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Enantioselective synthesis of [4]helicenes by
organocatalyzed intermolecular C-H
amination

Xihong Liu 1 , Boyan Zhu1, Xiaoyong Zhang2, Hanwen Zhu1, Jingying Zhang1,
Anqi Chu1, Fujun Wang1 & Rui Wang 1

Catalytic asymmetric synthesis of helically chiral molecules has remained an
outstanding challenge and witnessed fairly limited progress in the past dec-
ades. Current methods to construct such compounds almost entirely rely on
catalytic enantiocontrolled fused-ring system extension. Herein, we report a
direct terminal peri-functionalization strategy, which allows for efficient
assembling of 1,12-disubstituted [4]carbohelicenes via an organocatalyzed
enantioselective amination reaction of 2-hydroxybenzo[c]phenanthrene deri-
vates with diazodicarboxamides. The key feature of this approach is that the
stereochemical information of the catalyst could be transferred into not only
the helix sense but also the remote C-N axial chirality of the products, thus
enabling the synthesis of [4]- and [5]helicenes with both structural diversity
and stereochemical complexity in good efficiency and excellent enantiocon-
trol. Besides, the large-scale preparations and representative transformations
of the helical products further demonstrate the practicality of this protocol.
Moreover, DFT calculations reveal that both the hydrogen bonds and the C-
H---π interactions between the substrates and catalyst contribute to the ideal
stereochemical control.

As screw-shaped compounds formally derived from ortho-annulated
aromatic and/or hetero-aromatic rings, helically chiral molecules have
fascinated synthetic chemists for more than 100 years owing to their
esthetic architectures and unique chiroptical properties1–6. Tre-
mendous efforts have been devoted to developing the methodologies
for the synthesis of enantiomerically pure helicenes, which have been
demonstrated in the past decades to be highly promising for appli-
cation in diverse fields, such as asymmetric catalysis7–9, molecular
recognition10–12, molecular machines13,14, material sciences15–17, and
some biologically active agents18,19. Incipiently, substrate-controlled
diastereoselective cyclisation reactions were employed to induce the
screw sense of the helicenes20–27. However, the utilizing of chiral aux-
iliaries or tethers inevitably led to tedious and complicated prepara-
tion of enantiomerically enriched starting materials and high

economic cost. In this regard, catalytic asymmetric protocolswith high
levels of stereocontrol are particularly alluring, but have proven to be
extremely challenging.

While approaches to optically pure point-chiral28 and axially chiral
compounds29,30 have mushroomed enormously in the past decades,
catalytic enantioselective synthesis of helicenes31,32 is still in its infancy,
and corresponding literatures reported todate havebeen fairly limited
(Fig. 1a). Progress in this field mainly comes from transition-metal-
catalyzed [2 + 2 + 2] cycloadditions33–42 and intramolecular hydro-
arylation of alkynes43–51. Complementally, sporadic transition-metal-
catalyzed other approaches52–54, such as V-catalyzed oxidative cou-
pling of polycyclic phenols and Rh-catalyzed enantioselective C-H
activation/annulation process of 1-aryl isoquinoline derivatives and
alkynes were reported by Sasai and You, respectively. Besides, the rare
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examples of organocatalyst-mediated cycloadditions were also docu-
mented to be efficient to access enantiomerically enriched
helicenes55–58. Especially, it is noteworthy that during the preparation
of this manuscript, Baudoin and co-workers reported a Pd-catalyzed
enantioselective intramolecular C-H arylation for access to lower car-
bo[n]helicenes59, groups of Yang and Li independently published the
chiral phosphoric acid catalyzed enantioselective Povarov reaction/
oxidative aromatization process to allow for the synthesis of
azahelicenes60,61. However, despite these pioneering and elegant
works, nearly all the approachesmentioned aboveutilized a strategyof
extending fused-ring systems through stereoselective cyclizations to
construct configurationally stable helicenes (Fig. 1b–I)33–61. The scarcity
of complementary assembly strategies has significantly hindered the
on-demand synthesis of helicenes or helicene-like molecules through
catalytic enantioselectivemethods. Therefore, the explorationofmore
innovative and practical concepts for obtaining optically pure heli-
cenes with a wide structural diversity is highly desired.

