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Logical design of synthetic cis-regulatory
DNA for genetic tracing of cell identities
and state changes
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Michela Serresi 1,5, Sonia Kertalli1, Ben Jiang 1, Jiang-An Yin 2,
Adriano Aguzzi 2, Iros Barozzi 3,4 & Gaetano Gargiulo 1

Descriptive data are rapidly expanding in biomedical research. Instead, func-
tional validation methods with sufficient complexity remain underdeveloped.
Transcriptional reporters allow experimental characterization and manipula-
tion of developmental and disease cell states, but their design lacks flexibility.
Here, we report logical design of synthetic cis-regulatory DNA (LSD), a com-
putational framework leveraging phenotypic biomarkers and trans-regulatory
networks as input to design reporters marking the activity of selected cellular
states and pathways. LSD uses bulk or single-cell biomarkers and a reference
genome or custom cis-regulatory DNA datasets with user-defined boundary
regions. By benchmarking validated reporters, we integrate LSD with a com-
putational ranking of phenotypic specificity of putative cis-regulatory DNA.
Experimentally, LSD-designed reporters targeting a wide range of cell states
are functional without minimal promoters. Applied to broadly expressed
genes from human andmouse tissues, LSD generates functional housekeeper-
like sLCRs compatible with size constraints of AAV vectors for gene therapy
applications. A mesenchymal glioblastoma reporter designed by LSD outper-
forms previously validated ones and canonical cell surface markers. In
genome-scale CRISPRa screens, LSD facilitates the discovery of known and
novel bona fide cell-state drivers. Thus, LSD captures core principles of cis-
regulation and is broadly applicable to studying complex cell states and
mechanisms of transcriptional regulation.

The precise identification of specific cell types and transient states is
essential to understanding biological processes in which a diverse set
of cell types/states contribute to tissue homeostasis. Accurately
defining cell entities, states, as well as boundaries and trajectories
governing physiological and pathological transitions, is particularly
important for understanding cell responses to complex alterations of

homeostasis, such as cancer1–3 and viral infections4. Moreover, mon-
itoring the spatiotemporal activation of a given pathway is instru-
mental to dissecting the underlying biology as well as monitoring the
response to biological and chemical perturbations. While single-cell
genomics and proteomics are providing increasingly powerful multi-
omics maps of cellular processes in steady-state conditions and in
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longitudinal analyses, equally comprehensive experimental tools to
trace live cells are lagging behind. Lineage tracing in developmental
settings exploits the genetic tagging of a single gene tomap the fate of
phenotypes associated with the expression of the selected gene5.
Limitations associated with engineering an endogenous locus with a
reporter include the assumption that gene expression regulation of
the selected biomarker is a direct proxy of the phenotype of interest.
This may not be systematically warranted when complex regulatory
networks are studied. Conversely, selecting cis-regulatory elements to
design synthetic cassettes showing sufficient specificity is complicated
by our incomplete functional annotation and the mechanistic under-
standing of cis-regulation for most genes.

Synthetic transcriptional reporters may be assembled by juxta-
posing candidate cis-regulatory DNA sequences. In cellular and mole-
cular genetics, designing synthetic reporters starting from naturally
occurring cis-regulatory elements responsive to well-defined signaling
pathways or to combinations of transcription factors is a well-
established strategy6,7. Significant effort was directed towards gen-
erating and selecting synthetic reporters using massively parallel
sequencing or mixed computational design strategies8–12. This
revealed the promising potential of this approach, as well as the lim-
itations associated with incomplete control over the design, which
remains challenging9,11. Importantly, how biochemically defined
endogenous cis-regulatory DNA informs the generation of synthetic
enhancers remains unclear13. As a rule of thumb, success in generating
functional reporters is dramatically increased by combining candidate
enhancerswith validated cis-regulatory elements, such as viral or theβ-
globin minimal promoter. This, however, holds undefined con-
sequences for the specificity and sensitivity of such reporters.

We recently developed a method to generate synthetic tran-
scriptional reporters for genetic tracing (termed synthetic locus con-
trol regions, or sLCRs) and used these to study the significance of
glioblastoma heterogeneity in vitro and in vivo14. This method is
potentially applicable to a variety of biological settings when a more
streamlined, automated implementation of computational workflow is
implemented. Here, we present a computational framework to de
novo assemble functional sLCRs capable of working on stereotyped
inputs and returning anoptimal candidate sLCRoutput. Logical design
of synthetic cis-regulatoryDNA (or LSD) generates one candidate sLCR
from a user-dependent list of biomarkers and transcription factors by
performing an unbiased search for optimal cis-regulatory DNA within
the reference genome or a user-defined set of candidate cis-regulatory
elements.We complement LSDwith a computational approach to rank
candidates with naturally occurring or synthetic DNA based on the
signal-to-noise ratio of a phenotype of interest. In turn, we bench-
marked LSD’s performance using validated reporters and offered a
proof-of-concept on how to exploit LSD towards the systematic char-
acterization of cell types and states as well as to validate bulk and
single-cell genomic studies.

Results
Logical design of synthetic cis-regulatory DNA
To make the design of sLCRs robust and generally applicable, we
developed a fully automated framework that couples the selection of
putative phenotype-specific cis-regulatory elements (CREs) to an
iterative ranking in descending order of phenotypic representation.

The pioneering computational framework, termed logical design
of synthetic cis-regulatory DNA or LSD, uses two inputs: (1) a list of
signature genes, which are biomarkers representative of the target
phenotype, and (2) a list of transcription factors (TF) with knownDNA-
binding motifs potentially regulating such genes (Methods). Both lists
can be based on differential or absolute gene expression, but in prin-
ciple, they could be defined based on any set of criteria (Fig. 1a).
Building on our first-generation sLCR design algorithm14, LSD first
scans the regulatory landscapes of the signature genes to predict

putative cis-regulatory elements (CREs) regulating them (Fig. 1a and
Methods). By default, the boundaries of these regulatory landscapes
are defined using annotated CTCF binding sites15,16 flanking the sig-
nature genes. Such a ‘nearest CTCF neighbor’ criterion conservatively
approximates the functional definition of chromatin loops17 and
topologically associated domains18. Alternatively, users can impose
experimentally defined boundary regions, including from ChIP-seq
data for other structural DNA-binding proteins and chromosome
conformation capture experiments (see below). LSD scans these reg-
ulatory landscapes using a 150bp sliding window, in 50 bp steps. This
process returns a pool of putative CREs that are scored and ranked
using the set of TF-binding models defined by the user. The scoring
uses the following criteria: (I) the absolute number of TFBS; (II) the
diversity of the TFs showing high affinity for the regions; and (III) the
distance from the nearest endogenous transcriptional start site (TSS)
(Fig. 1a andMethods). Candidate sLCRs are then generated from these
CREs. The goal is to include the smallest number of CREs that faithfully
represent the complexity of the regulatory inputs. To do so, LSD
iteratively ranks the highest-scoring CREs until all pre-defined TFs
showing at least one binding site are represented (Fig. 1a and Meth-
ods). The output of LSD is proportional to the number of input TFs, the
number of signature genes and the size of the genomic loci containing
these genes.

While our implementation relies on the scheme and assumptions
outlined above, our dynamic strategy can be complemented or
replaced by one based on a different set of rules or defined by
hypothesis-driven criteria, such as focusing on user-defined TFBS
representation.

To directly compare reporters generated through the first-
generation approach14 to those designed with LSD, we designed
three original reporters for recurrent glioblastoma expression sub-
types. The PNGT3, CLGT3 and MGT4 sLCRs were designed in an
unbiased manner by LSD and their specific signature genes were
identical to those of the first-generation sLCRs (Supplementary Fig.
S1a, b), while we defined the TF lists by differential enrichment (see
Methods). A minor variation in the TFBS list permits the design of
different reporters to potentially target the same phenotype. Single-
sample gene set enrichment analysis (ssGSEA) of either TF list in TCGA
GBM RNA-seq data showed that they are both representatives of their
target phenotype (Fig. 1b andSupplementaryDataset S1).Of note, each
reporter significantly enriched the TFBS sites specific for the intended
glioblastoma subtype (Fig. 1c and Supplementary Fig. S1c, d). This
indicates that LSD maintains the robustness of the original approach
while operating fully automated. Importantly, hierarchical clustering
of TFBSenrichment in reporters generatedby either algorithmshowed
that the mesenchymal glioblastoma-subtype sLCR designed by LSD
clustered with previously validated mesenchymal reporters in all the
tested analyses (Fig. 1d and Supplementary Fig. S1).

LSD allows for designing functional and specific sLCRs
Toassess theperformanceof the LSDmethod,wenext synthesized the
LSD-designed mesenchymal glioblastoma sLCR (hereupon ‘MGT4’)
and tested it head-to-head against first-generation MGT1-2 sLCRs
constructed by user-supervised assembly and experimentally vali-
dated in vitro and in vivo14. Multiple sequence alignments of the three
sLCRs show only one instance of conserved positional overlap for
contiguous nucleotides of the size of a TFBS (>5 bp; Fig. 2a). This
suggests that the TFBS grammar is sLCR-specific, despite all reporters
targeting the same phenotype through transcription factor binding.
Nevertheless, FACS analysis showed that MGT1 (first generation) and
MGT4 (LSD) are similarly responsive to TNF-alpha, a driver of
mesenchymal commitment in GBM cells and of MGT1-2 activation14

(Fig. 2b). Of note, MGT1 exhibits a comparable expression regardless
of whether genome engineering relies on lentiviral- or PiggyBac-based
systems (Fig. 2b). This indicates that sLCRs’ activity is mainly directed
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by the synthetic cis-regulatory DNA and largely independent of the
genome integration bias of the vector system employed.

In recent studies, surface markers such as CD24 and CD44 have
beenused as experimental surrogates for opposite cell states in human
glioblastoma (proneural/NPC-like and mesenchymal19) as well as in
ovarian cancer cells (epithelial-mesenchymal20). To compare the per-
formance of LSD-designed reporters with these established markers,

we conducted correlation analyses betweenmodule scores for PNGT3,
CLGT3, and MGT4 input signature gene sets and module scores for
major glioblastoma cell state gene sets19,21–23, as well as individual CD24
and CD44 expression (Methods). In silico, leveraging a comprehensive
pan-glioblastoma single-cell integration24, we observed that PNGT3
correlated with the proneural/OPC-NPC meta-module, while MGT4
correlated with the mesenchymal meta-module (Fig. 2c and
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Supplementary Fig. S2e). Notably, the overall correlation between
patient-derived cell state signatures and our sLCR-based approach,
which captures the entirety of the signature rather than relying on a
single gene approximation, shows performance comparable to or
superior to the use of single marker genes alone for inferring cell fate
(Fig. 2c and Supplementary Fig. S2e), as gauged by the higher corre-
lation between PNGT3 and proneural/NPC-like than CD24 (Fig. 2c and
Supplementary Fig. S2e). This supports the ability of LSD sLCRs to
recapitulate targeted identities and serve as a tool for tracing classical/
AC-like modules where surrogate surface markers are unavailable
(Fig. 2c and Supplementary Fig. S3f). In vitro, MGT4 expression accu-
rately reflects a well-established model of TNF-driven PMT, whereas
CD24 and CD44 do not (Fig. 2d), demonstrating the superior experi-
mental performance of sLCRs in capturing comprehensive regulatory
networks.

Transcriptional reporters typically consist of candidate enhancers
upstreamof aminimal promoter11,25. Theuse of non-specificpromoters
limits the phenotypic specificity of the reporter. In contrast, no mini-
mal promoters were required to design functional and specific MES
GBM sLCRs. To extend this observation, we next used LSD to sys-
tematically design sLCRs for a wide range of cell states and pathways’
activation. These include the proneural and classical glioblastoma
expression subtypes, an astrocyte-like glioblastoma cell state, ER-
stress response, senescence, T-cell exhaustion, disease-associated
microglia activation, and epithelial cells’ response to SARS-CoV-2
infection. Consequently, the source of signature genes, transcription
factors, the choice of reporter genes, an LSD-sLCR-independent
selection marker, and vector backbones differed according to the
intended outcome. As a result, we generated a broad pool of sLCRs
whose connecting thread is being designed by LSD (Supplementary
Dataset S1 andMethods). With such a diverse range of sLCRs, we were
able to determine if LSD systematically generates functional reporters.
Thus, we synthesized LSD-sLCRs and episomally tested their expres-
sion side-by-side with the experimentally validated first-generation
reporters in three different cell lines. We transfected 28 different
sLCRs into human epithelial HEK293T, mouse mesenchymal NIH3T3,
and Chinese hamster ovary (CHO-1) epithelial cells to cover a minimal
set of variables that allow assessing transcriptional competence and
specificity, including developmental stage, tissue-specificity, and
species-specificity. Despite the use of phenotype-agnostic cell types,
upon transfection, the median expression of the sLCRs was sig-
nificantly (p-value < 1e−10) distinct from the background (Fig. 2e).
There was no obvious bias associated with the algorithm used to
design them or the target phenotype, but the sLCR showed distinct
patterns of expression in the three cell types. Overall, reporters
designed with the human genome as a reference displayed a mild but
statistically higher (p = 1.51e−05) expression in human cells if com-
pared to mouse and hamster cell lines (Fig. 2e). Some LSD-sLCRs were
marginally transcribed despite high transfection efficiencies, as
gauged by the expression-independent fluorophore in all the tested
lines (Supplementary Fig. S2b). This could be interpreted as either a
measure of on-target specificity or a lack of transcriptional

competence. As exemplified by the case of our mesenchymal GBM
sLCRs, those reporters were highly induced by TNF-alpha in GBMcells,
confirming that they are functional but lowly expressed in transient
transfection of non-glioblastoma cells, supporting their specificity
(Fig. 2b and Supplementary Fig. S2b). Interestingly, one sLCR scoring
very high on-target activity, such as PNGT2 in proneural human glio-
blastoma initiating cells, was well expressed in human 293T cells but
less expressed in non-human cells (Supplementary Fig. S2a), suggest-
ing that the species discordance might affect the output reporter
activity.

Thus, LSD generates reporters whose specificity is linked to the
source of signature genes, transcription factors and cell model sys-
tems, while its transcriptional competence is independent of minimal
non-specific promoters.

Benchmarking LSD by cis-regulatory score ranking towards
defining basic principles of sLCR design
Given that the LSD approach can optimize TFBS complexity within
selected CREs, we next sought to exploit glioblastoma first-generation
validated MGT1-2 reporters14 and proneural-to-mesenchymal transi-
tion (PMT) as a benchmark to predict the functionality and specificity
of newly LSD-designed sLCRs.

