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Understanding the infection severity and
epidemiological characteristics of mpox
in the UK

Thomas Ward 1 , Christopher E. Overton1,2, Robert S. Paton1, Rachel Christie1,
Fergus Cumming1 & Martyn Fyles1

In May 2022, individuals infected with the monkeypox virus were detected in
the UK without clear travel links to endemic areas. Understanding the clinical
characteristics and infection severity of mpox is necessary for effective public
health policy. The study period of this paper, from the 1st June 2022 to 30th

September 2022, included 3,375 individuals that tested positive for the mon-
keypox virus. The posterior mean times from infection to hospital admission
and length of hospital stay were 14.89 days (95% Credible Intervals (CrI): 13.60,
16.32) and 7.07 days (95% CrI: 6.07, 8.23), respectively. We estimated the
modelled Infection Hospitalisation Risk to be 4.13% (95% CrI: 3.04, 5.02),
compared to the overall sample Case Hospitalisation Risk (CHR) of 5.10% (95%
CrI: 4.38, 5.86). The overall sample CHR was estimated to be 17.86% (95% CrI:
6.06, 33.11) for females and 4.99% (95% CrI: 4.27, 5.75) for males. A notable
difference was observed between the CHRs that were estimated for each sex,
which may be indicative of increased infection severity in females or a con-
siderably lower infection ascertainment rate. It was estimated that 74.65% (95%
CrI: 55.78, 86.85) of infections with the monkeypox virus in the UK were cap-
tured over the outbreak.

The first human case of mpox was detected in a 9-month-old child
from the Democratic Republic of the Congo (DRC) in 19701. In early
2022, the virus was endemic in 12 countries within Africa2 and had split
into two distinct clades3. The true extent of the transmission of this
virus was largely unknown, with divergent estimates of the case fatality
risk suggesting considerable ascertainment bias in the sampling. In
May 2022, cases of the monkeypox virus from non-endemic countries
began to bedetectedwithout clear travel links to endemic areas. These
cases were attributed to clade IIb, which is a subclade of the West
African clade II. This outbreak has now spread to over 117 countries4

and therefore understanding the clinical characteristics and infection
severity is key to inform effective public health policy.

Early outbreaks of the monkeypox virus in the DRC were largely
concentrated in children, with 52% of sampled cases analysed between
1980 to 19845 aged under 5. An analysis of 122 polymerase chain

reaction (PCR) tests, during the 2017–2018 outbreak in Nigeria, found
the average age had risen to 29 and 69% of cases were male6. The age
composition of cases with the monkeypox virus will be influenced by
public health policy, the circumstances of the outbreaks, changes in
transmission routes, and vaccination campaigns. In the May 2022
pandemic, there had been a further increase in themedian age of cases
to 36 in the UK7,8 and the proportion of cases that were male had risen
to 99%. These cases were largely identified in dense interconnected
networks, with the majority reporting multiple sexual contacts within
the past 3 months, and 96.2% of cases identified as gay, bisexual, and
other men who have sex with men (GBMSM)9. There is evidence to
suggest that presymptomatic transmission may have facilitated the
spread of the virus within these dense networks10–13.

The case hospitalisation risk (CHR) and the case fatality risk (CFR)
are the proportion of cases (infected individuals that have a positive
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diagnostic test), within a defined a temporal window, that are hospi-
talised or die (due to the infection), respectively. Substantial hetero-
geneity has been found in the CFR for monkeypox virus clades in
Africa, ranging from 10.6% (95% Confidence Intervals (CI): 8.4, 13.3)14

for clade I to 4.6% (95% CI: 2.1, 8.6)14 for clade II. Prior to the global
outbreak of clade IIb in 2022 the CFR for all mpox cases was estimated
to be 8.7% (95% CI: 7.0, 10.8)14 and until the 1990s all reported deaths
that occurred were in children less than 10 years old. However, from
2000 the age distribution of deaths began to shift due to changes in
the case composition and in the 2017-2018 outbreak in Nigeria the
mean age of deaths recorded was 27 years old6. The risk of hospital
admission prior to the 2022 epidemic was poorly characterised, which
may have been influenced by public health policy and infrastructure
limitations in the earlier outbreaks. Fromstudies conducted in theDRC
and the Central African Republic, CHR estimates have ranged from
73%15 in 2003, 42% in 200516, and 83%17 in 2015. The 2003 outbreak in
the United States the CHR was estimated to be 26%18 however, this
varied between 10% to 69%19 based on contact type.

Interpreting CHRs is challenging, because countries have distinct
testingpoliciesthatcanbetemporallyvariable. Indeed,theseveritybias,
whereby the most severe cases will be those that seek healthcare or
testing, canmean thatCHRsareexaggerated,withmilder casesomitted
from the denominator. The infection hospitalisation risk (IHR) is the
proportionof infected individuals that arehospitalised.Toestimate the
IHR, it is necessary to calculate the estimated incidence of infections
basedontheascertainmentrate(theproportionof infectionsthatresult

in a positive diagnostic test) with temporally corresponding hospitali-
sations,accordingtothetimedelaybetweeninfectionandadmission. In
the UK, early estimates of the CHR were biased by a policy of clinical
isolation of positive cases, independent of clinical need. However, this
primarily affected the early stages of the outbreak, and the policy was
removedwhen the outbreak became established.

To understand the burden of infection from themonkeypox virus
we have calculated key epidemiological metrics within the UK. The
study used a Bayesian doubly interval censored model adjusted for
right truncation to calculate the time from infection to hospital
admission, infection to a first positive test, and the length of hospital
stay. The instantaneous and overall CHR are calculated, further subset
by sex and age. The IHR is calculated through a Bayesian modelling
approach that estimated the ascertainment rate of infections through
the use of contact tracing data over the outbreak.

