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Adaptive tactile interaction transfer via
digitally embroidered smart gloves

Yiyue Luo 1 , Chao Liu1, Young Joong Lee1, Joseph DelPreto1, Kui Wu 2,
Michael Foshey 1, Daniela Rus 1, Tomás Palacios1, Yunzhu Li3,
Antonio Torralba1 & Wojciech Matusik 1

Human-machine interfaces for capturing, conveying, and sharing tactile
information across time and space hold immense potential for healthcare,
augmented and virtual reality, human-robot collaboration, and skill develop-
ment. To realize this potential, such interfaces should be wearable, unob-
trusive, and scalable regarding both resolution and body coverage. Taking a
step towards this vision, we present a textile-based wearable human-machine
interface with integrated tactile sensors and vibrotactile haptic actuators that
are digitally designed and rapidly fabricated. We leverage a digital embroidery
machine to seamlessly embed piezoresistive force sensors and arrays of
vibrotactile actuators into textiles in a customizable, scalable, and modular
manner. We use this process to create gloves that can record, reproduce, and
transfer tactile interactions. User studies investigate how people perceive the
sensations reproduced by our gloves with integrated vibrotactile haptic
actuators. To improve the effectiveness of tactile interaction transfer, we
develop a machine-learning pipeline that adaptively models how each indivi-
dual user reacts to haptic sensations and then optimizes haptic feedback
parameters. Our interface showcases adaptive tactile interaction transfer
through the implementation of three end-to-end systems: alleviating tactile
occlusion, guiding people to perform physical skills, and enabling responsive
robot teleoperation.

Humans rely on their senses, including sight, hearing, and touch, to
gather information about the environment and each other for every-
day activities1,2. Physical tactile feedback, in particular, serves a critical
role in learning, movement, communication, and environmental
awareness3–5. As technology continues to evolve and its capacity to
understand and assist more complex scenarios increases, there is a
growing need to leverage such physical tactile experiences to enrich
technology-mediated interactions among humans and between
humans and machines6,7. Indeed, studies have demonstrated how
sharing tactile information across humans and machines can be fun-
damental to personalized medicine and treatment8,9, robot-assisted

surgery10, human-robot interactions11–13, augmented reality (AR)/virtual
reality (VR)14, and even everyday human activities15,16.

Enabling intuitive tactile interaction transfer remains challenging
since it requires scalable and conformal tactile sensing and haptic
display systems that can be seamlessly integrated into our daily
lives17,18. Nevertheless, there have been recent developments that aim
to explore novel materials and fabrication methods that work to
address such challenges. Developments of high-density, low-cost,
conformal tactile sensing systems19–22 have enabled the real-time cap-
turing of physical tactile interactions during daily human activities,
e.g., grasping and exercises, in a seamless manner. Also, to enable
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haptic feedback, a variety of techniques have been explored, including
electrical23–25, pneumatic26,27, piezoelectric28, ultrasonic29–31, and elec-
tromagnetic systems32–34, for human motor skill learning35–37, immer-
sive VR/AR interactions25,38, and autonomous assistance39.

To combine tactile sensing and haptic feedback, recent soft sys-
tems have explored hand-based epidermal closed-loop human-
machine interfaces40–43. While previous works demonstrated the
exciting potential of such systems, they also highlighted challenges
such as their complex and delicate fabrication process that can limit
scalability, robustness, customizability, and compatibility. Moreover,
the variation in humans’perception of haptic feedbackmakes effective
and reliable human-machine communication difficult since per-user
calibration should also be minimized to create a seamless experience.
Thus, scalable, compact, conformal, and adaptive human-machine
interfaces with both tactile sensing and haptic display capabilities
remain limited but obtain great potential for diverse real-world
applications.

We aim to move towards addressing these challenges by pre-
senting a textile-basedwearable human-machine interface aswell as its
digital fabrication approach and adaptive control algorithms. We
integrate tactile sensing and vibrotactile haptic feedback using a cus-
tomizable and scalable computational fabrication pipeline, develop
designs that can be applied to various domains, and create a machine-
learning pipeline for per-user haptic optimization. Experiments
demonstrate its ability to record, reproduce, and adaptively transfer
physical interactions in a variety of contexts.

Focusing on tactile interactions of the hands, we present a diverse
set of gloves with integrated tactile sensors and vibrotactile haptic
actuators (Fig. 1a). Both the sensing and haptic components are
automatically integrated into textiles with customized spatial resolu-
tion and positions using a digital embroidery machine. Each custo-
mized glove is fabricated within 10min using low-cost commercial

materials while maintaining a soft, conformal, and flexible nature of
textiles. The vibrotactile matrices offer a spatial resolution of up to
4 cm2, and the tactile sensing arrays achieve a spatial resolution of
0.25 cm2.We investigate theusability andeffectiveness of our interface
through a user study, where 10 subjects evaluate and identify haptic
feedback with different amplitudes, frequencies, temporal patterns,
and locations on the hand.

We also develop a learning-based optimization pipeline to com-
pensate for variations in users’ perceptions by adaptively modeling
individuals’ responses to haptic feedback, which eliminates the need
for manual calibration. The current implementation focuses on a
paradigm in which the user should press a finger on the table when
they feel haptic stimulation on that finger; this is used to guide a
person through performing a tactile skill such as playing an instrument
or playing a game. To initialize themodel, we capture the responses of
12 users to the vibrotactile haptic feedback; we use this data to learn a
forward dynamics model, which serves as a parameterized simulator
for how a humanmight respond to the stimulation. Then to adapt this
model to a newuser,we introduce amodule for few-shot adaptionwith
a small amount of data; this allows the pipeline to optimize the haptic
feedback for each subject over time while they are interacting with the
system, improving the transfer of tactile information without a dedi-
cated calibration routine.

