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Finding the gap: neuromorphic motion-
vision in dense environments

Thorben Schoepe 1,2,3,4 , Ella Janotte5, Moritz B.Milde6, Olivier J. N. Bertrand7,
Martin Egelhaaf7 & Elisabetta Chicca2,3,4

Animals have evolved mechanisms to travel safely and efficiently within dif-
ferent habitats. On a journey in dense terrains animals avoid collisions and
cross narrow passages while controlling an overall course. Multiple hypoth-
eses target how animals solve challenges faced during such travel. Here we
show that a singlemechanismenables safe and efficient travel.We developed a
robot inspired by insects. It has remarkable capabilities to travel in dense
terrain, avoiding collisions, crossing gaps and selecting safe passages. These
capabilities are accomplished by a neuromorphic network steering the robot
toward regions of low apparent motion. Our system leverages knowledge
about vision processing and obstacle avoidance in insects. Our results
demonstrate how insects might safely travel through diverse habitats. We
anticipate our system to be a working hypothesis to study insects’ travels in
dense terrains. Furthermore, it illustrates that we can design novel hardware
systems by understanding the underlying mechanisms driving behaviour.

Animals travel in a variety of habitats, from bare landscapes to highly
cluttered terrains, such as forests or grass and flower meadows. One
critical aspect of flying animals, such as insects and birds, is avoiding
obstacles to prevent wing damage and to enable fast locomotion.
Obstacle avoidance requires maintaining a safe distance from sur-
rounding objects, identifying crossable gaps between objects, as well
as rapidly decelerating if the flight corridor gets too narrow or per-
forming evasive manoeuvres around obstacles. The computational
mechanisms underlying the highly virtuosic flight manoeuvres of
insects and birds are being unravelled largely in artificial settings, such
as flight tunnels with a variety of obstacle constellations1–4 or gaps in
flight barrierswith variable clearance5–11, which can bemanipulated in a
targeted way by the experimenters.

The primary information for flight control and obstacle avoidance
of insects and birds is provided by optic flow (OF). Translational OF is
the apparent motion of the surroundings on the animal’s retina when
the animal translates within its environment12,13. Since OF depends on

both the velocity of locomotion aswell as the distance to objects in the
environment, it is directly related to the time of an impending
collision14,15. To date, multiple mechanisms have been proposed to
explain the further processing of OF to ensure collision-free flight.
Strategies closely inspired by the behaviour and neuronal substrate of
insects involve balancing the OF experienced in different regions of
the eye (e.g. left and right hemisphere)16,17, integrating the motion
across the entire visual field18, relying on the contrast of the OF
between the foreground and background7, using optimised spatial
sensitivity19, or learning an association between active vision (oscilla-
tion of the agent) and the apparent size of objects20. The use of arti-
ficial agents allows us to rigorously test the functionality of the
underlying neuronal processes in controlled environments. Especially
with respect to insects, it is impressive that they safely accomplish
their virtuosic navigational feats, including obstacle avoidance, with a
brain no bigger than a pinhead. This suggests the underlying neural
processes to be extremely efficient and computationally parsimonious
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and the underlying computational mechanisms to be potentially
interesting for implementation in resource-saving artificial autono-
mous agents. Therefore, one central objective of the present study is
to explain important aspects of the obstacle avoidance behaviour of
insects by modelling them and discussing these bio-inspired compu-
tational principles with regard to technical application scenarios.

We used a closed-loop neuromorphic approach to investigate
whether asynchronous processing of OF enables collision-free navi-
gation in a multitude of environments. Neuromorphic hardware pro-
cesses and transmits information in an event-based manner. For
example, a neuromorphic camera (or event-based camera) sends
events asynchronously only if a relative change in luminance over time
is observed in a givenpixel21–25. Neuromorphicprocessors, on theother
hand, integrate incoming events using spiking neurons. These artificial
units communicate asynchronously with one another using action
potentials, or so-called spikes. The sampling scheme incorporated in
neuromorphic systems is referred to as Lebesgue sampling26, which
equips these systems with high-temporal resolution and fast proces-
sing strategies. Since the obstacle avoidance machinery of insects is
thought to be basedonOF information (drivenby the visual sense) and
the initial visual processing steps are spatially distributed and asyn-
chronous, a neuromorphic camera is suitable for studyingmechanisms
underlying collision-free navigation inspired by the insects’ neuronal
machinery and behaviour in various terrains. In search of a possible
mechanism for collision-free navigation, we constrained our neuro-
morphic model agent by known properties of the fruit fly’s visual
motion pathway, which has been described at a neuronal level27. The
apparent motion of surrounding objects is processed in several
columnar organised layers of neurons in the optic lobe. The T4 and T5
neurons, which exist in each retinotopic column in the second neu-
ronal layer of the visual motion pathway, are thought to be at the
output of elementary local motion processing in flies28,29. Large neu-
rons spatiotemporally integrate the responses of the elementary
motion detectors and project to descending neurons conveying OF
information to structures in the centre of the brain (the central com-
plex and fan-shaped body) and to the motor control centres. At these
downstream neuropils, integration of different information streams
takes place27,30, and the locomotory movements are orchestrated.
Therefore, we mimicked the neuronal response of T4/T5 cells and
spatiotemporally integrated them. These signals are then processed in
a neural network, providing direction information for locomotion
control to avoid collisions. We assessed our neuromorphic model
agent’s obstacle avoidance and gap-finding capabilities based on
closed-loop simulations and real-world experiments in various envir-
onments. Our test environments were similar to those in which the
corresponding biological evidence for obstacle avoidance of flying
insects was obtained (see above). Our agent stays away from walls in a
box, centres in corridors, crosses gaps andmeanders aroundobstacles
in cluttered environments. These results illustrate that neuromorphic
principles that replicate an entire action-perception loop canprovide a
useful heuristic tool for understanding the complex behaviour of
biological systems. Besides, the computationally parsimonious neu-
romorphic principles implemented in our agent could also be applied
in autonomous vehicles.

Results
The task for our neuromorphic and bio-inspired agent is to travel
safely in different environments. Insects accomplish this task notably
by extracting optic flow (OF) retinotopically and integrating this
information across their visual field31. Our agent’s inner computation
replicates this processing. The Spiking Neural Network (SNN) model
tested in closed-loop within different environments consists of two
main components, namely a retinotopical map of insect-inspired
motion detectors, i.e. spiking Elementary Motion Detectors (sEMDs)32,
and an inverse soft Winner-Take-All (WTA) network, as previously

suggested in open-loop for collision avoidance32,33 (see Fig. 1f and
Supplementary Fig. 3). The former extracts OF, which, during trans-
lational motion, is inversely proportional to the agent’s relative dis-
tance to objects in the environment. The latter searches for a region of
low apparent motion, hence an obstacle-free direction (see Fig. 1a–e).
The advantageof this searchusing the inverse softWTA is the response
flexibility, which may increase the robustness in contrast to proposed
alternatives, such as balancing the OF or responding to the average or
maximum OF. After the detection of such a path in the environment,
the agent executes a turn towards the new movement course. We
characterised the network in two steps. First, we evaluated the sEMD’s
response and discussed similarities to its biological counterpart, i.e.
T4/T5 neurons, which are thought to be at the output of elementary
motion processing in fruit flies28,29. Second, to further demonstrate the
real-world applicability of sEMD-based gap finding in an SNN, we
performed closed-loop experiments.We simulated anagent seeing the
world through an event-based camera in the Neurorobotics physical
simulation platform34. The camera output was processed by the SNN,
resulting in a steering command. We tested the performance of this
simulated agentwith the sameparameters in all reported experimental
conditions hereafter. These experimental conditions were inspired by
experiments with flying insects. Additionally, we evaluated the per-
formance of the algorithm during a corridor-centering task in a real-
world environment.