Results
Infection to hospitalisation
The posterior estimate for the mean time from infection to hospital
admission was 14.89 days (95% Credible Intervals (CrI): 13.60, 16.32)
(Fig. 1 and Table 1). The lognormal distribution had the lowest Leave
One Out (LOO) cross validation score (Supplementary Table 1)
although there was not strong evidence of a difference in the out of
sample error relative to the other distributions analysed. The full
results for each distribution canbe seen in SupplementaryTable 2. The
estimated values of the cumulative distribution function for the time
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Fig. 1 | Posterior distribution for the time from infection to hospital admission
fit to the data of 118 cases using a lognormal distribution. Left: a violin plot of
the mean and standard deviation, with a box and whisker plot including the

minima, 1st quartile,median, 3rd quartile, andmaximaof theposterior distribution.
Right: the cumulative distribution function with 95% credible intervals.
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from infection to hospital admission can be seen in Supplementary
Table 3, themedianwas 13.33 days (95%CrI: 12.11, 14.58) and at the 95th
percentile the posterior estimatewas 28.79 days (95%CrI: 25.62, 33.21).
The hospital admission dates of patients with mpox that had a recor-
ded symptom onset and exposure date (and histograms of the dis-
tributions) can be seen in Supplementary Figs. 1, 2.

Infection to first positive test
The posterior estimate for the mean time from infection to first posi-
tive test was 15.14 days (95% CrI: 13.75, 16.65) (Fig. 2 and Table 2). The
gamma distribution had the lowest LOO cross validation score how-
ever, the results are not strong evidence that that gamma had sub-
stantially lower average out-of-sample error from the Weibull or
lognormal distributions. The full results for each distribution can be

seen inSupplementaryTable 4. The estimated values of the cumulative
distribution function for the time from infection to first positive test
can be seen in Supplementary Table 5, the median was 13.77 days (95%
CrI: 12.36, 15.19) and at the 95th percentile the posterior estimate was
29.70 days (95%CrI: 26.80, 33.62). The data for the time from infection
to first positive test can be seen in Supplementary Fig. 3.

Length of stay
The posterior estimate for themean length of stay in hospital was 7.07
days (95% CrI: 6.07, 8.23) (Fig. 3 and Table 3). The lognormal dis-
tribution had the lowest LOO cross validation score however, the
results (Supplementary Table 1) are not strong evidence that the log-
normal model had substantially lower average out-of-sample error
than the gamma or Weibull distributions. The full results for each
distribution can be seen in Supplementary Table 6. The estimated
values of the cumulative distribution function for the lengthof stay can
be seen Supplementary Table 7, the median was 4.03 days (95% CrI:
3.52, 4.60) and at the 95th percentile the posterior estimate was
22.84 days (95% CrI: 18.89, 28.12). The hospital admission dates of
patients with mpox and a histogram of the individual lengths of stay
can be seen in Supplementary Fig. 4.

Case hospitalisation risk
There was limited variation in the instantaneous CHR across the study
period with point estimates that largely overlap (Fig. 4). We identified
distinct sex-specific sample CHRs (Table 4) with females found to have
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Fig. 2 | Posterior distribution for the time from infection to first positive testfit
to thedataof86cases using agammadistribution. Left: a violin plot of themean
and standard deviation, with a box and whisker plot including the minima, 1st

quartile, median, 3rd quartile, and maxima of the posterior distribution. Right: the
cumulative distribution function with 95% credible intervals.

Table 1 | Summary statistics of the time from infection to
hospital admissions, fit to data from 118 cases using a log-
normal distribution

Infection to hospital admission

N Distribution Mean Standard
Deviation

Shape/
location

Scale R̂
(Mean)

118 Interval censor-
ing right trunca-
tion corrected -
lognormal

14.89
(13.60,
16.32)

7.40
(6.01, 9.11)

2.59
(2.49,
2.68)

0.47
(0.40,
0.54)

1.00

Article https://doi.org/10.1038/s41467-024-45110-8

Nature Communications |         (2024) 15:2199 3



a far higher risk of hospital admission. However, there is considerable
uncertainty due to the small number of female cases in the clinical and
surveillance data. The age distribution of the admissions and the
sample CHR by age groups can be seen in Supplementary Figs 5 and
Supplementary Fig. 6, respectively.

Infection hospitalisation risk
Understanding the ascertainment rate of infections for an infectious
disease can be difficult because infections with less severe or sub-
clinical levels of disease may not be identified20. Whereas individuals
that seek medical attention or diagnostic testing may be on average
more severe. Therefore, to estimate the ascertainment rate, we first
examined the difference between the CHRs of case subgroups, which
were conditional upon notification of exposure (please see the Meth-
ods section).

An index infection is defined, for this paper, as an infected indi-
vidual that did not receive a notification of their exposure to the
monkeypox virus, and an index case is an individual that did not
receive a notification of their exposure and was identified through
their presentation to a clinician or healthcare provider. Conversely, a
secondary infection is defined as an infected individual that was noti-
fied of their exposure, and if a secondary infection was subsequently
tested for the monkeypox virus then the individual became a sec-
ondary case.

Themodelled CHR varied between 8.47% (95%CrI: 7.08, 9.97) and
4.55% (95% CrI: 3.81, 5.25) for the index and secondary cases, respec-
tively. We observe that the CHR of secondary cases is approximately
half that of index cases, leading to the constraint that the ascertain-
ment of notified cases is approximately twice as high as the ascer-
tainment of cases thatwere not contact traced or notified of exposure.
For untraced cases, it was unknown whether the individual was aware
of their exposure status, and these cases did not appear in our contact
tracing data, and consequently could not be assigned either index or
secondary case status. However, as a result of estimating the compo-
sition of the untraced group in terms of whether they were aware of
their exposure or not i.e., index or secondary case status, we obtained
larger effective sample sizes for each of the exposure groups. This
allowed us to produce improved estimates for the CHR of each group,
which we provide in Supplementary Table 8.

We use the calculated differences between the CHRs of the index/
secondary/untraced cases to constrain the range of plausible ascer-
tainment rates and therefore plausible estimates of the IHR, which we

Table 2 | Summary statistics of the time from infection to first
positive test, fit data from 86 cases using a gamma
distribution

Infection to first positive test

N Distribution Mean Standard
Deviation

Shape/
location

Scale R̂
(Mean)

86 Interval censor-
ing right trunca-
tion corrected
- gamma

15.14
(13.75,
16.65)

7.90
(6.75, 9.31)

3.74
(2.85,
4.73)

0.25
(0.18,
0.32)

1.00
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Fig. 3 | Posterior distribution for the hospital length of stay fit to the data of
155 patients using a lognormal distribution. Left: a violin plot of the mean and
standard deviation, with a box and whisker plot including the minima, 1st quartile,

median, 3rd quartile, and maxima of the posterior distribution. Right: the cumu-
lative distribution function with 95% credible intervals.
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refer to as the case ascertainment bias prior. The obtained infection
ascertainment bias prior distribution (Supplementary Fig. 7) has a
linear relationship between the ascertainment rate of index and sec-
ondary infections,which is necessary tomodel the observed bias in the
CHR between index and secondary cases.