Experiments demonstrate several applications of this textile-
based wearable human-machine interface and its underlying algo-
rithms. First, we aim to alleviate tactile occlusion by transferring
forces sensed on the outside of the glove to haptic sensations
applied on the person’s hand inside the glove. Next, we demonstrate
how transferring force sensations from a robot to a person can
enrich teleoperation and enable more delicate grasping operations
(Fig. 1c). Finally, we explore a skill-developing scenario that levera-
ges the learning and optimization pipeline to adaptively transfer

Fig. 1 | Fabrication, structure, and applications of tactile interaction transfer-
ring smart gloves. a A full-sized textile-based glove (iv) with integrated tactile
sensors (ii) and vibrotactile haptics (iii) is digitally designed and automatically
fabricated using a digital embroidery machine (i). Leveraging these gloves with

integrated sensing and haptic capabilities, we demonstrate physical interaction
transfer across people for skill development (b), and physical interaction transfer
between humans and robots for teleoperation (c).
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tactile interactions from experts to novices and improve task per-
formance (Fig. 1b).

In thisway,wemove towards enablingphysical tactile interactions
to persist across space and time and to be accessible simultaneously to
multiple users and intelligent agents.

Results
Integrated tactile sensing and vibrational haptic feedback
The textile-based smart gloves, integrated with tactile sensing and
vibrotactile haptic capabilities, are rapidly fabricated via a digital
embroidery machine with minimal manual assembly (Fig. 1a and Sup-
plementary Movie 1). The smart glove offers a comparable level of
wearability to regular gloves, comparable in terms of size, flexibility,
and weight. The structures of tactile sensors and vibrotactile units are
demonstrated in Fig. 1a(ii, iii), respectively. The digital design and
fabrication pipeline allows the smart gloves to be modularly designed
and customized for the unique requirements of individual users or
specific tasks; this includes rapidly adjusting the density, layout, and

size of tactile sensors or vibrotactile haptic units (Supplementary
Figs. 1b and 2).

Our vibrotactile haptics are based on a linear resonant actuator
structure, including an electromagnetic coil and a moving mass. More
specifically, our typical vibrotactile haptic unit consists of two fabric
layers, a bottom layer embroidered with enameled copper coils
(Fig. 2a, 32 AWG, 5 winds), and a top layer with pre-cut symmetry
circular slits. These slits generate a pair of symmetric fabric links with
an angle of 30 °, accommodating a permanent magnet (K&J, N52
NdFeB) at the center. The two layers are affixed with thin adhesive.
When an alternating pulse-width modulation (PWM) square wave sig-
nal is applied to the embroidered coil on the bottom layer (Fig. 2d),
alternatingmagnetic flux is generated and leads to the vibration of the
mounted permanent magnet on the top layer with a perceptible force
and displacement. The symmetric pre-cut slits on the top layer allow
for vertical movement of the attached magnets while effectively
securing them at specific locations. The vibration frequency and
amplitude of the haptic unit are contingent upon various factors,

Fig. 2 | Performance of embroidered vibrotactile haptics and resistive tactile
sensors. a Photograph on a typical embroidered magnetic coil showcasing inner
and outer radii (rin and rout) and the pitch (p) of neighboring coil winds.
b Simulation demonstratingmagnetic flux at the cross-section when subjected to a
1 A input current. c Comparison of normalized simulated and experimentally
measured magnetic flux from embroidered coils with varying gauge numbers of
magnetic wire at different heights. Error bars indicate the standard deviations (SD)
across measurements. d Illustration of the characterization setup for a single
vibrotactile unit with radius r, with a foam spacer providing base height anchoring

and a single fabric link with angle α magnifying the vibrational displacement for
analysis. e Vibration amplitudes of the vibrotactile unit increase with its sizes and
the input PWMduty cycle. fThe resonant frequencies of a typical vibrotactile haptic
unit (r = 3.18mm) decrease with smaller different fabric link angles. g Resistance
profiles are consistent across three individual embroidered tactile sensors under
pressure, with two linear regions. h Consistent performance of an embroidered
tactile sensor was captured during 500 pressure (5N/cm2) loading and unloading
cycles.
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including the design of the embroidered copper coil, the size of the
permanent magnets, and the duty cycle of the alternating PWM input.
The embroidered enameled copper traces obtain a tensile strength of
20N and endure 15% elongation and thousands of bending cycles
(Supplementary Fig. 3).

Figure 2a, b demonstrate a representative design of an embroi-
dered copper coil and the corresponding simulated magnetic flux
heatmap (with 1 A alternating current input), respectively. The mea-
sured magnetic flux from the embroidered magnetic coils (subjected
to a full-scale duty cycle input) agrees with the simulation result
(Fig. 2c). The magnetic flux generally decreases with the increase in
sensing height and magnetic wire gauge. Furthermore, the displace-
ment of the vibrotactile haptic units can be captured and quantified
through a high-speed camera (Supplementary Movies 2, 3 and Sup-
plementary Fig. 4c). To enhance the haptic actuator response for
quantitative analysis, a foam spacer was added to anchor the base
height level and only one of the symmetric fabric links was obtained to
amplify the displacement. The vibrotactile displacement increases
with the rise of the input PWM duty cycle and with the decrease of
permanentmagnet size, whichobtains highermagneticfield-to-weight
ratios (Fig. 2e). Figure 2f presents the normalized vibration amplitudes
of a typical vibrotactile haptic unit (with a radius of r = 3.18mm) across
various left-out fabric link angles (α) and alternating input frequencies,
effectively highlighting the resonant frequencies of different designs.
Notably, as the fabric link angle decreases, the vibration amplitude
intensifies, while the resonant frequency concurrently decreases.