Spiking elementary motion detector
The sEMD represents an event-driven adaptation for neuromorphic
sensory-processing systems of the well-established correlation-based
elementarymotion detector35. To evaluate the response of the sEMD in
the Nest simulator36, we compared the normalised velocity tuning
curves of its ON-pathway (only events generated by light increments)
to the corresponding normalised tuning curve of Drosophila’s T4 and
T5 neurons37. Both velocity tuning curves are determined in response
to square-wave gratings with 100% contrast and a wavelength of 20∘

moving at a range of constant velocities (with temporal frequencies
from 0.1 to 10 Hz). The sensory data used in this paper were recorded
with a DVS PAER128 event-based camera using the slow dvs128 bias
setting provided in jAER viewer (for more details, see Supplementary
Notes 1 and Supplementary Notes 2). Similar to the tuning curve of
Drosophila’s T4 and T5 neurons, sEMD preferred direction exhibits a
bell-shaped velocity tuning curve (see comparison Fig. 2a and b),
which has the maximum response (mean population activity) at 5 Hz
(100deg s−1). The null direction response is much lower than that to
the preferred direction.

The sEMD model, which is composed of two macro pixels (2 × 2
pixels) of an event-based camera, two Spatio-Temporal Correlation
(SPTC) neurons to remove uncorrelated noise and one Time Differ-
ence Encoder (TDE) (see Fig. 1d), exhibits a drop in its output response
when the temporal frequency exceeds 5Hz as can be seen in Fig. 2a.
This drop is, however, not explainedby theTDE’s transfer function (see
Subsection “Spiking elementary motion detector”). We would expect
the response to saturate at high temporal frequencies since the TDE
produces interspike intervals and firing rates inversely proportional to
the time difference between the two inputs of the TDE. Rather than
being a consequence of the motion detector model itself, we hypo-
thesise that the drop in response is a consequence of the spatio-
temporal band-pass filtering installed by the SPTC layer. While low
temporal frequencies lead to unambiguous spatiotemporally corre-
lated and causal SPTC spikes from adjacent neurons, high temporal
frequencies lead to anti-correlated and non-causal spikes. Thus, the
TDE can no longer (spatially) match the spikes unambiguously, which
results in a bell-shaped velocity tuning curve of the preferred direction
response.

A similar bell-shaped velocity tuning curve can be observed in
Drosophila’s T4 cells (see Fig. 2b)14,28,37. While Drosophila’s velocity
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tuning curve peaks at 1 Hz in a walking state, the sEMD’s preferred
direction velocity tuning curve is similar but peaks at 5Hz. This sug-
gests that the reported parameter set of the sEMD tunes it to slightly
higher relative velocities. The model performs in a robust way for a
wide range of illuminations (from 5 lux to 5000 lux) and relative
contrasts (50% response reached approximately 35% relative contrast),
as shown in Supplementary Fig. 2. A qualitative comparison with bio-
logical data supports our hypothesis that the sEMD approximates the
elementary motion processing in the fly brain (see comparison
between Fig. 2a and b). This processing is part of the input to the flight
control and obstacle avoidancemachinery. Hence, it can be used as an
input for determining a collision-free path.

Agent’s behaviour
The robot’s obstacle avoidance performance was evaluated in an
experiment with the agent moving through environments with
varying obstacle densities. Two more experiments were designed to
further understand the mechanisms underlying the robot’s move-
ment performance. The agent’s gap-crossing behaviour and tunnel-
centring behaviour were investigated. These behaviours were ana-
lysed in insects in a plane. Accordingly, we limited our agent to a 2D
motion.

Agent’s behaviour in corridors (real world)
One common experiment to characterise an agent’s motion response
to visual stimuli is to observe its centring behaviour in a tunnel
equipped with high contrast patterns on the walls. The simple geo-
metry of the environment enables the observer to directly relate the
visual input with the agent’s actions. In bees and flies, an increase in
flight velocity proportional to the tunnel width has been
observed16,38,39. In very narrow tunnels, insects show a pronounced
centring behaviour, which decreases with increasing tunnel width. To
prove the real-time capability and robustness of the SNN on neuro-
morphic hardware, we evaluated the system in a real-world scenario.
Similar to the corridor experiment with bees and flies, the robotic
platform described in Section “Robotic agent (real world)” was tested
in a narrow (approximately 30 cm wide) and a wide corridor
(approximately 50 cm wide; see Supplementary Fig. 11). The robot
itself is approximately 20 cm wide. The robot centred well in nine out
of ten runs in the wide corridors (see Fig. 3e). In the remaining run, the
robot crashed into the wall at the very beginning since it was not able
to find an obstacle-free heading direction (see Supplementary
Fig. 12b). In another run, the robot did a 360° turn close to the end of
the corridor. In the narrow corridor, the robot never crashed directly
into the wall (see Fig. 3d) since the WTA always chooses an obstacle-

Fig. 1 |Workingprinciple of theobstacle avoidancenetwork is demonstrated in
an example run in a cluttered environment. Robot is moving in a straight line
with a velocity of 15 a.u. s−1 (5m s−1). aTop view of robotic agent in the environment.
b Robot camera view. The sky pattern is not visible to the robot. The ground is kept
free of textures since it would cause events over the whole horizontal field of view.
This problemcanbe avoidedby removing the ground from the agent’sfieldof view.
c Spiking activity of the SPTC layer. It removes camera noise by bypassing spatio-
temporally correlated events. d Spiking activity of the Onset (ONSET) layer. It
reduces the 2D retinotopical map to a 1D horizontal map. Furthermore, it
strengthens edge detection and reduces the number of spikes by self-inhibition.
e Spiking activity of theTDE andWTA. TDE translate the time-to-travel between two
adjacent pixels into a spiking rate. The single WTA spike indicates an obstacle-free
direction. This spike activates the agent’s next turning movement (saccade) by
exciting one of the two motor populations in (f). The location of the winning
neuron defines the direction and duration of the upcoming turn. f Obstacle

