfitting. Within the combined training and validation
dataset, we employed 10-fold cross-validation by segregating the data,
90% for training and the remaining 10% for validation, to fine-tune our
parameters and evaluate the training performance (Supplementary
Figs. 8–13). As the results, we set λ1 equals 2, λ2 equals 0.01, and λ3
equals 0.01 as optimal parameter for MTL-GGSL model, and λ equals
0.0001 and α equals 10 for GHSM model.

To evaluate the performance betweenmodels inMAIVeSS and the
previously mentioned comparison models, we assessed their RMSE
and Pearson correlation coefficient between predicted values and
ground truth for both training (using 10-fold cross-validation) and
testingdatasets for antigenicity, yield, andglycanbinding analyses. For
antigenicity analyses, we also recast it as an antigenic distance classi-
fication problem to assess the model’s efficacy in identifying antigenic
variants. A virus pair is classified as an antigenic variant if its paired
antigenic distance is 4-fold or greater; otherwise, it is not53. We inclu-
ded accuracy, precision, recall, specificity, andF1 score asperformance
metrics for both training and testing (detailed in the Supplementary
Information).

To investigate the effect of amino acid substitutions on both yield
and glycan binding phenotype, we employed a grouping method for
amino acids54. Each amino acid was assigned to one of three groups
based on its biophysical properties: nonpolar (V, L, I, M, C, F,W, and Y),
small polar (G, A, and P), and polar/charged (S, T, N, Q, H, D, E, K, and
R). HA protein sequencewas encoded into a vector Xi by comparing to
a wild-type sequence and if a mutation occurred in residue j (e.g.,
nonpolar to small polar), we encoded the j-th element of Xi to 1;
otherwise, we encoded it to 0. To evaluate the directionality of amino
acid substitutions on both yield and glycan binding phenotype, we
used three different sparse models (LASSO, RIDGE, and SGL) and
performedbootstrap analyses (detailed in SupplementaryData 5–7). In
brief, we selected all features with a bootstrap value cutoff of 80 from
100 independent runs.

Predictive model
In this study, a predictive model was developed to estimate the anti-
genic distance between two viruses based on their genetic sequences.
The model was defined as follows:

ŷ = x μwglobal + 1� μð Þwlocal
� �

, ð7Þ

where x is the genetic distance vector between the two viruses, y ̂ is the
predicted antigenic distance between them, wglobal is the global weight
representing the average of weights across different tasks, wlocal indi-
cates the weights from each individual task, and μ is set to 0.4 to
balance the global and local weights.

In addition, a scoring function was proposed to measure yield
differences between two viruses based on their amino acid sequences.
The scoring function is defined as follows:

ŷ=
XK

k = 1

Xd

i1 ,���,ik
w kð Þ

<i1 ,���,ik>z
kð Þ
<i1 ,���,ik>, ð8Þ

Here, w and z were the weight and feature matrices used in the
GHSM approachmentioned above. The detailed prediction results for
both the antigenic distance and yield differences are presented in
Supplementary Data (Supplementary Data 12).

Cells and viruses
Human embryonic kidney (293T) cells andMadin-Darby canine kidney
(MDCK) CCL-34 cells were obtained from the American Type Culture
Collection (Manassas, VA). The cells were maintained in Dulbecco’s
Modified Eagle Medium (GIBCO/BRL, Grand Island, NY; catalog num-
ber 11965-092) supplemented with 5% fetal bovine serum (Atlanta
Biologicals, Lawrenceville, GA; catalog number S12450H) and
penicillin-streptomycin (Invitrogen, Carlsbad, CA; catalog number
15140122) at 37 °C with 5% CO2. The HA gene of CA/04was cloned into
the vector pHW2000 and used as a template to construct the mutant
library. The viruses generated by reverse genetics were propagated in
MDCK cells and cultured at 37 °C with 5% CO2 in Opti-MEM medium
(GIBCO/BRL, Grand Island, NY; catalog number 11058-021) supple-
mented with 1μg/ml of TPCK (N-tosyl-L-phenylalanine chloromethyl
ketone)-Trypsin (Sigma-Aldrich, St. Louis, MO; catalog number T1426)
and penicillin-streptomycin (Invitrogen, Carlsbad, CA; catalog number
15140122). The virus titers were determined by TCID50 in MDCK cells.