First, we set out to estimate an indicative number of distinct
TFs that should be represented by cognate TFBS in a given sLCR in
order for it to be functional and specific. To this end, we set out to
determine background TFBS complexity by using different rando-
mization strategies. First, we sampled TFs from the overall pool of
database-annotated human TFs while maintaining the signature
genes constant (termed ‘Random TF’; Fig. 3a). Second, we randomly
selectedmatched-sized sets of input genes from the human genome
(GRCh37/hg19) andmaintained theMGT1-2 TF list (termed ‘Random
Sig.-TF’; Fig. 3a). We then calculated, for each of the two scenarios
and for increasing numbers of sampled TFs, ameasure of specificity,
defined as the fraction of TF-genes included in the designed sLCR,
which we annotated as MGT factors. This fraction increased as a
function of the input number of random TFs, and this trend was
more marked when the MGT1-2-4 signature genes were used
(Fig. 3a). Importantly, all mesenchymal sLCRs (MGT1-2-4), which
were designed with less than one hundred TFs, covered >50% of the
entire TF repertoire, and the observed/expected ratio was superior
to both the background and the phenotypically distinct classical
and proneural reporters (Fig. 3a). Interestingly, despite the fact that
the MGT4 reporter was designed by LSD on a different TFBS list, it
outperformed the first-generation MGT1-2 on their specific TFBS
input list (Fig. 3a). Likewise, LSD-designed sLCRs PNGT3 and CLGT3
always outperformed 1st generation and phenotypically distant
reporters (Supplementary Fig. S3a–c). In fact, using their specific
signature and TF-gene inputs, they all showed an observed/expec-
ted TFBS ratio above both background and other functional
reporters designed to have specificity for a different phenotype
(Supplementary Fig. S3a). Hence, the LSD-sLCR approach out-
performed the supervised selection by enriching the number of

Fig. 1 | LSD streamlines the design of sLCRs from defined inputs. a Schematic
depiction of the LSD pipeline: from input signature genes and TFBS lists (i) it
generates a CRE× TFBSmatrix (ii; seeMethods) and performs iterative selection of
the top-ranked CREs (iii). Each iteration removes the highest scoring CRE and TFBS
from the CRE × TFBS matrix until the CRE × TFBS contained no TFBS or CRE. The
output of LSD is a ranked list of n CREs. The CRE closest to a natural TSS is prior-
itized. The example to the right illustrates a linear relationship between TFBS affi-
nity andTFBSdiversity for all CREs in theCRE × TBFSmatrix (red circles; R2 =0.86).
In light green boxes, LSD ranked n=7 CREs (1050bp) covering >60% of the TFBS
diversity. The TSS-containing CRE is in dark green. b Boxplot showing ssGSEA
scores of The Cancer Genome Atlas Glioblastoma (TCGA-GBM) patient cohort for
subtype-specific TF input lists. Each annotated GBM transcriptional subtype

(CL – Classical, blue, n = 49; MES – Mesenchymal, red, n = 67; PN – Proneural,
purple, n = 18) features statistical comparisons by two-sided pairwise t-test. Data
distribution is shown, with box indicating the interquartile range and inner line
indicating the median. Whiskers extend to represent the data range, including
outliers. c Barplot showing the coverage of sLCR-specific TFBS lists (color) relative
to the indicated TFBS input list (above). The dashed line denotes a threshold of
50%.dHeatmap showing the Pearson correlation between the TFBS score/diversity
for each sLCRs-input TF list. sLCR synthetic locus control region, LSD logical syn-
thetic cis-regulatory DNA, TF Transcription Factor, TFBS Transcription Factor
binding site, CTCF CCCTC-binding factor, CRE cis-regulatory element, TSS
Transcription Start Site, ssGSEA single sample gene set enrichment analysis.
Source data are provided in the Source Data file.
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TFBS detected above the signal-to-noise ratio, even at large TF
numbers.

Beyond the threshold of one hundred TFs, our randomization
approach suggests that while the number of target TFBS proportion-
ally increases with the size of the sLCR, this does not affect the fraction
of specific TFs recovered (Fig. 3a). This prediction is compatible with
the idea that unnecessary long sLCRs are prone to unpredictable

regulatory activities, suggesting that the length of an sLCR is a critical
determinant of its specificity and sensitivity. Thus, we next set out to
define a minimal number of individual CREs that would predict a
functional sLCR while aiming at maximal TFBS potential. To this end,
we quantified the marginal information gain (i.e., the number of dis-
tinct TFs included in the sLCR, as quantified by the cognate TFBS) of
increasing the number of individual CREs to be included in an sLCR.
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We focused this analysis on thirteen experimentally tested sLCRs tar-
geting various phenotypes. Fitting amodel to the relationshipbetween
the TFBS fraction and the number of CREs included using LASSO
(R > 0.9; Fig. 3b), retrospectively determined that the top 20% of out-
put CREs is sufficient to represent >50% of the maximal regulatory
potential in a given phenotype. For example, for the herein-validated
MGT4,weselected 7out of 24CREs (29%), for a total lengthof the sLCR
of 1060bp, and an observed/expected ratio of 0.56. Taken together,
the results of this analysis suggest that, if input sets with comparable
sizes are used for sLCR design, merging 25–30% of the top-ranking
CREs may maximize the chances of obtaining a functional sLCR with
minimal size and thus ectopic activities (see Discussion).

Finally, we tested whether the validated reporters could inform a
model to predict the phenotypic specificity of a given candidate cis-
regulatory DNA sequence, endogenous or synthetic. To this end, we
established a cis-regulatory score ranking. Such ranking is basedon the
correlation between a score summarizing the overall affinity of each
sLCR to the phenotype-specific TFs (termed ‘Qscore’), and a score
proportional to the phenotype-specific expression of the genes in the
corresponding input included in the final design of each sLCR (termed
‘SignScore’; see Methods).

Using the TFs and input gene signatures employed to design the
MGT1-2 reporters (intended as a validated proxy of the mesenchymal
GBM phenotype), the sLCR based on the mesenchymal TFs and sig-
natures (including MGT4) outranked all the remaining reporters
(Fig. 3c). To test the specificity of this ranking strategy, we introduced
reporters potentially marking phenotypes distant from those of GBM
subtypes. We used LSD to design sLCRs tomap amacrine cells starting
from murine single-cell RNA-seq profiling26 and compared these
reporters to a set of validated synthetic reporters generated by various
approaches to perform gene therapy in mouse retinal cell types11.
Importantly, mouse retinal reporters outranked glioblastoma sLCRs in
the amacrine phenotype ranking, while they sat at the bottom of the
mesenchymal glioblastoma phenotype ranking (Fig. 3c, d). Likewise,
when this analysis targeted classical or proneural GBM TFBS selec-
tions, their respective reporters outperformed all the others (Supple-
mentary Fig. S3b, c).

Overall, by using our validated sLCRs as a benchmark, we set up a
series of computational strategies that can aid in the design of func-
tional reporters and measure the cis-regulatory potential affinity of
synthetic and endogenous reporters to their target phenotype.

LSD incorporates single-cell RNA-seq as signature gene input
Having established the empirical performance of LSD on bulk RNA-seq
and reference genomes, we sought to exploit scRNA-seq data as sig-
nature gene inputs for LSD.

Since glioblastoma subtypes were recently reassessed as distinct
cell states using single-cell RNA-seq19, we next used these meta-

signatures to generate sLCRs from scRNA-seq inputs. As a resource for
glioblastoma-specific TFBS, we resorted to either bulk or scRNA-seq
lists and designed the reporters for the four scRNA-seq glioblastoma
states.

Whereas the mesenchymal glioblastoma subtypes and states are
substantially overlapping, and ssGSEA analysis indicated that MGT1-2
(1st gen) and MGT4 (LSD) are already representative of this state
(Supplementary Fig. S3d and ref. 14), while the relationship between
non-mesenchymal glioblastoma subtypes and states is unclear. Com-
putationally, proneural and classical sLCRs broadly span through two
states, but the AC-like sLCRs clearly represent the classical GBM sub-
type (Supplementary Fig. S3d, e and ref. 14). Hence, the resource
provided herein (SupplementaryDataset S1)maybe helpful in defining
critical cell-intrinsic signaling and cell fate changes upon perturbation,
which may be particularly useful to study the significance of specific
cell states.

LSD integrates 3D contact maps and DNA accessible in
chromatin as custom inputs
Chromatin accessibility is a primary determinant of cell type-specific
cis-regulatory activity, and accessible TFBS are more likely to bind
cognate trans-regulatory factors27,28. The 3D genome organization
guides the spatiotemporal function of enhancers in the mammalian
genome17,18. The increasing availability of cell type-, developmental
state- and disease-specific chromatin structure maps prompted us to
test whether sLCRs may be designed with the aid of such input
datasets.

First, we designed the mesenchymal glioblastoma MGT4 LSD-
sLCRs from four alternative input combinations (Fig. 4a). The nearest-
neighbor CTCF binding sites approach applied to the full extent of the
referencegenome is the standardapproachdescribed above (Fig.4a, I).
MGT4 design iterations were obtained by either restricting the refer-
ence genome to the cancer-specific accessible genome, as defined by
ATAC-seq profiles29 (Fig. 4a, III and IV), or by extending the space for
candidate cis-regulatory domains to tissue-specific TADs30 (Fig. 4a, II
and IV). We used four independent sources of ATAC-seq data,
including mouse regulatory regions31. The signature genes and TFBS
input were identical to those used in MGT4 LSD-sLCR. Therefore, this
analysis generates a set of distinct LSD-sLCR designs potentially tar-
geting the same phenotype.

To compare the sLCRs designed by LSD according to the four
different models (Fig. 4a), we constrained sLCR size to that of the
validated MGT4 reference. We computed the cis-regulatory score
affinity to the MGT4 target phenotype for all the mesenchymal GBM
sLCRs designed with the above input iterations and for all other
available reporters. Phenotypic score ranking shows that applying
interactions to the input DNA changes the in silico specificity of the
reporters (Fig. 4b). Yet, all mesenchymal reporters occupy a distinct

Fig. 2 | LSD allows the design of functional and specific sLCRs. a Multiple
sequence alignment (see Methods) of the 1st generation MGT1 and MGT2 and the
LSD MGT4 reporters. The conserved positional overlap is denoted by the asterisk
and graphically represented by the sequence logo. b FACS analysis of MGT1 (left &
center) and MGT4 (right) sLCRs expression in human glioblastoma-initiating cells
with (lime) or without (gray) TNFa stimulation. Note the similar induction between
lentiviral- and transposon-engineered cells for 1st generation MGT1 sLCR, and
between MGT1 and LSD-designed MGT4. c Correlation plot between patient-
derived glioblastoma cellular state signatures andmodule scores of sLCR signature
genes for pan-GBM data from Ruiz-Moreno et al.24. Purple denotes positive,
whereas orange indicates negative correlation and dot size represents associated
p-value. d Bar-plot quantification of FACS data showing mean MGT4 expression
and CD44/CD24 staining intensity with (gray) or without (black) 48h Tumor
Necrosis-factor alpha (TNFa) treatment (10ng/ml) in IDH-wildtype human glioma-
initiating cell (hGICs). Data are presented as mean+/− standard deviation. Statis-
tical significance values were calculated by two-sided unpaired t-test. Error bars

denote standard deviation (n = 3 biologically independent samples). e Above,
schematic depiction of the systematic screening of sLCRs designed on diverse
phenotypic signatures in three different species (partially assembled using BioR-
ender.com). Lower left, box plot of indicated sLCRs (n = 28) transfected in human
epithelioid 293T (purple), hamster epithelioid CHO-K1 (teal) and mouse fibro-
blastoid NIH3T3 (yellow) cell lines. The X-axis shows fluorescence normalized by
controls and transfection efficiency per cell line. Each sLCR measurement was
assessed in technical replica (n = 3). Left, positive (n = 5) and negative controls
(n = 3) denote CFP, GFP, mCherry and iRFP670 expression driven by non-sLCR
promoters andfluorescencebackground in each channel, respectively. Lower right,
box plot shows relative activity of human sLCR transfected in human (293T;dark
gray) or non-human (CHO-K1, NIH3T3; light gray) cells. Data distribution is shown,
with box indicating the interquartile range and inner line indicating the median.
Whiskers extend to represent the data range, including outliers. Statistics: 2-way
ANOVA, followed by Dunnet post-hoc test. Source data are provided in the Source
Data file.
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space from phenotypically distant sLCRs and background sequences,
and the mesenchymal sLCR designed with the largest input for TFBS
demonstrated a modest performance advantage over validated
reporters using the standard inputs (Fig. 4c).

To complement the cis-regulatory ranking with a statistical
approach that estimates data distributions with limited sampling and
in the absence of major assumptions, we next used a bootstrapping
analysis strategy32. We included all the different MGT4 iterations, non-
mesenchymal sLCRs and phylogeny-distant DNA control regions from
the SARS-CoV-2 viral genome. We conducted iterative random sam-
pling of MGT4 TFBS enrichment at each LSD reporter under testing
(n = 1000) using a fixed TFBS number (25% of the total, 231, with
replacement). At each iteration, the total value of the random TFBS
selection was calculated, thereby creating a distribution of TFBS
enrichments for each LSD reporter. Then, each data distribution was

compared against the others for each LSD reporter (greater = TRUE).
The bootstrapping analysis established a hierarchy of significant
pairwise correlations between distributions, in descending order. The
significance directly correlated with the size of the input reference for
TFBS search (Supplementary Fig. S4b, c). The number of significant
events occurring decreased when the size of the ATAC-seq data was
smaller than the reference genome and improved when the size was
comparable (e.g. MIII; Fig. 4b, c and Supplementary Fig. S4d). In other
words, constraining the TFBS search to a limited ATAC-seq dataset
results in fewer significant interactions than when using the unrest-
ricted reference genome. This can be interpreted as the limited like-
lihood of covering the entire TFBS repertoire in a short sLCR, which
increases the number of CREs required to represent the target cis-
regulatory potential (i.e., the overall size of the sLCR). Consistently,
when LSD was restricted to the GBM ATAC-seq genome and the
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Fig. 3 | Towards defining endogenous and synthetic reporters’ phenotypic
potential via TFBS enrichment ranking. a Scatter plot showing themesenchymal
sLCRs TFBS affinity ratio for on-target, off-target and scrambled sLCRs. The Y-axis
indicates the observed/expected ratio (i.e., MGT1-2 observed/input TFBS). The
X-axis denotes the number of input TF. First-generation and LSD-sLCR are indi-
cated. Scrambled sLCR were designed using LSD and input from random sampling
of TFs from the general pool of annotated human TFs (random TF) or random
selection of genes from the human genome (random Sign-TF). Fitted lines indicate
LOESS regression with 95% confidence interval. b Scatter plot showing the TFBS
affinity ratio as a function of increasing numbers of CREs. Values are calculated for

each functional sLCR assessed experimentally (Fig. 2). Logarithmic regression was
used to fit the curve. The gray dashed line indicates that the CRE ratio is >50% of
TFBSwith R2 = 0.96 and the blue solid linemarksMGT4. c Scatter plot showing the
signature score (x-axis) and affinity score (y-axis; see Methods) of the indicated
reporters for the mesenchymal phenotype. Note the antagonistic phenotypic
scoring of glioblastoma (reds) and neural retina amacrine cell reporters (blues).
d Phenotypic scoring of the same reporters in c for a retina amacrine cell pheno-
type. sLCR synthetic locus control region, LSD logical synthetic cis-regulatory DNA,
TF Transcription Factor, TFBS Transcription Factor binding site, CRE cis-regulatory
element. Source data are provided in the Source Data file.
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nearest-neighbor CTCF boundaries, the optimal sLCR designed by LSD
outcome should be ~16% larger than MGT4. The use of larger cis-reg-
ulatory pools, such as the pan-cancer ATAC-seq or a curated set of
nuclease-accessible genome regions from various ATAC-seq and
DNAseI-seq maps, relieves such a constraint. In fact, the combination
of TADs and the pan-cancer ATAC-seq datasets ranks similarly or
slightly superior to MGT4 cis-regulatory potential, as gauged by both
cis-regulatory score ranking and bootstrapping analyses (Fig. 4b, c and
Supplementary Fig. S4b–d).