avoidance network with spiking Elementary Motion Detectors (sEMDs) consisting
of an event-based camera, spatiotemporal correlation (SPTC) population, ONSET
population and two Time Difference Encoder (TDE) populations. Event-based
camera (sensory input), SPTC population (noise filter and downsampling), ONSET
population (reduces 2D retinotopical map to 1D and reduces the number of spikes
by self-inhibition), TDE populations (time-to-travel translation to spike rate and
inter-spike-interval (ISI)), Integrator (INT) population (spatial convolution from 64
to 16 neurons and slowdynamics due to long time constants), inverseWinner-Take-
All (WTA) population (detects a minimum of OF, hence the gap), Escape Turn (ET)
population (triggers turn when inverse WTA can not find direction), Motor (MOT)
populations (control turn direction and duration), Optic Flow Integrator (OFI)
population (modulates robot velocity), Poisson Spike Generators (POIS) (drive
decision process with Poisson spike process) and Global Inhibition (GI) population
(suppresses losing neurons in inverse WTA population and ET population).
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free movement direction (see Fig. 3g). In two out of these runs, the
agent slightly touched the left wall. We observed an overall tendency
toward the left of the corridor. A slight miss-alignment between the
robot’s field of view and its movement direction can explain this ten-
dency. In the control experiment in which the obstacle avoidance
population of the SNN did not receive any visual input, the robot
turned directly to the left or right. It crashed into a wall in nine out of
ten cases (see Fig. 3f). In the tenth case, the robot meandered through
half of the tunnel before it collidedwith awall. This control experiment
shows that the visual input itself and not the intrinsic movement
behaviour of the robot drives the centring behaviour.

Agent’s behaviour in corridors (simulation)
After successfully testing the corridor centring behaviour in the real
world, we also evaluated the agent’s performance in simulation. We
performed experiments in three tunnels with different tunnel widths.
Similar to the biological role model, the robot’s velocity stands in a
positive linear relationship with the tunnel width (see Supplementary
Fig. 9). The measured velocity in a.u. per second is 1.25 ± 0.13,
1.62 ± 0.64, 2.00 ±0.83 and 2.31 ± 0.93 for tunnel widths of 13.3, 16.6,
20, and 23.3 a.u., respectively. Furthermore, the robot always stays in
the centre of the tunnel, especially in very narrow tunnels (see Fig. 3c).
The deviation from the tunnel centre increases with the tunnel width
(for the simulated robot, see Fig. 3a–c, physical robot see Fig. 3d–e),
similar to observations in blowflies38.

Agent’s behaviour in densely cluttered environments
(simulation)
We evaluated the agent’s obstacle avoidance performance in an arena
with an obstacle density (obstacle density: percentage of the total area
covered with objects.) between 0 and 38 % (0.05 objects per square
a.u.) (see SupplementaryNotes 3 and SupplementaryNotes 4 formore
details). The simulation stops either when the robot collides with an
obstacle (collision: simulated robot’s outline overlaps with the area
occupied by object), when it leaves the arena, or when the simulation
real-world-time of 6 h is over (approximately 1 minute of simulation
time depending on the intensity of computation required). At low
obstacle densities (<5%), many collision-free paths exist. The robot
exhibits a randomwalkwhen the decision-making inverseWTAneuron
population does not receive sufficient sensory drive. The inverse WTA
receives spikes sampled from a Poisson process (see Figs. 1d and 4a).
The resulting activity is dominatedby this background activity, and the
inverse WTA thus selects a winning neuron, i.e. a new heading direc-
tion, at random. This interplay of the Poisson background drive and
feed-forward-driven OF results in a probabilistic decision process. The

decisions made by the network become less probabilistic with
increasing obstacle density since the robot starts to follow the locally
low object-density paths forming in the environment (see Fig. 4b). At
obstacle densities higher than 20%, most of the gaps in the environ-
ment are smaller than the robot’s minimum mean obstacle clearance
(obstacle clearance: robot’s distance to the centre of the closest
object.) so that the agent stays close to its start location (see Supple-
mentary Fig. 5 and Fig. 4c). A collision of the robot is generally caused
by the robot’s long reaction time in an environment with low mean
obstacle clearance, equivalent to a high obstacle density (see Supple-
mentary Fig. 5). Since the robot only senses visual stimuli in a 140°
horizontal visual field, symmetrically centred around its direction of
motion, there is a blind-spot behind the agent. After a strong turn, the
simulated robotmight be confrontedwith a previously not seen object
and directly crash into it. Nevertheless, the agent shows a very robust
obstacle avoidance behaviour in a large range of different environ-
ments with obstacle densities between 0 and 38%. The robot’s mean
success rate amounts to 97%.

While local OF is instrumental in finding gaps, global OF provides
information about the clutteredness of the environment. Flies and
bees decrease their flying speed when the clutteredness of the envir-
onment increases38,39. Our agent regulates its speed based on the
global OF and consequently, it moves slower in denser regions of
the environment (see Supplementary Fig. 7). To examine the effect of
the velocity dependency, we ran a second experiment with the robot
moving with constant velocity (see Fig. 4e and Supplementary Fig. 6).
While with the velocity control only few collisions were encountered,
for obstacle densities higher than 24% the number of collisions sig-
nificantly increased when the velocity was kept constant.

Agent’s behaviour in gaps (simulation)
When presented with a choice between two gaps of different sizes,
bees prefer to pass the larger gap6,9. This behaviour decreases the
insect’s collision probability significantly. Our agent chooses a larger
gap by using a simple probabilistic integration mechanism, which is
explained in the following. These findings imply that bees might also
use a simple mixture of goal-directed movement and probabilistic
exploration rather than complex decision-making to choose a gap8.

In our setup, the simulated robot’s upcoming movement direc-
tion is determined by an inverse WTA spike occurring in an obstacle-
free direction, as shown in Fig. 1a–c. The exact functionality of prob-
abilistic decisions in an inverse WTA is further explained in the Meth-
ods in Section “Obstacle avoidance network” paragraph 4. When
confronted with a small and a large gap the probability of an inverse
WTA spike appearing in the greater gap is higher. Hence, we assume

Fig. 2 | sEMD response, Drosophila T4/T5 neuron response and robotic agent.
a Response of sEMD Preferred direction population and Null direction population
in theNest simulator to a squarewave gratingmoving from top tobottomrecorded
with the PAER128 Event-based sensor. For sEMD response on the SpiNNaker neu-
romorphic hardware platform, see Supplementary Fig. 2. b Response of Preferred
direction and Null direction T4/T5 neurons in Drosophila when presented with a

square wave grating similar to (a). Data from Haag et al.37. c Robotic platform with
PAER128 Event-based sensor, SpiNN-3 board and AERnode FPGA board for com-
munication between the sensor, SpiNNaker board and motor controller. A small
router is used to load code onto the SpiNNaker board, and a power bank and a
battery pack power the hardware and the motors, respectively. The whole robotic
system weighs 2.3 kg.
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that the robot automatically followspathwayswith a larger gap size. To
evaluate this assumption we observed the robot’s gap-crossing beha-
viour in an arena with two alternative gaps (see Fig. 4d). The robot can
decide to cross any of the two gaps or stay in one-half of the arena.
There is a competition between staying in the open space and crossing
a gap. The larger the gap size is, the more likely the robot will cross a
gap. We investigated the probability of crossing gaps by having two
gaps, one with a fixed gap size (10 a.u.) and the other with a gap size
between 3 a.u and 17 a.u.We calculated the gap entering probability by
comparing the number of passes through both gaps. As expected the
entering probability increases with gap size (see Fig. 4f). However, for
smaller gap sizes, the probability of a spike pointing towards open
space in the inverse WTA becomes significantly higher. Therefore, the

robot prefers to pass through gaps of larger size. Besides the gap
width, the arena size changes the passing probability. In a smaller
arena, the simulated robot stays closer to the gap entry, which
increases the relative gap size sensed by the agent. Therefore, a larger
part of the vehicle’s visual field is occupied by the gap entry, which
increases the probability of a spike occurring in the gap area.When the
obstacle density exceeds 20%, most gaps fall below the gap entering
threshold so that the robot can not leave the arena anymore (see
Supplementary Fig. 5a and Fig. 4).

