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DeepFocus: fast focus and astigmatism
correction for electron microscopy

P. J. Schubert 1, R. Saxena1 & J. Kornfeld 1

High-throughput 2D and 3D scanning electron microscopy, which relies on
automation and dependable control algorithms, requires high image quality
with minimal human intervention. Classical focus and astigmatism correction
algorithms attempt to explicitly model image formation and subsequently
aberration correction. Such models often require parameter adjustments by
experts when deployed to new microscopes, challenging samples, or imaging
conditions to prevent unstable convergence, making them hard to use in
practice or unreliable. Here, we introduce DeepFocus, a purely data-driven
method for aberration correction in scanning electron microscopy. DeepFo-
cus works under very low signal-to-noise ratio conditions, reduces processing
times by more than an order of magnitude compared to the state-of-the-art
method, rapidly converges within a large aberration range, and is easily reca-
librated to different microscopes or challenging samples.

The high resolution of electron microscopy (EM), and the ability to
image every sample detail, for tissue with the help of dense heavy-
metal staining, remain unrivaled1,2. Massive improvements in automa-
tion allows the acquisition of 3D images of biological samples with
nanometer resolution spanning millimeters3,4. While EM con-
nectomics, the complete mapping of neuronal tissue, has been one of
the key applications, automated 3D EM also enabled studies ranging
from the analysis of cellular SARS‑CoV‑2 replication5 to fuel cell
research6, demonstrating its wide applicability.

A key component of automated (3D) EM is to maintain high-
quality images over the entire acquisition process, often involving
millions of individual 2D images and 24/7 operations. This renders
manual microscope parameter adjustments virtually impossible.
Automatic defocus and astigmatism correction algorithms remain a
challenge despite their necessity, especially in high-throughput elec-
tron microscopy. This can be explained by sample diversity, the tight
constraints on algorithm execution time, aberration correction con-
vergence speeds, and low-electron dose budgets to avoid artefacts.

Existing solutions7–10 in the area of scanning electron microscopy
(SEM) areusually basedonexplicit physicalmodels of theelectronbeam
and its interaction with the sample (Fig. 1a). Measurements (images)
with known perturbations are taken, followed by focus and stigmation
parameter inference to estimate the wavefront aberrations. These phy-
sically grounded approaches, and those employing classical image

sharpness scores11–13, often struggle with generalization. In other words,
they frequently fail to perform well on novel samples without expert
parameter tuning. This tuning may be infeasible for users, particularly
when the algorithm is integrated into the microscope control software.

A recent study introduced a complex approach that employs two
artificial neural networks to evaluate the quality of SEM images and
subsequently estimate working distance corrections using an updated
state vector and a database comprising tens of thousands of manually
labeled images14. Reinforcement learning was applied to the problem
of electron beam alignment15 and deep learning models were suc-
cessfully used for focus correction in light microscopy16,17. Motivated
by these developments and the strong performance of convolutional
neural networks in general image processing tasks, we devised a deep
learning-based focusing and stigmatization correction method for
scanning electron microscopy. Our algorithm features near-instant
inference time, rapid convergence, functionality with low-electron
dose noisy images, and a user-friendly process for recalibrating it to
new machines and samples without the need for expert knowledge,
ensuring convergence in all application scenarios.

Results
The DeepFocus model
The image of a flat specimen in a scanning electron microscope is
optimally captured when the size of the spot of the electron beam is
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smaller than the sampling distance. Commonly, three parameters,
working distance, on-axis stigmator and diagonal stigmator, hence-
forth referred to as stig x and y, can be adjusted by SEM operators to
directly control the spot shape and bring it below the pixel size at the
beam-specimen interaction point (Fig. 1a), consequently leading to
sharp image formation (Fig. 1b).

The DeepFocus algorithm takes as input two SEM images with a
known working distance perturbation σwd around the current micro-
scope working distance and stigmator settings F = f wd f stig xf stig y

h i
to

estimate the direction and magnitude correction of the beam para-
meters, exploiting phase diversity18. Note, that a single image is not
sufficient to estimate the aberrations. Multiple subregions (patches)
are cropped from the two perturbed input images (Fig. 1c), and pro-
cessed independently by a convolutional neural network. This network
is trained to infer the ΔF that leads to a sharp image when added to F.
The resulting multiple ΔF estimates, one for each input patch pair, are
reduced by a mean operation, which serves as final output for a single
iteration.