In Supplementary Table 9 we report the posterior estimates for
the probability of ascertaining an index, secondary, and untraced
infection. Ourmodel estimated that roughly half of all individuals who
were not made aware of their exposure via contact tracing were
ascertained 49.13% (95% CrI: 34.80, 63.95). While the majority who
were aware of their exposure due to having been contact traced were
captured 90.84% (95% CrI: 70.18, 99.74). Additionally, we estimated,
based on the severity profile, that infections which were not made
aware of their exposure were only a small proportion of the untraced
population 10.08% (95% CrI: 0.31, 32.80).

After modelling the ascertainment rate, we then adjust the
observed case time series for the estimated ascertainment rates to
produce the infection incidence time series.Weuse the estimated time
delay distributions for the time to detection and hospitalisation to
temporally fit the estimated incidence and observed hospitalisations.
The model calculates the expected number of admissions for each
exposure group based on the estimated temporal incidence. The

temporal probabilities for the ascertainment of the infections in each
exposure subgroups are then adjusted iteratively based on how well
the expected hospitalisations match the observed hospitalisations. If
the estimated incidence aligns with the observed hospitalisations, it
indicates that the model is capturing the dynamics of incidence
accurately. The adjustment for the ascertainment probabilities aims to
find a balance where the model-predicted number of infections cor-
responds closely to the hospitalisations. Therefore, the model is
employing a feedback loop, adjusting ascertainment probabilities to
achieve a coherent relationship between estimated incidence, expec-
ted hospitalisations, and observed hospitalisations. In essence, itera-
tively optimising to enhance the precision of its predictions in
response to real-worldhospitalisation outcomes. This iterative process
refines the model’s understanding of how infections are ascertained
and recorded in the context of hospitalisations rather than simply
using estimated cumulative totals. This allows us to gain further insight
into the ascertainment rates and consequently the IHR.

We estimated the modelled IHR to be 4.13% (95% CrI: 3.04, 5.02),
compared to the overall sample CHR with binomial uncertainty of
5.10% (95% CrI: 4.38, 5.86). The posterior distribution of the IHR, the
overall ascertainment rate, the estimated total number of infections,
and the estimated total number of non-ascertained infections can be
seen in Fig. 5. The modelling estimates that 74.65% (95% CrI: 55.78,
86.85) of infections over the period analysed in the UK were ascer-
tained (Table 5).

The modelled incidence rates over time for each subgroup
(Supplementary Fig. 8) show that there was approximately zero inci-
dence for both index and secondary cases after the July midpoint, due
to changes in contact tracing. After this point, all cases were defined as
untraced, as we did not know whether these cases were notified of
exposure. For the untraced cases, we observe a dramatic reduction in
the incidence rate towards the end of August.

The posterior has significantly reduced uncertainty compared to
the prior (Supplementary Figs. 9, 10). In particular, themodel excludes
the possibility of a low ascertainment rate of secondary cases and the

Table 3 | Summary statistics of the length of stay in hospital,
fit to data from 155 patients using a lognormal distribution

Length of hospital stay

N Distribution Mean Standard
Deviation

Shape/
location

Scale R̂ (Mean)

155 Interval censor-
ing right trunca-
tion corrected -
lognormal

7.07
(6.07,
8.23)

10.22
(7.73,
13.36)

1.39
(1.25,
1.53)

1.06
(0.96,
1.16)

1.00
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possibility of an IHR lower than approximately 2.5%. In the prior dis-
tribution, there is a strong linear correlation between the probability of
hospitalisation and the ascertainment rate of index and secondary
infections, however the posterior density has concentrated around a
singular point. Therefore, we conclude that through estimation of the
incidence rate, and fitting to time series data, we have resolved the
non-identifiability of the IHR and the ascertainment of cases. The
credible intervals of the posterior predictive distribution contain
nearly all the observed datapoints, as is desired. This suggests that the
model performs well at describing the data generation process.

In Supplementary Figs. 11, 12 wemodel the IHRwhen the untraced
group is not included, which we performed as further sensitivity ana-
lysis. In comparison to the infection ascertainment bias prior with the
untraced cases included, there is significantly more uncertainty in the
ascertainment rate of index and secondary infections (Supplementary
Table 10). This is because when the untraced cases are included, there
is a larger effective sample size. Both the infection ascertainment
priors obtained when including or excluding untraced cases share a
non-identifiability in the IHR and the ascertainment rate of non-
hospitalised infections. Thedifferencebetween theprior andposterior
is relatively small, however it tends towards the posterior we obtained
whenwe included the untraced cases. The inclusion of untraced cases,
therefore, provides a greatly increased effective sample size, and
without using the untraced cases, there is significantly increased
uncertainty in the obtained posteriors. In Supplementary Figs. 13–16

we provide detailed comparisons between the prior and posterior
densities for the key parameters of interest when the untraced sub-
population is included or excluded.

Discussion
There have been 90,439 laboratory confirmed cases21 of mpox since
the epidemic began in May 202222. We estimated that, in the UK, the
instantaneous CHR varied between 3.53% (95% CI: 2.20, 5.60) to 9.43%
(95% CI: 5.18–16.57) as public health testing infrastructure, messaging
and policy evolved. Considerable variation was found in the estimated
CHR for each sex, which may be indictive of increased severity or a
substantial reduction in the ascertainment rate of female infections.
We estimate the IHR to be 4.13% (95%CrI: 3.04, 5.02), with an infection
ascertainment rate of 74.65% (95% CrI: 55.78, 86.85).