Our typical tactile sensor comprises a piezoresistive layer placed
in between two fabrics with embroidered conductive silver yarn elec-
trodes (Fig. 1c). It obtains aminimumdetection limit of 0.35 N/cm2 and
a maximal detection limit at 20N/cm2 (Supplementary Fig. 5a). When
the applied normal pressure is increased up to 6N/cm2, the resistance
of tactile sensors drops from 6 to 0.8 kΩ, with two linear sensing
regions Consistent performance was retrieved from multiple indivi-
dual tactile sensors, reiterating the advantages of standardized digital
design and fabrication pipeline (Fig. 2g). Our sensor functions with
minimal hysteresis during pressure loading and unloading cycles at
with minimal hysteresis (Supplementary Fig. 5b). The stability and
durability were further demonstrated by the stable sensing perfor-
mance of our sensors under 2000 pressure loading and unloading
cycles (Fig. 2h and Supplementary Fig. 5c).

Both tactile sensors and vibrotactile haptic units are serialized in a
matrix-based form factor tominimize the number of connecting wires
(Supplementary Fig. 6a, b). The tactile sensors are connected to a
modified electrical-grounding-based circuit architecture (Supplemen-
tary Fig. 6a) to eliminate most cross-talk and parasitic effects of the
passive matrix44. We arrange the vibrotactile haptic units in a matrix,
where each row and each column is connected to a half H-bridge45

composed of two N-type MOSFETs in series, as shown in Supplemen-
tary Fig. 6b. We turn on the half H-bridge along a specific row and
column to activate a specified vibrotactile unit in a multiplexed man-
ner. The intensity and frequency of the vibrations are fully program-
mable. The direction of displacement and the polarity of generated
magnetic flux is determined by the direction of current flowing
through the coil, which is controlled by the switches of the H-bridge.
The intensity of the vibration relies on the average voltage and current
delivered to the coil, which is controlled via PWM. The vibration dis-
placement of three neighboring vibrotactile units shows a consistent
displacement with minimal interference between each unit when
activated sequentially and alternatively (Supplementary Fig. 6c, d).

Human perception of vibrotactile haptic feedback
We first evaluate the effectiveness of our platform by exploring how
people perceive the textile-based vibrotactile haptic feedback. We
conducted a user study with 10 subjects (aged 26–32 years, 4 females)
that investigated their perceptions of haptic feedback with different

amplitudes and frequencies. Figure 3b, c show their resulting ratings of
perceived amplitude. In general, users perceive the feedback more
strongly with higher input amplitudes and at a frequency of 100Hz.

In addition, tests were performed to explore whether users could
identify where haptic feedback is being applied on the hand, and
whether they can distinguish between temporal patterns of activation.
Wearing a glove with 23 embroidered haptic units distributed across
the inner hand as shown in Fig. 3a, g), participants were able to identify
the activated vibrotactile unit (full PWM duty cycle at 100 Hz) with an
average accuracy of 94% (Fig. 3d). Users also identified temporal pat-
terns of activating vibrotactile units with an average accuracy of 92%
(Fig. 3e). Notably, the discriminative capability remains unaffected by
interference from a constantly vibrating haptic unit (Supplementary
Fig. 7). These results are promising for effectively conveying spatial
and temporal information and for using the textile-based system
integrated with tactile sensing and vibrotactile haptic capabilities to
transfer physical tactile interactions.

Tactile interaction transfer for a single user
The sense of touch is essential for delicate manipulation tasks, but it
can be significantly hindered when occluded by gloves. This is parti-
cularly evident in situations where astronauts and technicians must
wear thick personal protection equipment for dangerous tasks,
resulting in a considerable reduction in tactile perception. Such tactile
occlusion could be alleviated by transferring the physical sense of
touch from the glove’s outer contact area to the human skin on the
glove’s inner surface. This would allowusers to regain their perception
of the external environment, which is crucial for dexterous manip-
ulation tasks. Leveraging the textile-based smart gloves with inte-
grated tactile sensing and vibrotactile haptic capabilities, we
demonstrate the transfer of coarse pressure-based tactile interactions
to alleviate tactile occlusion.

We develop a double-glove interface by augmenting a hand-
shaped piece of fabric with 23 tactile sensors, then attaching this to a
thick protective glove for animal handling (Fig. 3f). We then fabricate a
glove with 23 vibrotactile units whose positions correspond to the
sensor locations (Fig. 3g), and insert this actuated glove into the sen-
sorized protective glove. The completed system can capture tactile
interactions outside the protective glove and transmit it to the human
skin via the inner haptic glove in real-time (Supplementary Movie 4).

To evaluate this system, we asked users to identify the location of
a contact force when the haptic actuators were activated or deacti-
vated. As illustrated in Fig. 3h, users achieved an accuracy of 88.6 ±
2.62% with haptic feedback activated and an accuracy of 5.7 ± 4.4%
without the haptic feedback. This proof of concept explored a coarse
form of tactile transfer, where results are promising for using the
textile-based system with integrated tactile sensing and vibrotactile
haptic capabilities to help alleviate tactile occlusion.

Adaptive tactile interaction transfer across users
Leveraging our textile-based wearables, we are able to capture the real-
time tactile interactions froman individual user and then reproduce and
transfer such interactions to another user via haptic instructions. For
example, we ask a piano teacher to play a certain rhythm and capture
the corresponding tactile sequence (Ttarget). We then derive the haptic
instruction sequence (H) based on the captured data and display it to a
student through a haptic glove. Based on the haptic instruction, the
student is expected to reproduce the rhythmic sequence of the teacher
(Supplementary Fig. 8 and Supplementary Movie 5).

We measure the difference between the students’ reproductions
and the target tactile sequence to evaluate the transfer efficacy. We
assume two users achieve the same performance for a given task when
they produce the same tactile signals during the interactions; a smaller
difference between a student’s reproduced tactile sequence (T) and
the teacher’s (Ttarget) indicates a more effective transfer.
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A challenge is that simply producing an H that directly copies or
linearly maps Ttarget will not result in a faithful reproduction since each
person reacts differently to the same haptic sequence. Moreover, a
single person may also react differently to haptic signals at different
hand locations and with different timings. Therefore, to ensure the
effectiveness of tactile interaction transfer, the haptic instructions

must be adaptively optimized across time, subjects, and task
requirements.