In conclusion, if the size of the custom cis-regulatory datasets for
TFBS search is similar to the size of the unrestricted reference genome,
LSD well integrates 3D contact maps and DNA accessible in chromatin
inputs to extend the use of synthetic genetic tracing to the validation
of functional experimental datasets.

LSD enables designing of sLCRs compatible with the size
constraints of AAV vectors
Adenoviral-associated vectors (AAV) are commonly used for delivering
geneticmaterial in vivo11. The applicability of AAV vectors is limited by
the size, strength, and cell-selectivity of transgene expression driven
by RNAPII promoters. Pioneering work in gene therapy identified the
511 bp phosphoglycerate kinase 1 (PGK) and the 232 bp short-version
of the elongation factor-1 alpha (EFS) “housekeeping (HK)” gene

promoters as optimal drivers of gene expression in themouse retina33.
To test whether LSD enables the design of AAV-compatible short,
potent and low-variable sLCRs, we defined a shortlist of HK signature
and transcription factor genes (Fig. 5a, Supplementary Dataset S1 and
Methods). To that end, highly expressed housekeeping signature
genes were identified from Tabula Sapiens34 and Tabula Muris35 data-
bases across human and mouse tissues (Supplementary Fig. S5a). The
list of housekeeping transcription factor (TF) genes was curated by
including previously published HK genes36, since TFs often escape
from capture by shallow scRNA-seq platforms. As input for LSD, we
used four distinct iterations of human or human-mouse conserved
signatures and TF genes to design four housekeeping genes genetic
tracing sLCRs (HKGT1-4). Bona fide CREs were enriched using human
TCGA pan-cancer ATAC-seq29 (HKGT1-2) or mouse scATAC-seq37

(HKGT3-4; Supplementary Dataset S1). From LSD output, the top two
CREs were selected to generate a 300 bp HKGT-short sLCR compar-
able to EFS, and an additional CRE was added to create a 450bp HKGT
comparable in size to mouse and human PGK promoters. All HGKT
were smaller than other well-known promoters such as UBC, CMV and
EF1A (Fig. 5b). Phenotypic ranking based on the HK signatures showed
that the sLCRs designedweredistinct fromwell-establishedpromoters
like EFS, PGK, UBC, CMV, and EF1A (Supplementary Fig. S5b). Next, we
synthesized 8 HKGTs sLCRs, as well as one EFS control, and generated

Fig. 4 | Integrating chromatin accessibility and 3D contact maps as input
for LSD. a Schematic representation of alternative LSD input combination models.
b Scatter plot showing the signature score (x-axis) and affinity score (y-axis; see
Methods) of the indicated reporters for the mesenchymal phenotype. Different
filtering methods are denoted by color codes and dot-size indicates sequence
length in basepairs. Note the improved on-target score for a mesenchymal sLCR
designed by LSD using model II (i.e. MGT5). c Scatter and density plots of

mesenchymal reportersdesigned inb (dark red, light red, orange)with the addition
of non-specific phenotypic reporters (blue, green, gray). Note that the mesenchy-
mal phenotypic space is occupied by most mesenchymal reporters and that the
including of accessibility and 3D contact data marginally increased or decreased
sLCR scoring. sLCR synthetic locus control region, LSD logical synthetic cis-reg-
ulatory DNA, TFBS Transcription Factor binding site, TAD Topologically Associat-
ing Domain. Source data are provided in the Source Data file.
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54 individual stable cell lines, encompassing human blood, brain,
breast and kidney tissues of origin, as well as rodent species (mouse
and hamster). Collectively, all HKGTs showed significantly higher
expression than the background (p < 2.22e−16; Fig. 5c and Supple-
mentary Fig. S5c), confirming the functionality of LSD-designed sLCRs
withoutminimal promoters and extending their use to low-size sLCRs.
Of note, when examining quantitative expression patterns through
hierarchical clustering, HKGT1, HKGT4, and short-HKGT4 (HKGTs)
demonstrated a similar trend to the strong EFS promoter. Among
them, HKGT4 exhibited the highest expression levels, surpassing EFS
in various metrics that indicate reduced variability in cell-to-cell
expression (Fig. 5d, e and Supplementary Dataset S1).

Among the best-performing sLCRs HKGT1, HKGT4 and
HKGT4s, we observed enrichment of SP1-like and Kruppel-like
motifs, and a RBPJ motif was shared between the strong EF1A/EFS
promoters and HKGT4/HKGT4s (Supplementary Fig. S5d). Despite
the limited sample size, these factors have strong biochemical evi-
dence supporting their role as drivers of broad and high-volume
gene expression38,39.

To extend our strategy to tissue-specific sLCRs in silico, we
curated a list of signature and transcription factor genes associated

with the human kidney and ran the LSD pipeline using kidney single-
nuclear-ATAC-seq data40. To control for specificity, we designed two
additional sLCRs with curated inputs for human lung and liver tissues
and enriched for CREs incorporating pan-cancer ATAC-seq data
(Methods). In silico comparisons using ssGSEA, TFBS correlation, and
phenotypic ranking consistently demonstrated the potential of the
designed sLCRs to exhibit tissue-specific expression (Supplementary
Fig. S6).

Together, the data support the ability of LSD to design AAV-
compatible sLCRs for gene therapy.

LSD enables prioritizing cell-state-specific drivers in combina-
tion with genome-wide gain-of-function CRISPR screens
The generation of cell-state-specific reporters enables the discovery of
cell-state regulators by hypothesis-driven approaches and also by
unbiased genetic screens14. To illustrate the experimental opportu-
nities enabled by designing sLCRs to represent multiple cell states, we
performed genome-wide pooled CRISPR activation screens (CRISPRa)
in Isocitrate dehydrogenase wildtype human glioma-initiating cells
(IDH-wildtype-hGICs) with either MGT1, MGT4 or PNGT3 as a readout.
This strategy potentially allows the discovery of genes whose
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origin (n = 6), genetically engineered with each of the nine constructs. Statistical
significance values were calculated by two-sided unpaired t-test. d Heatmap of the
normalizedmCherry fluorescence intensities of EFS or HK sLCRs transduced stably
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Source data are provided in the Source Data file.
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transcriptional amplification leads to a mesenchymal or proneural cell
fate commitment.

A CRISPRa library targeting 18,915 human genes via 104,540 on-
target and 1895 control sgRNAs (~5 sgRNAs/gene)41 enabled us to carry
out a genome-scale gain-of-function phenotypic screen. The presence
of a fluorescent marker in each vector directly supports that the con-
ditions of transduction respected the one guide per cell rule (multi-
plicity of infection [MOI] <0.5), while maintaining a minimal library
representation throughout the cell culture experiment (i.e. ~200x).We
FACS isolated the cells with the highest and lowest expression of the
reporter for each GBM subtype sLCR after seven passages and fifteen
days of gene activation through specific sgRNAs, a time frame
designed to permit transcriptional activation and cellular reprogram-
ming (Fig. 6a).

At the experimental endpoint, there was a substantial equili-
briumbetween guide-bearing andnon-infected cells and the reporter
expression appeared independent of the library (Supplementary Fig.
S7a). This suggests that the library overexpression might have
introduced mild non-autonomous cell fate changes, but – more
importantly – it excluded bleed-through technical artefacts that may
complicate the FACS sorting of phenotypically different cells based
on fluorescence. Next, we subjected the candidate outliers to FACS
sorting, genomic DNA extraction, PCR amplification and sequencing
of the sgRNA library, similar to our recent sLCR-driven phenotypic
loss-of-function screens14,42. Sequencing of the plasmid library con-
firmed that the qualitative representation was maintained. Quanti-
tatively, each condition clustered independently, indicating that
sorting subsets of cells by reporter expression introduced a selective
segregation of the sgRNAs (Supplementary Fig. S7b, c). When com-
paring all cell-based conditions to the library, only a limited subset of
sgRNA targets scored as significantly differentially abundant (Sup-
plementary Dataset S2). There was a notable enrichment of cell cycle
promoters in cells, including CyclinD1 andCyclinD3 (Supplementary
Fig. S7d), indicating that active sgRNAs in the library can functionally
amplify biological programs (Supplementary Fig. S7e).

Unbiased analysis of the dataset using robust rank aggregation
andenrichment over the reporter-low fractionuncoveredgeneswhose
potential amplification by multiple sgRNAs could drive reporter-
specific upregulation (Fig. 6b and Supplementary Dataset S2). Strik-
ingly, we found RELA among the MGT4 screen top hits (Fig. 6b and
Supplementary Dataset S2): RELA is one of the NF-kB transcription
factors that we previously identified as an MGT1 regulator under
homeostatic conditions in glioblastoma-initiating cells in both focused
loss-of-function experiments and genome-scale CRISPR KO screens14.
Since we previously showed that MGT1 is inducible via multiple sig-
naling pathways under in vitro settings14, we next focused our analysis
on common MGT1 and MGT4 candidate hits as a means to globally
illustrate the discovery power of the combined LSD-CRISRPa
approach. Ingenuity Pathway Analysis (IPA) revealed that the mTOR
(padj = 1.45e−7), BEX (padj = 3.39e−6), WNT (padj = 2.45e−4) and EMT
canonical (padj = 6.17e−6) pathways connected genes defined by two
sgRNAs with significant positive enrichment in both MGT1 and
MGT4 screens (median log2 Fold Change >0). In particular, the EMT
pathway gene set was significantly more enriched in MGT1 (p = 1.7e−5)
and MGT4 screens (p = 6.3e−5) when compared to PNGT3 (Fig. 6c).
This suggests that reporter-expressing cells correctly captured the
gain-of-function activity imparted byCRISPRa sgRNAs, which are likely
candidates for a PMT.

To overcome the limitations imposed by each experimental
platform, we reasoned that genuine phenotypic drivers could be
enriched as MGT1-4 and PNGT3 sLCR drivers, which converge on
differential expression in glioblastoma biopsies (TCGA GBM, Ver-
haak et al.21) or pathway activation (Garofano et al.23) and glio-
blastoma stem cell state-specific dependencies identified by
systematic CRISPR genome-wide KO screens22 (Fig. 6a, d–e). This

approach prioritized candidate drivers of a proneural-to-
mesenchymal transition (PN-to-MES), including the extensively
validated pro-mesenchymal drivers WWTR121 and FOSL131, also
conserved in the proliferative-to-glycolytic (PPR-to-GPM) axis
(Fig. 6d, e). Indeed, constraining the analysis to the GBM-subtype-
specific dependencies leads to a 156.32 and 171.95 fold enrichment
over expectations for overlap with MGT1 and MGT4, respectively
(p = 1.36e−16 and 5.39e−17, respectively; Supplementary Fig. S7f).
Ranking of the top 500 hits by fold changes maintained a significant
overlap between MGT1 and MGT4, albeit far less enriched (7.8%,
p = 1.77e−09). Together, these analyses indicate that convergent
hits from these orthogonal experiments effectively restrain the
background contributed by the use of different disease models and
technical limitations associated with either experimental approach
(see Discussion). Importantly, both screens featured the eight
shared novel candidate drivers of PMT (Fig. 6e–g and Supplemen-
tary Fig. S7f), and each reporter identified specific candidates,
including WWTR121 by MGT1, and FOSL131 by MGT4. Both WWTR1
and FOSL1 are well-established mesenchymal-GBM transcription
factors and could have been prioritized based on the intersection of
the Verhaak or Garofano and Richards datasets and prior knowl-
edge. Instead, the other hits share features that make them likely
but non-obvious novel candidates for a cell-intrinsic PMT driver
function. Overall, among the eight shared hits featured by our
orthogonal analysis as drivers of a mesenchymal program activa-
tion, 37.5% (3 out of 8; KLF5, MED7, ZFP36L1) point to transcription,
and 62.5% (5 out of 8; PGK1, RAC1, COBP2, ZNHIT2, SPTLC2) point to
regulation of metabolism as a feature of themesenchymal program.

The intersection of the Verhaak and Richards datasets alone
appears to be insufficient to define bona fide proneural regulators
beyond obvious ones such as OLIG2 and ASCL1 (Fig. 6d). Importantly,
the orthogonal combination of all three approaches defines a subset of
38 hits. Globally, by Ingenuity Pathway Analysis, the PNGT3-high hits
featured the activation of the EIF2 pathway (p = 5.64e−09) microRNA
biogenesis (p = 7.93e−08) and Huntington’s disease signaling
(p = 5.73e−07) pathways, and the MYC transcriptional program acti-
vation (p = 5.3e−15). The high proneural identity displayed by our
in vitro models might limit the discovery power of the PNGT3 screen
and suggests that mesenchymal GSCs or signaling may provide better
ground for screening proneural amplifiers. However, the identification
of the adhesion G protein-coupled receptor B1 (ADGBR1), also known
as brain-specific angiogenesis inhibitor 1 (BAI1), is consistent with a
role in proneural differentiation. Indeed, BAI1 is a synaptic receptor
whose overexpression limits neo-vascularization and xenograft
formation43 and correlates with APLRN-driven invasive potential in
proneural glioblastoma cells44.