To assess the model, we trained the network for about 44 h on a
single GPU on a set of 32 sample locations with different aberration
parameters (in total n = 320 input image pairs; Supplementary Fig. 1).
We subsequently tested the model on location-aberration pairs that
were not part of the training set (Methods). DeepFocus rapidly con-
verges toward the target ΔeF values within three iterations (Fig. 2a, b;
perturbed image electrondose:∼19 electron/nm2), even for low signal-
to-noise (SNR) ratio image pairs (Fig. 2c, d; ∼5 electron/nm2) and small
input patches (Supplementary Fig. 2a; Supplementary Table 1).We also
examined the impact of input alignment, a strict requirement for

example for the algorithm by Binding and Denk7, and found that the
model performs well also in the extreme case that the patches in an
input pair did not share the same offset, but were chosen randomly
(Supplementary Fig. 2b).

The average estimated correction ΔF = Δf wdΔf stig xΔf stig y

h i

after a single iteration was assessed at nine distinct locations
(evenly spaced grid with an edge length of 100 μm) for an
expanded range of initial defocus (working distance perturbation
in μm of ± 20, ± 10, ± 5, ± 2, ± 1) to evaluate the model’s learned
transformation’s goodness of fit. The relationship between the
target correction for the working distance Δef wd (the negative
introduced defocus) and model output Δfwd should ideally be
linear, specifically, it should follow

Δf wd = c1 ×Δef wd + c2 ð1Þ

with c1 = 1 and c2 = 0. Using ordinary least squares (OLS; from the
statsmodels Python package) to fit a line resulted in
c1 = 0.9093 ± 0.006 and c2 =0.3436 ±0.061 ( ± 1σ interval), signifying
a slight yet significant deviation from the identity function. Never-
theless, the model effectively learned to deduce the correction direc-
tion. Notably, the stigmator values were barely changed by the model,
when just the working distancewas perturbed (Fig. 2e, Supplementary
Fig. 3). The remaining mean absolute difference of the working dis-
tance

jδwd j= jΔf wd � Δgf wd j ð2Þ
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Fig. 1 | SEM beam formation and DeepFocus algorithm. a Schematic of the
electron beam and the parameters that are controlled by DeepFocus. b Defocus -
and astigmatism series (n = 1) that shows the influence of mild working distance
(top row: 0 to 8 µm) and stigmator changes (bottom row: 0 to 5 a.u.) on image
quality for a ZeissMerlin SEMwith 800ns dwell time and 10 nmpixel size. Scale bar
is 500 nm. c The out-of-focus image (example resolution 1024 × 768, 10 nm pixel
size) is perturbed (symmetric perturbation σwd = ±5 µm) and randomly located

patch pairs (shared offset within image pair, e.g. blue and pink squares with shape
512 × 512) of fixed shape are cropped and processed by DeepFocus - an artificial
neural network consisting of an image encoder and a regression head. A definable
number of independent predictions is used to calculate a correction term ΔF for
each focus parameter (wd: working distance, stig x: stigmator x; stig y: stigmator y).
All SEM images have 10nm pixel size. Scale bar in b is 500 nm.
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was closer to the target value Δef wd for smaller initial deviations (Sup-
plementary Fig. 3). This, combined with the correct direction, enables
convergence.

Apart from the ability of correcting image aberrations with high
accuracy, a well-performing auto-focus algorithm should add minimal
computational overhead over the test image acquisition times. We
therefore compared DeepFocus processing time tomicroscope image
acquisition time for CPU-only and GPU-based inference, run directly
on the microscope control computer. GPU-based inference out-
performed CPU-only processing by about an order of magnitude,
especially for larger input image patches. Input image patches with an
edge length of 384 and 512 pixels allowed fast inference with accurate
results (Supplementary Table 1, Fig. 2f). Importantly, DeepFocus pro-
cessing times did not add substantial overhead, even for the little
optimized CPU-only mode (Fig. 2f), which will allow widespread
deployment of the algorithm to standard microscope computers
without hardware modifications.

We conducted additional tests to investigate whether utilizing
more advanced, pretrained image encoders has a beneficial impact on
the performance of our approach (Table 1 and Supplementary

Tables 2–5, Supplementary Text 1). Notably, our findings indicate that
the pre-trained EfficientNet substantially outperforms the baseline
architecture (Stacked Convolutional with an edge length of 512) across
all data sets, albeit at the expense of reduced throughput. Using pre-
trained weights, the model achieved a considerable reduction in the
mean absolute error (MAE) (Supplementary Table 6), closing the gap
between EfficientNet and the baseline.