Sequence and serological Data
Serologic data for A(H1N1) viruses were collected from data described
elsewhere13,55,56, and included HAI titers generated between 1,015
viruses and 194 serum samples (Supplementary Data 15). A total of
11,424 A(H1N1)pdm09 HA protein sequences from 2009 to 2020 were
obtained from GISAID (https://gisaid.org).

Construction of plasmid library, gene synthesis, and rescue of
mutants
The mutant plasmid library with randommutations in the HA RBS was
generated using the epPCR strategy15. Four primers were used to
generate the HA-pHW2000 RBS mutant library: 1) 130loop_F: 5’-TCA
TGG CCC AAT CAT GAC TCG AAC-3’; 2) 190helix_F: 5’-TGG GGC ATT
CAC CAT CCA TCT ACT-3’; 3) 190helix_R: 5’-AAC ATA TGT ATC TGC
ATT CTG ATA-3’; and 4) 220loop_R: 5’-TAG TGT CCA GTA ATA GTT
CAT TCT-3’. The epPCR product (2μl) was transfected into XL1-Blue
Supercompetent Cells (Agilent Technologies, Santa Clara, CA; catalog
number 200236). The transformed cells were directly inoculated onto
LB (Luria Bertani) agar plates, and the clones were propagated in 5ml
of LB media. The clones generated from the RBS mutant library were
confirmed by Sanger sequencing using the sequencing primer 5’-GAA
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CGT GTT ACC CAG GAG ATT-3’. Mutant viruses were rescued by
plasmid-based reverse genetics with the NA genes fromCA/04 and six
internal genes from PR8, as described elsewhere57. To compare the
phenotypes of the predicted vaccine candidates,wealso generated the
WT virus, a parent prototype 6:2 reassortant virus ith wild-type HA and
NAgenes fromCA/04 and six internal genes fromPR8, byusing reverse
genetics. To confirm the lack of any undesired egg or cell-adapted
amino acid changes, eachmutant’s HA genes were confirmed by using
Sanger sequencing post-rescue and propagation.

To validate the antigenic and high-yield properties of the viruses
predicted by our computationalmodel, we synthesized the HA andNA
genes for four MAIVeSS-predicted potential vaccine viruses from epi-
demic strains (Gene Universal Inc., Newark, DE) and then generated
reassortant viruses with the HA and NA from each of these testing
epidemic strains and the six internal genes from PR8 using reverse
genetics: A/Saint-Petersburg/RII57/2016(H1N1) (HA,NA)×PR8(rgSP/16),
A/Chongqing-Yuzhong/SWL1453/2017(H1N1)(HA,NA)×PR8(rgCQ/17),
A/Brunei/25/2019(H1N1)(HA,NA)×PR8(rgBRU/19), and A/Malaysia/
33075487/2020(H1N1)(HA,NA)×PR8(rgMAS/20).

Evaluation of viral yield
To evaluate the effect of mutations on viral yield, we performed cell
culture assays and embryonated egg assays. For the cell culture assays,
we inoculated MDCK cells with each influenza virus at a multiplicity of
infection of 0.001 and incubated the cells at 37 °C with 5% CO2 for 1 h.
After incubation, the inocula were removed, and the cells werewashed
twice with phosphate-buffered saline (PBS). Then, the cells were
incubated with Opti-MEM I (GIBCO, Grand Island, NY; catalog number
11058-021) containing TPCK-trypsin (Sigma-Aldrich, St. Louis, MO;
catalog number T1426) (1 µg/ml) at 37 °C with 5% CO2. After 48 h,
200 µl of supernatants were collected, aliquoted, and stored at −80 °C
until use. For the embryonated egg assays, 9-day-old specific
pathogen-free chicken eggs were inoculated with 200 TCID50 of each
virus and incubated at 37 °C for 72 h, and allantoic fluidwere collected.
The viral titers in the samples from both the MDCK cells and the
embryonated eggs were determined using TCID50 assays in
MDCK cells.

Conventional methods for quantifying yields of inactivated
influenza vaccines rely on theHAprotein, typically determinedby SDS-
PAGE gel following PNGase treatment. However, this procedure is
labor-intensive, preventing us from quantifying the yields of all 196
mutants propagated in both eggs and cells. We quantified the total
proteins obtained from ultracentrifugation purification of super-
natants from virus-infected cell or egg cultures and analyzed their
correlations with the viral titration TCID50. Pearson correlation ana-
lysis showed that the total protein yields are positively correlated with
TCID50 (Supplementary Fig. 14). Additional SDS-PAGE analyses indi-
cated that approximately 40% of the total proteins are HA proteins
(Supplementary Figs. 15 and 16). Consequently, in this study, we used
TCID50 titers to assess vaccine yield.

