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Convergent evolutionary patterns of
heterostyly across angiosperms support the
pollination-precision hypothesis

Violeta Simón-Porcar 1,2 , Marcial Escudero1, Rocío Santos-Gally 3,
Hervé Sauquet 4, Jürg Schönenberger 5, Steven D. Johnson2 &
Juan Arroyo 1

Since the insights by Charles Darwin, heterostyly, a floral polymorphism with
morphs bearing stigmas and anthers at reciprocal heights, has become a
model system for the study of natural selection. Based on his archetypal het-
erostylousflower, including regular symmetry, few stamens and a tube,Darwin
hypothesised that heterostyly evolved to promote outcrossing through effi-
cient pollen transfer betweenmorphs involving different areas of a pollinator’s
body, thus proposing his seminal pollination-precision hypothesis. Here we
update the number of heterostylous and other style-length polymorphic taxa
to 247 genera belonging to 34 families, notably expanding known cases by
20%. Using phylogenetic and comparative analyses across the angiosperms,
we show numerous independent origins of style-length polymorphism asso-
ciated with actinomorphic, tubular flowers with a low number of sex organs,
stamens fused to the corolla, and pollination by long-tongued insects. These
associations provide support for the Darwinian pollination-precision hypoth-
esis as a basis for convergent evolution of heterostyly across angiosperms.

The repeated nature of floral evolution is evident from the scattered
phylogenetic distribution of many floral traits1–6, of pollination modes
and syndromes3,7–10 as well as of sexual, breeding and mating
systems11–18. A major paradigm, supported by evidence at micro- and
meso-evolutionary time scales, is that suchconvergences have evolved
in response to selection for increased pollination and reproductive
efficiency in different lineages with a common selection regime19–22.
According to the pollination-precision hypothesis, reproductive effi-
ciency is increased by floral traits improving the fit of pollinators to
flowers and their reliable contact with sex organs, thus improving
pollen deposition on precise areas of pollinators’ bodies23–25. To
unravel the evolutionary significance and adaptive meaning of
important floral features that have evolved repeatedly across

angiosperms, it is necessary to quantify and characterise the macro-
evolutionary patterns and correlates of these features.

Heterostyly is a polymorphic breeding system well established as
a valuable model system in evolutionary biology since Darwin’s book
‘The different forms of flowers on plants of the same species’26–29. It
consists of the existence of two (distyly) or three (tristyly) hermaph-
roditic floral morphs in a population, whose essential feature is a dis-
crete differentiation in stigma and anther heights, which are
reciprocally positioned (reciprocal herkogamy30). The typical hetero-
stylous syndrome also encompasses a self- and intramorph incom-
patibility system (heteromorphic self-incompatibility, HetSI31) and
various ancillary polymorphisms such as pollen sculpture and length
of stigmatic papillae (ancillary traits32).
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Heterostyly is infrequent33,34 but is widely distributed across the
angiosperm tree, with several apparently independent origins that
have made it a classic example of evolutionary convergence at all
taxonomic levels30,33–38. Heterostylous taxa are typically characterised
as presenting actinomorphicflowerswith few stamens and afloral tube
with nectar concealed at the base, suggesting some level of speciali-
sation for animal-mediated pollination26,30,33. Based on this floral
archetype, Darwin26 and Lloyd and Webb39 hypothesised that hetero-
styly evolved to promote cross-fertilisation through disassortative
mating (as in dioecious plants but maintaining both male and female
functions in the same flower) through efficient pollen transfer between
morphs that involves different areas of a pollinator’s body (Fig. 1).
Hence, the basis of the Darwinian hypothesis about the evolutionary
meaning of heterostyly was the pollination-precision hypothesis.
Additionally, Ganders33 suggested that the floral tube promotes pre-
cise contact between the plants’ sex organs and the pollinators’ body,
and there is extensive literature e.g.,26,39–42 regarding long-tongued
pollinators probing for nectar as being agents of precise pollination in
heterostylous flowers.