To validate our screen, we employed four non-overlapping
sgRNAs45, which offer robust and superior gene activation compared
to the single sgRNAs used in the genome-wide screen. As candidate
PMT drivers, we focused on RELA and RAC1, featuring unbiased and
orthogonal hits, respectively, as well as FOSL1, which features both a
hit and a control. Over a period of 14 days comparable to the genome-
wide screen, all hits markedly promoted MGT4 expression (Supple-
mentary Fig. S7g). RELA and FOSL1markedly inducedMGT4 already at
an early timepoint, whereas RAC1 did not (Supplementary Fig. S7g),
suggesting that temporal control of gene activation may be critical to
defining different classes of drivers. FAC-sorting and RNA-seq of
reporter-high-expressing cells revealed that RELA, FOSL1 and RAC1
were specifically and robustly induced by their respective sgRNAs and
were all co-regulated along with the expected GBM gene sets (Sup-
plementary Fig. S7h, i). A PPR-to-GPM/MES2 transition was evident in
our cellular model, thereby establishing a direct connection between
CRISPR activation of candidate drivers, MGT4 expression and a cell
identity change at endogenous gene expression level (Supplementary
Fig. S7h, i).
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Together, the experimental combination of LSD-designed
sLCRs, CRISPR screens and patients’ molecular maps uncovered
the bona fide regulators of cell states that connect the tumor gen-
otype to its molecular phenotype. This showcases the utility of LSD
as a generally applicable framework to study cell identities and cell
state changes.

Discussion
Here, we present LSD as a framework to streamline the tracing of cell
identities and state changes for complex phenotypes through syn-
thetic genetics. LSD scans the reference genome for candidate cis-
regulatoryDNAusing one list of biomarkers and one list of TFs defined
as active in the cell type or state of interest. Using previously validated

MGT#1-dsGFP;CMV-mCherry
MGT#4-dsGFP;CMV-mCherry
PNGT#3-dsGFP;CMV-mCherry

FACS
sorting

genome-wide
CRISPRa libraryIdentity reporters

a
mU6-gRNAs;EF1a-puro-T2A-BFP

18,915 genes/104,540 gRNAs/ 1895 controls

15 days/
7 passages

low identity
reporter

Fluorescence intensity

Ce
ll 

nu
m

be
r

hGICs CRISPRa
screens

high identity
reporter

FACS
sorting

gRNA
sequencing

hGBM TCGA
expression

hGSCs
CRISPRo screensb

Canonical Pathway: Regulation of the
Epithelial−Mesenchymal Transition 

MGT#1-high MGT#4-high PNGT#3-high

d

MGT#1-ranked 

MGT#4-ranked 
mesenchymal GBM dependencies

MGT#4-ranked glycolytic/plurimetabolic 
GBM dependencies

MGT#1-ranked glycolytic/plurimetabolic 

PNGT#3-ranked 
proneural GBM dependencies

PNGT#3-ranked proliferative/progenitor
 GBM dependencies

e

f g

G
SC

 d
ep

en
de

nc
y 

(In
ju

ry
−D

ev
el

op
m

en
ta

l)

G
SC

 d
ep

en
de

nc
y 

10

5

0

−5

−10
20100−10−20

10

5

0

−5

−10

10

5

0

−5

−10
20100−10−20

20100−10−20

20100−10−20

TCGA GBM expression (MES−PN) 

G
SC

 d
ep

en
de

nc
y 

(In
ju

ry
−D

ev
el

op
m

en
ta

l)

ID
H

−w
t−

hG
IC

 e
xp

re
ss

io
n 

(C
PM

)

0
4
8
12
16

ITGB1

WWTR1

ILK

HSPA5

ALDOA ETF1
FOSL1

HDLBPPGK1

TRAPPC3EIF2S3

CAPZB
AHNAK

RAC1

SLC31A1

OLIG2

ASCL1
NKX2−2

DGKI

SOX2

MNX1

MAPT BAI1
NFIB

ZEB2

DET1
TCF4

SUZ12

GINS3

HDAC2

10

5

0

−5

20100−10−20

ITGB1
FOSL1 WWTR1ILK

AHNAK

ALDOA

HSPA5

HDLBP

SPTLC2 GRB2
CAPZB

TRAPPC3

ETF1
NEDD9

PELO

OLIG2

ASCL1

SEPHS1

DGKI

VPS72

HDAC2

GINS3

SOX2

NFIB
BAI1

SOX5 MAPT

TCF4
NKX2−2

PLK4

10

5

0

−5

−10

20100−10−20

TCGA GBM expression (GPM−PPR) 

G
SC

 d
ep

en
de

nc
y 

(In
ju

ry
−D

ev
el

op
m

en
ta

l)

mesenchymal GBM dependencies GBM dependencies

(In
ju

ry
−D

ev
el

op
m

en
ta

l)

−10

20100−10−20

10

5

0

−5

−10

10

5

0

−5

−10
20100−10−20

10

5

0

−5

−10

ILK
WWTR1
AHNAK
PNKP
KLF5

SPTLC2
MRPL35
ZFP36L1
ALDOA
ZNHIT2

HDLBP
PGK1
RARS
ELK1

COPS2

WDR4
RAC1
TTC1

MED7
CDK7

ALDOA

WWTR1
SPTLC2
AHNAK

NT5DC3

HDLBP

ILK
SCAP

GAPDH

ENO1

ZFP36L1

AARS
COPB2
EIF4A1

DOHH

PGK1
PNKP
PES1

NUP214
VCP

FOSL1
KLF5

HSPA5
ZFP36L1
SPTLC2

CAPZB
EIF2S3

SLC31A1
SRF

ZNHIT2

PGK1
RAC1

COL4A3BP
COPB2

PYROXD1

SEC61G
MED7

TMED10
CARS

PGGT1B

FOSL1

SPTLC2

HSPA5

CAPZB

SRF

EIF2S3

COPB2

COL4A3BP

GAPDH
EIF4A1

ZFP36L1

NUP214

PES1

BMS1
KLF5

PGK1

RAC1

NOL8

SUPT5H

NOL6

HDAC2

SUZ12
BAI1

MNX1
MARCKS

FBXO11

RAF1
PRDX2
EHMT2
USP21

TMCC2
HSPA14
PAQR4
MBTD1
RAD54L

NPAS3

KLHL7
PPOX

NUP188
UBE2S

HSPA14

HDAC2
KLHL7

RAD54L
LIAS

SUZ12

PRDX2
SDHB

KIAA0907
NPAS3

BAI1

ASPM
THAP7
PPOX

FBXO11

USP21

FANCF
PDSS2

MARCKS
UQCRQ

Median sgRNA log2FC (Rho < 0.5)
0.5 1.0 2.0 4.0 5.0

Median sgRNA log2FC (Rho < 0.5)
0.5 1.0 2.0 4.0 5.0TCGA GBM expression (MES−PN) TCGA GBM expression (GPM−PPR) 

c

p = 0.94
p = 1.7e−05

p = 6.3e−05

−2.5

0.0

2.5

5.0

7.5

sg
RN

A
 re

pr
es

en
ta

tio
n

 (l
og

2 
no

rm
al

iz
ed

 re
ad

s)

−log10(Rho enrich)

4.5

3.5

2.5

MGT#1-high vs MGT#1-low

MGT#4-high vs MGT#4-low

PNGT#3-high vs PNGT#3-low

Comparison

0
1

2
4

0
1

2

4

0
1
2

4 A
RF

G
A

P3
D

TX
2

AR
RB

1
F2

R
PO

LR
3E

UQ
CR

B
RN

F1
3

IK
ZF4

W
NT5A

ST5
PCDH7

MON1B

PTCH1
ADD3

TNRC6B

EIF3A
UBAP2

SIPA1L1PP
RAD54L
ECHDC1

DEPDC1
CDH4GPR3

SYPRELAZM
YM

6

LIFR
TARBP1
TTKBTBD

4

FG
FR1

A
D

CK2
SLC27A

3

FB
XO

7
DY

RK
4

DD
FA

M
10

5AAA
FF

IT
M

2CCC

GP
R1

61

RC
OR1GCC1

CSRP2

RBM333ARFIP2PIP4K2CC17orf5999NUDT333
NAPGG
CTSK

SLC36A1
TGIF22

MRPL188

AURKB

UBE3C

BHLHB9

PSMC44

ARF1
RANBP2

RRAGA
ZCCHC6

M
RPL11

CCT33

eGBM state-expression-dependency plot 
(Verhaak et al., x Richards et al.)

GBM state-expression-dependency plot 
(Garofano et al., x Richards et al.)

Article https://doi.org/10.1038/s41467-024-45069-6

Nature Communications |          (2024) 15:897 11



GBM sLCRs14 as a benchmark, it is shown that the LSD primary output
outperforms previous designs in silico and is functional and specific in
head-to-head experimental validation, including a genome-wide
CRISPRa screen. Whereas the utility of LSD is straightforward in the
largest set of cases for which surface markers for cellular phenotypes
are not available, our data suggest that LSD may also be preferable to
using CD24 and CD44 as canonical markers for epithelial and
mesenchymal states, or in combination. The seamless generation of
genetic tracing reporters for distinct cellular phenotypes by LSD
represents a resource for future experimental validation (Supple-
mentary Dataset S1). Our modeling approach on validated mesench-
ymal GBM sLCR shows that both high levels of target TFBS (Qscore)
and enrichment of TFBS at signature genes (SignScore) are higher in
mesenchymal LSD reporters than in those specific to different
phenotypes or previous selection. This underscores the importance
of curated TFBS inputs to advance specificity of the reporters,
which will likely benefit from the recent development of CUT&RUN/
TAG for TF footprinting46 and tools for TFBS prediction and gene
regulatory network inference47,48. Broadly, despite LSD’s ability to
generate a selection of CREs that outperforms random selections, a
better understanding of sequence-specific gene regulation and
high-quality input are likely critical for effective learning and
ranking by LSD. Hence, iterative refinement that combines LSD
upstream computational design tools49 and downstream massively
parallel testing8,12 holds the potential to improve synthetic reporter
design even further.

The advent of high-throughput chromatin accessibility profil-
ing enabled mapping gene regulatory landscapes in healthy and
diseased cell states but outpaced the development of experimental
methods to directly test hypotheses generated from these data.
Moreover, bona fide cell states identified by single-cell data ex vivo
require in vivo validation, as artefactual signatures may be
confounding50. Previous methods successfully leveraged cis-reg-
ulatory DNA and expression datasets to deploy cell-type-specific
enhancers and enable genetic tracing and perturbation of gene
function across mammalian cell types9,11. Endogenous or minimal
viral promoters were key to generating functional and specific
synthetic promoters in past approaches11,25. Similar to our previous
design of sLCRs14, LSD generates functional reporters without
minimal promoters, which is a key advantage to increasing pheno-
type specificity. Moreover, we developed a ranking system to assess
the on-target potential of genetic reporters. With this combination,
we designed the second generation of glioblastoma sLCRs, as well
as other sLCRs targeting a diverse set of molecular phenotypes. To
showcase the versatility of LSD in addressing synthetic biology
challenges, we employed it to design short functional synthetic
promoters, eliminating the need for non-specific minimal pro-
moters, a common issue in AAV vector-based gene therapy. In
parallel work, we merged LSD and phenotypic ranking strategies to
swiftly generate functional reporters for epithelial response to
SARS-CoV-2 during the COVID-19 pandemic. These reporters faith-
fully replicated pathophysiologically relevant cell states observed

in patients’ samples, providing a robust platform for high-
throughput screening of potential therapeutics and their mechan-
isms of action51.

The incorporation of custom inputs, such as chromatin accessi-
bility and 3D contact maps, offers novel applications for LSD. These
range from validation of atlases of cell identities to gene therapy.
However, systematic, large-scale and in vivo testing is necessary to
fully explore these possibilities. In this study, we addressed a specific
aspect of AAV design: the size limitation of promoters for robustly
expressing large cargoes. AAV-based clinical trials, especially in retinal
diseases, highlight the timely relevance of this approach. We applied
LSD to successfully design and validate eight HK sLCRs in stable cell
lines from human and rodent tissues. The process involved utilizing
input lists of highly expressed housekeeping signature and TF genes,
along with chromatin accessibility data. Notably, HKGT4, designed
based on a conserved human-mouse signature, exhibited high
expression levels and reduced cell-to-cell variability compared to the
EFS promoter. These results emphasize LSD’s potential to broaden
AAV-compatible sLCRs for gene therapy. However, achieving optimal
transgene expression and cell-type specificity remains a key challenge
in vector design, requiring precise delivery to target cells while
avoiding unintended effects in non-target tissues. The use of HK pro-
moters is sufficient in cases where targeted delivery is attainable, while
in all other cases, tissue-specific cis-regulatory elements will be
necessary, tissue-specific cis-regulatory elements will be necessary.We
demonstrated that designing tissue-specific sLCRs provides specificity
in silico, but in vivo translation will necessitate specific tissue focus,
deep gene expression, and chromatin accessibility datasets, alongwith
attention to in vivo delivery. LSD’s systematic success in designing
functional promoters suggests its potential as a blueprint for devel-
oping tissue-specific promoters, further enhanced by cell-type-
specific TFBS, which has proven effective in focusing on specific
transcriptional programs52–55 and may be now automated using deep
learning56,57.

We previously showed that sLCRs connect changes in the
mesenchymal state of glioblastoma or lung cancer cells to the loss of
function caused by CRISPRout or CRISPRi in pooled screens14,42. Here,
we expanded theuse of sLCRs inphenotypic pooled screens to gain-of-
function by using CRISPRa. Unlike the proneural sLCR, the mesench-
ymal sLCRs promoted the representation of gRNAs targeting EMT
genes among dCas9-VPR and gRNA-bearing cells. In combination with
patients’ gene expression profiles21 and functional screens in patient-
derived cells22, genome-scale CRISPR activation in sLCR-containing
cells pointed to novel candidate drivers of individual glioblastoma
transcriptional phenotypes, including genes not previously described
as drivers. This illustrates the utility of combining descriptive and
functional information to prioritize candidate targets and biomarkers
for validation. Of note, this approach may be particularly helpful in
understanding themolecular foundationof glioblastomasubtypes and
states whose significance is still unclear. In linewith the reclassification
of glioblastoma states by pathway activation23, our analysis uncovered
several metabolic regulators. Albeit we cannot exclude that metabolic

Fig. 6 | Convergence of LSD, genome-wide CRISPR activation and patients'
datasets towards the discovery of cell-state-specific drivers. a Schematic
representation of the genome-scale CRISPR activation (CRISPRa) screens (partially
assembled using BioRender.com). b Circular barplot depiction of the top single-
guide RNAs (sgRNA) targets with a positive enrichment (median sgRNAs log2-fold-
change (log2FC) >0.5, Rho Enrichment score <0.05 and gene expression in target
cells CPM >5) in the indicated high-reporter expressing cells compared to the
respective controls (color legend, n = 3 technical replica). Median sgRNA log2FC
and Rho enrichment scores are represented by bars and dot size, respectively. c)
Violin plot of the read-count distribution of sgRNA targets defined as connected to
EMT terms by Ingenuity Pathway Analysis (n = 70). Data distribution is shown, with
box indicating the interquartile range and inner line indicating the median.