Learned image region weighting
During DeepFocus development, we noticed that many specimens
contain regions with little usable information for an auto-focus algo-
rithm, such as blood vessels in tissue, which show only blank epoxy
resin and no contrast that could be used by an auto-focus algorithm
(Fig. 3a, b). We therefore reasoned that such areas should have less
weight in any ΔF estimation, and devised a neural network loss term
and architecture (Supplementary Fig. 4) that directly leads to the
emergence of a second set of model outputs that weigh the ΔF esti-
mates,without additional training data. These newDeepFocus outputs
are loosely regularized (only in terms of weight decay) scores that are
used as weighting factors already during DeepFocus model training.
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Fig. 2 | DeepFocus convergence and processing time. a Convergence plot based
on the mean of n = 5 predictions on 512 × 512 input patch pairs, cut out from two
perturbed images acquiredwith 1024 × 768with 200ns dwell time. The y-axis shows
the difference to the correct focus values (dashed and dotted horizontal lines indi-
cate 0.25 and 1 µm margin of stig and wd, cf. Fig. 1b) with an initial aberration of
30 µm, +6, −6 (wd, stig x, stig y). Numbers in images indicate the iteration. b Image
(n= 1) before and after applying DeepFocus, 800ns dwell time. c, d Same as in

a,b but with 50ns dwell time, including the inset in c. e Correction estimate (n= 9
different locations; inμmforwdand a.u. for stig x and stig y) afterone iterationusing
5 input patches (512 × 512) with 200ns pixel dwell time. Colors correspond to those
in a and c. f Processing time per input patch pair for different patch side lengths
(n= 10 repetitions, each with 5 input patch pairs) on the microscope PC. Scale bars
are 500nm in a,c and 1 µm in b,d. Data in all plots are presented as mean values ±
standard deviation (SD). Source data are provided as a Source Data file.
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Table 1 | Comparison against common model architectures using the mean absolute error (MAE)

Architecture MAEwd [µm] MAEstigx [a.u.] MAEstigy [a.u.] GPU speed [MPx/s] CPU speed [MPx/s]

Stacked Conv. 2.59 ± 2.39 0.45 ± 0.39 0.43 ±0.30 518.26± 146.90 54.00±0.74

ResNet-50 3.06 ± 4.24 0.52 ± 0.56 0.43 ±0.42 102.76 ± 1.24 2.60±0.02

EfficientNet-B0 1.45 ± 1.43 0.29 ±0.21 0.37 ± 0.33 406.56± 22.25 14.14 ± 0.28

Single iteration and single input patch-pair performance (mean ± SD) of differentmodel architectures (Stacked Conv. with an edge length of 512) on the neural tissue test data and pixel throughput
(Methods).
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Fig. 3 | DeepFocuswith additional score prediction. aConvergence of themodel
fromFig. 2a (usingn = 10 insteadof 5 patchpairs) on the image inb that contained a
blood vessel; 200 ns dwell time, image size 2048 × 1568. cModel architecture that
predicts an additional score si per patch pair used to calculate a weighted focus
correction. d Improved convergence of the patch-score model with n = 10 input
patch pairs (384 × 384). e Image after using the score model (left) and the image
with correct focus (right). fOne of the two input patches and corresponding score
values (n = 1; ratios of maximum values; original values: 0.0065, 0.1235, 0.129).

g Convergence with pixel-level score predictions using n = 2 input patch pairs
(384 × 384) at 50ns dwell time and image size 2048 × 1536. h Score map of one
example patch used in g. The right column shows the composite images of the
example input patch (left column) and the corresponding pixel scores (center
column) in red. Scale bars: 2 µm in b,e and 0.5 µm for f and h. Data in all plots are
presented asmean values ± SD from the n input patches. Source data are provided
as a Source Data file.
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We tested two different granularities for weighting, first on the level of
the DeepFocus input image patches (Fig. 3c–f), which are cropped
portions of the larger input image pair acquired by the microscope,
and second, on the level of individual pixels, leading to a scoring of
every location in an input image (Fig. 3g, h). Both approaches proved
more robust toward specimen regions with little contrast information,
demonstrating that DeepFocus does not require potentially error-
prone conventional image processing to pre-filter low-contrast
regions.

Transferability of DeepFocus
Like MAPFoSt (Maximum-A-Posteriori Focusing and Stigmation)7,
several aberration correction algorithms were developed for SEM in
the past, andmicroscopemanufacturer software usually includes such
algorithms. In our experience, however, these algorithms performed
often poorly7, possibly due to overfitting their parameters, or even the
entire algorithmic model to particular test cases. To assess the extent
to which DeepFocus is susceptible to overfitting to its remarkably
small training set, we first evaluated it on an unseen, non-biological
sample and second, on an entirely differentmicroscope, with different
imaging settings. Remarkably, DeepFocus generalized exceptionally
well to this novel sample (Fig. 4a, b), even with being trained only on
image data of a single specimen. Transferring the algorithm to a dif-
ferent microscope with vastly different imaging settings (modified
landing energy, beam current, overall working distance range, rotated
image acquisition) led to failure and divergence of the model, as
expected (Fig. 4c).