Discussion
Flying animals master the art of avoiding collisions in a variety of
environments. The abilities of volant insects, such as bees and flies, to

Fig. 3 | Corridor centring experiments. a–c Simulated corridor centring results
normalised over the width of the corridor increasing from (a to c). The legend
shows the corridor width in a.u. d–g Real-world corridor centring experiment
results from the setup shown in Supplementary Fig. 11. d Robot’s movement tra-
jectories for ten runs through a narrow corridormoving from left to right. Dots and
lines indicate the centre of mass of the robot. The blue area represents the whole

area covered by the approximately 20 cmwide robot combined for all ten runs. The
frequency of occurrence increases from dark blue to light blue. e Robot’s trajec-
tories for ten runs in a wide corridor. fControl experiment. Robot’s trajectories in a
wide corridor with no visual input. g Spiking activity in the robot’s obstacle
avoidance network during an example run in the narrow corridor. TDE spikes
indicate the walls, and WTA spikes indicate the next turn of the robotic agent.
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manoeuvre in various environments have been studied systematically.
Several mechanisms have been proposed to explain flight control and
collision-free navigation in cluttered environments. Nevertheless, no
mechanism has yet been found that can explain how insects solve
navigational challenges, ranging from maintaining a course to mean-
dering without collision in complex environments by manoeuvring
through gaps. Inspired by the fly’s neuronal machinery, we demon-
strated a system-level analysis of a distributed, parallel and asynchro-
nous neural algorithm mimicking several aspects of obstacle
avoidance in insects. Our algorithm has the potential to be integrated
into goal-directed routines. Our network comprised approximately 4k
neurons and 300k synapses, which is well below the number of neu-
rons in an insect brain. The agent guided by the algorithm robustly
avoided collisions in various situations that are also solved by flying
insects, from centring in a tunnel to crossing densely cluttered terrain
by finding gaps. These behaviours were accomplished with a single set
of parameters that were not optimised. We discuss our results in
relation to the pertinent biological and engineering research.

Our agent showed many similarities to flying insects in its beha-
viour in spatially constrained environments. It meandered in cluttered
terrains (Section “Agent’s behaviour in densely clutteredenvironments
(simulation)”), selected gaps (Section “Agent’s behaviour in gaps
(simulation)”), modulated its speed as a function of object proximity
(Section “Agent’s behaviour in corridors (simulation)”) and centred in
tunnels (Section “Agent’s behaviour in corridors (simulation)”) while
using a saccadic control strategy (Section “Obstacle avoidance
network”)9,16,38–40.

Navigating through cluttered terrain involves avoiding obstacles
ahead selecting possible passages between obstacles while maintain-
ing the intended overall course. The selection of passages can be
reduced to a binary choice paradigm (e.g. left vs. right, up vs. down,
etc.). In such experimental paradigms, flying bees tend to prefer the
larger of the two gaps, but this choice also depends on individuality9

and the aerodynamical forces constraining the generation of
movements11. Like bees, our agent selected the larger of the two gaps
(Section “Agent’s behaviour in gaps (simulation)”). Gap crossing

requires bees and our agent to detect free passages. Such passages
should only be passed when the agent’s size is not wider than the gap
width. Our agent crossed gaps of 5 times its body width. In contrast,
bees cross a single gap size as small as 0.5 times their wingspan but
travel such gaps sidewise because their body length is shorter than
their wingspan. They traverse gaps forward as small as 2.5 times their
wingspan8. The discrepancy between our agent and the bees might be
the consequence of different active vision strategies observed in bees
and implemented in our agent. Our agent moved according to an
active gaze strategy of saccadic turns interspersed by translation and
relied solely on OF. However, bees assess the possibility of crossing a
gap by performing sideward scanning manoeuvres before they start
crossing it. The more difficult the gap is to cross, the longer are such
manoeuvres8. In addition to optic-flow cues, flying insects use the
brightness within the gap relative to the brightness surrounding
the gap6. The combination of brightness and optic-flow cues may help
the bees steer through small gaps.

Our agent moved through cluttered environments with an
obstacle density between 0 and 38%, with 97% of collision-free travels.
We examined the simulated robot’s performance to understand the
essential behavioural components which led to such a low collision
rate. The most significant ingredient was the implementation of the
dependency of locomotion velocity on the strength of the global OF.
This insect-inspired regulation of velocity from optic flow improved
the obstacle avoidance performance of the agent from amean success
rate of 85% to 97% (see Fig. 4e). We propose that this kind of velocity
controller could be regulated in insects by a simple feedback control
loop. This loop changes the agent’s velocity inversely proportional to
the global OF integrated by a subset of neurons (see Section “Obstacle
avoidance network”).

To traverse both cluttered and bare terrains, flying insects require
maintaining an intended course. Course control in flying insects has
been studied by letting insects travel along a corridor. The insects tend
to centre in the middle of the corridor width16. This behaviour is sug-
gested to be based on balancing the OF on both eyes17. Our agent also
maintains a centred course in a corridor without implementing a

Fig. 4 | Agent’s behaviour in different simulated environments. a–c Trajectories
recorded in arenas with increasing obstacle densities. The first two seconds of the
trajectory in (a) are shown in Supplementary Fig. 8 to illustrate the saccadic
movement strategy of the robot. d Simulated robot’s trajectory in the gap crossing
experiment in a large arena. Colour represents time (t0: light blue, tend: magenta).
e Simulated robot’s performance in cluttered environments as shown in a–c with

modulated velocity (black) andfixed velocity (grey). Agent’s success rate, hence the
number of runswithout collisions. 79 runswere performed for the experiment with
adaptive velocity, and 56 runs for the experiment with fixed velocity. 1 a.u. = 30 cm.
f Gap crossing probability in dependency of the gap width for a large arena in (d)
and a small arena.
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mechanism of OF balancing. It seems that the agent’s centring beha-
viour might be due to moving in the direction of the largest time to
contact in the visual field (i.e. the region of the lowest apparent
motion). Further behavioural experiments with volant insects are
required to disambiguate between optic-flow balancing or following
areas of lowapparentmotion. Bymanipulating theOFperceivedby the
insects either in virtual reality (e.g.41,42) or mechanised environments,
one could create a conflict between the two hypotheses and clarify the
strategies used by volant insects.

