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Anactor-model framework for visual sensory
encoding

Franklin Leong 1, Babak Rahmani2,5, Demetri Psaltis 3, Christophe Moser 2 &
Diego Ghezzi 1,4

A fundamental challenge in neuroengineering is determining a proper artificial
input to a sensory system that yields the desired perception. In neuropros-
thetics, this process is known as artificial sensory encoding, and it holds a
crucial role in prosthetic devices restoring sensory perception in individuals
with disabilities. For example, in visual prostheses, one key aspect of artificial
image encoding is to downsample images captured by a camera to a size
matching the number of inputs and resolution of the prosthesis. Here, we
show that downsampling an image using the inherent computation of the
retinal network yields better performance compared to learning-free down-
samplingmethods.Wehave validated a learning-based approach (actor-model
framework) that exploits the signal transformation from photoreceptors to
retinal ganglion cells measured in explanted mouse retinas. The actor-model
framework generates downsampled images eliciting a neuronal response in-
silico and ex-vivo with higher neuronal reliability than the one produced by a
learning-free approach. During the learning process, the actor network learns
to optimize contrast and the kernel’s weights. This methodological approach
might guide future artificial image encoding strategies for visual prostheses.
Ultimately, this framework could be applicable for encoding strategies in other
sensory prostheses such as cochlear or limb.

Sensory organs capture information from the environment and con-
vert it into neuronal signals that are interpreted by the brain during
cognition. This transformation is known as sensory encoding.

Similarly, a sensory prosthesis converts information from sensors
into artificial stimulation parameters to replace natural functions
(artificial sensory encoding). However, prosthetic devices typically
have an input range much smaller than biological systems. For exam-
ple, the number of electrodes in neural implants is usually several
orders of magnitude lesser than the number of sensory neurons1,2.
Therefore, artificial sensory encoding is a form of dimensionality

reduction. High-dimensional information from sensors is reduced to a
few stimulation parameters while trying to maximally preserve the
information, so that few electrodes can write information in a format
that the brain can read and understand. A notable example is auditory
encoding in cochlear implants, where sound is converted into elec-
trical stimulation of a few frequency regions within the auditory
nerve3–5. This process allows deaf individuals to hear sound. Likewise,
limb prostheses provide amputees with tactile feedback to enhance
manual dexterity, increase prosthesis embodiment, and improve their
quality of life6–8.
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Artificial sensory encoding plays a huge role also in visual pros-
theses. Artificial visual encoding converts high resolution images
captured by an external camera into a spatiotemporal pattern of arti-
ficial stimuli delivered by a retinal9–12, optic nerve13,14, or cortical
prosthesis15,16. Artificial visual encoding is critical to improve the
patient’s perception, but it is not straightforward. In the retina, infor-
mation flows from approximately 120 million photoreceptors to
roughly 1.2 million retinal ganglion cells (RGCs) divided into several
classes, which project to several brain nuclei, including the lateral
geniculate nucleus and then to the visual areas where further image
processing occurs17–20. The complexity of the visual information pro-
cess requires advanced encoding strategies to ensure effective sti-
mulation of the visual neurons leading to a useful artificial vision.

To date, there have been several visual prostheses implanted in
patients16,21–26, but most devices were tested to recognize only letters
and shapes using simple image encoding techniques (e.g. pixel aver-
aging). In the Argus® II, the most implanted device so far, pixel aver-
aging was used in conjunction with video filters to downsample the
camera image to the resolution of the implanted array (6 × 10 pixels).
Recently, there has been considerable research dedicated to the
development of better image encoding algorithms. Some approaches
include object detection, edge detection, and content-aware retar-
geting method27,28. In general, such methods aim to reduce the com-
plexity of the image and highlight interesting content and features. For
example, edge detection may identify the discontinuity of brightness
in an image to locate the outline of an object. By reducing the amount
of information, the user could better perceive the environment.
However, these algorithms do not consider the retinal information
processing from photoreceptors to RGCs. Therefore, their encoding
potential might be limited.

Finding the proper artificial input to a sensory system that elicits
the desired perception is an ill-posed problem: there are multiple
inputs that could possibly yield the sameoutput. In a linear system, the
ability to produce a desired output can be determined by measuring
the system’s response to a series of arbitrary inputs (forward pathway)
and then computing its inverse (backward pathway). Determining the
forward pathway would entail measuring the responses of the whole
system, which is practically impossible in a biological system given the
large number of cells and the low number and resolution ofmeasuring
electrodes. Yet, even if the system’s forward pathway is fully char-
acterized, for large scale systems involving many variables, obtaining
its inverse (backward pathway) is computationally intensive. More-
over, neuronal processing is non-linear, and it is probed only with
partial measurements, thus further complicating this problem.

There had been significant efforts to generate in-silico retina
models (forward pathway) that potentially could be used for efficient
artificial visual encoding29–32. Retinal information processing is
complex33,34, and finding a high-performing in-silico retinal model is
critical since it will directly impact the outcome of the image encoding
algorithm. In recent years, convolutional neural networks (CNNs) have
been very successful at modeling the retina and outperformed con-
ventional approaches such as linear-nonlinear models or generalized
linear models35,36, which are less effective in capturing the retinal
dynamics when white noise and natural scenes are presented35,36.
Hence, using CNNs to model the retina presents a great potential in
improving artificial visual encoding.