Machine-independent auto focus
We therefore developed an alternative approach, DeepScore, aiming
for machine and setting independence, by estimating the magnitude
of ΔF without its correction direction from a single image (Methods,

see19,20). The intent was to create a slower yet machine-independent
auto-focus algorithm, based on the directionless score and classical
optimization (tested with the simplex method developed by Nelder
andMead21). This algorithmcan thenbeused togenerate,withminimal
manual input, a new training set in case of a required DeepFocus re-
calibration. We found that DeepScore, when used with classical opti-
mization, can effectively infer a parameter set F that leads to sharp
image formation, albeit, as expected, with slower convergence than
the regular DeepFocus model (Supplementary Fig. 5, Supplementary
Text 2). Using this approach, we generated a new, smaller training data
set (n = 10 locations, 31% of the original training set) for a SEM where
DeepFocus had diverged. Fine tuning the DeepFocus model (recali-
bration) took less than 2 h on a single GPU, and recovered its ability to
estimate ΔF with the original convergence speed (Fig. 4d).

Comparison with the MAPFoSt algorithm
We finally performed a direct comparison of DeepFocus and the state-
of-the-art automatic aberration correction algorithm for SEM, MAP-
FoSt. MAPFoSt uses a Bayesian optimal approach to infer the target ΔF
values, and was specifically optimized to yield a parameter set for
sharp images with as little electron dose as possible for the sample.We
used the publicly available Python implementation of the algorithm
(https://pypi.org/project/mapfost/), with parameters adjusted by its
developer (RS) for the SEM used. As expected, MAPFoSt was also able
to estimate a correct parameter set on the tested samples (Fig. 5,
Supplementary Table 7), but required on average 4 more iterations to
convergence (residualwd mean and SD of DeepFocus after iteration 2:
0.34 µm ± 0.3 µm vs MAPFoSt after iteration 6: 0.5 µm ± 0.21 µm)
despite using 50 ns pixel dwell time for the two perturbed images
with DeepFocus, and 200 ns for MAPFoSt. Strikingly, DeepFocus out-
performs MAPFoSt in particular for low SNR imagery, the image set-
tings domain it was developed for, and large initial aberrations

δ st
ig
 [a

.u
.]

-6

-4

-2

0

2

4

6

iteration
0 2 4 6 8 10

δ w
d [

µm
]

0
5

10
15

20
25

30
a b

setup A

c d

δ st
ig
 [a

.u
.]

-50

-40

-30

-20

-10

0

10

iteration
0 2 4 6 8 10

δ w
d [

µm
]

-40
-30
-20
-10

0
10
20
30

setup B

δ st
ig
 [a

.u
.]

-8
-6
-4

0
2
4
6

-2

iteration
0 2 4 6 8 10

δ w
d [

µm
]

0

5

10

15

20

25

30
setup B, fine tuned

stigx
stigy
wd

0 10

Fig. 4 | DeepFocus convergence on an unseen sample and recalibration for a
different setup. aModel convergence (samemodel as in Fig. 3d; n = 10 input patch
pairs) on a sample of tin on carbon (not contained in the training data) using setup
A at 100 ns dwell time. b Image from a at iterations 0 and 10. Scale bar is 1 µm. c The
same model as applied to tin on carbon on setup B (see Methods for imaging

parameters). d Convergence of the fine-tuned DeepFocus model (last three fully
connected layers re-trained) after 50k training iterations using 100 automatically
acquired samples at 10 different locations with setup B (Methods). Data in all plots
are presented as mean values ± SD. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45042-3

Nature Communications |          (2024) 15:948 5

https://pypi.org/project/mapfost/


(Supplementary Fig. 6). We also observed that MAPFoSt required
longer computation times, more than 30 times, in comparison to
DeepFocus running on a low-power GPU inside the microscope com-
puter (processing time per 5122 patch pair with GPU: 0.032 s ± 0.004 s
and CPU: 0.240 s ±0.011 s compared to MAPFoSt with
0.897 s ± 0.024 s for 5122 and 1.673 s ± 0.018 s for 7682; Methods).

Discussion
While deep learning has demonstrated impressive advances in recent
years in domains such as natural language processing22 or computer
vision23,24, many “simple” control theory problems remain to be
explored25. Here we demonstrate how a powerful and over-
parameterized model, in the classical sense, can outperform the
carefully hand-optimized state-of-the-art approach7 in all measured
performance metrics: robustness toward low SNR images, con-
vergence speed, measured by algorithm iterations, and surprisingly,
the calculation duration of inference.