Whiskers extend to represent the data range, including outliers. P-values denote
the significance of statistical comparisons by two-sided pairwise t-test. Scatter plot
depicting The Cancer Genome Atlas (TCGA) GBM subtype-specific expression
according to Verhaak et al.21 (d) or Garofano et al.23 (e) classifications (X-axis) and
GBM stem cells dependencies (Y-axis). Dot size represents gene expression values
in naive IDH-wildtype hGICs. f, g Convergence of the indicated LSD-CRISPRa-
screens data onto theGBM-state-expression dependencies plots ind and e. Dot size
represents themedian log2FC of the respective sgRNA targets. Note that top right/
bottom left data highlight candidate GBM subtype-specific dependencies, with the
top context-specific factors listed in the magnification. LSD logical synthetic
cis-regulatory DNA, hGICs human glioma-initiating cells, EMT Epithelial-
Mesenchymal-Transition. Source data are provided in the Source Data file.
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regulators may be promoted owing to fitness advantage rather than a
bona fide pro-glycolytic and pro-mesenchymal role, the partial con-
vergence of the distinct mesenchymal and glycolytic GBM was pre-
viously noted by Garofano et al.23. For example, PGK1 is a well-
establishedHIF1a-regulated gene, and its upregulation ismore obvious
in differentiated glioma cells under hypoxia as compared with mat-
ched GSCs58, which is consistent with both a pro-fitness and pro-gly-
colytic/mesenchymal activity. Likewise, the zinc-finger protein
ZNHIT2, albeit poorly characterized, is involved in both the spliceo-
some machinery and potentially connected to mTOR-regulated
response to energy- and nutrient-sensing stress59. Collectively,
gRNAs enriched in the screenwere particularly enriched for themTOR
pathway, connecting individual drivers to globalmetabolic adaptation
and PMT. Notably, the identification of known mesenchymal GBM
drivers such asWWTR160 andFOSL131 byMGT1 andMGT4, respectively,
denotes the specificity of the sLCRs and suggests that RAC1 could act
as a driver of PMT, albeit with lower potency or cooperatively. Con-
sistently, RAC1 was previously connected tomTOR-dependent growth
control and STAT3 signaling in NF1-deficient cells61, the main genetic
driver of mesenchymal GBM21. Future improvements should encom-
pass more sophisticated culture conditions for GBM cells in vitro that
take into account heterogeneous identities and reflect specific sig-
naling and metabolic requirements. The constant development of
powerful dCas9 effectors and arrayed gRNA libraries is likely to
improve the discovery power of genome-wide phenotypic screens45.
Arrayed screens are also anticipated to reduce the influence of non-
autonomous phenotypic changes in pooled screens, which are
responsible for neutral gRNA background recovery in multicellular 3D
models like the one shown here.

Applying Boolean logic gate strategies62, including regulators of
mRNA translation and stability as well as protein homeostasis regula-
tion, will further enhance accuracy and specificity of complex pheno-
types’ synthetic genetic tracing.

In conclusion, we expect LSD to provide a simple and scalable
approach to performing genetic tracing in complex multifactorial
settings, enable validation experiments of omics approaches on equal
complexity terms, as well as to study fundamental questions under-
lying transcriptional regulation.

Methods
Datasets
TCGA data were from dbGaP database of Genotypes and Phenotypes
(dbGaP) accession phs000178. The TCGA-GBM gene sets are obtained
from Verhaak et al.21 and Garofano et al.23 and the GSCs dependencies
are from the supplementary material in Richards et al.22. Pan-GBM
single-cell data from Ruiz-Moreno et al.24 was downloaded from
Zenodo (DOI: 10.5281/zenodo.6962901). CRISPRa screen data gener-
ated in this study are attached in Supplementary Dataset S2. Tabula
Muris database was accessed through https://tabula-muris.ds.
czbiohub.org/ and data was downloaded from Figshare. Tabula
Sapiens database was accessed through https://tabula-sapiens-portal.
ds.czbiohub.org/ and data was downloaded from figshare. Gene sets
for Gene Set Enrichment analysis and for pre-filtering of sLCR input
were downloaded from Molecular Signatures Database (MSigDB,
https://www.gsea-msigdb.org/gsea/msigdb). To define tissue-specific
TF genes, we utilized data from the Protein Atlas (www.
proteinatlas.org).

LSD algorithm
The LSD algorithm takes a list of position weight matrices (PWMs)
along with the corresponding cognate TF-genes, a list of marker genes
of a target phenotype, and the reference genome of the organism of
interest, and it generates a list of naturally occurring, putative cis-
regulatory elements, that are then used to assemble the synthetic
reporter for the target phenotype. The algorithm can be divided into

three steps. In step I, LSD generates a pool of potential CREs with a
fixed length within user-defined regulatory landscapes (default is a
150 bp window sliding with a 50bp step). In step II, LSD assigns TF-
binding sites to the CRE pool using FIMO (default -output-pthresh 1e-4
-no-qvalue), and creates a matrix of putative CREs x TFBS. In step III,
LSD ranks and selects the minimal number of CREs representing the
complete set of TFBS. For that purpose, it iteratively sorts and selects
thebestCREbasedon theoverall TFBS affinity anddiversity among the
input TFs showing high affinity for the CRE. Starting from the ranked
CREs, LSD selects the highest-ranking CRE defined by the sum of the
affinity score (-log10(p-value)) and TFBS diversity (number of distinct
TFs represented in the predicted TFBS). Subsequently, it removes the
selected CRE and the corresponding TFBS from the CRE x TFBSmatrix
and repeats the selection. This continues until either none of the CRE
or of the TFBS is left. In the ranking, priority is given to CREs proximal
to known TSS to increase the chances of successful transcriptional
firing using the same strategy as above. TSS were defined based on
FANTOM CAGE peak BED files (RRID:SCR_002678; Human: http://
fantom.gsc.riken.jp/5/ datafiles/phase1.3/extra/TSS_classifier/TSS_hu-
man.bed.gz and TSS-containing CREs were defined based on overlap
with genome-wide pooled CRISPRi libraries63. Finally, LSD returns
an ordered list of the selected CREs, together with a representation
of the TFBS scores (Fig. 1a). The framework to run the LSD algorithm
is available at: https://gitlab.com/gargiulo_lab/sLCR_selection_
framework.

sLCR design by LSD
Reporters designed using the LSD method are indicated in Sup-
plementary Dataset S1. First-generation GBM-sLCRs14 were designed
by manual integration of a selection of top-ranked CRE. LSD GBM-
sLCRs (Fig. 1) used as input the first generation sLCR gene sig-
natures and a selection of subtype-specific TFs (high-expressed TF
genes, >quantile 75%; https://meme-suite.org/meme/) obtained
from TCGA-GBM patients’ RNA-seq expression profiles (RPKM-UQ,
TCGA, phs000178.v3.p3). Random Sign/TF sLCRs were generated
by integrating different sizes of randomly selected human genes
(three different samplings of 10, 20, 50 and 100 different genes) and
TF genes (four samplings of 1 to 301 different TF). Random TF only
used MGT1-4 signature genes to generate the CRE pool. AC-like
state LSD-sLCRs were generated using Neftel et al. AC-like
signatures19 and CLGT1-2-3 TFBS. Retinal LSD reporters were gen-
erated using retina-specific cell-population marker genes
(GSE81905) TF genes determined at different thresholds (>quantile
60–88%). hg19 (GBM) and mm10 (retina) assemblies were used to
extract genomic positions.Reporters designed using the LSD
method are indicated in Supplementary Dataset S1. First-generation
GBM-sLCRs14 were designed by manual integration of a selection of
top-ranked CRE. LSD GBM-sLCRs (Fig. 1) used as input the first
generation sLCR gene signatures and a selection of subtype-specific
TFs (high-expressed TF genes, >quantile 75%; https://meme-suite.
org/meme/) obtained from TCGA-GBM patients’ RNA-seq expres-
sion profiles (RPKM-UQ, TCGA, phs000178.v3.p3). Random Sign/TF
sLCRs were generated by integrating different sizes of randomly
selected human genes (three different samplings of 10, 20, 50 and
100 different genes) and TF genes (four samplings of 1 to 301 dif-
ferent TF). Random TF only used MGT1-4 signature genes to gen-
erate the CRE pool. AC-like state LSD-sLCRs were generated using
Neftel et al. AC-like signatures19 and CLGT1-2-3 TFBS. Retinal LSD
reporters were generated using retina-specific cell-population
marker genes (GSE81905) TF genes determined at different
thresholds (>quantile 60–88%). hg19 (GBM) and mm10 (retina)
assemblies were used to extract genomic positions.

Multiple sequence alignments were conductedwith four different
tools (MUSCLE, Clustal Omega, T-Coffee and MAFFT in SnapGene)
with similar outcomes. MUSCLE output is reported in Fig. 2a.

Article https://doi.org/10.1038/s41467-024-45069-6

Nature Communications |          (2024) 15:897 13

https://tabula-muris.ds.czbiohub.org/
https://tabula-muris.ds.czbiohub.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
https://tabula-sapiens-portal.ds.czbiohub.org/
https://www.gsea-msigdb.org/gsea/msigdb
http://www.proteinatlas.org
http://www.proteinatlas.org
http://fantom.gsc.riken.jp/5/
http://fantom.gsc.riken.jp/5/
https://gitlab.com/gargiulo_lab/sLCR_selection_framework
https://gitlab.com/gargiulo_lab/sLCR_selection_framework
https://meme-suite.org/meme/
https://meme-suite.org/meme/
https://meme-suite.org/meme/


Housekeeping-like sLCR design by LSD
To identify housekeeping genes (HKG), we utilized two datasets:
Tabula Sapiens34 and Tabula Muris35. First, for Tabula Sapiens, we fil-
tered out genes and cells with low counts (<q25%) and (<q5%),
respectively, to eliminate potential outliers and select HKG candidates.
We then retained only genes expressed in at least 75% of the cells,
resulting in a list of 392 HKG gene candidates. We further refined this
list by removing genes below the >25% total counts filter, as well as
mitochondrial and ribosomal genes. This refinement yielded 206
robust HKG candidates in Tabula Sapiens. For Tabula Muris, we fol-
lowed a similar approach, filtering low-count genes and cells. In total,
we identified 123 HKG candidates. To rank the genes based on cellular
expression, we selected the top 30 HKG from each dataset to define
the final list.

Next, to identify potential HKG transcription factors (TFs) within
the context of Tabula Sapiens and Tabula Muris datasets, we corre-
lated the TFs expressed in the above lists with those from various TF
databases, including our compiled TF selection. This analysis led to the
identification of 9 TFs in Tabula Sapiens and 4 TFs in Tabula Muris. To
enhance the potential of the reporters, we included CTCF, RAD21, and
YY1 as potential structural elements contributing to expression stabi-
lization. To assess TF binding potential, we examined TF binding on
the sequences of strong promoters such as EFS, EF1A, UBC, hPGK, and
mPGK. This analysis identified 381 TF motifs with varying degrees of
interaction. We further evaluated the overlap of TF datasets, enriched
TFs on strong promoters, and compared them with Joshi et al.,
HOUNKPE_HOUSEKEEPING_GENES.v2022.1.Hs.gmt databases, and our
own selection. In order to increase the number of reporters, we also
employed a general selection of all reporters shared and present in the
EFS. Overall, we obtained a non-redundant set comprising 29 core TFs
and 84 general TFs for further analysis in the generation of the
reporters.

On the final HK signature and TFs lists (Supplementary Dataset
S1), we employed LSD to generate the reporters. We chose the top 2
cis-regulatory elements (CREs) to generate HKGT1s-4s and added one
extra CRE for HKGT1-4, each consisting of 300 base pairs, which clo-
sely resembled the strong promoters. In the process of generating
these reporters, we selected only CREs that were present in the pan-
cancer TCGA ATAC-seq data for human and scATAC-seq data for
mouse. This approach ensured that the reporters captured the desired
characteristics and were derived from active genomic regions.

Tissue-specific sLCR design by LSD
To generate a signature selection of tissue-specific LSD-sLCR, we
implemented a filtering process on the cell populations of the kid-
ney, liver, and lung using the Tabula Sapiens dataset. Our approach
involved evaluating markers across tissues based on the following
criteria: p_val_adj <0.05, avg_log2FC>1, and pct.2>0.1. Subsequently,
we identified tissue-specific populations that were annotated for
each tissue in the protein Atlas expression data. Additionally, we
conductedmanual curation specifically for the kidney list, aiming to
identify representative kidney signature genes. This curation pro-
cess resulted in a total of 25 signature genes for the kidney, 117 for
the liver, and 10 for the lung. Next, we proceeded to identify tissue-
specific TF (transcription factor) genes by cross-referencing the list
of signature genes with our comprehensive TF database. To define
tissue-specific TF genes, we utilized information from the Protein
Atlas (www.proteinatlas.org), incorporating both criteria. For the
kidney dataset, we also employed chromVar64 results from the
publication found at https://www.nature.com/articles/s41467-021-
22368-w#Sec34 (The dataset can be obtained from this reference’s
Supplementary Data 3), in conjunction with the aforementioned
filters. This additional analysis yielded an enhanced kidney list
comprising 40 TF genes, 16 TF genes for the liver, and 15 TF genes
for the lung. Finally, we employed the LSD-sLCR pipeline to

generate the reporters, which we subsequently validated using the
aforementioned method.

Phenotypic potential inference by on-target TFBS scoring
The inference of the specific phenotypic potential of each LSD-
reporter was defined as the linear correlation between the Qscore
(affinity-score) and the SignScore (phenotypic-score). The affinity-
score (QScore) was calculated for each reporter as the sum of the
TFBS-affinity using FIMO (default -output-pthresh 1e-4 -no-qvalue)
given a specific set of TFBS (e.g., MGT1-2 TFBS) and normalized by the
sLCR sequence length and the ratio of observed/expected TFBS (∑
(FIMO-score)/sequences length) * (observed/expected TFBS))). In
contrast, the phenotypic score (SignScore) was defined as the ssGSEA-
enrichment value calculated on target expression profiles (ssgsea.-
norm= FALSE) using the signature genes, and normalized by the ratio
of observed/expected TFBS (ssGSEA-score * (ratio observed/expected
TFBS)). Scatter plots were generated using ggplot2 on an R v.3.6
environment.

Evaluation of the CRE selection
To model the number of CRE required to account for 50% of the total
TFBS potential, we used experimentally validated LSD vectors and
fitted a lasso regression model. To begin, we generate a list of all the
top-CRE sequences for each LSD-sLCR generated. Then, we used FIMO
(default —output-pthresh 1e-4 —no-qvalue) to map their correspond-
ing TFBS to each sequence and calculated the ratio of observed/
expected TFBS for each top-CRE selection. Finally, we use the lasso
function to fit the top-CRE and TFBS ratios. The lasso function was
used for the fitting and the ggplot2 package to generate plots (R v.3.6).