Virus concentration and purification
Viruses for the glycan microarray analysis were purified as described
elsewhere23. Briefly, viruses were purified from the cell supernatant or
allantoic fluid by low-speed clarification (2482 × g, 30min, 4 °C) to
remove debris and then followed by ultracentrifugation through a
cushion of 30–60% sucrose in a 70Ti Rotor (Beckman Coulter, Full-
erton, CA) (100,000× g, 3 h, 4 °C). The virus pelletwas re-suspended in
100μl of PBS and stored at −80 °C until use.

Glycan microarray
To identify unique substructures bound specific sets of mutants, a
glycan microarray with 75 glycoforms were printed on N-hydro-
xysuccinimide (NHS)–derivatized slides23. The 75 glycans were selec-
ted to represent four different glycan categories, including N-glycans,

Asn-linked N-glycans, Gangliosides, Thr-linked O-mannosyl glycans
(Supplementary Fig. 3). These glycans on themicroarrayhave the same
base structures and spacer arms but different terminal structures. The
glycans were printed in replicates of four in a subarray, and sixteen
subarrays were printed on each glass slide. All glycans were prepared
at a concentration of 100mM in phosphate buffer (100mM sodium
phosphate buffer, pH 8.5). The slides were fitted with a 16-chamber
adapter to separate the subarrays into individual wells for assay. The
unreacted NHS groups on the slides are blocked with 50mM ethano-
lamine in 50mM sodium borate buffer (pH 9.2) at 4 °C for 1 h and then
the slides are rinsed with water. Before the assay, slides were rehy-
drated for 5min in TSMW buffer (20mM Tris-HCl, 150mM NaCl,
0.2mM CaCl2, and 0.2mM MgCl2, 0.05% Tween). Viruses are purified
by sucrose density gradient ultracentrifugation and titrated to about
32,000 hemagglutination units/ml. Then 10μl of 1.0M sodium bicar-
bonate (pH 9.0) was added to 80μl of virus, and the virus was incu-
bated with 10μg of Alexa Fluor 488 NHS Esters (Succinimidyl Esters;
Invitrogen, Carlsbad, CA; catalog number A20100) for 1 h at 25 °C.
After overnight dialysis to remove excess Alexa 488, viruses HA titer
were checked and then bound to glycan array. Labeled viruses were
incubated on the slide at 4 °C for 2 h, washed, and centrifuged briefly
before being scanned with an InnoScan 1100 AL fluorescence imager
(Innopsys, Carbonne, France).

Haemagglutination and HAI assays
Haemagglutination and HAI assays were performed by using 0.5% tur-
key erythrocytes as describedby theWHOGlobal Influenza Surveillance
Network Manual for the Laboratory Diagnosis and Virological Surveil-
lance of Influenza. Turkey erythrocytes were obtained from Lampire
Biological Products (Everett, PA; catalog number 7209403). The turkey
erythrocytes were washed three times with 1 × PBS (pH 7.2) before use
and then diluted to 0.5% in 1 × PBS (pH 7.2). Ferret antisera used in the
HAI assays were produced by infecting influenza seronegative ferrets
(see details in Supplementary Information) or obtained from BEI
Resources (https://www.beiresources.org) or International Reagent
Resource (https://www.internationalreagentresource.org).