To address this challenge, we develop an adaptive human model
learning and inverse haptics optimization pipeline to derive persona-
lized vibrotactile haptic instructions46. It outputs an optimized haptic
signal (H) given an input target tactile sequence (Ttarget). The pipeline

Fig. 3 | Users’ perception of vibrotactile haptic feedback. a Illustration show-
casing the placement of vibrotactile units on a smart glove for studying users'
perception. b, c Normalized user ratings on a scale of 0 to 10, indicating the per-
ceived strength of haptic feedback for various amplitudes and frequencies. A rating
of 0 represents no perception, while a rating of 10 signifies the strongest percep-
tion. d, e Confusion matrices summarize users' identification of which unit is acti-
vated and temporal activating patterns (230 trials for position identification and 60

trials for temporal sequence identification). The temporal activating patterns are
demonstrated as the confusionmatrix labels, which happenat the vibrotactile units
on the thumb and index finger, colored in gray. Photograph of an outer sensing
glove (f) to capture tactile cues and an inner haptic glove (g) to transfer tactile cues
under tactile occlusion. h Accuracy of classification of single contact points under
tactile occlusion, with and without the haptic feedback. Error bars indicate the
standard deviations (SD) across measurements.
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comprises a forward dynamics model and an inverse optimization
process, as illustrated in Fig. 4a. The forward dynamics model simu-
lates a user’s reaction to the haptic instruction by taking in a sequence
of haptic signals (H) and predicting the resultant tactile sequence (T).

Given a trained forward dynamics model, the inverse optimization
process aims to minimize the difference between the predicted tactile
sequence (T) and the target tactile sequence (Ttarget) by optimizing the
parameters of the haptic sequence H using gradient descent.

Fig. 4 | Adaptive transfer of tactile interactions across users. a An overview
of human model learning and inverse haptics optimization pipeline. The pipeline
incorporates a forward dynamics model with an adaptive module and an inverse
optimization procedure. The vibrotactile haptic output is denoted as H, and the
tactile response as T. Backward propagation is represented by the red dashed
arrows.b Illustrationof the forwardmodel featuring an adaptivemodule. Using our

pipeline, we demonstrate improved performance in piano playing (c), rhythmic
gaming (d), and racing gaming (e) by transferring tactile interactions from expert
users. The experimental images (left column) were captured during the time
intervals indicated by the dashed light blue boxes depicted in the qualitative results
plots (middle column). Error bars indicate the standard deviations (SD) across
measurements.
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To adapt the pipeline to individual users without dedicated cali-
bration routines, we include an adaptive module that takes in a com-
bined series of haptic instructions and tactile responses ({H, T}) and
generates a user-specific latent feature vector (z). This latent encoding
may represent information such as reaction time and finger dexterity
(Fig. 4b). The feature vector (z) is then provided to the forward
dynamics model together with the haptic sequence. By including the
adaptive module, our pipeline learns to adapt to the individual user’s
response to the haptic instructions and optimizes the haptic sequence
output for individuals given a specific tactile sequence goal. This
enables an adaptive, automatic, and accurate conversion between
tactile and haptic signals. This process canoccur dynamically, allowing
the interface to improve in real-time.

Using a smart glove with sensing areas at the fingertips and haptic
units on the inner proximal phalanges, we collected a 12-person
dataset of tactile responses to pre-generated haptic instructions. As a
baseline, we trained a forward model for each subject individually.
Then we trained a universal forward model that omits a selected
subject (Supplementary Data 1) and evaluated its performance both
with and without an adaptive module. As shown in Supplementary
Fig. 9a, using an adaptive module reduced the mean-squared error
(MSE) and even achieved comparable performance to the per-subject
baseline model. Compared to baseline models trained for individual
users, our adaptivemodel allows generalization and adaptation to new
users with 15 s of user data.

It can be seen that the predicted tactile response from the trained
forward model aligns with the ground-truth tactile signal (Supple-
mentary Fig. 9d). The effectiveness of the pipeline is also validated by
comparing a user’s tactile response with the given target tactile
sequence using both the unoptimized and optimized haptic instruc-
tions (Supplementary Fig. 9e). As suggested by Supplementary Fig. 9f,
the optimized haptic instructions are able to compensate for the user’s
reaction time to haptic instructions.

We apply this learning and optimization pipeline to piano playing,
rhythmic gaming, and racing games (Fig. 4c–e; Supplementary Fig. 10
and Movie 6). In the piano-playing scenario, users are asked to play a
specific sequence that can be achieved without moving their hand to
new keyboard locations. Performance is evaluated by comparing the
tactile response from the users to the target tactile response captured
by a piano expert. In the rhythmic game, users are expected to follow a
designed track and bump into the goal area (green dot) by left-clicking
themouse to switch themoving line (blue line) direction. Usersneed to
stay on the route (light green area) and are scored based on howmany
goals they bump into. In the racing game, users are asked to reach the
finish and collect coins along the way by controlling the balance of the
car. Performance is evaluatedwith the number of collected coins. In all
scenarios, we first record the tactile response sequence from a high-
performance player’s finger pressing; taking the recorded tactile
sequence as input, the optimization pipeline outputs the optimized
haptic instruction for a specified user. We record and compare the
performance of that specific user with optimized haptic instructions,
unoptimized haptic instructions, and a baseline that does not provide
any haptic instructions.

The qualitative results shown in Fig. 4c–e demonstrate that
given the adaptively optimized haptic instructions, users are able to
reproduce a similar tactile interaction with aligned timing based on
the target tactile interaction sequence. In general, for simpler levels,
users tend to have comparable performance regardless of optimized
haptic guidance. However, as tasks get harder, users perform better
when the optimized haptic guidance is provided. In time-sensitive
scenarios, e.g., the rhythmic game, we observe that unoptimized
haptic instruction confuses users and thus lowers users’ perfor-
mance. Additionally, users tend to fail levels more easily with
unoptimized haptic instructions since their errors accumulate over
time. Adaptive optimization of haptic instructions, on the other

hand, improves users’ performance by guiding their actions at the
right time during harder levels.