The CHR can be calculated through various methodological
approaches, which can confound comparisons between different stu-
dies. Two general approaches to calculate the CHR can be defined as
the overall CHR and the instantaneous CHR23. The overall CHR is the
proportion of cases that were hospitalised up to a certain date or
within a specific study period. The overall CHR can therefore be con-
sidered as the average hospital burden over an epidemic. The instan-
taneous CHR is the real time proportion of cases that are hospitalised
over time, usually measured within days or weeks. These approaches
for calculating the CHR can be estimated from aggregate or row level/
linelist data on individuals. Individual level data requires unique
identifiers for data linkage between cases and hospital admissions,
which in many studies is not available. Aggregate data approaches can
only approximate the CHR and require a time varying delay period
adjustment, as the case composition changes, for the time from test
report date to hospital admission. These methods are impacted by
right censoring at the end or beginning of a study period, because
confirmed cases may not yet have been hospitalised, and can be
adjusted for using threshold criteria that incorporates the time from
the detection of a case to a hospital admission. This bias was observed

Fig. 5 | The posterior density for several key parameters of interest: the infection hospitalisation risk, the overall ascertainment rate, the total number of infections and the
total non-ascertained infections.

Table 4 | The overall and sex-specific sample CHR across the
study period with 95% binomial credible intervals

Hospitalised Total Sample CHR (%, 95% CrIs)

Total 172 3375 5.10 (95% CrI: 4.38, 5.86)

Male 167 3347 4.99 (95% CrI: 4.27, 5.75)

Female 5 28 17.86 (95% CrI: 6.06, 33.11)
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for early estimates of COVID-19 in Wuhan where the cumulative
number of outcomes were divided by total cases however, when
adequate adjustment was included for censoring, the estimates were
considerably higher. Due to spatial and temporal changes in testing
rates, public health messaging, and population immunity there are
limitations to the interpretation of an overall CHR. The instantaneous
CHR is therefore a better reflection of the real time risk whereas the
overall CHR captures the impact on the population of interest.

There has been considerable inter-country heterogeneity in the
estimated CHRs across the 2022 outbreak of the monkeypox virus,
which will have been influenced by differences in policy, such as clin-
ical isolation, and public healthmessaging. These distinctions in policy
will have an impact on the case ascertainment rate and the criteria for
hospital admission24. Studies published on this outbreak have pre-
sented overall CHR estimates25–32 and have not stated the inclusion of
an adjustment for right censoring at the end of the study period.
Therefore, these methods can be described as crude approximations
to the overall CHR. TheCHRhas ranged from2%25, froma sampleof 181
cases in Spain, to 13%26 from a study of 528 cases across 16 countries
fromApril to June. The largest report from the ECDC andWHO27 found
the crude CHR to be 6.7%, which included data from 41 countries.

Earlier outbreaks of the monkeypox virus in the DRC and West
Africawere limited by the public health infrastructure. Cases that were
identified in non-endemic countries, prior to 2022, were also in many
instances precautionarily hospitalised for observation and isolation.
This continued at the outset of the 2022 outbreak andwas a policy that
has been subsequently abandoned in the UK. Therefore, defining a
hospital admission due to the severity of an infection becomes com-
plicated by these biases and, as a result, past and current estimates of
the CHR are not comparable measures of infection severity. The
ascertainment of cases can be further understood through analysis of
the success rate of contact traced individuals and the difference in the
severity profiles of index relative to secondary cases20.

In this study we have calculated an overall IHR across the out-
break. However, the varying admission criteria for mpox at each hos-
pital could have affected the IHR. In the initial stages of the outbreak,
all cases were admitted to hospital for isolation. As the outbreak grew,
this policy was lifted. However, a small proportion of individuals, prior
to its derogation as a high consequence infectious disease33, were still
admitted for isolation purposes. To reduce the influence of changing
isolation policies on our analysis, we limited our study period to the
time when the instantaneous CHR was roughly constant. The esti-
mated IHR will have been impacted by the likelihood of an individual
seeking Secondary Care treatment, which is influenced by public
health messaging and the perceived risk of an infection. The average
length of stay for an mpox patient may also be affected by public
health guidance on containment and observation as well as patient
severity. To limit this bias, we removed individuals that presented at
hospital for diagnostic testing.

The study was limited by the short period of time that con-
tact tracing was conducted. The difference between severity of
index and secondary cases, as defined in this study, is the main
source of information on severity and ascertainment. However,
this can only be calculated from the contact tracing data, which

was not widely collected after the 1st August 2022. A relative
change in severity following this period would therefore be more
difficult to detect. However, as the CHR was roughly constant,
this is unlikely to be the case. In this study, parametric distribu-
tions were assumed for the time delay distributions. We used
model evaluation scores to assess the distributions considered.
The impact of age and sex on the CHR were also investigated.
However, other factors such as HIV status, would be important
determinants for hospitalisation risk to investigate further.

The global spread of the monkeypox virus has caused interna-
tional public health concern and considerable healthcare burden for
the affected countries. We estimated the mean time from infection to
hospital admission to be 14.89 days (95% CrI: 13.60, 16.32) and the
average length of hospital stay was 7.07 days (95% CrI: 6.07, 8.23). We
found considerable variation for the sex-specific CHR. The observed
increased risk of hospital admission for female casesmay be indicative
of the diminished ascertainment of infections or increased severity.
The overall IHR was calculated to be 4.13% (95% CrI: 3.04, 5.02) and we
estimated that around 75% infections from themonkeypox virus in the
UK were captured over the study period. Ongoing public health sur-
veillance should thereforebe conducted to limit thehealthcareburden
on the affected countries.

Methods
Epidemiological data
Cases of the monkeypox virus were monitored by the UKHSA using
testing data from affiliated laboratories and NHS laboratories, contact
tracing, and case questionnaires (collected by UKHSA health protec-
tion teams). A confirmed case is an individual with a positive PCR test
result for the monkeypox virus, and a highly probable case is an indi-
vidual with a positive PCR test result for orthopoxvirus. As of 25th July
2022, both definitions were recognised in the UK to represent a case
of mpox.

Hospital episode statistics for inpatients were obtained from the
NHS Digital Secondary Uses Services data set34 and A&E attendances
were obtained from the Emergency Care Data Set35, both datasets
contain clinical, patient, administrative and geographic information
about patient admissions. A&E attendances and inpatient recordswere
extracted, and hospital episodes linked by an NHS identifier to a
positive test result. An admission for mpox is defined as a patient
having one of the following:

• An mpox diagnosis code (B04)36.
• A positive PCR test for the monkeypox virus within 21 days after

admission to hospital.
• Tested positive for the monkeypox virus during a hospital

admission.