Biolayer interferometry assays (BLI)
The virus receptor binding affinities were determined by BLI with an
Octet RED instrument (Pall ForteBio,MenloPark, CA). Five biotinylated
glycan analogs, Neu5Acα2-3Galβ1-4GlcNacβ-PAA-biotin (3′SLN) (Lec-
tinityHoldings,Moscow, Russia; catalog number0036-BP),Neu5Acα2-
6Galβ1-4GlcNacβ-PAA-biotin (6′SLN) (Lectinity Holdings, Moscow,
Russia; catalog number 0997-BP), Neu5Acα2-3Galβ1-4(Fucβ1-3)
GlcNacβ-PAA-biotin (sLeX), Neu5Gcα2-3Galβ1-4GlcNAcβ-PAA-biotin
(3′SLN(Gc)), or Neu5Gcα2-3Galβ1-4(Fucβ1-3]GlcNAcβ-PAA-biotin
(SLeX(Gc))] were used. Among them, SLeX, 3′SLN(Gc), and SLeX(Gc) were
synthesized. The glycans were preloaded onto streptavidin-coated
biosensors at up to 0.3 µg/ml for 5min in 1 × kinetic buffer (Pall For-
téBio, Menlo Park, CA; catalog number 18-1092). Each test virus was
diluted to a final concentration of 100 pM with 1 × kinetic buffer con-
taining 10 µM oseltamivir carboxylate (American Radiolabeled Che-
micals, St. Louis,MO; catalog numberHY-13318) and zanamivir (Sigma-
Aldrich, St. Louis, MO; catalog number SML0492-10MG) to prevent
cleavage of the receptor analogs by NA proteins of virus. Association
was measured for 30min at 25 °C. Responses were normalized by the
highest value obtained during the experiment, and binding curves
were fitted by using the binding-saturationmethod in GraphPad Prism
8 (https://www.graphpad.com/scientific-software/prism/). The nor-
malized response curves report the fractional saturation (f) of the
sensor surface as described in elsewhere58. The RSL0.5 values were
calculated to determine the binding affinity between a virus and glycan
analog pair, using the binding-saturation method in GraphPad Prism
8 software. Higher RSL0.5 values indicate weaker binding affinity
between the virus and glycan analog.
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Structural modeling and visualization of proteins structure
The three-dimensional structure of HA protein wasmodeled based on
the crystal structure of CA/04 HA in complex with 6′SLN (PDB ID#
3UBN) and 3′SLN (PDB ID# 3UBQ). Coot (https://www2.mrc-lmb.cam.
ac.uk/personal/pemsley/coot/) was used to introduce the desired
mutation to the three subunits of a HA trimer. The mutated coordi-
nates were subsequently refined by energy minimization using Phenix
(https://phenix-online.org). Structure figures were made using Pymol
(The PyMOL Molecular Graphics System, Version 1.3,
Schrödinger, LLC).

Statistics and reproducibility
To minimize the risk of overfitting and ensure a reliable assessment
of our model’s performance, we randomly assigned 90% of our
dataset for training and validation, reserving the remaining 10%
exclusively for testing. Importantly, the testing set remained untou-
ched during parameter tuning to maintain an impartial evaluation of
the model’s generalization capabilities. Pearson correlation coeffi-
cient was used to measure the model performance and the associa-
tion between the total protein yields and TCID50 for a testing
influenza virus. The model performance matrices include accuracy,
specificity/recall, sensitivity, precision, and F1 score (see details in
Supplementary Information). Bootstrap experiments were used to
evaluate the robustness of the model in feature selection. A total of
100 independent bootstrapping experiments were conducted, with
each experiment randomly selecting 80% of the data. The frequency
of a feature’s selection across these experiments was used as an
indicator of its importance, and the higher the frequency, the more
important the feature. No statistical method was used to pre-
determine sample size, and no datawere excluded from the analyses.
The Investigators were not blinded to allocation during experiments
and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The ser-
ological data for the vaccinate candidates generated in this study are
available in Table 3. The list of the wild type CA/04 and the HA RBS
mutant viruses and their associated antigenicity, virus yield in egg and
cells, and glycan binding properties generated in this study are avail-
able at Supplementary Data 4. The serological data from public
sources13,55,56, including HAI titers generated between 1,015 viruses and

194 serum samples (Supplementary Data 15). The glycans printed on
microarray array are available in Supplementary Fig. 1. The GISAID
accession numbers for the epidemic A(H1N1)pdm09 strains are avail-
able from Supplementary Data 12. To access the GISAID database
(https://gisaid.org), users need to log in following the instructions
provided by the GISAID database. Once logged in, the GISAID database
enables users to search and retrieve sequence andmetadata data using
either a specific accession number or a specific strain name. The three-
dimensional structure of the HA protein was modeled by referencing
the crystal structures of CA/04 HA (PDB ID# 3LZG) in complex with 6′
SLN (PDB ID# 3UBN) and 3 SLN (PDB ID# 3UBQ). Additionally, the
original data utilized for generating bar graphs and geospatial visua-
lizations can be accessed in the Source Data file. Source data are
provided with this paper.

Code availability
The source codes for the model development in this study can be
accessed through GitHub at https://github.com/FluSysBio/MAIVeSS
and also throughCodeOcean athttps://doi.org/10.24433/CO.8910619.
v159. TheMAIVeSSwebserver canbe accessed athttp://sysbio.missouri.
edu/software/MAIVeSS.
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