Still, a computational method to estimate the backward pathway,
given the limited set of measures obtained in the forward pathway, is
necessary for artificial visual encoding. Again, neural networks per-
form well in solving ill-posed inverse problems37. Therefore, we pro-
pose an end-to-end neural network-based approach for both retina
modeling and image encodingwhich considers the retinal information
processing. We validate an actor-model framework designed to learn
non-linear downsampling patterns through a learning-based
approach37,38. Performance is assessed through the measurement of

neuronal reliability35. By integrating the measured retinal information
processing into the framework,wedemonstrated, in-silico and ex-vivo,
that the generated downsampled images elicit a neuronal response
with higher neuronal reliability (+4.9% in-silico and +2.9% ex-vivo,
median percent increase) compared to a learning-free approach (i.e.
pixel averaging). During the process, the actor network learned to
optimize contrast and the kernel’s weights evolved towards a Mexican
hat shape which resembles the receptive field (RF) of RGCs. These
properties work in conjunction to enable effective downsampling.

The actor-model framework used in this study is general and
could be exploited for other image encoding processes or even in
other fields of artificial sensory encoding, such as auditory and tactile.
Albeit belonging to different sensory pathways, auditory and tactile
sensations share similar properties which allow us to postulate the
potential effectiveness in other sensory encoding systems34,39. This
learning-based approachcould serve as a template for future encoding
strategies accounting for the natural transformationprocess occurring
in the sensory organ. A more effective encoding method entails that
the brain could better interpret the encoded information, leading to
improved perception of a prosthesis user.

Results
The actor-model framework in retinal processing
The actor-model framework is built following a 3-step approach
(Fig. 1). In step 1, we projected a set of high-resolution images X 2
R128x128 (128 × 128 pixels) to mouse retinas explanted over a trans-
parent multielectrode array (MEA) used to detect neural spikes from
RGCs in response to image projection. For each identified RGC, we
built a response vectorby summingup the averagenumber of spikes in
response to image projection (Fig. 1, inset). Then, we combined the
response vectors from each recorded RGC acrossmultiple retinas into
a neural responsematrix forming the ground truth responseY 2 Rnxm

wheren is the number of RGCs (n = 60RGCs fromN = 10 retinas) andm
is the number of images projected (m = 1200). We refer to the
explanted retinas as the biological system (F : X ! Y). In step 2, we
trained a CNN to act as a digital twin of the retina. We refer to it as the
forwardmodel ðF̂ : X ! ŶÞ. We sent the same high-resolution images
to the forward model, generating a predicted response matrix (Ŷ). We
calculated the Poisson loss against the prediction and ground truth to
update the forward model along with the regularization terms
(θ* = argminθ½‘ðcF θðXÞ,F ðXÞÞ+R�) where θ* is the optimized para-
meters of F̂, l is the loss function, and R is the regularization term.
Then, we conducted hyperparameter optimization with a random
search. Once the forwardmodel is trained, we fix its weights. In step 3,
we prepended another CNN, the actor network A : X ! Xdown where
Xdown 2 R32x32, which learns to downsample images. Again, we sent
the same high-resolution image set into the actor network, which
reduces them to lower-resolution images (32 × 32 pixels, four-fold
downsampling). The low-resolution images are sent through the fixed
forward model, generating a predicted response matrix
ŶActor = F̂ðAðXÞÞ. Similar to step 2, we compared the predicted
response of the lower-resolution images against the ground truth by
calculating the Poisson loss. The loss is then used to update the actor
network. The forward model remained fixed. As the actor network is
updated, it learns to distill pertinent features to downsample images
while generating a neuronal response similar to high-resolution
images.

We determined the dimension of high-resolution image set by
performing an ex-vivo experiment equivalent to the one described
step 1, but with an image set containing 240 original images replicated
in 4 different sizes (256 × 256, 128 × 128, 64 × 64, and 32 × 32 pixels;
downsampling by pixel averaging), each projected 10 times. For each
dimension, the image set was split into odd and even groups (5 repe-
titions each) to allow comparisons within the same image dimension.
To compare between different dimensions, we always used the odd
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group. We recorded neural responses from identified RGCs (n = 12
fromN = 3 retinas) andbuilt corresponding response vectors. Then,we
used neuronal reliability as a quantitative measure to compare the
resolutions in pairs. Briefly, the ex-vivo neuronal reliability of eachRGC
is measured as the R2 value between the neuronal responses to two
paired images (Fig. 2a). Paired images are the same image presented at
either the same (e.g. 256 vs 256) or different (e.g. 256 vs 128) resolu-
tions. Pooling all the RGCs together (Fig. 2b, c), we did not find any
statistically significant difference in neuronal reliabilitywhen images of
256× 256pixels are downsampled to 128x 128 pixels (two-tailed paired
Wilcoxon test, p =0.30). For all other comparisons, we found statisti-
cally significant differences (two-tailed paired Wilcoxon tests: 256−64,
p =0.0122; 256−32, p =0.0005; 128 − 64, p = 0.0200; 128 − 32,
p =0.0005; 64 − 32, p =0.0009).

On the one hand, we aimed tominimize the high-resolution image
dimension so as to reduce the number of parameters of the forward
model. More parameters will result in greater computational com-
plexity and larger risk of overfitting. Sincewedid not find a statistically
significant difference while downsampling from 256 × 256 to 128 × 128
pixels, we rejected the 256 × 256 pixel size. On the other hand, we

wanted to maximize the high-resolution size so that it can give a sta-
tistically significant difference in neuronal reliability compared to the
downsampled images, hence we chose 128 x 128 pixels for the high-
resolution images. The choice of four-fold downsampling is also
derived from this experiment. A reduction in neuronal reliability is
requiredbetweenhigh-resolution images and imagesdownsampledby
pixel averaging to fully leverage on the potential of the actor-model
framework to downsample images with higher neuronal reliability.
Four-fold downsampling (128 vs. 32) exhibited the greatest reduction
in neuronal reliability (one-tailed paired Wilcoxon test, p = 0.0002).