It should be noted that besides π-conjugated scaffold extension
through arene formation, terminal peri-functionalization of the chor-
eographed substrates could also generate configurationally stable [4]-
and [5]helicenes. However, such a tactic has hitherto not been applied
in the catalytic enantioselective synthesis of functionalized helicenes
and their heteroanalogues (Fig. 1b-II), which might arise from three
reasons: (1) there is few or no appropriate and available substrate; (2)
the large steric hindrance caused by terminal ring makes it difficult to
install a substituent group at the fjord region of the helical precursors;

(3) unlike building stereogenic centers, the control of helical chirality is
more challenging because it is a phenomenonof nanoscale, which calls
for the pursuit or design of rational catalyst to obtain satisfactory
enantioselectivity. To realize this vision, benzo[c]phenanthren-2-ol 1
with a substituent at its 12-position, in which the hydroxyl group could
function asboth adirecting group and abinding site,wasdesigned and
synthesized (Fig. 2). We speculated that diverse functional groups
could be incorporated at the 1-position in a catalytic helicoselective
fashion by utilizing the nucleophilicity of the enol tautomer of sub-
strate 1, thereby increasing the barrier to enantiomerization and giving
access to enantioenriched 1,12-disubstituted [4]helicenes. If such an
endeavormeetswith success, a series of highly functionalized helicene
molecules that had previously been unexploited or inaccessible would
be easily assembled via an intermolecular electrophilic aromatic sub-
stitution reaction.

For this purpose, we speculated that highly reactive azo-
compound62 might be a suitable electrophile to realize the functiona-
lizationof highly steric-hindered fjord-type area of polycyclic phenol 1.
To the best of our knowledge, catalytic asymmetric amination reaction
of phenols with azo-compounds represents one of flexible and versa-
tile protocols for preparing functionalized molecules with different
stereogenic elements. For example, groups of Jørgensen and Tan
independently realized the catalytic asymmetric synthesis of C-N axi-
ally chiral compounds by employing a direct C-N axis construction
strategy and a desymmetrisation strategy, respectively (Fig. 2a-I)63–66.
Besides, You group, Luan group, and Pan group successively reported

Fig. 1 | Background introduction and our strategy for synthesizing optically pure helicenes. a The research status of catalytic enantioselective synthesis of chemicals
with different types of chiralities. b Strategies for the enantioselective synthesis of hetero- and carbohelicenes. TM transition metal.
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the catalytic asymmetric assembling of aza-quaternary carbon centers
by utlizing dearomative amination reactions of α-substituted β-naph-
thols with either azodicarboxylates or diazodicarboxamides (Fig. 2a-
II)67–69. However, despite these conspicuous progresses, the applica-
tions of similar chemical processes in helicenes synthesis have not yet
been reported, even in a non-helicoselective version. To further extend
the potential of Friedel-Crafts amination reactions in asymmetric
synthesis and enrich the synthetic strategies of enantioenriched heli-
cenes, we reported herein an enantioselective terminal peri-amination
strategy for the efficient synthesis of configurationally stable [4]- and
[5]helicenes (Fig. 2b).

Results
Optimization of reaction conditions
Initially, the amination reaction of 12-methylbenzo[c]phenanthren-2-ol
1a and diazodicarboxamide 2a was selected as model reaction to
examine the feasibility of our concept. Considering the extraordinary
performance of bifunctional organocatalysts in asymmetric
catalysis70,71, we envisage that a double-activationmode via H-bonding
interactions could be applied to promote the depicted pathway and
control the stereochemistry. Accordingly, typical Takemoto thiourea
catalyst C1 was first employed to drive the current reaction, and
pleasingly, furnished the desired [4]helicene 3a in 41% yield with
67.5:32.5 er at −50 °C (Table 1, entry 1). As expected, the C-H amination
of 1a indeed brought a sufficient increase in the energy barrier of
racemization, leading to the formation of a pair of enantiomers that
were configurationally stable enough and not interconvertible at room
temperature. Motivated by this result, commercially available cinch-
ona alkaloid-derived thiourea C2 and squaramide C3, as well as (S,S)
−1,2-cyclohexanediamine-derived thioureas C4 and C5were evaluated

to further improve the enantioselectivity (entries 2-5). However, only
C4delivered a slightly increased er value. In the light of relatively larger
size of helical topology, it was conjectured that extending the steric
hindrance groupof the catalystmight avail to the long-range control of
enantioselectivity. With this in mind, catalyst C6 bearing a 1-pyrenyl
substituent was synthesized and provided a significantly improved
enantioselectivity (entry 6, 86:14 er). The subsequent solvent screen-
ing revealed a preference for THF (entries 7–9). When the concentra-
tion and scale of the reaction mixtures were increased, the same
excellent outcome was obtained (entry 11, 45% yield, 96.5:3.5 er).