This may not be unexpected, given the success of convolutional
neural networks across various domains of computer vision, and the
fact that auto-focusing can be framed as a regression problem given
two input images with known working distance perturbations. We
found that various neural network architectures, from simple con-
volutional models followed by fully connected layers to moremodern
U-Nets26 were able to solve the problem. This suggests that innovation
in machine control may shift from carefully crafting models toward
carefully connecting and interfacing more general models. It also
shows that future versions of DeepFocus will likely perform better,
simply by plugging in more powerful standard model architectures.

We believe that the alternative approaches to aberration correc-
tion in SEM rely on many implicit and explicit assumptions about the
nature of the input images, the electron optics, the point spread
function, and, in general, the entire system that is being controlled.
While these assumptions are clearly necessary to build a control sys-
tem based on explicit physical models or classical image processing,
they inevitably result in an approximation of the system’s behavior.
DeepFocus also approximates the system’s behavior, through the
training data, but with fewer hard assumptions, and leads to an auto-
focusing algorithm that is tailored to the peculiarities of every SEM/
sample after a simple recalibration, while still generalizing surprisingly
well to unseen samples without retraining.

This purely data driven approach also has clear limitations:
adjusting the focus under conditions that are underrepresented or not
part of the training data (e.g., large magnification changes or very
exotic samples) might lead to poor convergence. Whether it will be
possible to acquire a training set and train a single model that covers
essentially all possible parameters without fine-tuning, also by feeding

microscope parameters directly to the model, remains to be
demonstrated.

Methods
Research performed in this study complies with all relevant ethical
regulations of the MPI for Biological Intelligence.

Electron microscopes and samples
All experiments were performed using two different scanning electron
microscopes (SEM). The default setup was a Zeiss Merlin SEM equip-
ped with an in-lens secondary electron detector and operated at an
acceleration voltage of 1.5 kV, a beam current of 1.5 nA, and a working
distance of 4.5mm (setup A). Recalibration experiments were carried
out on a Zeiss UltraPlus SEM with an acceleration voltage of 1.2 kV, a
60 µmaperture (~0.6 nA beam current), an in-lense secondary electron
detector, a working distance of 6mm, and scans that were rotated by
90° (setup B).

Experiments involving biological samples were conducted on
250nm sections collected on a silicon wafer. The sections were cut
from a 500 µm diameter biopsy punch of a 200 µm thick zebra finch
brain slice, stained with Hua protocol27 and embedded in Spurr’s resin.
Experiments with non-biological specimens were carried out on tin on
carbon from Agar Scientific (S1937) for both setups A and B.

The stigmator values reported by the microscope software
(SmartSEM Version 6.06) were used without additional adjustment or
calibration.

Ground truth generation
To generate training and validation samples, a pair of perturbed ima-
ges (±5 µm working distance) was acquired relative to a known aber-
ration, which was introduced by changing working distance and both
stigmators. Anexpert SEMusermanually adjusted the focusbaseline at
each location, and perturbed image pairs were acquired for 10 intro-
duced aberration vectors (working distance, stig x, stig y). The values
of the aberration vectors were drawn uniformly within a given range.
Each training sample consisted of two perturbed images as the model
input and the corresponding negative aberration vector as the target.
The aberrations were sampled at 23 locations from a working distance
range of ±20 µm,and astigmatisms of ±0.5. Theperturbed imageswere
acquired at a size of 1024 × 768. For 17 locations, imageswere acquired
at a size of 2048 × 1536 and within ±20 µm (wd) and ±5 (stigmators).
Finally, the resulting 400 samples were shuffled and divided into
training (80%, 320 samples) and validation (20%, 80 samples) sets.

The test data sets for the model architecture comparison com-
prised 1) neural tissue test data (50 samples, recorded at 5 locations
with each 10 aberrations, acquisitionwith 10MHz) and 2) tin on carbon
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test data (80 samples, 2 locations with 40 aberrations each; one
location with 5MHz and one with 10MHz). The test images were
acquired with aberrations sampled uniformly within ±20 µm (wd) and
±5 (stigmators).

Model architectures and training
All models were developed and trained using PyTorch28 1.9.0 and the
open source framework elektronn3 (https://github.com/ELEKTRONN/
elektronn3) with mini-batches, L1 loss (mean absolute error), step
learning rate scheduler (a factor of 0.99 every 2000 steps) and the
AdamW optimizer29.