In addition to the interpretation of heterostyly in the context of
pollination ecology, various alternative models have sought to
understand heterostyly in the framework of heteromorphic self-
incompatibility (HetSI). Over the last century, these models have
focused on the genetic linkage between HetSI and style-length poly-
morphism as a means of selfing avoidance e.g.,43–45. Studies recon-
structing the evolution of style-length polymorphisms in particular
lineages have supported either the pollination ecology46,47 or the self-
ing avoidance scenarios38, with no particular overall consensus. Mac-
roevolutionary testing for correlation of heterostyly with floral traits
and pollination systems that enhance pollen deposition on precise
areas of pollinators’ bodies is an idea that was suggested by Lloyd and
Webb30 at a time when the analytical tools required were scarcely
developed.

In this study, we used angiosperm-wide datasets on floral mor-
phology and pollination system combined with phylogenetic infor-
mation to test the pollination-precision hypothesis and assess
macroevolutionary patterns of heterostyly in detail. We carried out a
comprehensive and up-to-date review of reports of heterostyly and
other style-length polymorphisms in genera across the angiosperms,
and then used phylogenetic comparative methods to determine the
distribution and number of gains and losses of style-length poly-
morphisms, and their correlation with six floral traits and six pollina-
tion systems. We show that style-length polymorphism originated
repeatedly and independently across genera in lineages with flowers
and pollination systems favouring precise pollen transfer. Our results

provide support for the pollination-precision hypothesis as a basis of
the convergent evolution of heterostyly across angiosperms.

Results
Reports of style-length polymorphic genera
We found reports of style-length polymorphisms in 247 currently
accepted genera belonging to 34 families (Fig. 2; Supplementary
Data 1). Of these, 184 currently accepted genera from 27 families were
already listed in the last review34, and63 currently accepted genera and
seven families (namely: Asparagaceae, Carlemanniaceae, Ericaceae,
Haemodoraceae, Loganiaceae, Olacaceae and Theaceae) are new
reports of style-length polymorphism not related to taxonomic chan-
ges.Most of the reports of style-lengthpolymorphic genera (50%)were
based on descriptions with or without measurements of sex organs;
29% of records were based on mentions, and 21% included measure-
ments subjected to statistical tests for significant differences between
sex organ lengths. Reports of style-length polymorphism were strictly
linked to (cryptic) dioecy in eight genera and to style-length
dimorphism (non-reciprocal herkogamy) in five genera. We list
doubtful reports of style-length polymorphism for further 27 genera
and seven families (Supplementary Data 1).

Macroevolution of style-length polymorphisms
The GBOTB angiosperms tree included 208 out of the 247 style-length
polymorphic genera (84%). The best fitting model for the evolution of
style-length polymorphism across the GBOTB tree was the ‘all rates
different’ HMM model with two transition rate categories (Supple-
mentary Table 1). The two transition rate categories and style-length
polymorphism states are not equally probable in the tree. The R1
category (Fig. 3A) and style-length monomorphism, the ancestral
state, (Fig. 3B) are much more frequent in the tree. Category R1 pre-
sents low transition rates between the style-length monomorphic and
the style-length polymorphic states, and category R2 is associatedwith
rapid transitions between both states (Fig. 3C). Although in R1 both
directions (from/to style-length polymorphic state) were very infre-
quent, the inferred transition rate to style-length polymorphism was
100 times lower than the opposite transition. Within R2, the transition
to style-length polymorphism was 2.7 times lower than the opposite
(Fig. 3C). These transition rates resulted in a strikingly high number of
monomorphic lineages accumulated through time in R1, and a slightly
higher number of polymorphic lineages accumulated through time in
R2 than in R1 (Fig. 4A). From this model, we inferred 152 independent
gains of style-length polymorphism and 137 independent losses that
generally appeared during most of angiosperms evolutionary time
(Fig. 4B). The most ancient and most recent gains, respectively, were
dated at 86.01 and 0.02Myr ago, with a maximum probability at
6.6Myr (mode estimated with the function locmodes of the R package
multimode v1.548). The most ancient and most recent losses, respec-
tively, were dated 68.37 and0.22Myr ago,with amaximumprobability
at 6.8Myr. The ages given above correspond to the ages estimated
from a single simulation in stochastic mapping and do not include the
inherent uncertainty of divergence time analyses.