Substrate scope
Having established the optimal reaction conditions, we sought to
investigate the substrate scope and limitations of this intermolecular
amination reaction. A variety of diazodicarboxamides 2 were exam-
ined in combination with 12-methylbenzo[c]phenanthren-2-ol 1a
(Fig. 3). Either electron-donating or electron-withdrawing groups at
the para-position of the phenyl ring were all compatible with this
protocol, affording the corresponding 1,12-disubstituted [4]helicenes
in high yields and enantioselectivities (3b-3j, 37-46% yield, 95.5:4.5-
98:2 er). Changing the position of methyl substituent on the phenyl
ring had no apparent effect on the reaction results (3k-3l). Pleasingly,
the reactions of diazodicarboxamides with a disubstituted phenyl ring
occurred in satisfactory yields and enantioselectivities (3m-3p). Only
in the case of 3n was a relatively diminished yield (28%) observed,
probably resulting from rapid decomposition of substrate 2n. More-
over, diazodicarboxamide bearing a bulkier naphthalene group also
workedwell (3q). Importantly, the substituent of substrate 2has not to
be aromatic in nature; alkyl-substituted substrates, such as those with
benzyl, n-hexyl and cyclohexyl, were all smoothly converted to the
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desired enantioenriched [4]helicenes with excellent outcomes (3r-3t,
38–44% yield, 96:4-98:2 er), which further highlighted the compat-
ibility of this transformation.

Next, we targeted the exploration of substrate scope with respect
to 2-hydroxybenzo[c]phenanthrenes 1 (Fig. 4). The effect of sub-
stituents at position 12 was first examined. Besides methyl, ethyl and
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relatively bulky isopropyl groups were all well tolerated, and the cor-
responding amination products were obtained in excellent yields and
enantioselectivities (3u, 3v). Substitutions at the 10 and 11 positions of

the terminal aromatic ringwith afluorine atomor amethyl group saw a
slight decrement in enantioselectivities (3w-3y, 85:15-92.5:7.5 er) with
increased steric hindrance effect, but led to consistently excellent
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chemical yields (45-49% yield). Such a decline in enantioselectivity
might be attributed to the steric repulsion between the substituent at
the terminal ring of the polycyclic phenols and the pyrenyl group of
catalyst. In addition, halogen ormethyl group could also be installed at
the C-6 or C-9 position of substrate 1, which appeared to be incon-
sequential to the reaction outcomes, delivering the desired [4]heli-
cenes with commendable yields and enantioselectivities (3z-3ab, up to
49% yield and 98:2 er). To further extend the applicationof the present
method to the enantioselective synthesis of [5]helicenes, racemic 2-[5]
helicenol 1j was recruited to undergo the current protocol. We were
gratified to observe the smooth formation of 3ac in 44% yield, albeit
with relatively lower er value (88:12 er). It should be noted that the
recovered 1j was identified to be with an er value of 79.5:20.5, sug-
gesting a reaction profile of catalytic kinetic resolution of config-
urationally unstable helical substrates at low temperature (−50 °C).

Encouragedby the above success,we thenwonderedwhether this
approach could be utilized to construct stereochemically complex
molecules, especially thosewithmultiple stereogenic elements. To the
best of our knowledge, simultaneous control of helical and other
chiralities via a catalytic enantioselective process represents a for-
midable challenge and has rarely been reported56,57. Towards this goal,
the reactions of diazodicarboxamides with a sterically bulky t-butyl
group at the ortho-position of phenyl ring were further performed

(Fig. 4), and surprisingly, supplied the respective helically chiral pro-
ducts bearing a stereogenic C-N axis in 45-49% yields with excellent
stereoselectivities (3ad-3af, 3ah and 3ai, 96.5:3.5-97.5:2.5 er, >20:1 dr).
Remarkably, stereochemically complex [5]- and [6]-heliceneswere also
achievablewith comparably high er values (3aj and 3ak). 3ag bearing a
2-iodo-6-methylphenyl ring that is found frequently in C-N axially
chiral atropisomers failed to form a configurationally stable C-N axis,
mainly because the intramolecular steric repulsion caused by the
terminal ring of [4]helicene facilitates the axial rotation. The capacity
of realizing remote axial enantiocontrol while controlling helical sense
selectivity again confirmed the broad generality of this catalytic
enantioselective approach to derive structurally diverse helically chiral
[4]-, [5]- and [6]helicenes.