The image-to-scalar architecture used seven convolutional layers
(valid convolution; 3D kernels to share weights across the two inputs
using a z-kernel size of 1) followed by three fully connected layers
(Table 2). The convolutional layers were constructed as follows: con-
volution, batch normalization, activation (ReLU), max-pooling, and
dropout (rate p =0.1).

For different input shapes, the parameters of the fully connected
layer (rows 8–10 in Table 2) were adjusted as follows:

• 2 × 128 × 128: Linear(140, 100), Linear(100, 50), Linear(50, 3)
• 2 × 256 × 256: Linear(1260, 250), Linear(250, 50), Linear(50, 3)
• 2 × 384 × 384: Linear(3500, 250), Linear(250, 50), Linear(50, 3)

The model output is a correction vector ΔeF for working distance
(in µm) and stig x and y (arbitrary units). The L1 loss was calculated
without additional weighting as the value range of the different target
types (working distance vs. stigmator) appeared sufficiently similar.

In order to obtain an average estimate of multiple corrections
with learned weights, the architecture was modified to produce an
output of 4 channels (3 for corrections and a weight score associated
with each correction: ΔFi, si) instead of 3. The model was trained by
computing the weighted average of 5 predictions using the softmax
function for normalization of the scores as weights. During each
iteration of the training process, 5 patch pairs were generated from the
input, and the resulting model output, which was the weighted aver-
age, was compared with the target to calculate the loss.

In the image-to-image case, we employed a 3D U-Net
architecture26 with three planar blocks to facilitate weight sharing
between the two input images, same convolution, resize
convolutions30 for the upsampling and group normalization31. Our
model used 32 start filters and two final 2D conv. layers to project the
concatenated channels of the two inputs images to 4 channels per
pixel: Conv2D(input channels = 64, output channels = 20, ker-
nel_size = (1, 1)), activation, Conv2D(20, 4, (1, 1)). A softmax function
was applied to the 2D score map output which was then used to cal-
culate the weighted average of the per-pixel predictions. Multiple
dense predictions were combined by calculating their mean.

In both score models (image-to-scalar and image-to-image)
an additional loss term based on the L1 loss of the individual

(either patch- or pixel-wise) predictions was added (α = 0.25):

eL= ð1� αÞL1f inal +αL1individual ð3Þ

Model inputs (gray scale images with intensities between 0 and
255) were rescaled to -1 and 1. Patch pairs (one for each of the per-
turbed images) were cropped randomly (but with the same offset;
except for the independent version) and augmented (independently
applied with probability p; all values were drawn from a Normal dis-
tribution) with additive Gaussian noise (p =0.75, mean=0, sigma=0.2),
random gamma adjustment (p =0.75, mean=1.0, gamma SD=0.25;
pixel intensities internally rescaled between 0 and 1; I* = Iγ) and a ran-
dom brightness and contrast adjustment (contrast mean=1, contrast
SD =0.25, brightness mean = 0, brightness SD =0.25;

I* = contrast × = I � Imean

� �
+ Imean +brightness ð4Þ

Trainingswere stopped after validation loss convergence at 1 × 106

iterations (no-score models), 0.5 × 106 (patch-score model) and 0.2 ×
106 (pixel-score model). The number of model parameters (Supple-
mentary Text 1, Supplementary Table 1) and the architecture visuali-
zations in (Supplementary Fig. 4) were retrieved and created with
TorchLense32.

Convergence experiments
To evaluate the convergence behavior of our models, we monitored
the state of the focal parameters during 10 consecutive iterations at a
fixed position, using a known initial aberration. Specifically, we plotted
the deviation from the focus baseline for three parameters - working
distance, stigmator x, and stigmator y - after each iteration. We con-
firmed that the parameter deviations correlate with improvements in
the common image-comparisonmetrics structural similarity index and
mean squared error (Supplementary Table 8).

Experiments with DeepFocus and single trajectories used initial
aberrations of (30 µm, −6, 6). To determine the parameter baseline, we
first coarsely adjusted the focusmanually, and then ran theDeepFocus
model with patch scores for three iterations, using a dwell time of
200ns, an image size of 2048 × 1536, and patches sized at 20 × 384 ×
384. We subsequently verified the obtained parameter baseline by
visually confirming that it led to sharp images (correct focus values).
The signal-to-noise ratio (SNR) of the image presented in Fig. 2 was
determined using themethodology proposed by Sage andUnser33 and
a low-noise image, obtained with 800ns pixel dwell time, as reference
(iteration 10 in Fig. 2b, d).

Compute hardware and timings
Model training was conducted on aWindows computer equippedwith
two Nvidia Quadro RTX 5000 graphics processing units (GPUs), an
Intel Xeon Gold 6240 central processing unit (CPU) @ 2.60GHz

Table 2 | Stacked convolutional architecture of DeepFocus for 2 x 512 x 512 inputs

Layer # Layer Type Input Channels Output Channels Kernel Size Pooling Size Activation Dropout (p) Batch Norm.