Correlated evolution of style-length polymorphism and other
floral traits
In all cases, ‘all rates different’ models fitted better than ‘equal rates’
models for both the dependent and independent modes of evolution.
For most floral traits analysed (Supplementary Data 2), a model of
dependent evolutionwith style-length polymorphism received greater
support than the corresponding model of independent evolution
(Supplementary Table 2). The models of dependent and independent
evolution obtained similar support only for ‘Fusion of filaments’ and
‘Number of structural carpels’. The models of dependent evolution
showed that style-length polymorphic genera presented higher rates
of transition from the unfused perianth to the fused perianth state

L S
Fig. 1 | Graphic representation of heterostyly. Graphic representation of the two
floral morphs (L=long-styled morph, S=short- styled morph) of a distylous species
and the hypothetical mechanism of pollen transfer between morphs in differ-
entiated parts of a pollinator’s body, basedon the pollination-precision hypothesis.
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(Fig. 5A), from free stamens to stamens fused with the perianth
(Fig. 5B), from zygomorphic to actinomorphic perianth (Fig. 5C), from
fused tounfused stamens (Fig. 5D), frommany to few stamens (Fig. 5E),
and from many to few carpels (Fig. 5F) than for the opposite

transitions. The rates for the remaining transitions between states in
eachmodel also supported the highest probability for the style-length
polymorphic states being associated with fused, actinomorphic peri-
anth, few stamens with free filaments fused with the perianth, and few

Fig. 2 | Reports of style-length polymorphic genera. Bar plots showing (A) the
increasing number of genera and families containing style-length polymorphisms
as reported in earlier reviews of the history of heterostyly research and in the

present study; and (B) the percentage and the absolute number of genera con-
taining style-length polymorphisms per family. Source data are provided as a
Source Data file.
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carpels (Fig. 5). The high transition rate from style-length poly-
morphism to style-length monomorphism in zygomorphic genera is
especially noteworthy (Fig. 5C).

Correlated evolution of style-length polymorphism and polli-
nation systems
As above, ‘all rates different’ models fitted better than ‘equal rates’
models for all the dependent and independent modes of evolution.
The model of dependent evolution with style-length polymorphism
presented greater support than the corresponding model of inde-
pendent evolution only for ‘long-tongued insects’ vs. ‘short-tongued
insects’ pollination systems (Supplementary Table 3). The transition

rates between states in thismodel supported the highest probability of
the style-length polymorphic state with long-tongued insect pollina-
tion (Fig. 6). The missing transition from style-length monomorphism
to style-length polymorphism in short-tongued pollination systems is
especially remarkable (Fig. 6). The models of dependent and inde-
pendent evolutionpresented similar support for the ‘biotic’ vs. ‘abiotic’
and the ‘insect’ vs. ‘bird’ pollination systems, and in these cases the
transition rates in the models of dependent evolution suggested an
association of style-length polymorphism with biotic and insect polli-
nation (Supplementary Table 3 and Supplementary Fig. 1). As expec-
ted, we found no verified report of abiotic pollination in style-length
polymorphic species (Supplementary Data 3). The models of
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independent evolution obtained greater support for the ‘insect’ vs.
‘vertebrate’, ‘generalist’ vs. ‘specialist’ and ‘long-tongued animals’ vs.
‘short-tongued animals’ (Supplementary Table 3).

Discussion
The number of recognised style-length polymorphic lineages and taxa
has significantly increased in the last decades, from 164 genera in 24
families in Ganders’ review33 to 247 genera in 34 families in this study.
The substantial increase in records (62 accepted genera and seven
families) reported in this study with respect to the former review34 is
partly due to the inclusion of cryptic dioecious (seven genera and one
new family) and style-length dimorphic (five genera from five new
families) taxa. Deviations from the perfect heterostylous syndrome,
including the lack or partial expression of heteromorphic self-
incompatibility49–54, ancillary polymorphisms55–57, sex organ
reciprocity46,58,59 and hermaphroditism40,60,61 are common and have
historically made it difficult to define heterostyly29,30,62–64. Such devia-
tions are difficult to assess and have mostly received none or uneven
attention across taxa. Often, data are available from single popula-
tions, whichmay not be representative of the entire species59,65–67, and