Synthetic applications
To demonstrate the scalability and practicality of this protocol in the
synthesis of helically chiral chemicals, 2.0mmol scale preparations of
[4]helicenes 3a and 3ab under standard conditions were conducted
(Fig. 5a). To our delight, the reactions proceeded smoothly and there
was no obvious erosion of yield and enantioselectivity to be observed,
suggesting a potential for large-scale chemical production of this
method. Furthermore, some representative transformations of the
helically chiral products 3a and 3ad were exhibited to further validate
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the synthetic value of this methodology (Fig. 5b). For example, double
methylation of 3a with iodomethane was easily realized in the pre-
sence of K2CO3 at room temperature, by which a configurationally
stable C-N axis was established in a diastereoselective fashion, giving
[4]helicene 4a in high yield with acceptable stereoselectivity (90%
yield, 6.1:1 dr, 96.5:3.5 er). The configurationally stability of C-N axes in
4a over 3awas supported by DFT calculations. C-N bond rotation in 3a
shows a medium barrier of 15.4 kcal/mol, while bond rotation in 4a is
kinetically unfavorable with a higher barrier of 29.5 kcal/mol, resulting
from the steric hinderance of the methyl substituents. Similarly, [4]
helicene 4ad bearing two stereogenic C-N axes could also be accessed.
Subjecting 3a to Raney Ni catalyst under a hydrogen atmosphere, a
N–N bond cleavage and subsequent intramolecular cyclization
occurred to generate biaryl compound 6 in 69% yield with excellent
stereoretention. Notably, the urazole ring could also be cleaved by
treating 4a with KOH in isopropanol to deliver [4]helicene 5 in 51%
yield. Additionally, diverse modifications of the main helical skeleton
of 4ab were also exhibited. Substituents such as aryl, alkynyl, and
secondary amine groups can be readily introduced at the 6-position of
[4]helicene 4ab by involving Pd-catalyzed Suzuki-Miyaura, Sonoga-
shira and Buchwald-Hartwig amination reactions, respectively. Treat-
ing4abwith CuCN at 140 °Cproduced the corresponding cyanated [4]
helicene 10 with a yield of 76%.

Mechanistic studies
The helical structure of 4ad was unambiguously demonstrated by its
X-ray crystallographic analysis (Fig. 6a), and the corresponding abso-
lute configuration was definitely assigned to be (M,aS,aS) on the basis
of the Flack parameter (0.07(13)). The configurations of other newly

synthesized helicenes were inferred accordingly. In addition, the cir-
cular dichroism spectra of (P,aR)-3ad and (M,aS)-3adwere recorded to
investigate the chiroptical properties, which displaymirror images and
clear Cotton effects at around 226, 242, 261, 280, 298, and 348 nm,
respectively (Fig. 6b). Then, density functional theory calculations
were conducted using the M11-L functional to obtain the inter-
conversion profiles of the two helical enantiomers of compounds 1a
and 3a, respectively (Fig. 6c). The relatively lower calculated barrier to
enantiomerization for [4]helicene 1a (ΔGǂ = 21.5 kcal/mol) revealed its
configurational lability, corresponding to a half-life of 0.1 h at room
temperature. In comparison, the barrier to enantiomerization for 1,12-
disubstituted [4]helicene 3a is significantly high (~40 kcal/mol),
arguing for the high configurational stability of theM/P-configured 3a.