Comparison of LSD reporters
The analysis of differences between GBM-subtypes enrichment scores
was generated by comparison of ssGSEA values (GSVA v.1.32, ssgsea.-
norm = TRUE, and default parameters) for each synthetic reporter. To
evaluate the similarities between GBM-sLCR transcriptional potential,
we evaluate the correlation between TFBS-affinity of all GBM-TFBS and
associated TF/TFBS for each GBM-sLCR. The evaluation of the signal-
to-noise ratio in ME-GBM was calculated by defining the MGT1-2
observed/expected TFBS ratio FIMO (default -output-pthresh 1e-4 -no-
qvalue) using GBM-sLCR and random sLCR. The evaluation of the
correlation between the phenotypic potential in GBM-ME and Ama-
crine cell was generated by computing the phenotypic-potential cor-
relation using MGT1-2 and Amacrine cell TFBS (exclusive high-
expressed TF > 75%; below) on each synthetic reporter. The signature
enrichment was calculated by using the average of ME-GBM patients’
expression profiles and Amacrine cells single-cell expression profiles.
PromoterDB sequences were retrieved from publication (https://data.
fmi.ch/promoterDB/) and integrated into the phenotypic-potential
analysis with other design LSD-sLCRs. The inference of the phenotypic
potential of LSD ACL reporters was generated by using CLGT1-2 TFBS
and the average of CL-GBM patients’ expression profiles. Graphical
representations were generated using ggplot2 in an R v.3.6
environment.

Integration of random sLCRs designed by LSD
To evaluate the signal-to-noise ratio for the LSD-generated reporters,
we generated LSD reporters using randomly selected TF and signature
genes. First, we sampled using the sample R function different sizes of
TF (from 1 to 301 by 20 each, without replacement) from the same
input TF database used to generate the LSD and sLCR reporters
(repository). Then, in the same way, we sampled different sizes of
signaturegenes (10, 20, 50, and 100genes) using the sameassembly to
generate the sLCR reporters (hg19).

To generate the reporters, we used the LSD pipeline with default
parameters for different combinations of inputs (e.g., random TF and
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random signature genes). To evaluate the combination, we evaluated
the TFBS on the included LSD-sLCR and first-generation sLCR. The
model of the distribution was generated using geom_smooth (default
parameters). Finally, the graphs were created with ggplot2 in R v.3.6
environment.

Evaluation of the Glioblastoma states
To evaluate the distribution of ssGSEA score on Glioblastoma single-cell
expression profiles, we used IDHwtGBM.processed.SS2.logTPM.txt from
Neftel et al.19. The evaluation of the score integrates signature and TF
gene expression in those cells. We maintained the separation between
AC/MES andOPC/NPC to differentiate between states. The ssGSEA score
was generated using the GSVA R package. The graphs were created with
ggplot2 in an R v.3.6 environment.

Bootstrap analysis of LSD reporters
We used a bootstrap approach to rank the differences between LSD
reporters generatedwith an identical set of signature genes and TF but
with distinct boundary regions and known CRE filter conditions
(Results, Fig. 4a). To begin, we generated several LSD reporters
(Methods) using the MGT4 signature genes and CTCF or TAD-defined
boundary regions30. The LSD approach allows for filtering regions of
interest by determining the overlap between those regions and the
CRE. We used this functionality to filter CRE obtained from the LSD
pipeline using pan-Cancer ATAC-seq regions29. Input genes and TF
from MGT4 were correlated to the mouse and used as input to gen-
erate the mouse LSD reporters. The regulatory regions for mouse LSD
were defined from scATAC-seq. After generating the reporters using
MGT4 input, we used CRE to conform the LSD reporters. We evaluate
the sequences by mapping MGT4 TFBS to each sequence (FIMO;
default —output-pthresh 1e-4 —no-qvalue). We used the affinity values
for the bootstrap analysis. To compare reporters, we conducted a
bootstrap analysis. First, the algorithm generated a reporter-specific
distribution of TFBS scores by randomly sampling (n = 100) TFBS
binding to the reporters (25% of MGT4 TFBS, 60/231). Second, it
compares the difference between reporter-specific distributions
using the Wilcox test (alternative = greater). Finally, it ranks the
reporters according to the number of significant events obtained
(adj. p-value < 0.05).

Human Glioma-initiating cell line (hGICs)
The IDH wildtype-hGICs were generated by our lab and will be
described elsewhere. Extensive histopathological, molecular and
tumorigenic potential characterization has been performed and
examples are sharedwith Editors andReviewers. Briefly, IDHWT-hGICs
were generated by transforming human NPC65 (kindly provided by R.
Glass, LMU), by means of: pRSPURO-sh-PTEN(#1; kind gift from D.
Peeper), pLKO.1-sh-TP53 (TRCN0000003754) and pRS-shNF1. For this
line, thorough genetic, transcriptional, and epigenetic characteriza-
tion has been performed, as well as in vivo tumor formation and
phenotypic mimicking ability. In vitro, hGICs were propagated as
described66,67 with one modification. In addition to EGF (20 ng/ml;
R&D), bFGF (20 ng/ml; R&D), Heparin (1μg/ml; Sigma) and 1% Peni-
cillin and Streptomycin, PDGF-aa (20 ng/ml; R&D) is also supple-
mented to RHB-A (Takara). This medium composition will be referred
to as RHB-A complete. hGICs were cultured at 37 °C in a 5% CO2, 3% O2

and 95% humidity incubator.

Transfection/Transduction
Transfection and transduction of Lentiviral constructs were previously
described in detail67. Briefly, 12μg of DNA mix (lentivector FH1-MGT1-
mVenus_PGK-H2B-CFP, pCMV-G, pRSV-REV, pMDLG/pRRE) was incu-
bated with the FuGENE-DMEM/F12 mix for 15min at RT, added to the
antibiotic-free medium covering the 293T cells, and the first-tap of
viral supernatant was collected at 40 h after transfection. Titer was

assessed using Lenti-X p24 Rapid Titer Kit (Takara) according to the
manufacturer’s instructions.We applied viral particles to target cells in
the appropriate complete medium supplemented with 2.5μg/ml pro-
tamine sulfate. After 12–14 h of incubation with the viral supernatant,
the medium was refreshed with the appropriate complete medium.

For PiggyBac-vector delivery, AMAXA™4D-Nucleofector™ (Lonza,
Cologne GmbH) was used for the nucleofection after optimization of
nucleofection conditions (Nucleofector® programs and solutions) for
the specific cell line. For each transfection reaction, 1.5 µg of pPB[Exp]-
mCherry-{MGT1}>d2EGFP or pPB[Exp]-mCherry-{MGT4}>d2EGFP,
0.5 µg of Super PiggyBacTransposase (SystemBiosciences, PB210PA-1-
SBI) and 0.5 µg of piRFP670-N1 (addgene #45457) were used and a final
mastermix of DNA and B1.1 buffer with supplements (6mMKCl, 15mM
MgCl2, 120mM Na/H2/PO4 pH 7.2 + 50mM Mannitol added freshly)
was prepared. 25 µl of cell suspension mix with DNA was added into
each well of the Nucleofection strip. Pulse programme DN-100 was
used to deliver nucleofection pulse to each well. Control wells did
receive a mock pulse without delivery of actual voltage.

Cell culture of human and rodent lines
Human HEK293T cells were cultured in DMEM-F12 + 10% FBS+ 1%
Penicillin/Streptomycin. Murine NIH3T3 cells were cultured in
DMEM+ 10% FBS + 1% Penicillin/Streptomycin. The hamster ovary-
derived cell line CHO-K1 was cultured in DMEM-F12 + 10% FBS+ 1%
Penicillin/Streptomycin. All lineswere cultured at 37 °Cand 5%CO2 in a
humidified incubator and regularly checked for mycoplasma con-
tamination. Both The MDA-MB-231 and human monocytic THP-1 cells
were cultured in Roswell Park Memorial Institute media (RPMI 1640,
Thermofisher, 21875091) supplemented with 10% fetal bovine serum
(Gibco, 10270106) and 1% Penicillin/Streptomycin at 37 °C in a 5%
CO2–95% air incubator. The THP-1 were propagated in the same
medium supplemented with 1mM pyruvate (Life Technologies), and
2mM GlutaMAX (Thermofisher, 35050-038). Human glioma cell line
8MGBA was cultured in DMEM-F12 + 10% FBS + 1% Penicillin/Strepto-
mycin. All lines were cultured at 37 °C and 5% CO2 in a humidified
incubator, were thawed from frozen batches and propagated for a
limited number of passages (10-15x), and were screened on a regular
basis for contamination using the Mycoplasma Detection kit (Jena
Bioscience 11828383, PP-401L).

sLCR activity transfection screening
Three cell lines of variable species backgroundwereplated at a density
of 3000 cells (293T and CHO-K1) or 5000 cells (NIH3T3) in their
respective medium in black-walled 96-well plates for optical imaging
(Greiner, #655090). For transfection on the following day, we used the
Fugene HD reagent and determined optimized conditions according
to the manufacturers’ protocol for each cell line in a 96-well-plate
format in a pre-experiment. In brief, we found 100ng of DNA and
varying ratios of Fugene:DNA ratios (293T 2.5:1; NIH3T3 4:1; CHO-K1
4:1) to yield sufficient transfection efficiencies in a total reaction
volume of 100 µl per well. Mastermixes from 28 sLCR and three
transfection control plasmids with Fugene reagent and serum-free
RPMI were prepared accordingly and transferred to the screening
plates in triplicate. After 48 h of incubation time, nuclei were stained
for 4 h with 2 µM Hoechst 33258 and fluorescent live-cell imaging for
Hoechst, GFP, mCherry and iRFP was conducted on a high-content
imaging platform (Operetta CLS, Perkin Elmer). We used the non-
confocal mode and a 10x air objective to image the whole field of view
of each well under live-cell imaging mode with temperature and CO2

control. LED power and detector exposure timewere adjusted on non-
sLCR transfection controls and untransfected wells.

High-content screening analysis for sLCR activities
After filtering each fluorescent channel (sliding parabola 10 px), we used
the Harmony-Software building blocks to identify and count nuclei
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based on Hoechst staining. Fluorescent cell objects were identified
based on GFP, mCherry or iRFP intensities. Fluorescent objects were
filtered by applying a threshold for object size and mean intensities as
well as number of objects were determined. Data with all relevant
parameters was exported as .csv files and analyzed using R Studio. To
account for differences in transfection efficiencies and to allow cross-
comparison of sLCR expression among the three cell lines, we first
calculated a transfection score as a proxy for efficiency. From the three
non-sLCR transfection control plasmids (pMAX-GFP, UBC-mCherry,
piRFP670) we established this score separately per cell line by deter-
mining the transfection_score = (control_fluorescent_objects_number/
nuclei_number) for each control plasmid and calculated the combined
mean from pMAX-GFP, UBC-mCherry and piRFP670. The value of this
score represents the highest fluorescence intensity in the screen for
each line and allows scaling of the sLCR plasmid activities between a
value of 0 for untransfected controls and 1, as outlined in the following
sentence. To assess the sLCR activity in each line, we calculated the
sLCR_activity_score = (sLCR_fluorescent_objects_number / nuclei_-
number) and normalized this value by dividing through the previously
established transfection score, which is setting the upper bar for the
highest rate of fluorescent activity in each line and allows comparing
sLCR activities across cell lines.Mean values of activity scores for eachof
the 28 sLCRswere calculated from thebiological triplicates anddatawas
plotted as boxplots using the ggplot2 package. Statistical testing was
done through two-way ANOVA with multiple comparisons testing and
Dunnett contrasts p-value adjustment.

Flow cytometry analysis
For readout of MGT1 or MGT4 upon MES-GBM specific activators,
transduced or transfected and sorted hGICs harboring either
Lentivirus-MGT1 or PiggyBac-MGT1/4 were seeded as single cells into
6-well plates in RHB-A medium supplemented with 10 ng/ml TNFa
(R&D Systems, 210-TA-020) or without TNFa as control. After 48 h
culture, hGICs were harvested into single cell suspensions, resus-
pended into cold RHB-A complete medium and filtered into FACS
tubes. For validation of sLCR upregulation in response to dCas9-VPR
and sgRNAs from CRISPRa screen hits, cells were maintained for 7–10
passages before harvesting into single-cell suspensions and filtering
into FACS tubes. Events were first gated on the basis of shape and
granularity (FSC-A vs. SSC-A) and doublets were excluded (FSC-A vs.
FSC-H), then appropriate laser-filter combinations to analyze sLCR
expression of mVenus, EGFP or mCherry were chosen using a BD LSR
Fortessa Flow Cytometer.

For evaluation of housekeeping sLCR expression, human and
rodent cell lines were transduced with each reporter and selected with
individual concentrations of Neomycin for up to 5–7 passages.
Reporter cell lines and untransduced controls were used for FACS
readout with analogous pre-gating strategy as above and recording
mCherry intensities as final parameter from biological triplicates.
GeometricmCherry intensitymeans for transduced and untransduced
cell lines were extracted. Intensity values for each reporter cell line
were normalized by division through the mean of untransduced lines
for each measurement and log10 transformed. Data variability statis-
tics were calculated on log10-transformed and normalized mCherry
intensity values using the sd(), var() and IQR() functions from R. For
heatmap, bubble plot, bar plot and ridge plot visualization, ggplot2
(v.3.4.1) was used. Box-plot quantification was done using ggplot2 and
pairwise comparisons with Wilcoxon-Rank-Sum test were computed
using the stat_compare_means() function from ggpubr (v.0.6.0). FACS
data was analyzed and visualized using FlowJo_v10.

For cell sorting, transduced/transfected hGICs were harvested
into single cell suspensions, resuspended into cold RHB-A complete
medium and filtered into FACS tubes. Sorting was conducted using BD
FACS Aria III or Fusion. The appropriate laser-filter combinations were
chosen depending on the fluorophores being sorted for. Typically, to

remove dead cells, events were first gated on the basis of shape and
granularity (FSC-A vs. SSC-A) and doublets were excluded (FSC-A vs.
FSC-H). Positive gates were established on PGK-driven and con-
stitutively expressed H2B-CFP as sorting reporter (in case of Lentiviral
construct) or iRFP expression (for PiggyBac-transfected cells).