1 Conv3D 1 20 (1, 5, 5) (1, 2, 2) ReLU 0.1 Yes

2 Conv3D 20 30 (1, 5, 5) (1, 2, 2) ReLU 0.1 Yes

3 Conv3D 30 40 (1, 4, 4) (1, 2, 2) ReLU 0.1 Yes

4 Conv3D 40 50 (1, 4, 4) (1, 2, 2) ReLU 0.1 Yes

5 Conv3D 50 60 (1, 2, 2) (1, 2, 2) ReLU 0.1 Yes

6 Conv3D 60 70 (1, 1, 1) (1, 2, 2) ReLU 0.1 Yes

7 Conv3D 70 70 (1, 1, 1) (1, 1, 1) ReLU 0.1 Yes

8 Linear 6860 250 - - ReLU - No

9 Linear 250 50 - - ReLU - No

10 Linear 50 3 - - - - No
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(36 threads) and 768 GB RAM. Inference was executed directly on the
microscope computers (setup A/B), and the time measurements were
carried out on the Zeiss Merlin microscope computer (Intel Xeon CPU
E5-2609 v2 @ 2.50GHz, 4 threads; 16 GB memory; T1000 GPU). The
measurements were performed with either the CPU-only or the CUDA
(Compute Unified Device Architecture by Nvidia) backend of PyTorch.

The processing time measurement commenced with the per-
turbed image pair array and concluded with a single correction vector,
encompassing cropping, image normalization, CPU-GPU memory
transfers, and mean estimation. Initialization of the PyTorch model
was excluded from themeasurement, as it is only required onceduring
startup. Serialized versions of the model were stored and loaded with
TorchScript. The MAPFoSt implementation utilized multithreading on
image patches; for instance, for a 2048 × 1536 input image and a patch
size of 768 × 768, four parallel processes were spawned. All timing
measurements were conducted with 2048 × 1536 images, a pixel dwell
time of 200 ns and computed as the mean of 10 repetitions.

Comparison against common model architectures
The baseline model (stacked convolutional layers) was compared
against ResNet-5034 and EfficientNet-B035 - two common and estab-
lished architectures. The training of the two reference architectureswas
performed as described in “Model architectures and training” with
initial pre-trained weights (available through PyTorch ‘ResNet50_-
Weights.IMAGENET1K_V2’, ‘EfficientNet_B0_Weights.IMAGENET1K_V1’).
In order to output a correction vector ΔeF for working distance (in µm)
and stig x and y (arbitrary units), the layers after the average pooling of
the original architectures were replaced by two convolutional layers
(output channels ResNet: 512 and 4; EfficientNet: 320 and 4; kernel size
1), which received the concatenated results of the two independently
processed input patches as input. Both models used 512 × 512 input
patches.

The inference speed was measured as pixel throughput with 5
input patch pairs (2 × 512 × 512) cropped from 2048 × 1536 input
images and reported as the averageof 10 repetitions. Thepixel count is
calculated as 512 × 512 × 5 × 2. The timings were conducted on the
Windows PC described in “Compute hardware and timings”.

Recalibration procedure
To automatically generate training data for novel setups (DeepFocus
recalibration), a separate neural network was developed with the aim
of regressing a generalized and microscope-independent image
sharpness score (DeepScore). The model designed to produce such a
score for a single image was based on an architecture similar to the
image-to-scalar DeepFocus variant (Table 3).

The model output comprised two scores: one for the working
distance swd and one for the stigmation sstig, which may be used for
adjustment later on. The loss was calculated using the L1 distance
between the absolute ground truth targets (working distance, stig-
mator x, stigmator y) and the model outputs. The two, absolute

stigmator components of the ground truth were summed prior to the
loss calculation with the model output score sstig. To generate a single
score per image, the minima of N patch predictions (with locations
selected randomly using a fixed initial seed) were computed inde-
pendently for each score type (working distance and stigmation) and
subsequently summedwithout additionalweights. The resulting single
score was used for all experiments.

In order to transform the image sharpness score (objective
function) into a microscope-independent autofocus algorithm, we
combined it with the downhill simplex method21. This approach
minimizes the DeepScore through iterative adjustment of the focus
parameters. We adopted F. Chollet’s Python implementation of the
Nelder-Mead algorithm (https://github.com/fchollet/nelder-mead),
with the following extension: If there was no improvement within the
last 5 iterations (at most every 5 iterations), the current focus para-
meters were perturbed with noise drawn from a uniform distribution
within the ranges (±2 μm, ±0.5, ±0.5).