Furthermore, based on the control experiments (Supplementary
Fig. 5) and absolute configuration of amination products, we compu-
tationally explored the nucleophilic addition transition states of 1a to
2a to gain insight into the origin of the stereochemistry of this catalytic
kinetic resolution process (Fig. 6d). The calculations revealed that
catalyst C6 brings the two reactants into close proximity via hydrogen
bonding interactions and locks the relative orientation of the two
substrates through their non-covalent interactions with the naphtha-
lene skeleton and the pyrenyl substituent in the catalyst. In the most
favorable transition state TS-M, the bifunctional catalyst utilizes the
thiourea N-H group to stabilize the anionic nucleophile (M)-1a, while
the alkylammonium ion acts as a Brønsted acid to activate the diazo-
dicarboxamide 2a. The reaction with (P)-1a is relatively disfavored by
1.9 kcal/mol in the current catalytic system, largely due to the absence
of C-H---π interactions between 1a and the pyrenyl substituent of
catalyst C6 (Fig. 6d, TS-P). Additionally, the traditional activation

1.73
1.89 2.11

1.99

1.83
1.94 1.86

2.03

TS-MS  (favoured)
��G‡ = 0.0 (223.15 K)

N

NH
H

HSH

HN

Me
H

O
H

H

N
N
N

O

O

N

NH

H

H SH

HN

Me
H

O
H

H

N
N
N

O

O

TS-MR (disfavoured)
��G‡ = 3.3  (223.15 K)

steric 
repulsion

a

b

Fig. 7 | Computational investigations on the origin of C-N axial chirality induction (energy in kcal/mol and bond lengths in Å). a C-N bond forming transition state
leading to the (M,S)-configured product. b C-N bond forming transition state leading to the (M,R)-configured product.

Article https://doi.org/10.1038/s41467-024-45049-w

Nature Communications |          (2024) 15:732 9



model with the tight alkylammonium-anionic 1a ion pair is unlikely to
be involved, owing to the energy-demanding transition state TS-M’.

With the favored activation model established, we next intended
tounravel theorigin of C-Naxial chirality induction. TheoptimizedC-N
forming TSs that give rise to the major and minor diastereoisomers of
the product 3ad are shown in Fig. 7. In the transition states TS-MS and
TS-MR, the phenyl ring of the diazodicarboxamide compound 2u
tends to be oriented away from the terminal ring of the polycyclic
phenolate, in contrast to the arrangement observed in TS-M. Transi-
tion stateTS-MS, which leads to themajor (M,S)-configured product, is
more favored than TS-MR by 3.3 kcal/mol. This preference arises from
the decreased steric repulsion between the tert-butyl group on 2u and
the polycyclic phenolate.

Discussion
In conclusion, we successfully developed a terminal peri-functiona-
lization strategy for the catalytic enantioselective preparation of
helically chiralmolecules. Thehighly enantioselective synthesis of [4]
carbohelicenes has been accomplished via an organocatalyzed
intermolecular electrophilic aromatic amination reaction of 2-
hydroxybenzo[c]phenanthrene derivates with diazodicarboxamides.
The capacity of simultaneous control of helical and remote C-N axial
chiralities made the current protocol especially intriguing, allowing
for the constructing of enantioenriched [4]-, [5]- and [6]helicenes
featuring an urazole scaffold with both structural diversity and ste-
reochemical complexity in good to excellent yields and enantios-
electivities. The mechanism investigation suggests that excellent
enantiocontrol stems from a catalytic kinetic resolution process of
configurationally unstable polycyclic phenols under low tempera-
ture. The diverse synthesis of previously elusive optically pure heli-
cenes based on the strategy reported herein is currently in progress.

Methods
General procedure for catalytic enantioselective synthesis of
1,12-disubstituted [4]helicenes
The mixture of polycyclic phenols 1 (0.2mmol, 1.0 equiv) and catalyst
C6 (0.01mmol, 0.05 equiv) was dissolved in 1.0mL of THF and stirred
at room temperature for 10min. Then, the solution was cooled to
−50 °C and stirred for another 10min before diazodicarboxamides 2
(0.1mmol, 0.5 equiv) was added. The resulting mixture was stirred at
this temperature until the complete consumption of 2. After mon-
itored by TLC, the solvent was removed under reduced pressure, and
the residuewaspurified by silica gel column chromatography to afford
the desired products 3.

Data availability
Experimental procedures, characterization data, copies of NMR spec-
tra and computational details that support the findings of this study
are available within the main text and its supplementary information
files. Coordinates of the optimized structures are provided in the
source data file. All other data are also available from the corre-
sponding authors upon request. The X-ray crystallographic coordi-
nates for structures reported in this study have been deposited at the
Cambridge Crystallographic Data Centre (CCDC) under deposition
numbers 2179781 (4ad) and 2179811 (6). These data can be obtained
free of charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif. Source data are provided in
this paper.
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