Study period
We restricted the study period to all cases that tested positive for the
monkeypox virus and had qualifying hospital episodes with mpox
from 1st June 2022 to 30th September 2022. This study period is
applied to the time delay estimations, IHR, and CHR, to ensure esti-
mates are temporally consistent.

Data preparation
Data was extracted on the 26th of October 2022, at which time 3776
people had tested positive for the monkeypox virus in the UK, 3375 of
which had specimen datewithin the study period, and 172 of those had
an associated hospital episode of 1 day or longer. Length of stay was
calculated from the date of admission to the date of discharge and
patientswere excluded if the discharge datewasmissing. This is due to
the nature of the hospital admissions data, where records are only
reported after discharge, so the discharge dates for these patients will
be incorrectly missing rather than representing patients still in hospi-
tal. This resulted in 155 patients being suitable for the length of stay

Table 5 | Table of the posterior density for several key para-
meters of interest: the overall ascertainment rate, the total
number of infections and the total non-ascertained infections

Quantity Estimate

Infection Hospitalisation Risk (%) 4.13 (95% CrI: 3.04, 5.02)

Overall ascertainment rate (%) 74.65 (95% CrI: 55.78, 86.85)

Total infections 4329 (95% CrI: 3596, 5714)

Total non-ascertained infections 976 (95% CrI: 243, 2361)
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analysis. Supplementary Fig. 17 shows a flowchart with the number of
cases excluded at each stage.

To calculate the time from infection to hospitalisation, patients
that reported a symptom onset date after hospitalisation were exclu-
ded (since this likely corresponded to an incorrect symptom onset
date in the questionnaire data) and for those that had multiple
admissions the earliest admission date was used. The symptom onset
date was identified through contact tracing conducted by UKHSA
health protection teams and questionnaires completed by the cases
(via the question ‘Onwhat date did your illness begin?’). This definition
of symptom onset describes the date that an individual first noticed
their symptoms; though the true date of symptom onset could have
been earlier but not detected. Of the 3776 cases that tested positive for
the monkeypox virus, 2360 had symptom onset information, of which
110 had a hospital admission. Analysis was also conducted to measure
the time from infection to hospitalisation for patients that had expo-
sure dates reported. Exposure date was identified through cases which
had completed a questionnaire and answered the questions ‘In the
21 days (3weeks)beforefirst symptomonset did youhave contactwith
anyone with suspected or confirmedmonkeypox infection?’ and ‘Date
of last contact with case’. 92 patients of the 3776 reported an exposure
date, 8 of which had a hospital admission. Then of the 92 patients with
exposure date, 86 had a reliable specimen collection date, and were
used for estimating the delay from infection date to first positive test.

In Supplementary Table 11 we report for each group the sample
size, the mean age, the proportion by sex, and proportion of cases
reported as GBMSM. Supplementary Figs. 1–4 show histograms of the
time delay data for symptom onset to hospital admission, exposure to
hospital admission, exposure to first positive test, and length of stay,
respectively.

Time delay modelling
Infection to hospital admission. To model the risk of an infection
becoming hospitalised, we first need to measure the time delay
between infection and hospitalisation. However, infection events are
rarely observed directly. Symptom onset date, conversely, was repor-
ted for 2360 out of 3776 cases confirmed through PCR testing. By
combining this data with estimates of the incubation period from the
literature10, we can estimate the time delay distribution from infection
to hospital admission.

Thedata on symptomonset date andhospital admissiondate only
provide the date of the event, rather than the time. Therefore, the time
of each event is interval censored – we know the date on which the
event occurred but not the precise time. As a result, each data point
consists of a pair of observation intervals, ½o1,o2� for symptom onset
time, represented by a real valued random variable O, and ½h1,h2� for
hospital admission time, represented by a real valued random variable
H. Since the data are daily censored, we have intervals ½o1,o1 + 1� and
½h1,h1 + 1�, where o1 and h1 are integers representing the observed
onset date and admission date, respectively.

In our full data, we observe symptom onset dates once an indi-
vidual tests positive. However, we do not know which individuals will
be admitted to hospital apriori, so we cannot treat the data as right-
censored, and instead an individual only enters our data set after they
are admitted to hospital, which leads to right truncation in the data,
where T is an integer denoting the truncation date. Right-truncation
leads to the observed time delays being shorter than the true time
delays37, since recently infected individuals will only be in the data if
they had a relatively short time delay from infection to hospital
admission.

To look at the time since infection, rather than time of symptom
onset, we need to account for the incubation period of each individual,
which we denote by a real valued random variable D. However, the
incubation period is not observed directly, so we have interval cen-
soring between 0, the minimum incubation period, and infinity, the

maximum incubation period. From Ward et al.10, we know the incu-
bation period distribution, which we can use to inform the likelihood
function. Our full likelihood function, accounting for the right trun-
cation and interval censoring, is given by

Pðh1 <H <h2jo1 <O< o2,H <T , 0 <D<1Þ= Pðh1 <H <h2, o1 <O< o2,0 <D<1Þ
PðH <T ,o1 <O< o2,0 <D<1Þ

=

R o2
o1

R h2
h1

R1
0 f ðH =h,O= o,D=dÞdddhdoR o2

o1

R T
o

R1
0 f ðH =h,O= o,D=dÞdddhdo

ð1Þ

Evaluating this full likelihood is computationally expensive.
Therefore, we consider an approximate latent variable approach, fol-
lowing ref. 10. We introduce three random variables, o*, the time of
symptomonsetwithin the observationwindow, h*, the timeofhospital
admission within the observation window, and d*, the length of the
incubation period. For the two event times (o* and h*), we assume
uniform prior distributions over the observation window, and for the
incubation period, d*, we assume a prior distribution taken from the
incubation period distribution estimated in ref. 10. That is,

o* ∼Uniform o1, o2
� �

,

h* ∼Uniform h1,h2

� �
,

d* ∼Weibull 1:4, 8:5ð Þ:

Using these latent variables our likelihood function becomes

P H =h*jO=o*,H<T ,D=d*
� �

=
P H =h*,O= o*,D=d*
� �
P O= o*,H<T ,D=d*
� � =

P H =h*, I =o* � d
*

� �
P H<T , I = o* � d*
� �

=
P H =h*jI =o* � d

*
� �
P H<T jI = o* � d*
� � =

f θ h* +d* � o*
� �

Fθ T +d* � o*
� � ,

ð2Þ

where I is the timeof infection and f θ and Fθ are theprobability density
and cumulative density functions of the infection to hospitalisation
delay, respectively, parameterised by parameters θ. This latent vari-
able approach is an approximation since it assumes independence
between the incubation period and symptomonset date. In reality, the
incubation period is subject to an epidemic phase bias38, whereby the
observed incubation periods depend on the symptom onset date.
However, the incubation period is shorter than the delay from symp-
tom onset date to hospital admission, so this bias should only have a
small effect on the estimated time from infection to hospital admis-
sion. To accurately correct for this bias, one would need to sample the
latent incubation period variable from a prior distribution conditional
on symptom onset.

In addition to date of symptom onset, for a subset of patients we
have the date of exposure. Therefore, for these individuals the data
takes the form of a pair of observations: an infection date I 2½i1, i2� and
admission dateH 2½h1,h2�. Since infection date is observed, we do not
need to consider the incubation period for these data points, so we
have likelihood function

P h1 <H <h2ji1 < I < i2,H <T
� �

=
P i1 < I <i2,h1 <H <h2

� �
P H <T , i1 < I < i2
� �

=

R i2
i1

R h2
h1
f H =h, I = ið ÞdhdiR i2

i1

R T
i f H =h, I = ið Þdhdi

:

ð3Þ
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To handle the interval censoring, we again consider a latent vari-
able approach,

i* ∼Uniform i1, i2
� �

,

h* ∼Uniform h1,h2

� �
,

P H =h*jI = i*,H >T
� �

=
P I = i* ,H =h*
� �
P H<T , I = i*ð Þ =

f θ h*�i*
� �

Fθ T�i*ð Þ :
ð4Þ

Therefore, our full likelihood function for modelling the infection
to hospital admission delay is given by

o* ∼Uniform o1,o2
� �

,

h* ∼Uniform h1,h2

� �
,

d* ∼Weibull 1:4, 8:5ð Þ,
i* ∼Uniform i1, i2

� �
,

P H =h*jI = i*,H>T
� �

=
f θ h*�i*
� �

Fθ T�i*ð Þ ,

P H =h*jO= o*,H <T ,D=d*
� �

=
f θ h* +d*�o*
� �

Fθ T +d*�o*
� � :

ð5Þ

Infection topositive test. In the IHRmodel thatwedevelop, one of the
parameters is the time delay distribution from individuals becoming
infected and returning their first positive test. We will call this the
ascertainment delay. For the 92 cases with a recorded exposure date,
86 of these have a known positive test date after their exposure date.
We have interval censored data for exposure time, E 2 ½e1,e2�, and
positive test time, τ 2 ½τ1,τ2�, which are right truncated by time T . We
have the likelihood function

P τ1 < τ < τ2je1<E<e2, τ <T
� �

=
P τ1 < τ <τ2,e1 < E <e2
� �
P τ <T ,e1 <E <e2
� �

=

R e2
e1

R τ2
τ1
f E = e, τ = τ0ð Þdτ0deR e2

e1

R T
e f E = e, τ = τ0ð Þdτ0de

:

ð6Þ

Similarly, to the infection to hospitalisation delay, we consider a
latent variable approach,

e* ∼Uniform e1, e2
� �

,

τ* ∼Uniform τ1, τ2
� �

,

P τ = τ*jE = e*,τ >T
� �

=
P τ = τ*, E = e*
� �
P τ<T , E = e*
� � =

wθ τ* � e*
� �

W θ T � e*
� � ,

ð7Þ

where wλ and W λ the probability density and cumulative density
functions of the ascertainment delay distribution, respectively, para-
meterised by parameters θ.

Hospital length of stay. To understand the impact on the healthcare
system, we also need to model the delay from hospital admission to
leaving hospital (also referred to as length of stay). As above, we have
interval censored data for hospital admission time,H 2 ½h1,h2�, and for
hospital leaving time, L 2½l1,l2�. These data are also subject to right
truncation, L<T , but we do not need to consider any other delays in
this model, since we are interested in the time delay between H and L.
Therefore, we have the likelihood function

P l1<L<l2jh1 <H <h2, L<T
� �

=
P l1 < L<l2,h1 <H <h2

� �
P L<T ,h1 <H <h2

� �
=

R h2
h1

R l2
l1
f H =h, L= lð ÞdldhR h2

h1

R T
h f H =h, L= lð Þdldh

:

ð8Þ

Similarly, to the infection to hospitalisation delay, we consider a
latent variable approach,

l* ∼Uniform l1,l2
� �

,

h* ∼Uniform h1,h2

� �
,

P L= l*jH =h*,L>T
� �

=
P L= l* ,H =h*
� �
P L<T ,H =h*
� � =

gθ l*�h*
� �

Gθ T�h*
� � ,

ð9Þ

where gλ and Gλ the probability density and cumulative density func-
tions of the length of stay distribution, respectively, parameterised by
parameters θ.

Prior distributions. For all three time delay distributions, we assume
the time delay distributions are right-skewed. We consider lognormal,
Weibull, and gamma distributions. Each distribution is parameterised
by two variables, θ1 and θ2. For all three distributions, θ1 is themean of
distribution. We take θ2 to be the standard deviation for the gamma
and lognormal distributions, and the scale parameter for the Weibull
distribution. For all time delays and parameter distributions, a flat
exponential prior with rate 0.0001 was used for θ2. For the infection to
hospitalisation and ascertainment delays, a normal prior with a mean
and standard deviation of 15 was used for θ1. For length of stay, a
normal priorwith ameanof 7 and standarddeviationof 15was used for
θ1. The lognormal, gamma and Weibull models were compared using
LOO cross validation with Pareto smoothed importance sampling.