even less so of the entire genus, the taxonomic level analysed in this
study. Relative to the potential number of style-length polymorphic
species, the scarcity of functional and fine morphological studies
hinders a complete picture of the occurrence and distribution of these
phenomena. Numerous reports of heterostyly are just incidental
mentions or descriptions without available supporting data, and there
are several cases in which style-length dimorphism has been referred
to as heterostyly e.g.,68 or inwhich their distinction is not clear e.g.,69,70.
Hence, herewe advocate for the use of style-length polymorphismas a
more comprehensive term that encompasses all taxa with the most
essential feature of the syndrome: a discrete variation in style-length
and herkogamy30, which is expected to promote disassortative
mating71–73.

We report 152 independent gains of style-length polymorphism
across the angiosperms tree at the genus level. This number is robust
for purposed of this analysis but is likely to be still an under-
estimation. Nonetheless, the number of estimated independent gains
of style-length polymorphism increases in parallel with the number
of known style-length polymorphic taxa and a better understanding
of angiosperm phylogenetics. In the past, exploring the distribution
of heterostyly across angiosperms with, at that time, limited phylo-
genetic information, Lloyd and Webb30 estimated 23 independent
origins at the family level. Later, Naiki34 estimated between seven and
13 independent origins using an order-level angiosperm phylogeny.
Moreover, molecular phylogenies have revealed cases of repeated,
independent evolution of heterostyly within some families36,38 and
even lower ranked taxa35,46,74–76. Yet, the scarcity of phylogenetic
studies at this level precludes any possible generalisation about
evolutionary patterns of style-length polymorphism at the tips of the
angiosperm phylogenetic tree. The high number of independent
gains relative to its low frequency (ca. 2% of angiosperm genera, vs.
7% for dioecy77) and accumulated biological and ecological knowl-
edge make style-length polymorphism a unique study case for
understanding the evolutionary origins of homoplastic breeding
systems. The multiplicity of ontogenetic patterns78,79 and spor-
ophytic and gametophytic self-incompatibility systems or their
lack49,51,80–82 associated with style-length polymorphism suggest
diverse evolutionary mechanisms underlying its origin. As a model
system for the study of supergenes, advances in new genomic data
sets and comparative analyses e.g.,83–86 are shedding light onto the
molecular pathways of convergent evolution in independent style-
length polymorphic lineages, and our results can help to optimise the
choice of future study systems.

The inferred gains and losses of style-length polymorphism were
aged along most evolutionary time in the angiosperm phylogeny
(Fig. 4B). Our reconstruction was based on an HMM model with two
transition rate categories from and to the style-length polymorphic
state. Within rate category R1, which is dominant in the angiosperm
tree, the rates of polymorphism gains and losses were very low
(although the loss rate was ca. 100 times higher than the gain rate),
resulting in two gains of polymorphism and no losses inferred. Within
the rate category R2, which is less frequent and mostly found in shal-
low parts of the phylogeny, rates of polymorphism gains and losses
were higher than in R1 and the loss rate was ca. 3 times higher than the
gain rate, resulting in 152 gains and 137 losses inferred in R2. Overall,
the numbers of gains and losses inferred are congruent with the
transition rates in a context of prevalence of the ancestral mono-
morphic condition. Whether style-length polymorphism was asso-
ciated with different speciation rates or extinction rates in R1 and R2
cannot be known with our current knowledge of phylogenetics and
distribution of style-length polymorphism across all angiosperm
species87. At the genus level there is mixed phylogenetic evidence
about the role of heterostyly in diversification rates76,88,89, see also
ref. 90, which is congruent with the apparent context and/or lineage-
dependent role of floral traits on angiosperms diversification rates91.
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We found that style-length polymorphism is evolutionary corre-
lated with various floral traits related to pollination precision and
intermediate levels of specialisation for animal pollination, notably
actinomorphic flowers with fused perianth parts (a proxy for a floral
tube), few stamens fused to the perianth, and few carpels, and with a
long-tongued insect pollination system. These results support
empirically, at the macroevolutionary level, the long-standing polli-
nation-precision hypothesis set up before the phylogenetic era by
Darwin26, Ganders33 andLloyd andWebb30,39. These authors recognised
the non-random distribution of heterostyly among plant families and
its prevalence in animal-pollinated species with small, actinomorphic
flowers with few stamens, and presenting nectar concealed at the base
of a floral tube. These apparent associations informed their hypoth-
eses for the function of heterostyly as a means of promoting pollina-
tion efficiency, enhancedby floral tubes promoting the precise contact
between pollinators probing for nectar and floral sex organs. After
much microevolutionary evidence e.g.,42,72,73,92 see also ref. 47, the
broad-scale significance of these patterns has been tested here at a
macroevolutionary level encompassing all major angiosperm clades.
Based on solid current phylogenetic knowledge and extensive floral
trait and pollination system databases, our analyses support pollina-
tion precision as the selective force behind the repeated and inde-
pendent evolution of style-length polymorphisms in angiosperms.

