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Competition-driven eco-evolutionary
feedback reshapes bacteriophage lambda’s
fitness landscape and enables speciation

Michael B. Doud 1,2, Animesh Gupta 2, Victor Li2, Sarah J. Medina2,
Caesar A. De La Fuente 2 & Justin R. Meyer 2

A major challenge in evolutionary biology is explaining how populations
navigate rugged fitness landscapes without getting trapped on local optima.
One idea illustrated by adaptive dynamics theory is that as populations adapt,
their newly enhanced capacities to exploit resources alter fitness payoffs and
restructure the landscape in ways that promote speciation by opening new
adaptive pathways. While there have been indirect tests of this theory, to our
knowledge none have measured how fitness landscapes deform during
adaptation, or test whether these shifts promote diversification. Here, we
achieve this by studying bacteriophage λ, a virus that readily speciates into co-
existing receptor specialists under controlled laboratory conditions. We use a
high-throughput gene editing-phenotyping technology to measure λ’s fitness
landscape in the presence of different evolved-λ competitors and find that the
fitness effects of individual mutations, and their epistatic interactions, depend
on the competitor. Using these empirical data, we simulate λ’s evolution on an
unchanging landscape and one that recapitulates how the landscape deforms
during evolution. λ heterogeneity only evolves in the shifting landscape
regime. This study provides a test of adaptive dynamics, and, more broadly,
shows how fitness landscapes dynamically change during adaptation, poten-
tiating phenomena like speciation by opening new adaptive pathways.

Fitness landscapes were first conceived of by Sewall Wright as a con-
ceptual framework for visualizing the connection between genotype
and fitness1. Conceptually, fitness landscapes are often projected as
two-dimensional distributions of fitness peaks and valleys, and muta-
tions allow populations to move randomly across the topography. If
mutations reposition an individual higher up a fitness peak, survival
becomes more likely, and conversely survival is less likely during
descent into fitness valleys. As populations diverge to climb distinct
fitness peaks and become separated by valleys, this process can result
in further diversification, and eventually speciation. Although com-
pelling and intuitive when presented as static, three-dimensional dis-
tributions, fitness landscapes are far more complex due to the high

dimensionality of genotype space, non-additive interactions between
multiple mutations (epistasis) that distort landscape topography, and
various biotic and abiotic forces that dynamically reshape fitness
landscapes2.

Adaptive dynamics theory (ADT) is a framework for studying
evolutionary change in a setting where the fitness of individuals is not
static over time, but canbe affected by the frequencyof the individuals
as well as changes in their ecology3–5. ADT is an extension of game
theory4,6 and has been applied to study evolution of resource-limited
populations, where competition can dynamically influence fitness
landscapes. One of the theory’s key predictions is that as populations
adapt and compete, there are resulting deformations in their fitness
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landscapes that promote diversification and speciation. For example,
under a simple model of evolution with a fixed fitness landscape,
populations evolve towards fitness peaks and can become trapped on
local fitness optima. In contrast, ADT predicts that when a population
adapts to fill a specific niche, increased competition for limited niche
resources will decrease the fitness payoff of the niche, thereby
shrinking the associated peak. When this peak is lowered, the popu-
lation is released to explore other regions of thefitness landscape. ADT
predicts that this eco-evolutionary feedback can deform the fitness
landscape to allow new populations to ascend new fitness peaks. The
original population remains well-adapted to the original peak as the

new population emerges, allowing for ecological diversification and
speciation.

There is limited experimental evidence supporting the ADT
model. Bono et al. used experimental evolution of a bacteriophage to
show that the rate of acquiring the ability to infect a new host was
associated with the degree of competition between viruses to infect
host cells7. While this study experimentally demonstrated the role that
competition can play in facilitating the emergence of new virus phe-
notypes, it was unclear whether changes in the fitness landscape dur-
ing adaptation facilitated this ability to infect a new host. Spencer et al.
used experimental evolution of bacteria that diversified metabolic

Fig. 1 | Overview of experimental measurements of fitness landscapes.
aMutations at nine nucleotide sites in the J genewere observedduring longitudinal
population sequencing of λ while evolving from a generalist into two specialists
(also Supplementary Fig. 1). Some mutations are in the same codon: mutations 2
and 3 (in isolation or in combination) introduce the same nonsynonymous change
at that codon; mutations 7 and 8 (and their combination) introduce distinct non-
synonymous changes in that codon. The amino acid sites associated with the nine
nucleotide mutation sites are shown as colored circles on the predicted protein
structure of the distal portion of the J protein. b Nine mutations were introduced
combinatorically by MAGE into the generalist EvoC J sequence and subsequently

incorporated into a mutant virus library of λ particles carrying all viable geno-
types. c Mutant λ virus libraries were mixed with a competitor λ strain and cul-
tured for four hours (approximately two infection cycles) to allow for viruses to
compete for host cells expressing only OmpF, only LamB, or an even mixture of
these cells. The fitness of each genotype was computed using genotype fre-
quencies measured by deep sequencing before and after the competition
experiment. d, Measurements of fitness were highly correlated between experi-
mental replicate competition flasks and between independently generated
mutant virus libraries. Representative samples are shown here, comprehensive
results are shown in Supplementary Fig. 3.
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strategies for carbon utilization to show that the likelihood of diver-
sification increased only after the population adapted to an initial
environment8. While this is in line with ADT, this result could also be
explained by historical contingency where mutations early in adapta-
tion potentiate future adaptations through genetic interactions9.