Human genome-scale CRISPRa library amplification, infection
and library construction
For the genome-wide pooled CRISPR activation screen, we utilized the
Human Genome-wide CRISPRa-v2 Library (Addgene Pooled Libraries
#83978) consisting of 104,540 sgRNAs targeting 18,915 genes (~top
5 sgRNAs per gene). Amplification of the library was performed fol-
lowing the reported Addgene protocol. Viral production was con-
ducted in 293 T cells, with viral titration performed before target cell
transduction. To achieve a library representation over 240×, we
transduced a total of 5 × 10e7 of human glioma initiating cells har-
boring the dCas9-VPR system as well as mesenchymal or proneural
GBM reporters (IDH-wildtype-hGICs MGT1, IDH-wildtype-hGICs-
MGT4, IDH-wildtype-hGICs-PNGT3) at a multiplicity of infection of
∼0.5. The cells were kept for 15 days, corresponding to 7 passages,
after which the cells were FACS sorted for high and low reporter sig-
nals. The genomic DNA was extracted by lysing the cell pellets for
10min at 56 °C in AL buffer (Qiagen, 19075), supplemented with Pro-
teinase K (Invitrogen, AM2548) and RNAse A (Thermo Scientific,
10753721), subsequently purified with AMPure XP beads (Beckman
Coulter, A63881), and eluted in EB buffer (Qiagen, 19086). Next-
generation sequencing (NGS) libraries were constructed in a two-step
PCR setup, where the PCR1 is used to amplify the sgRNA scaffold, while
the PCR2 introduced Illumina-compatible adapters with unique P5/P7
barcodes, allowing sample multiplexity. For PCR1, each gDNA sample
was divided over 20 to 26 reactions, which were subsequently pooled
together and purified using AMPure XP beads. The optimal cycle
numbers for PCR2 were determined for 1μL of each PCR1 individually
by conducting a qPCR amplification using KAPA HiFi HotStart Ready
Mix (Roche, 7958927001) and 1× EvaGreen (Biotium, 31000). 5 ng of
the purified PCR1 of each sample was used as input for the final PCR2.
Both PCR1 and PCR2 were performed using KAPA HiFi HotStart Ready
Mix. Primers are available upon request. Quality control of the final
libraries was performed using the Qubit dsDNA HS kit (Invitrogen,
Q32854) and Collibri™ Library Quantification Kit (Invitrogen,
A38524500) for quantification andTapeStationHighSensitivityD1000
ScreenTapes (Agilent, 5067-5584) for determination of PCR fragment
size. The barcoded libraries were pooled together in equal molarities
and sequenced alongside a 10% of PhiX spike on an Illumina Next-
Seq500, using the 150 cycles V2.5 chemistry (in a 1 × 150 bp + 8bp+ 8
bp dual-index single-read mode).

Human genome-scale CRISPRa data analysis
The 20bp sgRNA sequences were extracted from the reads using
cutadapt (v2.1), aligned to the human genome-scale CRISPRa-v2
Library reference using bwa (v.0.7.17-r1188) allowing n 0-2mismatches
to subsequently generate the sgRNA read counts. Undetected sgRNAs
and sgRNAswith less than two counts in the reference plasmid libraries
were omitted from the downstream analysis. For assessing CRISPRa
hits, relevant for the utilized model system, the sgRNA counts were
additionally subsetted to targets denoted by high expression in the
IDH-wildtype human glioma initiating cells (IDH-wildtype-hGICs)
(CPM> 5). Differential sgRNA abundance analysis contrasting high and
low reporter-expressing cells was conducted using the gCrisprTools
(10.18129/B9.bioc.gCrisprTools; v2.0.0) R package (scoring = “

pvalue”). Signals from the non-targeting sgRNA controls were exclu-
ded from RRAa aggregation. The top differentially abundant targets
(Rho enrichment score <0.05, median sgRNA log2-fold change > 1) are
visualized in Fig. 6b. Ingenuity Pathway Analysis used as input
gCrisprTools-derived fold-changes and FDR values and ranked
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canonical pathways and upstream regulators by Fisher’s exact test. To
identify and prioritize GBM cell state-specific CRISPRa hits, we further
performed orthogonal convergence of TCGA differential expression
(TCGA GBM, Verhaak et al.21, Garofano et al.23) together with the glio-
blastoma stem cell state-specific dependencies (Richards et al.22). For
follow up and subsequent validation, we prioritized CRISPRa hits, that
characterized by high TCGA GBM patients cell state-specific expres-
sion (Significance Analysis of Microarrays (SAM) expression score > |
2|), enrichment in glioblastoma stem cells CRISPRout genome-wide
screening (z-scores >|2|) and median sgRNA log2FC >0 and Rho
enrichment score <0.5 in our LSD-sLCR CRISPRa screens.

TCGA data analysis
The Cancer Genome Atlas (TCGA) IDH-wildtype GBM patients data
profiled with the Agilent 244 K Custom Gene Expression array
(G4502A_07_1/2) were obtained using the TCGAbiolinks R package
(v.2.22.468) as log2 lowess normalized sample/reference signal (cy5/
cy3) ratios collapsed by gene symbol. The missing microarray
expression data were imputed using nearest neighbor averaging via
the impute R package (v.1.68.0). For the convergence plots in Fig. 6e,
the Significance Analysis of Microarrays (SAM) was conducted using
the siggenes R package (v.1.68.0, delta threshold = 2), contrasting
patients of the core glycolytic/plurimetabolic (GPM) and the core
proliferative/progenitor (PPR) subtypes, according to Garofano et al.
GBM pathway-based classification23.

Validation of cell-state modifiers from CRISPRa screen
For the functional validation of the candidate CRISPRa screen hits,
IDH-wildtype-hGICs harboring a constitutively active dCas9-VPR sys-
tem and the MGT4 mesenchymal sLCR were lentivirally transduced
with constructs bearing four individual multiplexed sgRNAs targeting
the respective screen hits, alongside a tag-BFP selection cassette for
assessment of the transduction efficiency45. The levels of MGT4-
reporter activation upon the CRISPRa-mediated transcriptional
amplification of the candidate phenotypic drivers were assessed via
FACS at 6 (early time-point) and 14 (late time-point) days post-
transduction. At the experimental endpoint, the guide-bearing
reporter-high-expressing cells were FACS-purified for subsequent
whole transcriptome profiling.

Transcriptomic profiling
The total RNA extraction from IDH-wildtype-hGICs-MGT4-dEGFP
dCas9-VPR cellswasperformedusing theTRIzol™Reagent (Invitrogen,
15596026), followed by isopropanol precipitation and subsequent
AMPure XP beads (Beckman Coulter, #A63881) purification. The RNA
quantification and integrity assessment were conducted using the
Qubit RNA High Sensitivity Assay Kit (Invitrogen, #Q32855) and the
High Sensitivity RNA ScreenTape system (Agilent, #5067-5579),
respectively. Multiplexed 3’-cDNA libraries were constructed starting
from 60ng of total RNA per sample as input, utilizing barcoded oligo-
dT primers69 in an adapted version of Bulk RNA barcoding and
sequencing (BRB-seq) protocol70. The quantification of the final mul-
tiplexed library pools was performed using Qubit dsDNA HS Assay
(Invitrogen, #Q32854) and Collibri™ Library Quantification (Invitro-
gen, #A38524500) kits. The library fragment size distributions were
assessed using the TapeStation High-Sensitivity D1000 ScreenTape
system (Agilent, #5067-5584). The sequencing of the multiplexed
libraries was conducted on a NovaSeq 6000 in paired-end dual-index
mode (Read 1: 28 bp, Index i7: 10 bp, Index i5: 10 bp, Read 2: 90 bp).
Illumina index demultiplexing was performed using the bcl2fastq
conversion software (v2.20.0). cutadapt (v2.1) was next used to extract
the oligo-dT barcode sequences from Read 1, for downstream internal
demultiplexing of reads using BRBseqTools-1.6.jar (http://github.com/
DeplanckeLab/BRB-seqTools). The aligning of the demultiplexed data
to a customgenome (MGT4-containing GRCh38) was performed using

STAR (v2.7.8a), and HTSeq (v2.0.2) was subsequently used to generate
read count matrices.

The generated count matrices were analyzed using the DESeq2 R
package (v.1.34.0). Briefly, the raw count data was converted into a
DESeqDataSet with a design contrasting the CRISPRa-target-
upregulated conditions against the parental unsorted control cells.
The dataset was filtered for genes with more than 20 reads in at least
three samples. Genes with absolute log2-fold change |>0.5| and
adjusted p-values < 0.05 were considered to be significantly differen-
tially expressed. Ensembl ID were mapped to gene symbols using
EnsDb.Hsapiens.v79 (v2.99.0). log2FC-values derived from the differ-
ential comparisons between target gene overexpressing MGT#4-high
and the control cells were used as pre-ranked input for conducting the
fast gene set enrichment analysis (fGSEA) with the fgsea R package (v.
1.20.0) in Figure S7i.

Signature scoring on single-cell RNAseq datasets
From a pan-GBM single-cell RNAseq study24, we downloaded the cor-
e_GBmap, which consists of a harmonized single-cell RNAseq dataset
stemming from 16 different studies and including a total of 338,564
cells from 110 patients. From the overall dataset, we extracted the
malignant cell compartment based on metadata annotations. To
establish module scores of each cell for a list of patient-derived GBM
cell state signatures, sLCR target-gene signatures or single genes, we
used the AddModuleScore() function and for visualization the Fea-
turePlot() function fromSeurat (v.4.3). The pairwise correlationmatrix
between each module score was calculated and visualized using the
corrplot package (v.0.92).

Cell surface marker staining
IDH-wildtypehGICs stably transducedwithMGT4were harvested from
suspension cultures. The cells were centrifuged at 300 × g for 5min
and resuspended in Accutase. After subsequent incubation at 37 °C for
5min, a ten-fold excess of PBSwas added and cells were centrifuged at
500 × g for 5min. The harvested cells were aliquoted up to 1 ×10e6
cells/100μL into FACS tubes and then subjected to stainingwith either
primary biotinylated mouse anti-human CD44-antibody (BD Bios-
ciences #555477; 1:50) together with secondary Streptavidin APC-
eFluor 780 (Invitrogen #47-4317-82; 1:100) or primary conjugated
mouse anti human CD24-Vio-Blue (Miltneyi Biotec #130-126-026; 1:50)
and incubated for 30minutes at room temperature in the dark.
Unbound antibody was removed by washing the cells with 2mL of
FlowCytometry Staining Buffer. This washing stepwas repeated twice.
If an unconjugated primary antibody was used, incubation with an
appropriate secondary antibody occurred after the primary antibody
step. Finally, the cells were resuspended in 400μL of Flow Cytometry
Staining Buffer for flow cytometric analysis using a BD LSR Fortessa
and appropriate laser/filter combinations for detection of cell surface
marker staining and MGT4-d2EGFP expression.

Statistics & reproducibility
Formultiple comparisonsof twogroups, unpaired two-tailed Student’s
t test was used, unless otherwise specified. For comparisons of two or
more groups, one-way ANOVA followed by Dunnett’s post-hoc multi-
ple comparisons test correction. For correlation analyses, Pearson
correlation coefficients were calculated. Hierarchical clustering used
Manhattan distance calculations. For boxplot representations, data
distribution is shown with box indicating the interquartile range and
inner line indicating themedian.Whiskers extend to represent the data
range, including outliers. Barplot data is shown as mean value +/
− standard deviation. All experimental data has been derived from at
least three independent biological replica, except for sequencing of
the CRISPRa screen. No data were excluded from the analyses and the
investigators were not blinded to allocation during experiments and
outcome assessment.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The
sequencing data generated in this study have been deposited in the
Gene ExpressionOmnibus database. Access can be obtained under the
accession code “GSE236153”. The processed sequencing data are
provided in SupplementaryDataset S2. Sourcedata are provided in the
Source Data file. Source data are provided with this paper.

Code availability
The LSD algorithm is available at: https://gitlab.com/gargiulo_lab/
sLCR_selection_framework.

References
1. Chen, J. et al. A restricted cell population propagates glioblastoma

growthafter chemotherapy.Nature488, 522–5226, https://doi.org/
10.1038/nature11287 (2012).

2. Lu, C. P. et al. Identification of stemcell populations in sweat glands
and ducts reveals roles in homeostasis and wound repair. Cell 150,
136–150 (2012).

3. Schepers, A.G. et al. Lineage tracing reveals Lgr5+ stemcell activity
in mouse intestinal adenomas. Science 337, 730–735 (2012).

4. Elde, N. C. & Malik, H. S. The evolutionary conundrum of pathogen
mimicry. Nat. Rev. Microbiol 7, 787–797 (2009).

5. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148,
33–45 (2012).

6. Oshimori, N. & Fuchs, E. Paracrine TGF-β Signaling Counter-
balances BMP-Mediated Repression in Hair Follicle Stem Cell Acti-
vation. Cell Stem Cell, 10, 63–75 (2012).

7. Li, P. et al. Morphogen gradient reconstitution reveals Hedgehog
pathway design principles. Science 360, 543–548 (2018).

8. Zhao, S., Hong, C. K., Granas, D. M. & Cohen, B. A. A single-cell
massively parallel reporter assay detects cell type specific cis-
regulatory activity. bioRxiv, https://doi.org/10.1101/2021.11.11.
468308 (2021).

9. Hrvatin, S., Tzeng, C. P., Nagy, M. A., Elife, H. S. (2019). A scalable
platform for the development of cell-type-specific viral drivers.
elifesciences.org, https://doi.org/10.7554/eLife.48089.001 (2019).

10. Enhancer-DrivenGene Expression (EDGE) enables the generation of
cell type specific tools for the analysis of neural circuits. Neurosci.
Res. 152, 78–86 (2020).

11. Jüttner, J. et al. Targeting neuronal and glial cell types with syn-
thetic promoter AAVs in mice, non-human primates and humans.
Nat. Neurosci. 22, 1345–1356 (2019).

12. Wang, X. et al. High-resolution genome-wide functional dissection
of transcriptional regulatory regions andnucleotides in human.Nat.
Commun. 1–15, https://doi.org/10.1038/s41467-018-07746-1 (2018).

13. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early
developmental enhancers in humans. Nature 470, 279–283,
https://doi.org/10.1038/nature09692 (2010).

14. Schmitt, M. J. et al. Phenotypic mapping of pathologic cross-talk
between glioblastoma and innate immune cells by synthetic
genetic tracing. Cancer Discov. 11, 754–777 (2021).

15. Thurman, R. E., Day, N., Noble, W. S. & Stamatoyannopoulos, J. A.
Identification of higher-order functional domains in the human
ENCODE regions. Genome Res 17, 917–927 (2007).

16. Kim, T. H. et al. Analysis of the vertebrate insulator protein CTCF-
binding sites in the human genome. Cell 128, 1231–1245 (2007).

17. Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. & De Laat, W.
Looping and interaction between hypersensitive sites in the active
beta-globin locus. Mol. Cell 10, 1453–1465 (2002).

18. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of
the X-inactivation centre. Nature 485, 381–385 (2012).

19. Neftel, C. et al. An Integrative Model of Cellular States, Plasticity,
and Genetics for Glioblastoma. Cell 178, 835–849.e21, https://doi.
org/10.1016/j.cell.2019.06.024 (2019).

20. França, G. S. et al. Drug-induced adaptation along a resistance
continuum in cancer cells. bioRxiv, https://doi.org/10.1101/2022.
06.21.496830 (2022).

21. Verhaak, R. G. W. et al. Integrated genomic analysis identifies
clinically relevant subtypes of glioblastoma characterized by
abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17,
98–110 (2010).

22. Richards, L. M. et al. Gradient of Developmental and Injury
Response transcriptional states defines functional vulnerabilities
underpinning glioblastoma heterogeneity. Nat. Cancer 155,
462–17 (2021).