Themacroevolutionary association of style-length polymorphism
and long-tongued insect pollination supports the hypothesised role of
these animals as the main agents of the precise pollen transfer in
heterostylous lineages. However, observational e.g.,93 and experi-
mental e.g.,73 evidence suggests that short-tongued pollinators can
also achieve precise pollination in certain style-length polymorphic
plants. Some style-length polymorphic taxa also exhibit a diverse array
of long- and short-tongued pollinators that may play complementary

roles in the pollination of each morph e.g.,73,94,95, or whose pollination
efficiency may depend on the particular flower architecture of each
style-length polymorphic lineage. Future efforts assessing the macro-
evolutionary correlation of style-length polymorphism with pollinator
types, including the assessment of their behaviour and precise pollen
deposition areas e.g.,25, their efficiency in promoting disassortative
pollination as done for some specific cases e.g.,42,96–98, and their
interplay with floral traits, would seem the most promising additional
test of the pollination-precision hypothesis in this context.

Besides pollination efficiency, future efforts could also be direc-
ted to assess the macroevolutionary correlations of style-length poly-
morphism with other plant reproductive systems99, specifically with
self-incompatibility to unravel the complementary role of selfing
avoidance in the evolution of style-length polymorphisms44,45 and
dioecy to unravel the role of transitions towards dioecy in the loss of
style-length polymorphism across the angiosperms40,77. Nearly 150
years after “The different forms of flowers”, style-length polymorph-
isms still have much to offer as a model study system for angiosperm
evolution.

Methods
Style-length polymorphism database
Current knowledge does not allow for reliable estimates of the
occurrence of style-length polymorphisms at the species level. Thus,
we focused our search at the genus level, and used the reviews of
Ganders33 and Naiki34 to generate a preliminary list of all genera
reported to contain at least one heterostylous species (hereafter style-
length polymorphic genera). We updated this list in November 2020
through a systematic literature search in Google Scholar to identify
further genera with style-length polymorphisms. First, we carried out a
search of publications since 2012 using “heterostyly” OR “distyly” OR
“tristyly” OR “heterodistyly” OR “distylous” OR “tristylous” OR “het-
erodistylous” OR “reciprocal herkogamy” OR “style dimorphism” OR
“style polymorphism” OR “stylar dimorphism” OR “stylar polymorph-
ism” OR “stylar morph” OR “cryptic dioecy” OR “functional dioecy” as
search terms putatively related with heterostyly in the full text and
examined the first 1000 most relevant entries. This search retrieved
some style-length polymorphic genera that were not included in the
survey by Naiki34, and thus we carried out a second search without
publishing year limitations. In this search, updated in January 2022, we
used the same search terms as before plus OR “disassortative mating”
OR “style-length” OR “stigma height” OR “herkogamous” as search
terms in the article title, and examined the ca. 4500 retrieved entries
and the references therein.