Our model shares several similarities with the neural correlates of
visually-guided behaviour in insects, including motion-sensitive
neurons27, an integration of direction43, an efference copy mechan-
ism at the level of integrating neurons (saccadic inhibition from the
motor neurons to the inverse WTA and visual input neurons)44, and
neurons controlling the saccade amplitude40. Our agent adopted an
active gaze strategy due to a saccadic suppression mechanism. When
the inverse WTA layer in the model did not “find" a collision-free path
(i.e. a solution to the gap-finding task), an alternative response (here a
U-turn) was triggered thanks to global inhibitory neurons and
excitatory-inhibitory networks (GI-WTA-ET, for more details, see Sec-
tion “Obstacle avoidance network”). The neuronal correlate of such a
switchhas not yet been described, to our knowledge, for flying insects.
Our model, thus, serves as a working hypothesis for such a neuronal
correlation.

The hardware used in this work, i.e. event-based sensors and
spikingneural networks, provide apowerful computational framework
to explore the principles of insect-inspired obstacle avoidance on a
real robotic platform. Event-based sensors inherit precise timing
information in their sparse output, which enables real-time OF com-
putation using a simple elementary motion detector model. The out-
put of event-based sensors consists of short digital electric pulses. This
event data stream does not directly mimic the information processing
in the insect neural system,which ismainly based on graded potentials
continuous analogue signals. An expensive and error-prone conver-
sion to analogue signals, which are closer to the information proces-
sing in insects, does not appear useful45,46. The whole obstacle
avoidance network uses action potentials, successfully replicating the
response of motion-sensitive neurons and overall insect behaviour on
a high level of abstraction. This approach has the appealing advantage
of naturally leading to the extraction of computational principles
rather than putting emphasis on the precise emulation of single-cell
functionality. Therefore, our implementation, based on the asyn-
chronous processing of OF information, can be regarded as bio-
inspired and used to study processes downstream of elementary
motion detection.

Navigating insects are not solely guided by obstacle avoidance.
Instead, they have a goal, such as finding a mate, food resources, or
returning to their home. In contrast, our agent did not have such a
goal, i.e. a specific point in space it was required to reach. Rather, our
agent was attracted by regions in its visual field with low apparent
motion. The absence of a goal may explain some of the differences
observed at the behavioural level between our agents and insects. How
might the implementation of goal-directed behaviour change our
agent’s performance while crossing corridors, gaps, or cluttered
terrain?

When thegoal offlying insects is not located at the corridor centre
but on one side of it, they move along the wall47. In this situation, the
OF on both sides of the visual field is not balanced; rather, the OF
provided by the distant wall does not guide the insect’s movement in
the tunnel while approaching the goal but only that of the close wall,
i.e. the wall eliciting the faster OF. While our current agent centres in a
tunnel, extending ourmodel with a goal directionwould probably lead
to a similarwall-following behaviour. Sucha behaviourwill be explored
in future work.

We also observed that our agent crosses only gaps of at least five
times the agent’s body size, in contrast to the 2.5 times observed in
bees. A gap smaller than five times its body size was probably not
yielding sufficiently low regions of apparent motion in the agent’s
visual field. When confronted with a smaller gap, the agent moved in
another direction rather than into the gap region. The reported
behaviour of bees while crossing gaps focused on the foragers. These
individuals are motivated to return to their nest. Therefore, the gap
crossing behaviour in bees is likely to be a combination of following a
goal direction (returning to their nest) with avoiding a collision with
the gap. This might be accomplished by an algorithm proposed by
Hoinville et al. based on Bayesian cue integration. This framework
suggests that when two directions are aligned, the precision of the
integrated direction is greater than the single direction (similarly to
optimal cue integration). Thus, the integration yields a more precise
input to the motor control, perhaps permitting the bees to cross
small gaps.

Finally, agents driven by an obstacle avoidance routine display
search-like behaviour in cluttered terrain. They meander and circle
around the objects and do not move in an overall direction. By com-
bining such a routine with an overall direction, agents may display a
route-following-like behaviour through the clutter18. Our agent, guided
only by an obstacle avoidance routine, also displayed a search-like
behaviour in clutter. A first open-loop approach combining our
obstacle avoidance network with a goal direction provided already
promising results48. Thus, our agent may display behaviour closer to
volant insects by providing it with a goal to move towards.

Neuromorphic systems such as the robot used in this project
make use of the main principles of brain computing identified until
today. On the one hand, neuromorphic systems are a promising can-
didate for robotics and computing on the extreme edge. These sys-
tems have been shown to work power-efficient and in computational
real time. On the other hand, neuromorphic systems can be used to
understand how the brain works on a certain level of abstraction. In
this article, we aim to understand how obstacle avoidance could be
performed in flies and bees based on a gap-finding strategy rather than
actively avoiding obstacles. To date, most other insect-inspired
obstacle avoidance approaches rely on traditional cameras18,49–53.
Some approaches investigate algorithms for obstacle avoidance in
open-loop using event-based cameras32,54–61 (for a more detailed
comparison of mentioned approaches, refer to Milde et al.32). Closed-
loop obstacle avoidance behaviour has been demonstrated previously
using fully conventional sensory-processing (frame-based sensor and
CPUs/GPUs) approaches52,53 (for extensive reviewplease refer to Serres
et al. and Fu et al.17,62). Mixed-system approaches using event-based
cameras and conventional processing can also be found59,63. However,
only very few fully neuromorphic closed-loop systems exist64,65. To our
knowledge, the system presented in this article is the very first
extensive study on obstacle avoidance, which implements a whole
system from sensing until actuation purely in events and spikes. The
system incorporates almost all principles of spike coding in just a
single neural network. The obstacle avoidance network receives spike
timing information from the sensory input. It encodes the spike timing
into a rate code projecting onto a one-dimensional retinotopic map.
Spatial coding throughout almost all neural network populations
encodes the position of the visual input as well as the intended
movement direction. Further mechanisms such as saccadic inhibition,
proprioceptive feedback andbehavioural switches further increase the
richness of the network. Thus, this extensive study on obstacle
avoidance is the first insect-inspired closed-loop approach that
demonstrates the full potential of fully spike-based sensorimotor
systems.With a success rate between90% and 100%, our system shows
similar or even better performances than state-of-the-art obstacle
avoidance approaches (see Table 1). The computational pipeline runs
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on 1–4 Watts (DVS128 PAER: 23mW66, SpiN-3: 1–3.8W67, AerNode:
30mW for Neuromorphic Auditory Sensor68, implementation depen-
dent), which is four times more energy efficient than a comparable
approach on a Nvidia TX1 GPU using 6–16 Watts69. At the same time, it
is the first algorithm which can perform gap crossing, obstacle
avoidance in cluttered environments and corridor centring just using
one single set of parameters. This algorithm is a promising imple-
mentation that should be further explored in natural environments.
Natural environments lead to new challenging scenarios, such as low-
contrast walls, which cannot be detected by event-based cameras. The
optic flow of such areas can be predicted by interpolating the shape
and area of the object from the events at the edges. Another option
would be to add a different type of sensor, such as radar, which is able
to detect structureless objects. By extending our work in these direc-
tions we can make it even more robust for real-world applications.
Thus, this neuromorphic system brings us one step closer towards
exploring the full potential of Neuromorphic hardware for robotics.