23. Garofano, L. et al. Pathway-based classification of glioblastoma
uncovers a mitochondrial subtype with therapeutic vulnerabilities.
Nat. Cancer 19, 93 (2021).

24. Ruiz-Moreno, C. et al. Harmonized single-cell landscape, inter-
cellular crosstalk and tumor architecture of glioblastoma. bioRxiv
https://doi.org/10.1101/2022.08.27.505439 (2022).

25. Schlabach, M. R., Hu, J. K., Li, M. & Elledge, S. J. Synthetic design
of strong promoters. Proc. Natl Acad. Sci. USA 107,
2538–2543 (2010).

26. Shekhar, K. et al. Comprehensive Classification of Retinal Bipolar
Neurons by Single-Cell Transcriptomics. Cell 166,
1308–1323.e30 (2016).

27. Gargiulo, G. et al. NA-Seq: a discovery tool for the analysis of
chromatin structure and dynamics during differentiation. Dev. Cell
16, 466–481 (2009).

28. Neph, S. et al. An expansive human regulatory lexicon encoded in
transcription factor footprints. Nature 489, 83–90 (2012).

29. Corces, M. R. et al. The chromatin accessibility landscape of pri-
mary human cancers. Science 362, eaav1898 (2018).

30. Won, H. et al. Chromosome conformation elucidates regulatory
relationships in developing human brain. Nature 538,
523–527 (2016).

31. Marques, C. et al. NF1 regulates mesenchymal glioblastoma plas-
ticity and aggressiveness through the AP-1 transcription factor
FOSL1. Elife 10, e64846 (2021).

32. Kulesa, A., Krzywinski, M., Blainey, P. & Altman, N. Points of Sig-
nificance: Sampling distributions and the bootstrap. Nat. Methods
12, 477–478 (2015).

33. Kostic, C. et al. Activity analysis of housekeeping promoters using
self-inactivating lentiviral vector delivery into the mouse retina.
Gene Ther. 10, 818–821 (2003).

34. Tabula Sapiens Consortium* et al. The Tabula Sapiens: A multiple-
organ, single-cell transcriptomic atlas of humans. Science 376,
eabl4896 (2022).

35. Tabula Muris Consortium et al. Single-cell transcriptomics of 20
mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

36. Joshi, C. J., Ke, W., Drangowska-Way, A., O’Rourke, E. J. & Lewis, N.
E. What are housekeeping genes? PLoS Comput. Biol. 18,
e1010295 (2022).

37. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin
accessibility by combinatorial cellular indexing. Science 348,
910–914 (2015).

38. Kaczynski, J., Cook, T. & Urrutia, R. Sp1- and Krüppel-like tran-
scription factors. Genome Biol. 4, 206 (2003).

39. Friedrich, T. et al. Notch-dependent and -independent functions of
transcription factor RBPJ. Nucleic Acids Res. 50, 7925–7937 (2022).

40. Guan, Y. et al. A single genetic locus controls both expression of
DPEP1/CHMP1A and kidney disease development via ferroptosis.
Nat. Commun. 12, 5078 (2021).

Article https://doi.org/10.1038/s41467-024-45069-6

Nature Communications |          (2024) 15:897 18

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE236153
https://gitlab.com/gargiulo_lab/sLCR_selection_framework
https://gitlab.com/gargiulo_lab/sLCR_selection_framework
https://doi.org/10.1038/nature11287
https://doi.org/10.1038/nature11287
https://doi.org/10.1101/2021.11.11.468308
https://doi.org/10.1101/2021.11.11.468308
https://doi.org/10.7554/eLife.48089.001
https://doi.org/10.1038/s41467-018-07746-1
https://doi.org/10.1038/nature09692
https://doi.org/10.1016/j.cell.2019.06.024
https://doi.org/10.1016/j.cell.2019.06.024
https://doi.org/10.1101/2022.06.21.496830
https://doi.org/10.1101/2022.06.21.496830
https://doi.org/10.1101/2022.08.27.505439


41. Horlbeck, M. A., Gilbert, L. A., Villalta, J. E., Elife, B. A. Compact and
highly active next-generation libraries for CRISPR-mediated gene
repression and activation. cdn.elifesciences.org, https://doi.org/10.
7554/eLife.19760.001 (2016).

42. Serresi, M. et al. Functional antagonism of chromatin modulators
regulates epithelial-mesenchymal transition. Sci. Adv. 7,
eabd7974 (2021).

43. Kang,X. et al. Antiangiogenic activity of BAI1 in vivo: implications for
gene therapy of human glioblastomas. Cancer Gene Ther. 13,
385–392 (2006).

44. Mastrella,G. et al. TargetingAPLN/APLNR improves anti-angiogenic
efficiency and blunts pro-invasive side effects of VEGFA/VEGFR2-
blockade in glioblastoma. Cancer Res. 79, 2298–2313, https://doi.
org/10.1158/0008-5472.CAN-18-0881 (2019). canres.0881.2018.

45. Yin, J.-A. et al. Robust and Versatile Arrayed Libraries for Human
Genome-Wide CRISPR Activation, Deletion and Silencing. bioRxiv,
https://doi.org/10.1101/2022.05.25.493370 (2022).

46. Kaya-Okur, H. S., Janssens, D. H., Henikoff, J. G., Ahmad, K. &
Henikoff, S. Efficient low-cost chromatin profiling with CUT&Tag.
Nat. Protoc. 15, 3264–3283 (2020).

47. Puig, R. R., Boddie, P., Khan, A., Castro-Mondragon, J. A. & Mathe-
lier, A. UniBind:mapsof high-confidencedirect TF-DNA interactions
across nine species. BMC Genomics 22, 482–17 (2021).

48. Bravo González-Blas, C. et al. SCENIC+: single-cell multiomic
inference of enhancers and gene regulatory networks. Nat. Meth-
ods 20, 1355–1367 (2023).

49. Jung, S., Appleton, E., Ali, M., Church, G. M. & del Sol, A. A
computer-guided design tool to increase the efficiency of cellular
conversions. Nat. Commun. 12, 1659 (2021).

50. Marsh, S. E. et al. Dissection of artifactual and confounding glial
signatures by single-cell sequencing of mouse and human brain.
Nat. Neurosci. 25, 306–316 (2022).

51. Jiang, B. et al. Pharmacological modulators of epithelial immunity
uncovered by synthetic genetic tracing of SARS-CoV-2 infection
responses. Sci. Adv. 9, eadf4975 (2023).

52. Nandagopal, N. et al. Dynamic Ligand Discrimination in the Notch
Signaling Pathway. Cell 172, 869–880.e19 (2018).

53. Antebi, Y. E. et al. Combinatorial Signal Perception in the BMP
Pathway. Cell 170, 1184–1196.e24 (2017).

54. Roybal, K. T. et al. Engineering TCells with Customized Therapeutic
Response Programs Using Synthetic Notch Receptors. Cell 167,
419–432.e16 (2016).

55. Morsut, L. et al. Engineering Customized Cell Sensing and
Response Behaviors Using Synthetic Notch Receptors. Cell 164,
780–791 (2016).

56. de Almeida, B. P. et al. Targeted design of synthetic enhancers for
selected tissues in the Drosophila embryo. Nature, 1–2, https://doi.
org/10.1038/s41586-023-06905-9 (2023).

57. Taskiran, I. I. et al. Cell type directed design of synthetic enhancers.
Nature, https://doi.org/10.1038/s41586-023-06936-2 (2023).

58. Li, Z. et al. Hypoxia-inducible factors regulate tumorigenic capacity
of glioma stem cells. Cancer Cell 15, 501–513 (2009).

59. Cloutier, P. et al. R2TP/Prefoldin-like component RUVBL1/RUVBL2
directly interacts with ZNHIT2 to regulate assembly of U5 small
nuclear ribonucleoprotein. Nat. Commun. 8, 15615–14 (2017).

60. Bhat, K. P. et al. The transcriptional coactivator TAZ regulates
mesenchymal differentiation in malignant glioma. Genes Dev. 25,
2594–2609 (2011).

61. Banerjee, S. et al. The neurofibromatosis type 1 tumor suppressor
controls cell growth by regulating signal transducer and activator
of transcription-3 activity in vitro and in vivo. Cancer Res. 70,
1356–1366 (2010).

62. Xie, M. & Fussenegger, M. Designing cell function: assembly of
synthetic gene circuits for cell biology applications. Nat. Rev. Mol.
Cell Biol. 19, 507–525 (2018).

63. Horlbeck, M. A. et al. Compact and highly active next-generation
libraries for CRISPR-mediated gene repression and activation. Elife
5, e19760 (2016).

64. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR:
inferring transcription-factor-associated accessibility from single-
cell epigenomic data. Nat. Methods 14, 975–978 (2017).

65. Stock, K. et al. Neural precursor cells induce cell death of high-
grade astrocytomas through stimulation of TRPV1. Nat. Med. 18,
1232–1238, https://doi.org/10.1038/nm.2827 (2012).

66. Gargiulo,G. et al. In vivoRNAi screen for BMI1 targets identifies TGF-
β/BMP-ER stress pathways as key regulators of neural- and malig-
nant glioma-stem cell homeostasis. Cancer Cell 23,
660–676 (2013).

67. Gargiulo, G., Serresi, M., Cesaroni, M., Hulsman, D. & Van Lohuizen,
M. In vivo shRNA screens in solid tumors. Nat. Protoc. 9,
2880–2902 (2014).

68. Colaprico, A. et al. TCGAbiolinks: an R/Bioconductor package
for integrative analysis of TCGA data. Nucleic Acids Res. 44,
e71 (2016).

69. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequen-
cing and perturbation screening with combinatorial fluidic index-
ing. Nat. Methods 18, 635–642 (2021).

70. Alpern, D. et al. BRB-seq: ultra-affordable high-throughput tran-
scriptomics enabled by bulk RNA barcoding and sequencing.
Genome Biol. 20, 71 (2019).

Acknowledgements
We are grateful to L. Li, H. Naumann, M. Grossman and the MDC FACS
and genomics technology platform for technical support and A. Akalin,
M. Amendola, and S. Mzoughi for critical reading of themanuscript. The
hCRISPRa-v2 library and SP-dCas9-VPR were a gift from J. Weissman
(Addgene ID # 83978) and G. Church (Addgene plasmid # 63798). MDA-
231, THP-1, NIH3T3 and CHO-K1 cell lines, were gifts fromRene Bernards
(NKI, Amsterdam), S. Minucci (IEO, Milan), Italy), A. Hammes and T.
Willnow (MDC, Berlin), respectively. Data analyses include data gener-
ated by the TCGA Research Network: https://www.cancer.gov/tcga.
C.C., M.J.S. and Y.D. are graduate students with Humboldt University,
B.J. and S.K. with Charitè Medical University. S.K. and Y.D. are affiliated
with the Berlin School of Integrative Oncology (BSIO) at Charitè. The
G.G. lab acknowledges funding from MDC, Helmholtz (VH-NG-1153),
ERC (714922) and DFG (DFG SE 2847/2-1 to M.S.).

Author contributions
C.C. developed the LSD algorithm and performed computational
analyses in Figs. 1, 3, 4, S1, S3, S5, S6. Y.D. performed computa-
tional analyses in Figs. 4, 6, S4, S7, conducted and analyzed the
CRISPRa screen and its validation and provided computational
support for LSD pipeline curation and extension. M.J.S. performed
computational and experimental analyses in Figs. 2, S2, S3f, 5,
generated sLCR-bearing cell lines and performed FACS experi-
ments. M.S. generated stable cell lines and reagents for Figs. 5, 6,
S5, S7. Y.D., M.S. and M.J.S. conducted the CRISPRa screen and
analyzed experimental data. B.J. conducted the sLCR-transfection
screen in Fig. 2 and contributed to conceptual validation. S.K.
contributed experimental support for conceptual validation. A.A.
and J.Y. contributed unpublished reagents for the CRISPRa screen
validation. I.B. developed the first generation of the sLCR pipeline
and co-supervised the implementation of LSD. G.G. developed the
concept, designed and supervised the study, secured funding
together with M.S., interpreted the data and wrote the initial
manuscript with inputs from C.C., Y.D., M.J.S., M.S. and I.B. for
editing and revisions.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Article https://doi.org/10.1038/s41467-024-45069-6

Nature Communications |          (2024) 15:897 19

https://doi.org/10.7554/eLife.19760.001
https://doi.org/10.7554/eLife.19760.001
https://doi.org/10.1158/0008-5472.CAN-18-0881
https://doi.org/10.1158/0008-5472.CAN-18-0881
https://doi.org/10.1101/2022.05.25.493370
https://doi.org/10.1038/s41586-023-06905-9
https://doi.org/10.1038/s41586-023-06905-9
https://doi.org/10.1038/s41586-023-06936-2
https://doi.org/10.1038/nm.2827
https://www.cancer.gov/tcga


Competing interests
G.G. reports a patent application EP18192715 by the Max-Delbrück-
Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092
Berlin, Germany. No disclosures are to be reported by the other
authors.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45069-6.

Correspondence and requests for materials should be addressed to
Gaetano Gargiulo.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this work.
A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45069-6

Nature Communications |          (2024) 15:897 20

https://doi.org/10.1038/s41467-024-45069-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Logical design of synthetic cis-regulatory DNA for genetic tracing of cell identities and�state changes
	Results
	Logical design of synthetic cis-regulatory�DNA
	LSD allows for designing functional and specific�sLCRs
	Benchmarking LSD by cis-regulatory score ranking towards defining basic principles of sLCR�design
	LSD incorporates single-cell RNA-seq as signature gene input
	LSD integrates 3D contact maps and DNA accessible in �chro�matin as custom�inputs
	LSD enables designing of sLCRs compatible with the size �con�straints of AAV vectors
	LSD enables prioritizing cell-state-specific drivers in combination with genome-wide gain-of-function CRISPR screens

	Discussion
	Methods
	Datasets
	LSD algorithm
	sLCR design�by LSD
	Housekeeping-like sLCR design�by LSD
	Tissue-specific sLCR design�by LSD
	Phenotypic potential inference by on-target TFBS scoring
	Evaluation of the CRE selection
	Comparison of LSD reporters
	Integration of random sLCRs designed�by LSD
	Evaluation of the Glioblastoma�states
	Bootstrap analysis of LSD reporters
	Human Glioma-initiating cell line (hGICs)
	Transfection/Transduction
	Cell culture of human and rodent�lines
	sLCR activity transfection screening
	High-content screening analysis for sLCR activities
	Flow cytometry analysis
	Human genome-scale CRISPRa library amplification, infection and library construction
	Human genome-scale CRISPRa data analysis
	TCGA data analysis
	Validation of cell-state modifiers from CRISPRa�screen
	Transcriptomic profiling
	Signature scoring on single-cell RNAseq datasets
	Cell surface marker staining
	Statistics & reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