Tactile interaction transfer for teleoperation
Sharing physical tactile interactions between humans and robots plays
a critical role in intuitive human-robot collaboration and interactive
teleoperation. This is especially important when visual information is
occluded, which often happens in real-world scenarios. We demon-
strate that our textile-based smart gloves integrated with tactile sen-
sing and vibrotactile haptic capabilities enhance teleoperation
performance for fragile and soft object grasping by transferring the
physical interaction captured from a parallel robotic gripper to the
user’s hand in real-time. We equip a parallel robotic gripper (Robotiq,
UR5 arm) with a textile-based tactile sensing array (3 sensing areas on
each side). Then, we ask the user to wear a designed haptic glove with
integrated vibrotactile units at the corresponding locations along the
thumb and index finger. We embroider colored markers on the haptic
glove, which enable the tracking of the distance between the thumb
and index finger with a camera in real-time. This estimated distance is
used to control the separation of the robot’s parallel gripper (Fig. 5a).

To evaluate our approach, we tele-grasp a hot dog bun, a burger
bun, Hawaiian bread, and a seaweed plastic box.When visual feedback
is available, the user is generally able to perform relatively optimal
grasps, where the soft objects only deform slightly to an average of
87% of the natural object width regardless of whether haptic feedback
is provided (Supplementary Fig. 11a). In this process, the user infers the
grasp quality from the visual deformations of the objects. On the other
hand, when visual information is obscured, we observe that haptic
feedback significantly improves the tele-grasping quality.

In the absence of visual and haptic feedback, the user has no
information about the grasp and tends to apply strong grasps,
resulting in the objects being squeezed to an average of 58% of the
natural object width. In contrast, when real-time haptic feedback is
provided, the user is able to perceive whether the grasp is good
enough through the vibrotactile feedback, even without visual indi-
cations ofwhichobject is being grasped. This allows theuser to control
the gripper for a more optimal grasp, securing the object with rela-
tively minimal deformation to an average of 95% of the natural object
width (Fig. 5b, c and Supplementary Movie 7).

Discussion
Our work focuses on developing a scalable, customizable, wearable
textile-based human-machine interface for capturing, displaying, and
adaptively transferring physical tactile interactions. The tactile sensing
array and vibrotactile haptic array are digitally designed and fabri-
cated, and seamlessly integrated into smart gloves. Experiments
demonstrate applications for reproducing coarse tactile interactions
betweenhumans and the environment, allowingpeople to share tactile
sequences, and enriching robotic teleoperation.

The integration of sensing and haptic actuation happens within
the same fabrication cycle in a scalable and customizable manner. We
are able to construct smart gloves integrated with tactile sensing and
vibrotactile haptic capabilities in a modular way to accommodate
different users or task specifications. Furthermore, we present a
learning-based approach to adaptively optimize haptic output for
individual users, without relying on manual calibration periods. We
demonstrate a proof of concept of this behavior modeling and adap-
tive control approach forguiding users toperform touch sequences. In
piano playing, rhythmic gaming, and racing gaming scenarios, we
demonstrate that our interface and optimization pipeline are effective
for adaptive tactile interaction transfer across users.

Given that humans are most sensitive to haptic feedback on their
hands, our system only focuses on tactile interactions on the hands so
far. However, with the scalable and customizable digital design and
fabrication pipeline, we can extend the system to other wearables,
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Fig. 5 | Transfer of tactile information from robot to human for teleoperation.
a Overview of the teleoperation setup, featuring a parallel gripper equipped with
tactile sensors (i) and a user wearing a full-sized glove integrated with vibrotactile
units on the thumb and index finger (ii). The visual system tracks embroidered
green and red color blocks for distance measurement purposes. b Teleoperated
grasping of a hot dog bun, Hawaiian bread, and a soft plastic box without visual
feedback and with optional tactile information transferring through haptic feed-
back. The plots show the synchronized distance measurement of users' finger

manipulation and parallel gripper control, normalized pressure captured from the
parallel gripper, andmappedhaptic feedback to the user.With haptic feedback, the
user tended to teleoperate the gripper such thatobjectswere securelygraspedwith
reduced pressure and smaller deformations. c Quantitative measurements of the
actual width of objects and the distance between grippers during tele-grasping
under different scenarios. Gripper distances, which are smaller than the actual
object width, imply deformation of the object. Error bars indicate the standard
deviations (SD) across measurements.
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such as socks and jackets, to provide haptic feedback to other
body parts.

It is also worth noting that the movement of hands can affect
users’ haptic perceptions, and metal objects may interfere with the
vibrotactile haptic units. These limitations can be addressed by fabri-
cating more conformal and tight wearables with additional insulating
layers. Currently, our adaptive optimizationpipeline does not consider
the AC input amplitudes and frequencies because users’ perception of
vibration amplitude varies significantly over time; it instead focuses on
the users’ reaction times. Nevertheless, by collecting more data on
users’ behavior, the pipelines can be expanded to include parameters
on the amplitudes, frequencies, and temporal patterns of vibration,
resulting in a larger design space.

In general, our textile-based human-machine interface offers a
scalable and adaptive approach for exchanging and transmitting
physical tactile interactions across people and time. We demonstrate
that such tactile interaction transfer alleviates tactile occlusion, pro-
motes skill and task performance, and facilitates robot teleoperation.
The potential applications of our work are wide-ranging and extend
beyond the lab, including use in training programs for various skilled
professions such as surgeons, pilots, and engineers. This textile-based
wearable human-machine interface could also be integrated into vir-
tual reality and augmented reality systems, providing users with a
more immersive and tactile experience. Furthermore, the interface’s
ability to adaptively transfer tactile information between humans and
machines could be used in industries such as manufacturing, where
robots and humans can work collaboratively with increased safety and
efficiency. We envision that our system will enable physical tactile
interactions to persist across space and time and be accessible
simultaneously to multiple users.