We recorded as style-length polymorphic the genera with at least
one report of heterostyly or an obvious discrete style-length
dimorphism and recorded whether the report was based on a men-
tion, on a qualitative description, on a quantitative description or on
morphological data subjected to statistical tests, and whether it
included illustrations (Supplementary Data 1). Although the typical
heterostylous syndrome includes reciprocal herkogamy, HetSI and
ancillary traits, we followed a strictly morphological criterion because
reciprocal herkogamy is the only requirement for the pollination-
precision hypothesis. Hence, we listed genera as style-length poly-
morphic regardless of the presence or absence of the two latter fea-
tures, or the lackof information about them. Indeed, Lloyd andWebb30

considered a discrete variation in stigma height and a different
“sequence of heights at which the anthers and stigmas are presented
within their flowers” as the only defining trait of heterostyly. This
definition included style-length dimorphism and we also included
reports of this condition because Lloyd and Webb’s model39 see also
ref. 45,82 proposes it as an evolutionary precursor of heterostyly that
promotes disassortative mating in a very similar manner71–73. In addi-
tion, we found several cases in which style-length dimorphism had
been labelled as heterostyly e.g.,68 or instances where the distinction
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insects pollination system.Graphic representationof Pagel’smodel of dependent
evolution of style-length polymorphism (represented through two morphs state)
on ‘long-tongued insect’ (represented by a moth) vs. ‘short-tongued insect’
(represented by a bee) pollination systems. This model presented greater support
than the correspondingmodel of independent evolution. The statewith the highest
association with style-length polymorphism is on the top left. Insect icons obtained
from www.divulgare.net.
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between heterostyly and style-length dimorphism remained unclear
even in light of available data e.g.,69,70. Therefore, as numerous reports
were based on mentions of heterostyly with no empirical or graphical
support (see Results), excluding reports of style-length dimorphism
was deemed inappropriate. Following ourmorphological criterion, we
also included some genera with style-length polymorphisms asso-
ciated with cryptic and non-cryptic dioecy e.g.,100, which could repre-
sent the evolutionary pathway from heterostyly to dioecy40. We only
included genera with apparently fully functional sex organs and
obvious style-length polymorphisms and excluded cases in which
staminate individuals presented ovary reductions. Genera for which
we only found explicit reports of style-length dimorphism or hetero-
styly associated with dioecy were coded accordingly (Supplementary
Data 1). We also found some genera with doubtful information, which
were listed as doubtful (Supplementary Data 1) but not included in the
analyses. Genera with incorrect reports of “heterostyly” referring to
continuous, intra-individual variation or among-population variation
of style-lengthwere not listed e.g.,101,102. The genera in the final list were
searched for their latest taxonomic treatment at the Plants of the
World database (powo.science.kew.org).

Floral traits database
To compile a data set of floral traits related to pollination precision
across all angiospermfamilies, we used the PROTEUSdatabase offloral
morphological traits, assembled within the eFLOWER initiative103. We
used the eFLOWER dataset published by ref. 104, which included data
for 29 primary floral characters in 792 species from 776 genera, 372
families (86%) and 63 out of 64 angiosperm orders recognised in APG
IV105. For the present study, we selected ten of these primary floral
traits that were related to pollination precision and expanded the data
set by scoring them for an additional 231 species belonging todifferent
style-length polymorphic genera (see ref. 104 for details on scoring
methodology). Our final data set, provided as Supplementary Data 2,
comprises a total of 8200 data records for 1023 species from 977
different genera (201 style-length polymorphic genera). Four traits
(‘Number of ovules per functional carpel’, ‘Number of androecium
structural whorls’, ‘Anther orientation’, and ‘Style differentiation’)
involved too fewavailable records for style-length polymorphic genera
and were thus excluded at this stage. The remaining six primary floral
traits (‘Fusion of perianth’, ‘Symmetry of perianth’, ‘Number of fertile
stamens’, ‘Fusion of filaments’, ‘Fusion of filaments to inner perianth
series’ and ‘Number of structural carpels’) were transformed into bin-
ary secondary traits for analyses.