Methods
Most experiments in this article were conducted in simulation using
the nest spiking neural network (SNN) simulator36 and the Neuror-
obotics Platform environment34 (parameters see Supplementary
Table 1). A corridor-centring experimentwas conducted in a real-world
corridor using a robotic platform equipped with an event-based
camera (the dynamic vision sensor22) as visual input and a SpiNN-370

board for SNN simulation in operational real-time. Sensory data for the
sEMD characterisation (see Section “Spiking elementary motion
detector”) were recorded with an event-based camera in a real-world
environment. The hardware, software, SNN models and methodolo-
gies used in this article are explained in the following.

Spiking neural networks and event-based sensors
The insect brain is a great rolemodel for novel emerging technologies.
The massively parallel recurrent 3D network with localised memory is
able to perform complex tasks such as navigation in operational real-
time while requiring resources only in the range of milliwatts. Neuro-
morphic hardware is one emerging technology which aims at imple-
menting principles of brain computation in CMOS and novel devices.
Neuromorphic systems are hardware implementations of massively

parallel networks of neurons and synapses71. Today, a great variety of
neuromorphic hardware can be found, ranging from asynchronous
subthresholdmixed analogue/digital CMOS implementations72,73 up to
digital, clocked, spiking neural network simulators74. While different
approaches benefit from different aspects of brain-inspired comput-
ing, such as asynchronous computation72,73, sparsity, local memory75,76

and low power consumption all of them aim to get one step closer
towards brain-inspired computing. In combination with event-based
sensors, neuromorphic hardware paves the way for a new generation
of brain-inspired systems. Event-based sensors sample changes in the
environment and only convey novel information to the sensory out-
put. This kind of sampling reduces the amount of data and, therefore,
the required computation and related power consumption while
increasing the temporal resolution. At the same time, event-based
sensors are ideally suited as input to spiking neural networks. Both
event-based sensors, as well as spiking neural networks carry infor-
mation in the form of short digital pulses. In this article, we used the
DVS PAER128, an event-based vision sensor, as input to the spiking
neural network. We collected real-world data using the event-based
camera22 to characterise the sEMD response. The sensor comprises
128 × 128 independently operating pixels which respond to relative
changes in log intensity, i.e. temporal contrast. When the change in
light intensity exceeds an adaptive threshold the corresponding pixel
produces an event. The address of the pixel and polarity are commu-
nicated through an address event representation bus77. Light incre-
ments lead toON-events, whereas light decrements lead toOFF-events
(polarity). The sensor reaches a dynamic range of more than 120 dB
and is highly invariant to the absolute level of illumination due to the
logarithmic nature of the switched-capacitor differencing circuit22,66.

Spiking elementary motion detector
In 2018, a new insect-inspired building block for motion vision in the
framework of SNNs was proposed. This building block is designed to
operate on the output event stream of event-based cameras and is
called the spiking elementary motion detector (sEMD)32. The sEMD is
inspired by the computation of apparentmotion, i.e. opticflow (OF), in
flying insects. In contrast to its gradient-based rolemodel, the sEMD is
spike-based. It translates the time-to-travel of a spatiotemporally cor-
related pair of events into a direction-dependent output burst of

Table 1 | Comparison of different insect-inspired obstacle avoidance approaches

Author Sensor Capability Scenario Environment Vehicle Success rate Algorithm

Our work Camera OA Clutter Sim Wheeled robot 90–100 (36–0% OD) OF SNN, adap. velocity

Our work Camera OA Corridor Real Wheeled robot 95 OF in SNN

Lu85 Depth OA Clutter Sim MAV 82–95 (velocity
2.25% OD)

OFM

Lu85 Depth OA Clutter Sim MAV 81 (2.25% OD) DDPG

Lu85 Depth OA Clutter Sim MAV 87 (2.25% OD) NAF

Cho (2019) Camera OA Junction, Corri-
dor, Ramp

Sim/real MAV – 3D OF balancing

Nous (2016) Camera OA & goal Clutter and goal Sim/real Drone 0–100 (20–1% OD) Force field

Nous (2016) Camera OA & goal Clutter and goal Sim/real Drone 20–100 (20–1% OD) Potential field

Nous (2016) Camera OA & goal Clutter and goal Sim/real Drone 20–100 (20–1% OD) Rule based

Bertrand (2015) Camera OA & goal Clutter and goal Sim Circle – Nearness vector
from OF

Fu (2016) Camera OA Clutter Sim/real 2-wheel-robot 85–95 (threshold
tuning)

LGMD SNN

Zingg (2010) uEye camera CC Corridor Sim MAV – OF balancing

Hyslop (2010) Camera OA Urban environment Sim MAV – WFI

Sanket (2018) Camera GD Gap Real Quadrotor 85 TS2P

OA obstacle avoidance, CC corridor centring, OD obstacle density, OF optic flow, GD gap detection, SNN spiking neural network, OFM only forward manoeuvre, DDPG deep deterministic policy
gradients, NAF normalised advantage functions, TS2P temporally stacked spatial parallax,WFI wide field integration, LGMD lobula giant movement detector.
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spikes. While the sEMD provides OF estimates with higher precision
when the entire burst is considered (rate code), the interspike interval
distribution (temporal code) within the burst provides low-latency
estimates. The sEMDconsists of twobuilding blocks: a retina to extract
visual information fromthe environment and theTDE,which translates
the temporal difference into output spikes (see Fig. 5a). When the TDE
receives an input spike at its facilitatory pathway, an exponentially
decaying gain variable is generated. The magnitude of the synaptic
gain variable during the arrival of a spike at the trigger synapse defines
the amplitude of the generated excitatory post-synaptic current, thus
implementing direction sensitivity. This current is integrated into the
sEMD’s membrane potential, which generates a short burst of output
spikes. Therefore, the number of output spikes inversely encodes the
stimulus’ time-to-travel (see Fig. 5e) between twoadjacent input pixels.
The motion detector model has been implemented and evaluated in
various software applications (Brian2, Nengo, Nest), on neuromorphic
digital hardware (SpiNNaker, Loihi), on FPGA and also as an analogue
CMOS circuit32,48,78,79.

Obstacle avoidance network
The obstacle avoidance network infers a collision-free direction from
its sEMD outputs and translates this spatial information into a steering
command towards open space (See Fig. 1d and Supplementary Fig. 3
for a more detailed version, network parameters and connections see
Supplementary Tables 4–7). The first layer, the event-based camera,
generates an event when a relative change in log illumination, i.e.
temporal contrast, is perceived by a pixel (see Fig. 1b). A macropixel
consists of 2 × 2 event-based camera pixels. Each macropixel projects
onto a single current-based exponential leaky integrate and fire (LIF)
neuron (hereafter referred to as LIF for the sake of clarity) in the spa-
tiotemporal correlation (SPTC) layer (in Nest the neuron model used
throughout this study is called iaf_psc_exp). Each SPTC neuron emits a
spike only when more than 50% of its receptive field elicits an event

within a rolling window of 20ms. This mechanism is implemented by
setting the spiking threshold high enough so that at least two con-
secutive spikes are needed for the membrane potential to reach the
threshold. Themembranepotential quickly decreases after every spike
due to a leak. Hence, the spikes have to happen in a short time period
to reach the threshold. Therefore, the SPTC population removes
uncorrelated events, which can be interpreted as noise. Additionally, it
decreases the network resolution from 128 times 40 pixels to 64 times
20 neurons.