The overall and instantaneous case hospitalisation risk
Similar to the criteria developed for the time delay modelling, for a
hospitalisation to be included the case required a valid inpatient stay of a
day or more, with either a mpox diagnosis code, a positive test within
21 days of hospitalisation orwaspositive for themonkeypox virus during
their stay. We excluded cases with a PCR specimen date before 1st June
2022 as public health policies changed considerably during this time.
Individuals with specimen dates within the estimated 95th percentile for
the time from infection to hospitalisationdistributionwere removed and
we aimed to exclude cases that may not have yet sought hospital
treatment. It was unnecessary to exclude patients still in hospital for the
CHR calculation provided theymet the described definition. In total, this
yielded 3375 cases and 172 hospitalisations for our CHR analysis.

Theoverall sampleCHR is basedon all cases included inour study.
To calculate uncertainty, we assume binomial credible intervals based
on the total number of cases with a beta distribution prior. The overall
sample CHRwas further calculated for each age group and sex. For the
instantaneous CHR, we consider two variations, weekly and daily. For
weekly, we aggregate cases each week and calculate the proportion of
cases that go to hospital, with credible intervals generated through
binomial uncertainty with a beta distribution prior. For the daily CHR,
we consider each patient-level data point as a sample from a Bernoulli
random variable, where ‘1’ is hospital admission and ‘0’ is no hospital
admission. Theprobability of this randomvariable reflects theCHR. To
simultaneously capture the daily time varying trend and uncertainty,
we fit a logistic generalised additive model with a thin plate spline
through time. We implement this using the mgcv package39, with 23
knots, a logit link function, and Bernoulli error.

Infection hospitalisation risk
We developed a model to infer the risk of hospitalisation given infec-
tion with the monkeypox virus, referred to as the IHR. In previous
sections, we discussed the CHR, which estimates the risk that a case
will be hospitalised, given that their infection is identified. The central
challenge in estimating the IHR arises from the fact that we usually
capture only a subset of infections from a virus in testing data and
therefore, in the absence of robust serological and prevalence studies
we must estimate the ascertainment of infections.
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To estimate the IHR we have developed a two-step methodology.
Firstly, we inspect the bias in the CHRs of different subgroups, con-
ditional upon whether they were notified of their exposure. An index
infection is defined, for this paper, as an infected individual that did
not receive a notification of their exposure to the monkeypox virus,
and an index case is an individual that did not receive a notification of
their exposure and was identified through their presentation to a
clinician or healthcare provider. As a consequence, index cases are, on
average, more severe. Conversely, a secondary infection is defined as
an infected individual who was notified of their exposure, and if a
secondary infection was subsequently tested for the monkeypox virus
then the individual became a secondary case. Secondary cases, con-
sequently, have a higher ascertainment rate (and a lower CHR). By
comparing the CHRs in different subpopulations, we can constrain the
range of plausible values for the IHR, in addition to constraining the
ascertainment rates of each subpopulation. This allows us to define a
prior distribution of plausible values, which we refer to as the ascer-
tainment bias prior.

Oncewe haveobtained the ascertainment bias prior distributions,
we develop a full model including the incidence and ascertainment
rates for each subpopulation, in combination with the infection-
associated hospital admissions. We use our estimated infection to
ascertainment/hospitalisation delay distributions to fit to the observed
cases/hospitalisations over time. This allows us to further inform the
ascertainment rates of each group over time; if we have high ascer-
tainment rates of infections, then we ought to be able to reliably pre-
dict hospitalisations. Conversely, low ascertainment of infections
would make it difficult to predict future hospitalisation conditional
upon the observed number of infections.

For a given infection, let A= fascertainedg be the event that they
are ascertained, and let H = fhospitalisedg be the event that infection
leads to hospitalisation. Our main quantity of interest is the IHR P Hð Þ.
Let S 2 fp,s,ug denote which subpopulation (index, secondary,
untraced) a given case belongs to. Index cases, p, are cases that sought
out a test from a clinician or healthcare services to diagnose their
infection. Secondary cases are those who were made aware of their
exposure to the monkeypox virus via successful contact tracing
attempts in our data. Untraced cases are cases who do not appear in
our contact tracing data.

For untraced cases, it is unknown whether they were aware of
their exposure or not. As a result, whilst we do not have records of
these individuals being notified of their exposure, it is possible that
they were made aware of their exposure through methods such as
partner notification, therefore we should explore the possibility that a
substantial portion of untraced cases can effectively be considered
index cases.We observe that the CHR of untraced cases is significantly
lower than the CHR of index cases and is much closer to the CHR of
secondary cases. As a result, it is necessary to consider a higher case
ascertainment rate of untraced cases than that of index cases, and we
propose partner notification as a reasonable explanation of why this
may be the case. We provide an additional model fit in our supple-
mentary materials where we omit the untraced group, however doing
so results ina significantly decreased sample size, and as a result higher
uncertainty in the posterior estimate of the IHR.

We will parameterise ourmodel in terms of the IHR, P Hð Þ, and the
probability of ascertaining a non-hospitalised infected member of
a subpopulation, P Aj:H,Sð Þ. Additionally, we assume we capture
all hospitalised cases, H ) A, and that the probability of hospitalisa-
tion is independent of subpopulation, H ? S. Together, this provides
the following expression for the CHR for subpopulations S 2 fp, sg;

P HjA, Sð Þ= P H,A, Sð Þ
P A, Sð Þ = P H,AjSð ÞP Sð Þ

P AjSð ÞP Sð Þ = P AjH, Sð ÞP Hð Þ
P AjH, Sð ÞP Hð Þ+P Aj:H, Sð ÞP :Hð Þ

= P Hð Þ
P Hð Þ+ P Aj:H, Sð ÞP :Hð Þ :

ð10Þ

For the untraced subpopulation,wewill assume that it is amixture
of either index or secondary cases, however for a givenmember we do
not know which group. As a result, we will additionally estimate the
probability that a member of the untraced population is an index or
secondary case.