Actor-downsampled images elicit correlating responses to high-
resolution images in-silico
With the forward model and actor network trained, we conducted a
comparison of the performance in-silico between the actor-model
framework and the pixel averaging method for four-fold down-
sampling (Fig. 3). Here, the forwardmodel functions as the digital twin
of an explanted mouse retina. We used different types of images as
inputs (200 unique images for each group), including high-resolution
images (high-resolution), images downsampled by the actor network
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Fig. 1 | Actor-model framework for optimal downsampling. In step 1, the neu-
ronal response of RGCs is measured by projecting high-resolution images onto
explanted mouse retinas. Then, it is converted into a neural response matrix. The
inset sketch shows how a response vector is built. Images are projected for 400ms
(green bars) separated by a 800-ms long gray frame (gray bars). RGCs are isolated
after spike detection and clustering. A response vector is built for each RGC by
summing up the number of spikes occurring during image projection (400-ms
window). The image sequence was repeated 10 times to account for trial-to-trial
variability, and responses to the same images were averaged (not shown in the
sketch). Hence, numbers in the response vector are not necessarily integers.
Response vectors are arranged into the response matrix. In step 2, the neuronal

responsematrix serves as ground truth for the training of the forwardmodel. Given
the same input, the predicted response of the model is compared against the
ground truth by calculating the Poisson loss, then used to update the forward
model. After training, the forward model is fixed. In step 3, the actor network is
prepended to the fixed forward model. High-resolution images are passed into the
actor networkwhich downsample and feed them into the fixed forwardmodel. The
predicted response is compared against the ground truth by calculating the Pois-
son loss, then used to update the actor network. High-resolution image reproduced
from the Open Access van Hateren Natural Image Dataset available at https://
github.com/hunse/vanhateren (MIT License).
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(actor downsampled), and images downsampled using the pixel
averaging method (average downsampled). Lastly, we computed the
in-silico neuronal reliability (Fig. 3a). Briefly, the neuronal reliability of
each modeled neuron (n = 60) is measured as the R2 between the
neuronal responses of explanted retinas to high-resolution images
(ground truth; step 1 in Fig. 1; n = 60 RGCs from N = 10 retinas) and the
predicted responses of the forwardmodel to the same high-resolution
images (Fig. 3a, magenta), average downsampled images (Fig. 3a, yel-
low) or actor downsampled images (Fig. 3a, cyan). The comparison
between predicted response of high-resolution images and ground

truth defines the baseline reliability of a modeled neuron (Fig. 3a,
magenta). The ground truth compared to predicted response of
downsampled images (Fig. 3a, actor in cyan and average in yellow) is
the in-silico neuronal reliability for downsampled images,which is how
similar the responses to downsampled images are to those from high-
resolution images in-silico.

As expected, we observed a statistically significant reduction in
neuronal reliability of the average downsampled images compared to
the high-resolution images (Fig. 3b; two-tailed paired Wilcoxon test,
p =0.0001; one-tailed paired Wilcoxon test, p < 0.0001). However, we
did not observe any statistically significant difference in neuronal
reliability between high-resolution images and actor downsampled
images (Fig. 3c; two-tailed paired Wilcoxon test, p =0.56). Further-
more, the neuronal reliability of the actor downsampled images was
significantly higher than the one of average downsampled images
(Fig. 3d; two-tailed paired Wilcoxon test, p = 0.0001; one-tailed paired
Wilcoxon test, p <0.0001). It appears that some neurons exhibit low
in-silico neuronal reliability, this effect could be attributed to the
learning of the model. The parameters for some of the neurons could
be overfitted, and since we do not model each neuron separately, it is
difficult to ensure that every neuron is optimally modeled. Overall, we
found a 4.9% median percent increase in neuronal reliability for actor
downsampled images compared to downsampled images by pixel
averaging. It is worth noticing that the performance increase is not
specific to the type (ON or OFF) of the modeled neuron (Supplemen-
tary Fig. 1a; two-tailedMann-WhitneyU test,p =0.3845) or to its RF size
(Supplementary Fig. 1b; Pearson correlation coefficient r = 0.0713,
p =0.5885).

Based on these in-silico results, the actor network has found away
that can elicit a neuronal response more similar to the ground truth
compared to downsampling by pixel averaging.

Among the various learning-free approaches we choose pixel
averaging as the benchmark for evaluation, since it is the conventional
visual encoding approach used in prosthetic devices. Nevertheless, we
investigated theperformanceof the actor-model framework relative to
other downsampling methods common in image processing. Specifi-
cally, we evaluated bilinear interpolation (Bil), nearest neighbor
interpolation (Near), lanczoskernelwith radius 3 (Lan3), lanczos kernel
with radius 5 (Lan5), cubic interpolation (Cub), gaussian kernel (Gau),
area interpolation with anti-aliased resampling (Area), Mitchell-
Netravali cubic non-interpolating filter (Mit). The actor downsampled
images consistently elicited higher in-silico neuronal reliability com-
pared to the other learning-free methods (Fig. 4; two-tailed paired
Wilcoxon tests: p = 0.0001 for Actor - Average and Actor - Area,
p <0.0001 for other comparisons; one-tailed paired Wilcoxon tests,
p <0.0001 for all). This result further accentuates the effectiveness
and the necessity of having a learning-based framework tailored for
the retina.

Since we did not find another downsampling method that out-
performs the actor-network framework, we continued using pixel
averaging as a reference method. The next logical step is to validate
these in-silico findings ex-vivo in explanted retinas.