We used ‘Fusion of perianth’ as a proxy for floral tube106,107, and
coded taxa as perianth unfused (state 0) or fused (state 1) with a
threshold of 5% of petal or sepal length. Following Darwin’s
arguments26, heterostyly has been traditionally associatedwith narrow
floral tubes restricting pollinator movements and thus favouring the
precise contact between flower sex organs and pollinators33. ‘Sym-
metry of perianth’ was scored as actinomorphic (state 0) or zygo-
morphic (state 1).While zygomorphic corollas are considered as highly
specialised for animal pollination and also a means for increasing
pollination precision108,109, heterostyly has been associated with acti-
nomorphic flowers, which do not constrain the access of animals from
any direction and are therefore considered as presenting intermediate
levels of specialisation26,30,33. The ‘Number of fertile stamens’ has been
also associated with heterostyly30 and was scored as lower (state 0) or
greater (state 1) than 10. A low number of stamens has been linked to
increased pollination precision, since flowers with numerous stamens
could more easily contact different areas of a pollinator’s body110. In
addition, a low number of floral parts enhances the potential for floral
integration, possibly facilitating the evolution of heterostyly110–112. A
low number of stamens could also be indicative of low pollen/ovule
ratios, a major proxy for outcrossing breeding system and pollination

precision113,114. The three remaining traits had not yet been associated
with heterostyly. We hypothesise that both ‘Fusion of filaments’ and
‘Fusion of filaments to inner perianth series’ may restrict anthers
oscillation during pollinator visits, thus enhancing floral integration
and favouring the precise contact of anthers with pollinator bodies111.
Both traits were coded as unfused (state 0) or fused (state 1) with a
threshold of 5% of filament length. Finally, the ‘Number of structural
carpels’was scored as lower as (state 0) or greater (state1) than five. As
increasing floral integration111, a low number of carpels could also be
indicative of pollination precision. We repeated the analyses on all
floral traits (except ‘Perianth symmetry’) using different thresholds for
binary scoring and obtained similar results. Overall, we test the
hypothesis that the presence of style-length polymorphism is more
likely in flowers with actinomorphic perianths, with fused perianth
parts and stamens, and few sex organs.

Pollination system database
We searched for information on the pollination systems of style-length
polymorphic species. We reviewed all the references used in our for-
mer search and performed additional systematic literature searches in
Google Scholar for all accepted genera in our list and for the synonyms
reported as polymorphic. The basic search included “name of genus”
AND “heterostyly” OR “visit” OR “pollinat*” OR “insect” OR “bird” OR
“animal” OR “wind” OR “reproductive” as search terms in the full text.
In certain cases, in which this search provided mostly irrelevant
references (e.g., the nameof the genus coincidedwith an animal genus
or with an author surname, or the genus has been subject of intense
medicinal research), we did additional searches including the family
name and excluding particular keywords related to the irrelevant
results retrieved. We examined the first 20 most relevant entries for
each search, checked the references within relevant articles and
recorded all relevant information on the pollination systems found in
style-length polymorphic species. We disregarded information on
monomorphic species within style-length polymorphic genera and
excluded speculative accounts based on pollination syndromes, as
well as records of pollination by managed insects (e.g., Apis mellifera
and Bombus terrestris) or instances of pollination outside a species
natural range.