The next layer extracts OF information from the filtered visual
stimulus. OF is described as the apparent motion of objects over the
visual field of a moving agent. While translational OF is inversely pro-
portional to the relative distance of objects, rotational OF does not
contain any depth information. Hence, inspired by findings in insects,
we have divided the agent’s movement behaviour into two phases,
intersaccades during which the agent moves straight forward and
extracts depth information, and saccades duringwhich the agent turns
towards the newmovement direction (see Supplementary Fig. 8). The
layer in our network which extracts OF consists of two TDE popula-
tions sensitive to the two horizontal cardinal directions respectively.
Each TDE receives facilitatory input from its adjacent SPTCneuron and
trigger input from its corresponding SPTC neuron. The facilitatory
input might arise either from the left (left–right population) or from
the right (right-left population). The sEMD output encodes the OF as a
number of spikes in a two-dimensional retinotopical map (see Fig. 1c).

Since the agentmoves on the ground it only estimates the amount
of horizontal OF. Hence, the subsequent Integrator (INT) population
integrates the spikes of each sEMD column in a single LIF neuron. This
reduction to a one-dimensional map reduces the number of neurons
needed in the subsequent layers by a factor of 40.

The subsequent population, an inverse softwinner-take-all (WTA),
determines the agent’s movement direction towards aminimumofOF
in the one-dimensional retinotopical map (see Fig. 1c, purple stripe).

Fig. 5 | Spiking elementary motion detector model adapted from84. a sEMD
model consisting of visual input and TDE unit. Two adjacent retina inputs are
connected to the facilitatory synapse (fac) and the trigger synapse (trig), respec-
tively. The facilitatory synapse controls the gain of the trigger synapse’s

postsynaptic current (epsc), which integrates into the LIF neuron’s membrane
potential, whichproduces output spikes (out).bModelbehaviour for small positive
Δt. c Behaviour for large positive Δt. d Behaviour for negative Δt. e Number of
output spikes over Δt.
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SinceOF encodes the relative distanceof objects during a translational
movement, this direction represents an object-free pathway. The
inverted WTA receives inhibitory input from the INT population, not
excitatory input, as done in a classical WTA network. Hence the term
inverted. The Poisson spike generators (POIS) inject Poisson-
distributed background spikes, ensuring that one neuron within the
inverseWTAwins at anymoment in time, even in the absence of OF. In
the absence of INT input, the inverse WTA neuron with the strongest
POIS input wins and suppresses the activity of all others through the
global inhibition (GI) neuron, leading to random exploration. Local
lateral excitatory connections in the inverse WTA population
strengthen the winning neuron (for the sake of clarity, recurrent
excitation is not shown in Supplementary Fig. 3). Due to the con-
sistently changing nature of the POIS spike trains the winner changes
frequently, and the agent executes a random walk (see Fig. 4a). When
the agent approaches an object the position and relative distance of
the obstacle is indicated by a number of spikes in the INT population.
These spikes strongly inhibit the inverse WTA at the corresponding
position and its closest neighbours so that this direction cannot win.
Therefore, the active neurons in the inverse WTA always represent an
obstacle-free direction. In case no object-free direction has been found
for approximately 220 milliseconds since the start of an intersaccade,
the straight movement phase during which the agent collects distance
information, the escape turn (ET) neuron emits a spike. This neuron is
only weakly excited by the POIS population and connected to the GI
neuron, similar to the inverse WTA population. The ET neuron only
wins when it has not been inhibited for a long time; hence, the
inverse WTA was not able to generate a spike due to strong overall
inhibition.

The final layer, called the Motor (MOT) population, translates the
activity of the inverse WTA population and the ET neuron into a turn
direction and duration using pulse-width modulation to control the
motors. During the inactivity of the MOT population, the last pulse-
width modulation signal drives the motors. The left turn MOT popu-
lation is activated by inverse WTA neurons on the left side, and the
right-turn population by inverse WTA neurons on the right side. Since
the turning velocity is always constant, the angle of rotation is defined
by the duration of the turn. This duration of the excitatory wave in the
MOT population relates proportionally to the distance of the winning
inverseWTA neuron from the centre of the horizontal visual field. The
duration saturates for neuron distances higher than nine neurons.
Since a left turn and a right turn are mutually exclusive events, strong
inhibition between the twoMOT populations ensures to disambiguate
of the MOT layer outputs. In case the ET neuron emits a spike, the
excitatory wave passes through most neurons of the left MOT popu-
lation. Hence, the turning duration is slightly higher than for any turn
induced by the inverse WTA population. The agent turns completely
away from the faced scene since no collision free path was found in
that direction.

During the execution of a turn, the gap finding network receives
mainly rotational OF. This type of apparent motion does not contain
any depth information, and therefore, no new movement direction
should be chosen during or shortly after a turn. Therefore, the MOT
layer strongly inhibits the inverseWTAandSPTCpopulations aswell as
the ET neuron. After a turn has finished and none of the MOT popu-
lations is spiking anymore, the agent moves purely translatory. The
movement speed during this phase vints is defined in Eq. (1) where �f OFI
is the mean firing rate of the optic flow integrator (OFI) population.
This guarantees that the velocity is adapted to the level of cluttered-
ness, ensuring slow movement in complex environments. During this
movement phase, called intersaccade, the agent integrates transla-
tional OF information in its INT population. The inverse WTA popula-
tion slowly depolarises from its strongly inhibited state and releases a
spike, indicating the new movement direction. This spike triggers the
next saccadic turn of the robot while the identifier of the winning

neuron defines the direction and duration of the movement.

vintsðms�1Þ= 1� �f OFI × 0:001 ð1Þ

sEMD characterisation (real-world recordings and SpiNNa-
ker/Nest)
For the sEMD characterisation, we stimulated an event-based camera
with a 79° lens (see Section “Event-based cameras in Gazebo (simula-
tion)”) using square-wave gratings with a wavelength of 20° and var-
ious constant velocities from 0.1 to 10Hz. These recordings were
performed in a controlled environment containing an event-based
camera, an LED light ring and a moving screen which projects
exchangeable stimuli (see Supplementary Fig. 1). The contrast refers to
absolute grey-scale values printed on white paper to form the screen.
However, given the printed contrast, we calculated the Michelson
contrast as follows:

Imax � Imin

Imax + Imin
=
Imax � Iminð1� CprintedÞ
Imax + Imaxð1� CprintedÞ

=
Cprinted

2� Cprinted
ð2Þ

To show themodel’s robustness to a wide range of environments,
we varied the following three parameters in the recordings: The illu-
mination, the grating velocity and the grating’s contrast (see Supple-
mentary Table 1). The event-based camera was biased for slow
velocities. The sEMD model (see Supplementary Fig. 3, first three
populations) was simulated on SpiNNaker and in Nest with the neuron
parameters defined in Supplementary Table 3. The mean population
activity of the preferred direction and null direction population were
calculated (see Fig. 2a). For the closest comparability to the biologi-
cally imposed environment parameters, we chose to compare and
discuss the sEMD’s velocity tuning curve for a grating contrast of 100%
and an illumination of 5000 lux.