Actor-downsampled images elicit correlating responses to high-
resolution images ex-vivo
Finally, we validated the actor-model framework ex-vivo. We mea-
sured the neuronal responses ofmouse retinas when presentedwith
high-resolution images, actor downsampled images, and average
downsampled images (n = 21 RGCs from N = 8 retinas; 200 unique
images, 10 repeats per image). High-resolution images were pre-
sented twice: first to determine a new ground truth, and then to
compute neuronal reliability of high-resolution images. We eval-
uated the performance of the actor-model framework by calculat-
ing its ex-vivo neuronal reliability when compared to the new
ground truth (Fig. 5a). Qualitatively, results ex-vivo match in-silico
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data except for a statistically significant reduction in neuronal
reliability between high-resolution images and actor downsampled
images (Fig. 5c; two-tailed paired Wilcoxon test, p < 0.0001; one-
tailed pairedWilcoxon test, p < 0.0001). This result was expected as
information loss would occur during downsampling. The neuronal
reliability of average downsampled images is still significantly lower
than the one of high-resolution images (Fig. 5b; two-tailed paired
Wilcoxon test, p < 0.0001; one-tailed paired Wilcoxon test,
p < 0.0001). Importantly, the neuronal reliability of actor down-
sampled images is significantly higher than the neuronal reliability
of average downsampled images (Fig. 5d; two-tailed paired Wil-
coxon test, p = 0.0012; one-tailed pairedWilcoxon test, p = 0.0006).
The actor downsampling method performs 2.9% better than the
average downsampling method (median percentage increase).
Similar to in-silico results, the performance increase is not specific

to types (ON or OFF) of RGC (Supplementary Fig. 1c; two-tailed
Mann-Whitney U test, p = 0.4003) or to its RF (Supplementary
Fig. 1d; Pearson correlation coefficient r = −0.0838, p = 0.7181).

It is worth reporting that we found a statistically significant dif-
ference in the average response of RGCs to high-resolution, actor
downsampled and average downsampled images (Supplementary
Fig. 2; Friedman test, p <0.0001). In particular, the mean response to
average downsampled images is significantly lower than the average
response to both high-resolution and actor downsampled images
(Nemenyi post-hoc test, p = 0.001 for both comparisons). On the
contrary, the mean response of RGCs to actor downsampled images
was not significantly different from the response to high-resolution
images (Nemenyi post-hoc test, p =0.5398). This result confirms that
actor downsampled images elicited neural responses more similar to
high-resolution images.
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sentative neuron in a. The boxplots show the distribution of the pairwise difference

in neuronal reliability. The box spans from the 25th to the 75th percentiles, the line is
the median, and the whiskers are 1.5 times the interquartile range. The black dots
indicate outliers. Two-tailed paired Wilcoxon tests: High - Average (p =0.0001,
reportedas ***),High - Actor (p =0.56, reported asn.s.), Actor - Average (p =0.0001,
reported as ***). High-resolution image reproduced from the Open Access van
Hateren Natural Image Dataset available at https://github.com/hunse/vanhateren
(MIT License).
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Actor network develops features for optimal downsampling
Then, we delved deeper into the pertinent attributes of effective
downsampling by comparing high-resolution images to their respec-
tive downsampled version.

Upon visual examination, it is evident that actor downsampled
images better resemble the original images (Fig. 6a). Furthermore, the
quantification of the local contrast difference shows that actor
downsampled images exhibit a significantly higher local contrast
compared to average downsampled images (Fig. 6b; two-tailed paired
Wilcoxon test, p <0.0001; one-tailed paired Wilcoxon test,
p <0.0001). This result implies that the actor network strives to
increase the image contrast, highlighting its significance in generating
neuronal responses akin to those of high-resolution images.

The next step is understanding how contrast affects neuronal
reliability. First, we looked at the difference in local contrast of
downsampled images by the other learning-free approaches (Fig. 7a;
two-tailed pairedWilcoxon tests: p =0.8433 for Actor –Mit, p <0.0001
for all other comparisons). Most learning-free downsampling approa-
ches preserve the local contrast better than pixel averaging, and some
even better than the actor network (e.g. Near, Lan3, Lan5 and Cub;
median difference in local contrast <0). This result is counterintuitive
since the neuronal reliability of thesemethods was not higher than the
actor network (Fig. 4).

To further investigate contrast, we modified the pixel averaging
approach by either reducing or increasing the contrast of down-
sampled images before feeding them to the forwardmodel. The gap in
neuronal reliability between actor downsampled and average down-
sampled images widened when the contrast of average downsampled
images is artificially reduced (Fig. 7b, contrast factorα < 1). Conversely,
when the contrast of average downsampled images is artificially
increased (α > 1), the gap in neuronal reliability decreases and mini-
mizes for α = 1.5. Moreover, when the contrast was increased further
(α > 1.5), the gap widened again. When the gap in neuronal reliability is
minimized, the local contrast of the corrected average downsampled
images is closer to the actor downsampled images although the dif-
ference is still statistically significant (Fig. 7c; two-tailed paired Wil-
coxon test, p <0.0001). This result indicates that there is an optimal
level of contrast preservation which is reached by the actor network.
Hence, other learning-free models fail to perform even though con-
trast was better preserved.Moreover, although increasing the contrast

of the average downsampled images resulted in higher neuronal
reliability, the actor network still performed better (Fig. 7d; two-tailed
paired Wilcoxon test, p = 0.0082; one-tailed paired Wilcoxon test,
p =0.0041).

Hence, we hypothesize that contrast might not be the only factor
learned by the actor network. Indeed, the six kernels learned by the
actor network closely resemble a Mexican hat shape (Laplacian of a
Gaussian) which is a common function in algorithms for edge
detection40 (Fig. 8). This function, or its fast approximation difference
of Gaussians, is also traditionally used to model the center-surround
organization of the RGC RF31. This result is unexpected since the actor
network was not specifically trained to mimic center-surround prop-
erties, yet it emerges when optimized based on neuronal responses.
The actor-model framework could integrate edge detection into the
downsampling process by convoluting with a Mexican hat function.
Hence,wehypothesize that this component also contributed to amore
effective downsampling of the images in conjunction with optimizing
the contrasts, leading to higher neuronal reliability.