Next, we searched for information on the pollination system of
monomorphic species across all angiosperm families and ecosystems.
We used the dataset from ref. 115 and a search in Google Scholar, using
the search term “pollination system”, to find original research and
review articles on the pollination system of angiosperm species. We
also disregarded information based on pollination syndromes, mana-
ged insects and non-native populations. Our final database included
information on the pollination system of 5038 angiosperm species
(196 polymorphic and 4842monomorphic). We scored the pollination
system of each species to the most detailed level possible. This infor-
mation was subsequently used to code six binary pollination systems:
‘biotic’ vs. ‘abiotic’, ‘insect’ vs. ‘vertebrate’, ‘insect’ vs. ‘bird’, ‘generalist’
vs. ‘specialist’, ‘long-tongued animals’ vs. ‘short-tongued animals’ and
‘long-tongued insects’ vs. ‘short-tongued insects’. Birds, long-tongued
bees (families Apidae and Megachilidae), long-tongued flies (families
Bombyliidae and Nemestridae), butterflies and moths were scored as
long-tongued, and all remaining animals were scored as short-
tongued. We use tongue as a generic term referring to a prominent
buccal apparatus, including insect proboscis and bird beaks. When
scoring from primary data, we considered generalist pollination sys-
tems those inwhich no particular pollinator functional type accounted
for more than 66% of visits (or efficient visits, if pollination efficiency
was evaluated). We tested the hypothesis that style-length poly-
morphism evolved in association with long-tongued insect or bird
pollination systems, as these animals, probing for floral nectar, have
been regarded as themain agents promoting precise pollination26,39–42.
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Angiosperm phylogeny and evolution of style-length
polymorphisms
To obtain a global angiosperm phylogeny at the genus level, we used
the species-level phylogenetic tree for seed plants published by Smith
and Brown116 (‘GBOTB tree’), which includes nearly 10,000 genera. We
used the drop.tip function of the R package ape v5.6117 to trim the
GBOTB treeby removing all gymnospermsand randomly selectingone
species per remaining angiosperm genera. The resulting tree included
208 style-length polymorphic genera (84%) listed in our review. The
genera included were evenly distributed along the phylogeny and
therefore no bias is expected in our main conclusions.

We estimated the transition rates between states and ancestral
state of style-length polymorphism (coded as a presence/absence
binary trait) across the angiosperm phylogeny with Hidden Markov
models (HMM) as implemented in the function corHMM of the R
package corHMM v2.8118. HMM models allow for some level of het-
erogeneity across lineages while keeping the number of parameters
low. We used these models because the distribution of style-length
polymorphism across angiosperm phylogeny suggested high hetero-
geneity in the evolution of the trait.We ran the ‘equal rates’ (equivalent
to the ‘symmetric rates’ in the case of binary traits) and ‘all rates dif-
ferent’modelswith a single or two transition rate categories each (four
models in total). We used the Akaike information criterion (AIC) to
select the best fitting model, which was used to reconstruct the evo-
lution of style-length polymorphism in the phylogeny through sto-
chastic character mapping. We run 100 simulations to estimate the
number and age of gains and losses of style-length polymorphism
across angiosperm genera using the makeSimmap function in
corHMM.We plotted the number of lineages through timewithin each
state and transition rate with the function ltt.plot in ape, and the
probability density and count of the inferred gains and losses with the
function ggplot of the R package ggplot2 v3.4.1119.

Evolutionary correlation of style-length polymorphism with
floral traits
We tested the correlated evolution of style-length polymorphism with
each of the six floral traits recorded at the genus level. We accordingly
assigned the floral traits recorded for each species in our dataset with
the corresponding genus in our phylogeny and, in the few cases where
the floral traits dataset included more than one species per genus, we
selected one species randomly. We used Pagel’s models120 for two
binary traits as implemented in the function fitPagel in the R package
phytools v1.5.1121. We used fitPagel instead of corHMM because (i) they
are equivalent when using a single transition rate category, and
(ii) corHMM models with two transition rate categories included too
many parameters and initial trials displayed a low fit to our data. We
ran eight different models to estimate transitions rates among char-
acter states under alternative scenarios of independent (two models:
‘equal rates’ and ‘all rates different’) and dependent evolution (six-
models: the threemodels “x dependon y and vice versa”, “x dependon
y” and “y depend on x”, each for ‘equal rates’ and for ‘all rates different’
options) of style-length polymorphism and the corresponding floral
trait, and selected the best fitting model based on their AIC value.

Evolutionary correlation of style-length polymorphism with
pollination systems
We tested the correlated evolution of style-length polymorphism with
each of the six contrasting pollination system pairs scored at the species
level. For this aim,webuilt species-level phylogenies for each contrasting
pollination systems pair analysed by trimming the original GBOTB phy-
logeny with the drop.tip function in ape. From our pollination system
database, 1495 species were included in the GBOTB tree (Supplementary
Data 3). We ran Pagel’s models to estimate transitions rates among
character states under alternative scenarios as explained above.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available within the
paper and its Supplementary Information. Source data are provided
with this paper.
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