Methods
Digital machine embroidery
Embroidery is one of themost common textile processingmethods for
garment fabrication and decoration47. Machine embroidery has been
well-established and widely used in the textile industry for mass
production48. Machine embroidery uses two threads, an upper thread
and a bobbin thread, which run along the top and bottom of the fabric
to generate interlaced locked stitches. We leveraged a computational
design pipeline, which takes in a scalable vector graphic file (SVG) and
a specified stitch pitch, and outputs a drawing sheet set (DST)
encoding a full list of digital embroidery machine operations stitch by
stitch (Supplementary Figs. 12 and 13). The digital embroidery
machine instruction was then sent to an industrial-scale embroidery
machine (Tajima TWMX-C1501, Supplementary Fig. 14) for fully auto-
matic fabrication. Thanks to the computational design and automatic
fabrication pipeline, the design of textile-based smart gloves can be
fully customized in terms of sensors or haptic units’ size, positions,
density, and so on.

Fabrication of vibrotactile haptic units
The magnetic wire (BNTECHGO 32 AWG enameled copper wire, Sup-
plementary Fig. 15) was embroidered as an electromagnetic coil on the
fabric substrate at the speed of 700 stitches/min. Since the copper
thread is stiffer than the usual embroidery threads (Madeira 100%
polyester), we used it as a bobbin (bottom) thread, which experienced
less strain during the embroidering process and thus ensured a stable
fabrication process. Different design parameters of the embroidered
copper coil, including inner radius rin, outer radius rout, coil pitch pc,
and stitch pitch ps are investigated and optimized (Supplementary
Fig. 1b). Based on the size ofmagnets (diameter = 6.3mm) and the size
of copper thread (diameter = 0.2mm), we set the inner radius rin as 3
mm, outer radius rout as 4mm, coil pitch pc as 0.25mm (Fig. 2d). Stitch
pitch ps was set as 1 mm to maintain the optimal tension of the
embroidered coil. The top fabric was first laser-cut to generate a

circular slit with pre-defined angles. Commercial permanent magnet
(K&J, N52 NdFeB, thickness = 1.6mm) of different sizes (diameter =
3.2mm, 6.3mm, 12.7mm,) was affixed to the center of slits by thin
adhesive (3M 468MP). The top fabric with the affixed magnet was
aligned to the embroidered coil matrix and affixed with adhesive. In
this work, the vibrotactile haptic units were fabricated using non-
woven fabric as a substrate; however, the same fabrication process is
feasible for a wide range of substrates (Supplementary Fig. 1a)

Fabrication of tactile sensing units
Each of the tactile sensing units is based on a triple-layer design, where
apiezoresistive layer (Velostat, SupplementaryFig. 15)was sandwiched
between two fabric substrates with embroidered conductive yarns
(Madeira HC40, polyamide/silver plated) as electrodes. We first
embroidered the horizontal and vertical electrodes on separate fab-
rics. We then sandwiched the piezoresistive film at specific locations
between the two fabrics using shaped adhesive (3M 468MP, Supple-
mentary Fig. 15), which was pre-cut hollow in the center to enable
direct contact between the electrodes and piezoresistive film (Sup-
plementary Fig. 12b(i, ii)).

Fabrication of smart gloves integrated with tactile sensors and
vibrotactile haptics
The fabrication of full-size textile-based gloves with seamlessly inte-
grated tactile sensors and vibrotactile haptic units is composed of
6 steps. First, we embroidered the silver-plated conductive thread as
horizontal and vertical electrodes for the tactile sensors (Supplemen-
tary Fig. 12b(i)). We then affixed the piezoresistive layer at specific
locations and flipped the fabric with vertical electrodes over to the one
with horizontal electrodes, forming the three-layer sensing structure
(Supplementary Fig. 12b(ii)). The electromagnetic coils were then
embroidered onto the same fabric (Supplementary Fig. 12b(iii)). To
further offer flexibility to the glove design, we applied Spandex fabric
to the bottomof the embroidered fabric and stitched the outline of the
glove design (Supplementary Fig. 12b(iv)). We then cut the excess
fabric (Supplementary Fig. 12b(v)). Lastly, we flipped the embroidered
glove inside out to avoid visible seams and aligned and attached the
laser-cut top fabric with the tagged permanent magnets onto the
embroidered coil matrix. The tactile-vibrotactile glove would be fully
functional after connecting the tactile sensing electrodes and the
extended copper thread to the readout and driving circuits (Supple-
mentary Fig. 12b(vi)).

Simulation of magnetic flux in vibrotactile haptic unit
We simulated the magnetic flux generated by the embroidered coil
with different designs. In particular, we performed a finite element
method (FEM) simulation to compute the magnetic flux density and
compared it with the actual magnetic flux density we measured from
the physical samples. All our simulations are conducted using Finite
Element Method Magnetics (FEMM)49. We considered our design as a
symmetric structure and used FEMM to solve the axisymmetric pro-
blem with one cross-section slice, as shown in Fig. 2b and Supple-
mentary Fig. 4a, b.

Characterization of vibrotactile haptic unit and tactile sensor
Themagnetic flux of different embroidered coil designs wasmeasured
by a Gauss meter (FW Bell 9500) using a probe of around 5mm by
5mm surface area. The vibration amplitude of the haptic units was
recorded by a 240 fps camera and extracted through ImageJ. The
interferencebetween twoneighboringhapticunitswas investigatedby
activating each unit sequentially at 100% duty cycle (input voltage of
1.7 V) at 50Hz. The tensile strength and maximum elongation of the
fabrics with embroidered vibrotactile haptic units were evaluated by
tensile test via a mechanical tester (Shimadzu AGS-X), as shown in
Supplementary Fig. 3a. Numerous tensile testing cycles were
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conducted to assess the durability of embroidered enameled copper
wire (Supplementary Fig. 3c, d). The resistance profile of a typical
tactile sensor was measured by a digital multimeter (Tektronix
DMM4050) with a loading normal pressure of up to 35N/cm2 (Shi-
madzuAGS-X). A 2000-cycle test was performedon 3 individual tactile
sensors by applying 0.35 to 5N/cm2 loading and unloading cycles at
the rate of 3mm/min.