Let U 2 fp, sg be the event that a member of the untraced popu-
lation is either an index or secondary member. Then we have that

P HjA,S=uð Þ=P HjA,S=pð ÞP U =pð Þ+P HjA,S= sð ÞP U = sð Þ, ð11Þ

where P U =pð Þ is a parameter to be estimated.
Let NH,S 2 Z+ be the total number of hospitalisations for a sub-

population, andNA,S 2 Z+ be the total number of ascertained cases for
that subpopulation. Then we can estimate the CHR for that sub-
population using a binomial model

NH,S ∼Binomial NA,P HjA,Sð Þ� �
, ð12Þ

whereP HjA,Sð Þ is the CHR.We then fit amodel that estimates P Hð Þ (the
IHR), and P Aj:H,Sð Þ for each subpopulation, and this forms our prior
distributions for the full model. Importantly, the prior reduces the
space of possible solutions, however the solutions are not fully iden-
tified; for example, the prior is only able to estimate the ratio of
ascertainment between groups. We provide visualisations of the
obtained prior distribution in our supplementary materials, and
comparisons between the prior and the posterior distribution.

We now define our full model, where in addition to estimating the
IHR and ascertainment rate, we will also estimate the incidence rate of
different subpopulations over time. We model T∈ℕ days of data,
letting xt,s0 2 Z+ and ht,s0 2 Z + be the number of new ascertained
cases / hospitalisations respectively on day t 2 1, . . . ,T½ � for sub-
population S= s0.

As model inputs, we provide case ascertainment and hospitalisa-
tion delay distributions. These are defined using the posteriormedians
we obtain from the time delay models. Let δ hð Þ

t 2 0,1½ � be the prob-
ability that a case is hospitalised t days after they were infected, con-
ditional on being a hospitalised case, and let δ að Þ

t 2 0,1½ � be the
probability that a case is ascertained t days after they were infected,
conditional on being an ascertained case. Both δ að Þ,δ hð Þ are T-sim-
plexes, that is, they are vectors of length T that sum to 1.

In addition to themodel parameters used in the prior distribution,
the full model contains time varying incidence rates for each sub-
population. Let θ s0ð Þ

t be the expected number of new infections on day t
for subpopulation S= s0. We assume that the incidence rates are
independent for all populations.

For brevity, we let P Hð Þ=ph, and P Aj:H,Sð Þ=αS. Let λ
a,s0ð Þ
t,t0 ,λ h,s0ð Þ

t,t0 2
R+ be the expected number of infections who are infected on day t
and ascertained/hospitalised respectively on day t0>t, for a given
subpopulation S = s’. We have that

λ h,s0ð Þ
t,t0 =θ s0ð Þ

t � δh
t0�t � ph, ð13Þ

and

λ a,s0ð Þ
t,t0 =θ s0ð Þ

t � δ að Þ
t0�t � P AjS= s0ð Þ=θ s0ð Þ

t � δ að Þ
t0�t � αS 1� ph

� �
+ph

� �
: ð14Þ

Let

μ a,s0ð Þ
t0 ,μ h,s0ð Þ

t0 2 R+ ð15Þ

be the expected number of ascertained/hospitalised cases on day t,
obtained via μ a,s0ð Þ

t0 =
Pt0

t = 1λ
a,s0ð Þ
t,t0 and μ h,s0ð Þ

t0 =
Pt0

t = 1λ
h,s0ð Þ
t,t 0 .

Given that we now have values for the expected number of cases/
hospitalisations over time, it remains for us to fit to the data. Before
this, we adjust for day-of-week reporting effects in case ascertainment
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and hospitalisations over time for each subpopulation. Let β a,s0ð Þ
d 2 R

be thedayofweek effect for case ascertainment in subpopulation s0 for
d 2 0, . . . ,6½ �. We obtain the day-of-week adjusted expected number of
cases in subpopulation using

g
μ a,s0ð Þ
t = exp log μ a,s0ð Þ

t

� �
+β a,s0ð Þ

tmod7

� �
: ð16Þ

A similar transformation is used to obtain the day of week adjus-
ted number of hospitalisations for each subpopulation.

For the untraced subgroup, the day of week effect appears to
change partway through the time series. As a result, we fit a day-of-
week effect to the period from 16th May 2022 to 13th July 2022, and a
second independent day-of-week effect for the period 14th July 2022
to 22nd September 2022.

Finally, to model the observed time series, we assume the
data is generated using a negative binomial distribution;

xt,s0 ∼NegBin g
μ a,s0ð Þ
t ,ϕa,s0

� �
and ht,s0 ∼NegBin

g
μ h,s0ð Þ
t ,ϕh,s0

� �
, where

ϕa,s0 ,ϕh,s0 2 R+ are the overdispersion parameters.

For the ascertainment rate and hospitalisation risk priors, we use
the posteriors obtained from the ascertainment bias prior. For the
incidence rate, we estimate the incidence rate in 10-day intervals,
where the evolution of the incidence rate between each interval is
controlled by a second order random walk smoothing prior. For the
overdispersion parameters, we follow the standard practice40 of
assuming that 1

ϕ ∼N 0,1ð Þ. For all other parameters, we assumed flat
uninformative priors.

Computational details
Analysis of the data was conducted in R version 4.3.2. Themodels for
estimating the time delay distributions and estimating the IHR were
implemented using cmdstanr41 (version 0.6.1), and Bayesian com-
putation was performed using Hamiltonian Markov Chain Monte
Carlo. Convergence was assessed using potential scale reduction
factor or R̂where a value less than 1.01 is desirable. For the IHRmodel
4 chains were used to draw 2000 samples from the posterior, with
the first 1000 samples being discarded as burn-in for the MCMC
sampler.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study is not publicly available. UKHSA operates a
robust governance process for applying to access protected data that
considers: the benefits and risks of how the data will be used; com-
pliance with policy, regulatory and ethical obligations; data mini-
misation; how the confidentiality, integrity, and availability will be
maintained; retention, archival, and disposal requirements; best
practice for protecting data, including the application of ‘privacy by
design and by default’, emerging privacy conserving technologies and
contractual controls.Access to protected data is always strictly con-
trolled using legally binding data sharing contracts.UKHSA welcomes
data applications from organisations looking to use protected data for
public health purposes. To request an application pack or discuss a
request for UKHSA data you would like to submit, contact
DataAccess@ukhsa.gov.uk.

Code availability
The Stan code to model the infection hospitalisation risk and the
doubly interval censored model adjusted for right truncation is pro-
vided in the Supplementary Code file.
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