The automatic adjustment of the focus parameter at each location
was achieved using the Nelder-Mead-DeepScore autofocus with 10 × 2
× 512 × 512 patches cropped from an input image with a 200ns pixel
dwell time and a resolution of 2048 × 1536 pixels. The DeepScore
network was trained on the ground truth acquired on setup A (see
Ground truth generation). To derive a threshold to be used as a
stopping criterion for the downhill simplex method, the focus was
adjusted manually once before initiating the procedure. The corre-
sponding sharpness score was then evaluated and multiplied by 1.05.

The training image pairs for the DeepFocus recalibration on setup
B were acquired on a regular grid with a resolution of 2048 × 1536
pixels and a dwell time randomly chosen as either 200 ns or 100ns.
The first 10 locations’ samples were used for training, each sampled
with 10 aberrations (uniformly drawn between ±20 μm, ±5, ±5; 100
location-aberration pairs in total; stopping threshold 0.0014). Recali-
bration was then performed by fine-tuning the parameters of the last
three fully connected layers of a pre-trained DeepFocus model. Fine-
tuning employed the training parameters described for the DeepFo-
cus, except for an increased learning rate decay,whichwas achievedby
multiplying the rate by 0.95 every 1000 steps and limiting training to a
maximum of 50,000 steps (approx. 2 h).

Multi-trajectory recordings and MAPFoSt comparison
In the experiments conducted with the UltraPlus (setup B) illustrated
in Fig. 4, two iterations of the MAPFoSt algorithm (with a 400ns dwell
time and 4 × 786 × 768 patches) were employed to establish the
baseline for theunrotatedbeamscan.Manual focusing, executedby an
expert (PS), was utilized for the 90° rotated scan.

Multi-trajectory plots were obtained at 9 distinct locations, evenly
distributed on a grid with 80 μm side length. In addition, the mean
absolute error (MAE) was computed for each iteration to estimate the
average convergence speed and final variance of themodel. The initial
focus baseline was established through manual focus adjustment,

Table 3 | DeepScore architecture for 2 x 512 x 512 inputs

Layer # Layer Type Input Channels Output Channels Kernel Size Pooling Size Activation Dropout (p) BatchNorm.

1 Conv3D 1 20 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

2 Conv3D 20 30 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

3 Conv3D 30 40 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

4 Conv3D 40 50 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

5 Conv3D 50 60 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

6 Conv3D 60 70 (1, 3, 3) (1, 2, 2) ReLU 0.1 Yes

7 Linear 2520 250 - - ReLU - No

8 Linear 250 50 - - ReLU - No

9 Linear 50 2 - - - - No

Article https://doi.org/10.1038/s41467-024-45042-3

Nature Communications |          (2024) 15:948 8

https://github.com/fchollet/nelder-mead


followed by the application of MAPFoSt twice using a 200 ns dwell
time, a resolution of 2048 × 1536, and 768 × 768 patches (Fig. 5a) or the
patch-score model (Fig. 5b). This baseline was employed to set the
initial aberrations. To account for a minor shift in the target focus
(working distance) observed during thefinal iterations, possibly due to
the frequent imaging during the trajectory acquisition, two iterations
of MAPFoSt (Fig. 5a) or the patch-score model (in the case of Fig. 5b)
were performed post-trajectory recording to obtain a more accurate
baseline for plotting trajectories and margins in Fig. 5 and Supple-
mentary Fig. 6a. Patch locations forDeepFocuswere chosen randomly,
yetwith afixed sequenceof seeds, i.e. the sameNpatchoffsets (1 offset
per patch pair) were used across all trajectories and iterations. Initial
aberrations were uniformly sampled within the following ranges: 8 to
12μm(working distance), -4 to -2 (stig x), and 2 to 4 (stig y), with afixed
randomseed to ensure an identical distribution of aberrations for both
MAPFoSt and DeepFocus. The test locations on the specimen for the 9
trajectories were identical for Fig. 5a and Supplementary Fig. 6a. All
experiments involving MAPFoSt were conducted with version 4.2.1
(https://pypi.org/project/mapfost/4.2.1/).

Statistics & Reproducibility
No statisticalmethodswere used to predetermine the sample size. The
experiments were not randomized, and the investigators were not
blinded to allocation during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The data
generated in this study have been deposited in the Zenodo database
under accession codehttps://doi.org/10.5281/zenodo.841652436. Source
data are provided with this paper.

Code availability
Source code (https://doi.org/10.5281/zenodo.8422791) is publicly
available on Zenodo37.
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