In-silico prediction of x-fold downsampling
In the previous sections, we explored and validated the effectiveness
of the actor-model framework during four-fold downsampling,
where images were reduced from 128 x 128 pixels to 32 x 32 pixels.
The actor-model framework elicited a higher neuronal reliability
(4.9% in-silico and 2.9% ex-vivo) compared to a learning-free
approach (pixel averaging). Therefore, we decided to vary the folds
of downsampling in-silico to understand the extent of aggregation
before the information loss cannot be recovered by the framework
(Fig. 9). We trained multiple actor networks as described in the
preceding sections (960 unique images) to downsample the high-
resolution images, each learning a different downsampling fold:
2-fold (64 x 64 pixels), 4-fold (32 x 32 pixels), 8-fold (16 x 16 pixels),
16-fold (8 x 8 pixels), and 32-fold (4 x 4 pixels). We observe statisti-
cally significant differences in neuronal reliability between actor
downsampled images and average downsampled images up to 8-fold
downsampling (n = 60; two-tailed paired Wilcoxon tests: 2-fold,
p = 0.0178; 4-fold, p = 0.0004; 8-fold, p = 0.0006). However, from 16-
fold onwards, this difference was not observed (n = 60; two-tailed
paired Wilcoxon tests: 16-fold, p = 0.8024; 32-fold, p = 0.4483;). This
was expected as 16-fold downsampling corresponds to reducing the
original image from 128 x 128 pixels to 8 x 8 pixels. Therefore, each
pixel has a size of 400 x 400 µm2, exceeding the RF size of most RGC
in the mouse retina41 (Supplementary Fig. 1). Hence, the amount of
information loss during downsampling might be too much to be
recovered.

Although we observed a significant difference between the neu-
ronal reliability of actor downsampled images and average down-
sampled images for 2-fold downsampling, a significant difference was
not observed between neuronal reliability of average downsampled
images to high-resolution images (two-tailed paired Wilcoxon test,
p =0.1925), while actor downsampled images has slightly different
neuronal reliability than high-resolution images (two-tailed paired
Wilcoxon test, p = 0.0277; one-tailed pairedWilcoxon test, p =0.0139).
This result suggests that the forward model is robust to down-
sampling. This is not out of expectation aswe used a CNN tomodel the
retina, which could possess a certain level of robustness to
downsampling.

Discussion
In this study, we have illustrated the efficacy of an actor-model fra-
mework to learn a downsampling method that outperforms common
learning-free techniques. Furthermore, we substantiated the effec-
tiveness of our approachby analyzing the neuronal responses of RGCs,
and we identified contrast as a crucial feature for effective down-
sampling. Additionally, we observed the emergence of distinct
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patterns in the learned kernels of the actor network, mimicking the
center-surround properties of RGCs. In this section, we assess our
approach against the state-of-the-art in the field, we delve into the
implications of our findings, and propose potential avenues for
advancing image encoding research.

Previously, the actor-model framework was employed within a
physical system, where it successfully learned the necessary input to
yield any desired output when transmitted through amultimode fiber.
The performance achieved in that study was comparable to gold-
standard methods37. Here, we sought to harness the potential of the
actor-model framework within a biological system, which is often
characterized by complexity and high variability. In contrast to a
physical system,we encountered a distinct set of challenges during the
experimentation process. Firstly, like in many biological ex-vivo
experiments, the difficulty lay in the sample viability, which con-
strained the duration of data collection. Given that neural networks

typically require vast amounts of data to be effective, this limitation
poses a significant obstacle to training the neural network efficiently.
Secondly, the number of neurons recorded could fluctuate depending
on the quality of the dissected tissue and other factors. Although we
used 256 electrodes, not every electrode could successfully capture
the electrical activity of RGCs. These issues imposed conducting
experiments on multiple retinas and consolidating the recorded RGCs
into a single dataset. As such, the frameworkmust learn and generalize
across different mice to capture inter-sample variability, which could
add another layer of difficulty. Lastly, intrinsic variability within the
retina presented another hurdle. The response could vary from trial to
trial when the same image was projected twice, with this variability
being more pronounced than in the physical systems used in the
previous work. Consequently, our actor-model framework required
greater robustness to be effective. Nevertheless, the actor-model fra-
mework successfully learned efficient downsampling. This
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achievement underscores the robustness of the actor-model frame-
work and its capacity to discover solutions irrespective of whether it is
applied to a physical or biological system. We contend that the
potential of the actor-model framework is not limited to image
encoding in the retina, andwe look forward to future experiments that
could capitalize on this versatile framework. For example, in the con-
text of tactile feedback, Eldeeb and Akcakaya demonstrated the
potential of using electroencephalography (EEG) to guide the elec-
trical stimulation parameters42. The actor-model framework could also
be applied in this situation, where the actor network could determine
the electrical stimulation required to elicit the desired EEG response.

In the actor-model framework, artificial image encoding depends
on two components: the forwardmodel (digital twin of the retina) and
the actor network (artificial image encoding). Much research has been
previously dedicated to deriving a forward model of the
retina32,35,36,43–47. Selecting a suitable forward model plays a crucial role
in this study. Conventional models such as linear-nonlinearmodel and
generalized model have been shown to model the retina. However,
such conventional models generally fail to represent retinal responses
to natural scenes35. On the other hand, CNNs have been shown in
recent years to be significantly better in modeling the retina for both
white noise and natural scenes35,36, suggesting a level of complexity
hidden within its seemingly simple structure. Hence, we constructed a
digital twin of the retina using a CNN forward model which accounted
for the inherent computation of the retinal network. In this study, the
innovation lies in the combination of a forward model with a CNN
encoder (actor network), while the architecture of the forward model
is derived from the state-of-the-art35. Since the actor network opti-
mized the image encoding process based on the output of the forward
model, the positive results observed in this study also indicate the
robustness of the forward model per se. Hence, our results highlight
the suitability of CNNs as a forward model of the retina. However, as
the field progresses and more forward models are derived, it will be
possible to substitute the forwardmodel used in this studywith amore
accurate one48.