Tactile readout and haptic driving circuit
The tactile sensors were serialized through an electrical-grounding-
based circuit architecture in amatrix form factor44. A reference voltage
Vref of 2.5 V was applied to each column. An amplifier was added to
each column with the gain resistor Rg of 1 kΩ. A capacitor of 10μF was
added in parallel with each gain resistor to reduce noise. Controlled by
ArduinoNano, each row (A2, B2, C2)wasgrounded at a timewhile each
column (A1, B1, C1) was multiplexed through for signals from indivi-
dual sensors. Measurements were transformed into a 10-bit digital
signal and transmitted serially to a computer.

The vibrotactile haptic units were controlled with a customized
circuit mounted on a microcontroller board. Our circuit consists of a
matrix of five H-bridges, Schottky diodes, and connectors for inter-
connection between haptic units. Each haptic unit was driven by an
H-bridge matrix, where each row and columnwas connected to a half-
bridge circuit architecture, respectively. The half H-bridge circuit
comprised two N-MOSFETs (IRLB8721PbF, Infineon Technologies)
connected in series. Forming a full H-bridge using specific pairs of
horizontal (e.g., A11 and A12) and vertical (e.g., A21 and A22) half H-
bridges, the defined vibrotactile haptic units (e.g., top-left coil) can be
activated in a multiplexed manner. All half H-bridges were controlled
by a microcontroller board (Arduino Mega 2560 Rev3) through pulse-
width modulation (PWM) pins (e.g., A11 and A21) and digital pins (e.g.,
A12 and A22). Coils were driven by square wave input, where the PWM
duty cycle is similar to the amplitude of the input signal. Each coil was
separated by a low turn-on voltage diode (Part number) to prevent
cross-talks. External power was supplied by a portable lithium-ion
polymer battery (3.7 V, 2500mAh) to drive the coils.

Experiments with human subjects
Our experiments with human subjects were approved by the Com-
mittee on the Use of Humans as Experimental Subjects (COUHES) at
the Massachusetts Institute of Technology (MIT, 2210000769). Parti-
cipants were recruited through verbal advertisements and voluntarily
participated in the studies without receiving any compensation.

Tactile perceptionwith different input amplitudes and frequencies.
We investigated users’ perception of vibrotactile feedback with dif-
ferent input AC amplitudes and frequencies. We recruited 10 human
subjects, who were provided with haptic feedback under different
input modulation (PWM duty cycle of 100%, 40%, 20%, 10%, 5% at a
frequency of 100Hz) amplitude and frequency (f = 250, 100, 50, 25,
12.5, 5 Hz at 100% PWM duty cycle). Participants then provided quan-
titative feedback basedon the amplitude of sensations. All participants
were right-handed. In a randomized order, different AC inputs were
continuously applied to participants’ index fingertips on left hands
until they provided corresponding quantitative ratings.

Distinguishing spatial and temporal patterns of haptic feedback. In
this experiment, 10 recruited participants were asked to wear a
vibrotactile haptic glove with 23 integrated vibrotactile units. We
activated one random unit at a time and asked the participants to
identify the location of their sensations (23 trials per participant). We
investigated the interference effect by repeating the same experiment
with one of the haptic units continuously activated (23 trials per par-
ticipant, Supplementary Fig. 7). Furthermore, we activated 6 vibro-
tactile haptic units along the index and middle finger with some

defined temporary sequence and asked the participants to classify the
spatial and temporal pattern (10 trials per participant). Each sequence
is around 3 s. Classification accuracy is reported in Fig. 3d, e. All
vibrotactile haptic units were activated with 100% PWM at 100 Hz.

Transfer physical tactile interactions for a single user. We asked 2
recruited participants to wear double gloves, which consist of an outer
thick animal handling glove (RAPICCA) with mounted tactile sensors,
and an inner regular-sized haptic glove. The tactile sensors capture the
pressure information, which is converted to the corresponding
vibrotactile haptic feedback (PWMduty cycle of 100% at 100Hz) based
on threshold clipping (the corresponding haptic units were activated if
the tactile sensing reading exceeded 50% in weighted amplitudes) in
real-time at the frame rate of 40Hz (SupplementaryMovie 4). We then
applied a force stimulus to a specific area on the animal handling glove
and asked participants to locate the stimulus with and without the
vibrotactile feedback. Accuracy is reported in Fig. 3h.

Transfer physical tactile interactions across users. We demon-
strated physical interaction transfer across people through the task of
piano playing. We recruited 2 human subjects, one had more than 10-
year piano-playing experience, acting as the teacher, and the otherwas
a beginner in piano playing, acting as the student. Both participants
wore a smart glove, which consisted of 5 tactile units on the fingertips
and 5 haptic units on the inside of each finger (Supplementary Fig. 8a).
Wefirst investigatedphysical interaction transfer by asking the teacher
to play a very simple music sequence and recording his/her finger
pressing sequence, duration, and amplitude through the serialized
tactile signal. We then converted the pre-recorded tactile signal to
haptic feedback based on a linear mapping, according to which, the
student was asked to perform sequence pressing. The student’s per-
formancewas recorded by the tactile units at the fingertips, whichwas
later quantifiedbycomparing it with the pre-recorded tactile sequence
(Supplementary Movie 5 and Supplementary Fig. 8b, d). This process
can also happen in real-time, where the tactile signal from the teacher’s
playing sequence is retrieved and converted to haptic feedback on the
student’s glove simultaneously (Supplementary Movie 5 and Supple-
mentary Fig. 8c, e).