Robotic agent (real world)
We developed a physical robotic agent to validate the real-world
applicability of ourmodel (see Fig. 2b). The robot receives visual input
from a Dynamic Vision Sensor with a horizontal viewing angle of 110°.
The event-based camera sends its events to a SpiNN-3 board, which
contains a simplified version of the obstacle avoidance network
described in Section “Obstacle avoidance network”. The network does
not require any OFI neurons since the agent moves with a constant
velocity of around 0.1m s−1. No ET population is included. The motor
control is regulated by an FPGA-based AERnode board. The board
receives input from one SpiNNaker output neuron population. It
translates the spiking input into pulse-width-modulation signals to
control the motors. The pulse width of the signal depends on the
identifier of the output neuron spiking on the SpiNNaker board. Two
pulse-width-modulation signals are used to move the robot in a dif-
ferential steering mode.

Event-based cameras in Gazebo (simulation)
Kaiser et al.80 developed a Neurorobotics Platform implementation of
an event-based camera based on the world simulator Gazebo. This
model samples the environmentwith a fixed update rate and produces
an event when the brightness change between the old and new frames
exceeds a threshold. We used this camera model in our closed-loop
simulations as visual input to the obstacle avoidance network. Even
though Gazebo produces an event stream from regularly sampled
synchronous frame difference, our sEMD characterisation and open-
loop experiments (see Section “sEMD characterisation (real-world
recordings and SpiNNaker/Nest)”) confirmed the working principle of
the motion detector model with real-world event-based camera data.
The real-world fully-neuromorphic applicability in the closed-loop of
most parts of the simulated agent, including the apparent motion
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computation by the sEMD and the saccadic suppression, was also
demonstrated previously81. We set the resolution of the Gazebo event-
based camera model to 128 times 40 pixels. The reduction of the
vertical resolution from 128 to 40 pixels was done to speed up the
simulation time and to make the model fit onto a SpiNN-3 board70. To
further accelerate the simulation, we limited the number of events per
update cycle to 1000 and set the refresh rate to 200Hz. Therefore, the
sEMD can only detect time differences with a resolution of 5ms. We
decided for a large horizontal visual angle of 140° so that the robot
does not crash into unforeseen objects after a strong turn. At the same
time, the uniform distribution of 128 pixels over a 140° horizontal
visual field leads to an inter-pixel angle of approximately 1.1°. This
visual acuity lies in a biologically plausible range of inter-ommatidial
angles measured in Diptera and Hymenoptera, which varies between
0.4° and 5.8° 82.

Robotic agent in Gazebo (simulation)
We designed a four-wheeled robot model for the Gazebo robotics
simulator. The robot’s dimensions are 20 × 20× 10 cm, and it is
equipped with an event-based camera (see Section “Event-based
cameras in Gazebo (simulation)”) and the husky differential motor
controller plugin. The brain interface and body integrator (BIBI)34

connects the robot with the obstacle avoidance network implemented
in NEST (see Section “Obstacle avoidance network”). During the inac-
tivity of theMOT populations, the robot drives purely translatory with
a maximum speed of 2.5 a.u s−1. The movement velocity changes
inversely proportional to the environment’s obstacle density, as
explained in Section “Agent’s behaviour in densely cluttered environ-
ments (simulation)”.When one of the twoMOTpopulations spikes, the
robotfixes its forwardvelocity to 0.38 a.u s−1 and turns either to the left
or to the right with an angular velocity of 4° s−1.

Neurorobotics platform (simulation)
To perform our behavioural experiments we decided to simulate the
entire system, from visual input to actions, using the Neurorobotics
Platform. This platform combines simulated SNNs with physically
realistic robot models in a simulated 3D environment34. The platform
consists of three main parts: the world simulator Gazebo, the SNN
simulator Nest and the Transfer Function Manager BIBI. The BIBI
middleware consists of a set of transfer functions which enables the
communication betweenGazebo andNEST via robot operating system
(ROS)83 andPyNNadaptors. The closed loopengine (CLE) synchronises
the two simulators, Gazebo and Nest, and controls the data exchange
through transfer functions. The simulation front-end virtual coach is
useful to control the whole simulation procedure through a single
Python script. Furthermore, the State Machines Manager of the
SMACH framework can be used to manipulate the robot or world
environment during the experiment.

Five different environments were designed in the neurorobotics
platform to evaluate the agent’s performance: a cluttered environment
with randomly distributed obstacles sizing 1 × 1m, an environment
with two arenas connected by two gaps of variable size, a tunnel with
varying width, an empty box environment and a narrowing tunnel. No
obstacles were placed in a radius of 2m around the agent’s start point
so that the system could reach a stable state of activity before being
confronted with the first object. At obstacle densities higher than 35%,
the agent stays at its start point since no obstacle-free direction can be
detected anymore. Therefore, we limited the tested obstacle density
range to between0% and 38%. All obstacles placed in the environment,
including walls, were covered with black-and-white randomly struc-
tured gratings.

A state machine within the neurorobotics platform environment
automatises the experiments. The state machine consists of eight
states, as shown in Supplementary Fig. 4.

Additionally, a virtual coach script starts and stops the single runs
in a for-loop. CSV files containing the spiking data of the network, the
robot position and angular alignment as well as the placement of the
objects in the arena, were saved for all experiments. 79 data points
were collected for the obstacle avoidance experiment in a cluttered
environment with adaptive velocity, and 56 data points were collected
for the experiment with fixed velocity (see Fig. 4e and Supplementary
Figs. 5–7). The tunnel centring experiment, gap entering experiment
and all other simulation experiments in the supplementary material
were repeated 10 times for each individual configuration (see Sup-
plementary Table 2). The experiment in cluttered environments lasts
6 h, while all other experiments last 2 h (real-world time).

Obstacle densities were calculated by plotting the cluttered
environment and counting the number of pixels occupied by the
objects. The occurrence of collisions was also measured visually by
plotting the cluttered environment with the robot’s trajectory while
considering the agent size and angular alignment. Since the can_collide
feature of the objects in the cluttered environment was turned off the
agent moves through the obstacles when colliding. Therefore, an
overlap of obstacle and robot can be interpreted as a collision. The
obstacle avoidance run was marked as failed when such an overlap
occurred, and the first time of overlap was noted as collision time.
Since there is no physical collision the robot’s size canbe varied during
the analysis to evaluate the effect of agent size on the performance. To
enhance the comparability of the robotic system to the biological role
model, flying insects, we normalised all distance measures by dividing
them by the chosen robot’s size of 30 × 30 cm. The normalised dis-
tance measures were complemented with an arbitrary unit (a.u.).

Data availability
The data generated during this study are available at
dataverse. nl/dataset. xhtml?persistentId=https://doi.org/10.34894/
QTOJJP.

Code availability
The code generated during this study is available at
github. com/thorschoepe/collisionavoidance_NRP and https://github.
com/thorschoepe/collision_avoidance_SpiNNaker.
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