As visual technology progresses and electrode resolution increa-
ses, image encoding methods become increasingly crucial. This study
demonstrates that a learning-based approach, which accounts for the
biological retinal process, yields superior results. We foresee this
learning-based method serving as a foundation for future research,
potentially leading to the identification of the most effective image
encoding technique. This study shows the benefits of using CNNs for
image encoding (actor network) which, to the best of our knowledge,
their use for efficient image encoding has not been reported despite
their great potential. CNNs are efficient in capturing the relevant
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features of the image. This model highlighted the importance of
contrast during downsampling, confirming also its importance for a
CNN forward model of the retina35. In general, employing a learning-
based approach enables further analysis of the learned features, pro-
viding insights into the underlying dynamics of the system. Also, the

weight-sharing properties ofCNNs allow for generalizationwithin each
retina and across different retinas. Weight-sharing property in CNNs
refers to how each learned kernel is applied across the entire image,
thus reducing the number of parameters to be learned. A significant
challenge in biological experiments involves conductingmultiple trials
with different samples. RGCs are recorded frommultiple sessions and
combined into a single dataset. However, evenwith suchmethods, it is
not guaranteed that every area of the image is captured by the neu-
ronal activity. Nevertheless, since weights are sharedwithin a CNN, the
actor networkcan extract pertinent features based solelyon the subset
of RGCs measured and subsequently apply the learned kernels
through the whole visual space. These distilled features can then
generalize to other retinas and to other areas of the images not cap-
tured by neurons, as demonstrated by the results obtained in the ex-
vivo experiments for validation. Although we could not guarantee that
the RGCs recorded in the ex-vivo validation experiment (Fig. 5) would
co-locatewith the RGCs used for the forwardmodel and actor network
training (Fig. 1), the actor network generalization capability highlights
the robustness and invariance towards the location of the RGCs
recorded. Additionally, we show that the actor network produces
images that are neither biased towards the type ofRGCs nor to their RF
size (Supplementary Fig. 1).

Several visual encoding approaches have been proposed so far. In
computer vision, a conventional approach is based on saliency
detection (e.g. edge detection, object detection or content-aware
retargeting). These approaches generally aim at reducing the com-
plexity of the image, highlighting interesting content and features
while removing less interesting information27,28,49,50. The actor-model
framework is compatible with saliency-based detection. First, one
would apply saliency detection algorithms to extract important
information, and then pass the processed images through the actor-
model framework for more effective downsampling. In visual pros-
theses, image encoding can consist of two phases: image processing
(e.g. downsampling) followed by stimulus optimization. Most of the
image encoding strategies focus on the stimulus optimization rather
than on the image processing phase, which is typically based on pixel
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averaging when present. A ‘naive’ approach for stimulus optimization
sets the stimulation strength of each electrode based on the corre-
sponding pixel value of the downsampled images51.

At the biophysical level, Ghaffari et al. utilized a feedforward
neural network to optimize the stimulation parameters to achieve a
more localizedRGC activation but validated it only in-silico52. Similarly,
Spencer et al. tried to approximate and invert a biophysical forward
model that converts the stimulation strength to retinal activation53.
Both studies aim toproduce amore focused retinal activation and thus
could potentially be integrated with the actor-model framework for
the next phase which involves the conversion of the more effective
actor downsampled images to stimulation parameters.

At the perceptual level, Fauvel et al. presented a preferential
Bayesianoptimization algorithm tooptimize a visual encoder basedon
patients’ feedback54. However, the encoder was not proposed, and the
optimization was based on a prosthetic vision simulator which gen-
erates patterns of phosphenes (phosphene model) mimicking the
visual experience of patients implanted with the Argus II® device29.
Shah et al. proposed a greedy iteration to select electrical stimuli that
minimizes the error between the expected visual perception and the
target image55. The model for the expected perception was obtained
by projecting continuous white noise and measuring the RGC
responses. Then, a linear filter is fitted for each RGC to find the
reconstructionmatrix. They perform a closed loop optimization of the
electrical stimuli. First, they provided electrical stimulation and mea-
sured the RGC response within a temporal window. Then, using the
reconstructionmatrix, they predicted theperception andused it as the
loss function for the optimization. One of the limitations of this
approach is the reliance on the expected perception. Since the
expected perception is obtained by the reconstruction matrix, it is
unclear how it could be derived for a blind patient. In our study, we
faced a similar issue since both the actor and the model networks are
optimized to a set of RGCs. However, we showed in the validation
experiments that the actor-model framework can generalize across
retinas.

A few other studies have tried to optimize stimulation parameters
using neural networks56–58. Van Steveninck et al. proposed an end-to-
end optimization strategy in conjunction with a fixed phosphene
model56. They suggested mapping the image to stimulation para-
meters using a CNN (encoder). However, they also included a sec-
ondary CNN (decoder) to post-process the output of the phosphene
model, reconstructing the image. Throughout this process, both the
encoder and the decoder are trained concurrently by minimizing the
loss function between the reconstructed and the original image. Thus,
it is unclear if the encoder had genuinely learned the optimal stimu-
lation parameters, or the decoder is simply adept at reconstructing the
image. Relic et al. addressed this issue by using a neural network sur-
rogate of the phosphene model and removing the secondary
decoder57. In this case, since the phosphene model is non-differenti-
able, a surrogatemodelwhich consists of a neural network is needed as
replacement so that the loss value could propagate backwards to train
the encoder model to produce the optimal stimulation parameters.
Granley et al. refined this pipeline by deriving a differentiable phos-
phene model, removing the need of a surrogate model58.