Human model learning and inverse haptics optimization
Dataset. Finger pressing is a commonaction for diversedaily activities,
including playing piano, gaming, typing, and so on. Using finger
pressing as a concept-proofing task, we collected data from 12 parti-
cipants (IRB by MIT 2210000769). Participants wore our designed
smart glove, where 5 tactile units were located at the fingertips and 5
haptic units were located at the inner side of each finger (Supple-
mentary Fig. 8a). Participants were informed about the basic rule,
which was to press the corresponding finger whenever they perceived
vibration on one of the five fingers. We played randomly generated
haptic instructions, where the 0-1 haptic unit was activated for a ran-
dom duration. The vibrotactile haptic units were activating at full
modulation at the frequency of 100Hz. The sensing response from the
participant’s pressing was captured in real-time. More than 150,000
frames were collected (around 5min of continuous pressing per par-
ticipant). We split data from each individual participant as train, vali-
dation, and test sets with a ratio of around 6:2:2.

Forward dynamics model. The forward model took in a sequence of
haptic sequence (H, 200 frames, around 4 s) and output a sequence of
predicted tactile signals (T) with the same length. The model was
implemented in PyTorch, composed of 4 fully connected layers, each
of which was followed with a ReLU activation function (Fig. 4b). Mean-
squared error (MSE) was computed and minimized between the pre-
dicted tactile signal (T) and ground-truth tactile signal (Tgt) from the
participant’s pressing sequence during data collection (Fig. 4a). The
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adaptive module took in a concatenated sequence of haptic sequence
and tactile sequence ({H, T}, 800 frames, around 15 s) from an indivi-
dual user and output an adaptive feature (z) with a length of 1000. It
was composed of 4 fully connected layers, each of which was followed
with a ReLU activation function. The adaptive feature was then input
into the forward model together with the haptic sequence. We trained
individual forwardmodelsusing thedataset fromeachparticipant, and
a universal forward model without the adaptive module using the
dataset from all participants as baselines. All models were trained with
a learning rate of 1e−4, weight decay of 1e−4, and batch size of 32.

Inverse haptics optimization. Given a target tactile sequence (Ttarget),
the inverse optimization outputs the optimized haptic instructions by
interactively performing gradient descent over and minimizing the
MSE between the predicted tactile sequence (T) and the target tactile
sequence (Ttarget), which was output by the pre-trained forward
dynamics model using the present haptic sequence as input (Fig. 4a).
The initialization of the haptic sequence was extracted from the target
tactile sequence by straightforward thresholding (the corresponding
haptic units would be activated if the tactile signal exceeds a normal-
ized threshold of 0.3). Gradient descent was performedwith a learning
rate of 1e−3, and weight decay of 1e−3.

Validation. Both offline and online evaluations of the pipeline were
conducted. Qualitative results of the forward dynamics model
are shown in Supplementary Fig. 9d.We first validated by comparing
the optimized haptic instructions with the ground-truth pre-gener-
ated haptic sequence from the recorded dataset (Supplementary
Fig. 9e). We further validated online by comparing the target tactile
sequence with the user’s output tactile sequence when given
unoptimized and optimized haptic instructions (Supplementary
Fig. 9f). More online validation was performed in piano playing,
music rhythmic gaming50, and car racing gaming51 scenarios. Piano
playing was performed on a digital piano (YAMAHA P-125) with a
5-finger control. The music rhythmic game was played on a laptop
using a mobile game emulator (Mumuplayer), where the user
directed the moving line by left-clicking the mouse with only their
index finger. The car racing game was performed on a laptop
through an online gaming platform, where users mostly controlled
the balance and speed of the car by pressing direction keys using
their middle and ring fingers. Validation and comparison of the
effectiveness of our optimization pipeline were performed three
times on two users. To eliminate bias, users were asked to get
familiar with the validation scenarios before the experiments and to
perform the tasks first with optimized haptic instructions, then with
unoptimized haptic instructions, and lastly without any haptic
instructions. Tactile information was recorded at 50 Hz and haptic
instructions were generated at 100 Hz.

Teleoperation
In our teleoperation setup, users controlled a parallel gripper (Robotiq
2F-140) bymoving their thumb and index finger. The distancebetween
the two fingers was tracked by two embroidered color blocks, which
were captured by the camera (Logitech C930e 1080p) and extracted
by color thresholding usingOpenCV52. The distancewas converted to a
command for the parallel gripper through linearmapping. Each of the
parallel grippers was covered by a 3 by 6 pressure sensing matrix,
whichwas averaged as 3 sensing read-out values. The participant wore
a glove with 3 vibrotactile units along the thumb and 3 vibrotactile
units along the index finger, which correspond to the individual sen-
sing area on the parallel gripper. During the experiment, the contact
interactions between the gripper and the object were captured by the
tactile sensors in the form of 10-bit ADC output from the data acqui-
sition circuit. We applied a threshold to the tactile signal at 25% of the
full ADC output, meaning that any tactile signal exceeding this

threshold was converted into haptic feedback and transferred to the
user through the vibrotactile haptics. We asked the participants to
adjust the distance between his/her thumb and index finger according
to the haptic feedback they believed a stable grasp of the specific
object was achieved. Such a procedure was performed when the par-
ticipant was blinded and when the participant was offered a real-time
view of the grasping process (Supplementary Movie 7). Tactile infor-
mation was recorded at 50Hz and haptic instructions were generated
at 100Hz with full PWM modulation.

Data availability
The data that support the findings of this study have been included in
the main text and Supplementary Information/Source Data
file. The datasets for human behavior modeling and haptics optimi-
zation have been deposited at https://www.dropbox.com/home/
adaptTacTransferDropBox. All other relevant data supporting the
findings of this study are available from the corresponding authors
upon request. Source data are provided in this paper.

Code availability
The codes to train and evaluate the human behavior modeling and
haptics optimization pipeline are publicly available at https://github.
com/yiyueluo/adaptTacTransfer GitHub along with the paper46.
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