These studies methodologically relate to our study since CNNs
were used. However, one key difference lies in the scope. Our actor-
model framework optimizes the image encoding process by learning
the most efficient downsampling pipeline while their method opti-
mizes the electrical stimulation parameters directly. As a result, the
actor-model framework could easily translate clinically as it improves
on the conventional method which involves downsampling the ima-
ges, and the features pertinent to effective downsampling found in this
study can generalize well to different patients. On the other hand, the
studies of Relic et al. and Granley et al. were performed in-silico only
and the phosphene model used to predict the perceived perception

had to be fitted to each individual patient. In both studies, the network
architecture can be decomposed into encoder and decoder, where the
encoder learns to generate the optimal electrical stimulation para-
meters while the decoder is either a differentiable or surrogate phos-
phene model aiming at predicting the perceived phosphenes. This is
analogous to our actor networkwhich learns to optimally downsample
the images and ourmodel networkwhich acts as the digital twin of the
retina. While these studies bear resemblances to our work, a shared
themeacross them is the application of phosphenemodels for in-silico
performance measures without validation. On the contrary, the actor-
model framework showed better performance in both in-silico and ex-
vivo environments using neuronal reliability as performance index.

As a step toward a learning-based approach for image encoding,
there remains ample room for improvement and exploration. In this
study, we projected static images and summed the number of spikes
within a specifiedwindow. Constrained by the hardware employed, we
were unable to present images in a continuous format (i.e., movie
format), which prevented us from verifying whether our proposed
methods would be applicable to more dynamic natural scenes. A
logical next step would be to validate these results using continuous
projections of natural scenes. In addition to exploring continuous
format, the same approach could be evaluated on reducing the bit size
of the depth of the images concurrently while downsampling. Redu-
cing from 256 levels of grayscale to 8 levels would also be useful for
visual prostheses to better calibrate the strength of electrical
stimulation.

Another avenue is investigating the generalization of our
approach across species. The actor-model framework was trained
using data collected from mouse retinas. We also discovered that the
results derived from these trainedmodels could be generalized across
differentmouse retinas, as the validation experimentswere conducted
with new retinas. However, mouse retinas have anatomical and func-
tional differences from human retinas. It would be interesting to
explore whether projecting the various downsampled images onto
retinas of other species would yield similar improvements (e.g. non-
human primates). If successful, this would imply that the features
learned by the actor network may possess the capacity to generalize
even across different species, highlighting the potential for broader
applicability of this method, in particular towards visual prostheses in
humans.

In conclusion, this study presents a neural network-based
approach for optimizing image distillation in the context of visual
prostheses. The proposed actor-model framework learns to down-
sample images while accounting for the biological processes of the
retina, resulting in more effective downsampling patterns. This
research not only contributes to the advancement of image encoding
techniques for visual prostheses but also highlights the importance of
incorporating natural biological transformations. In general, integrat-
ing neural networks into sensory encoding could hold the key to better
perception of the visual prosthesis users. Future research could build
upon this learning-based approach to develop evenmore accurate and
effective image encoding methods, enhancing the quality of life for
individuals relying on such devices.

Methods
Electrophysiological recordings
Animal experiments were authorized by the Direction Générale de
la Santé de la République et Canton de Genève in Switzerland
(authorization number GE31/20). C57BL/6J mice (n = 21; age
75.3 ± 26.4 days, mean ± SD) were dark-adapted for 1 hr prior to
euthanasia. Euthanasia was carried out via intraperitoneal injection
of sodium pentobarbital (150mg kg−1). Dissection and recording of
retinas were performed in carboxygenated (95% O2 and 5% CO2)
Ames medium (USBiological, A1372-25) under dim red light. Retinas
were maintained at 25 °C throughout the experiment. Explanted
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retinas were positioned on a poly-lysine coated membrane (Sigma,
P8920; Repligen 132544), with the RGCs side facing a 256-channel
MEA (256MEA200/30iR-ITO, Multichannel systems) with 30-µm
electrodes spaced 200 µm. The data sampling rate was set at 25 kHz.
Data were collected using a custom python code.

Visual stimulation
Images were projected using a custom-built setup with a Digital
Mirror Device (V-7000 Hi‑Speed V‑Modules, ViALUX) coupled to a
white LED (MWWHF2, Thorlabs). The stimulus was focused on the
photoreceptors via standard optics, with an average power of 13
nW. The projected area covered 3.2 x 3.2mm2. The image set is the
Open Access van Hateren Natural Image Dataset (available at
https://github.com/hunse/vanhateren, MIT License), comprising
4212 monochromatic and calibrated images captured in a variety of
natural environments59, further processed to maintain a linear
relationship between scene luminance and pixel values35. This
processing step was described as crucial to prevent the retinal
system from having to adapt to varying light intensity levels found
in different environments35. The final image set used in
this experiment (3190 images) was obtained from Goldin et al.35,
which was then sub-sampled for the different experiments con-
ducted. Each image is projected for 400ms, and an 800-ms long
gray frame is inserted between images to return the firing rate to
baseline value.

Spike detection and sorting
The SpyKING CIRCUS algorithm (version 1.1.0) was used for spike
sorting60. Manual inspection was performed using Phy software
(version 2.0b5)61, including verification of gaussian distribution in
the amplitudes, waveforms present in multiple channels, presence
of a dip in autocorrelogram, and merging/separating clusters as
necessary. To assess the reliability of the recorded neurons and
account for experimental drift, random binary checkerboard sti-
muli was presented at the start of the experiment, and then redis-
played roughly every half an hour43. The check size was 50 µm, the
refresh rate was 33 Hz and the presentation time was 5min. The
correlation coefficient of a cell’s average response to the same sti-
mulus across different blocks of trials was calculated. Only neurons
with a correlation exceeding 0.3 were selected for further analysis36.
Consequently, many neurons that were not responsive over the
entire experimental period (approximately 5 hrs) were discarded.
To filter out poor-quality clusters, we presented a random binary
checkerboard at the end of the experiment for 1 h to characterize
the RF size of each spike-sorted RGC by spike-triggered averaging
(STA) analysis. STA is given by STA= 1

nsp

PT
i= 1yiXi where nsp =

PT
i= 1yi

is the total number of spikes, yi is the spike count in the bin and Xi is
the binary checkerboard at i time bin. Clusters not displaying a
recognizable RF were excluded from further analysis.

Image analysis
Image analysis was performed in Python (version 3.10.6) with the
OpenCV library (version 4.6.0.66). Local contrast of every down-
sampled image was quantified by averaging the luminance variance of
a sliding window of size 7 pixels x 7 pixels. The RF size of RGCs was
measured after STA analysis. The background noise was smoothed by
convoluting a median filter and the contrast was enhanced to better
separate the RF from the background. Last, a 2D Gaussian was fitted to
measure the RF area. The average model with enhanced/reduced
contrast (corrected) was obtained by the TensorFlow method accor-
dion to Xcorr = Xdown � �Xdown

� �
*α + �Xdown where Xdown are the down-

sampled images, �Xdown is the average downsampled image andα is the
contrast factor.

Model architecture
The forward model architecture adheres to the current state of the
art35,62,63. It consists of two layers, the first layer of the CNN, krsk , con-
volutes the input image. The output of the first convolution layer
passes through a pointwise nonlinear function, f θk ½1�, to obtain non-

negative activation values. For each neuron n, a readout weight wijkn,
which factorizes aswijkn =uijnvkn, is applied. Here, i and j index space,
with uijn representing spatial weights and vkn denoting feature

weights. Another nonlinear activation function, f θk ½2�, is performed,

followed by the utilization of a Poisson noise model during training.
Softplus was chosen as the activation function for f θk ½1� and f θk ½2�.

Essentially, the kth neuron of the first layer is represented as
Ak = f θk ½1�ðKk*XÞ. The spiking rate rn of the nth neuron given an input

image X was rnðXÞ= f θn ½2�ð
P
k

P
ij
uijnvknAijkÞ. Additionally, batch nor-

malization was applied to the outputs of the first layer. Laplacian
regularization was applied to the convolutional kernels of the first
layer. For the feature and spatial weights of the second layer, we used

L1 regularization such that: LΔ =

P
k

P
rs

ðKrsk *ΔÞ2rs

ε +
P
rsk

ðKrsk Þ2
and

Ll1 = λsp
P
ijn

juijnj+ λf
P
kn

jvknjwith ε= 10�8. The actor network consists of

a convolution kernel that was prepended to the forward model (Sup-
plementary Fig. 3). Poisson loss was used for the optimization of the
actor network.

Forward model and actor network training
Given m image-response pairs ðX1,y1Þ,:::,ðXm,ymÞ, the loss
function of the forward model is provided by
L= 1

m

Pm
k = 1rðXkÞ � yklog rðXkÞ

� �
+ Ll1λl1 + λΔLΔ. The first term corre-

sponds to the Poisson loss, while the second and third terms represent
the regularization terms. The model was fitted with the Adam opti-
mizer on the training set (1200 images, 0.8:0.1:0.1 train:validation:test
split). The responses were obtained by summing up the number of
events elicited within a 400-ms window from the image onset. The
training of the actor network was similar except we only used L2 reg-
ularization instead of the second and third term used in the training of
the forward model. We maintained a constant batch size of 32 during
training for both the actor network and the forward model. For the
learning rate, we started with 0.001 for forward model and 0.002 for
actor network. To avoid overfitting, we employed both early stopping
and the decay mechanism with maximum 1000 epochs. The hyper-
parameters for the regularization term were optimized by performing
a random search for the forward model, while a grid search was
employed for the actor network. The optimal hyperparameter values
were the ones whose model produced the lowest loss value without
regularization terms on the validation dataset. The hyperparameters
for the forward model were 0.0033 for smoothing factor of convolu-
tion kernels, 0.00278 for spatial sparsity factor and 1.34−6 for feature
sparsity factor. For the actor network, the best run had 6 convolution
kernels of size 31 x 31 with 0.1 L2 regularization.

Neuronal reliability
As a quantitative measurement of performance for both in-silico and
ex-vivo experiments, we calculated the R2 value. For each neuron, we
calculated the R2 value for each input image and found the average

across the images and neurons, such that: R =
P

xi��xð Þ yi��yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi��xð Þ2 yi��yð Þ2

q . Where

x and y can be the predicted response or actual neuronal response to
different sets of images.
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Statistical analysis
Statistical analyses were conducted with the Python Scipy library
(python version 3.10.6, scipy version 1.9.1). The Shapiro-Wilk normality
test was performed to justify the use of non-parametric tests.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study
are available in the paper. The dataset to replicate the study is available
at https://doi.org/10.5281/zenodo.1051530. The image set used in the
study was obtained by Dr. Olivier Marre (https://doi.org/10.1038/
s41467-022-33242-8). The original image set is the Open Access van
Hateren Natural Image Dataset available at https://github.com/hunse/
vanhateren (MIT license). Any additional requests for information can
be directed to, and will be fulfilled by, the corresponding
author. Source data are provided with this paper.

Code availability
The code used in this study is available at https://doi.org/10.5281/
zenodo.10519578.
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