What remains missing to our knowledge as evidence for the ADT
model are direct measurements of how the fitness landscape deforms
during adaptation and a test of whether these deformations promote
diversification. Many studies have shown that shifts in abiotic
conditions10–13 and biotic conditions14–17 can deform landscapes to
open new evolutionary potentials. However, the general extent to
which landscapes are deformed as a product of resource competition,
and the resulting implications on adaptation and diversification,
remain uncharacterized16. Here we achieve these missing elements by
measuring the fitness landscape of a virus under different competitive
contexts and show that the landscape significantly deforms as new
competitors evolve, and that these deformations set the stage for
diversification.

For this work, we focused on bacteriophage λ, which was pre-
viously shown to speciate into two reproductively isolated receptor
specialists within 280hours of laboratory culturing18. When a gen-
eralist λ (EvoC) that can use two receptors, LamB and OmpF19, is
cocultured with a mixture of two hosts that vary in whether they
express LamB or OmpF, EvoC reproducibly evolved into two receptor
specialists18. Diversity evolved through mutations in the host-
recognition gene J which modulated host receptor preferences.
Here, we measured fitness landscapes of the J mutations that evolve
during speciation using a high-throughput gene editing-phenotyping
technology (MAGE-Seq)17,20, and used simulations of λ evolution to
explore how adaptation along these fitness landscapes can lead to
diversification. Our goals were two-fold: first, to characterize proper-
ties of the fitness landscape, such as epistasis and pleiotropy, that
contribute to both genetic constraints and opportunities during the
evolution of host-receptor tropism and viral speciation. Our second
goal was to test a key prediction made by ADT that eco-evolutionary
feedback leads to deformations in the fitness landscape which pro-
mote diversification. We find that λ’s fitness landscape significantly
deforms as new competitors evolve, and that these deformations set
the stage for diversification.

Results and discussion
Evolutionary replay of EvoC speciation
The previously published λ speciation experimentwas conducted over
a decade ago in adifferent laboratory18.We repeated the experiment to
ensure repeatability in a new location and to preserve samples every
40 hours for longitudinal analyses. We then sequenced the J gene from
two specialists isolated at the endpoint (a LamB-specialist and an
OmpF-specialist). Next, we deep sequenced J from the population of
viruses preserved at each time point to monitor J’s molecular evolu-
tion. This allowed us to observe the rise of the mutations found in the
specialists and to track other contending mutations not present in the
endpoint specialist genomes. The amplicon sequencing revealed the
appearanceof nine Jmutations over the entireexperiment (Fig. 1a),five
of which were observed in the endpoint specialists (Supplementary
Fig. 1). Each of the ninemutations resulted in nonsynonymous changes
to a region of the J protein known to interact with the host receptor21

and where previous adaptive mutations have been observed to evolve
in the laboratory and nature22.

Reproducible measurements of the fitness landscape that leads
to speciation
Measuring the fitness landscape for a gene the size of J (3399 nucleo-
tides) is experimentally intractable due to the astronomical number of
possible genotypes generated by combinatorics. Given this, we
focused on measuring the landscape of all possible combinations of

the 9 mutations observed (29 = 512 J alleles) in the evolutionary replay
experiment. Using a ‘one-pot’ approach, we engineered all 512 alleles
into a heat-inducible lysogenic λ strain two separate times (Fig. 1b). The
resulting lysogen libraries were sequenced, confirming full allelic
representation at relatively uniform frequencies (Supplementary
Table 1, Supplementary Fig. 2). These lysogen libraries were then
induced to produce infectious λ virus libraries which were used to
measure fitness across a variety of environments.

We set out to measure the fitness of each genotype in parallel by
competing the library phages and monitoring changes in genotype
frequencies through deep sequencing (Fig. 1c). We hypothesized that
the structure of the fitness landscape would depend on emerging
receptor specialist phenotypes: for example, if an OmpF-specialist
becomes common, λ genotypes specialized on LamB should experi-
ence less competition to infect hosts expressing their preferred
receptor. Concurrently, the competition between OmpF-specialists
should become more intense for their preferred resource (OmpF-
expressing host cells) as they deplete the host population. Given this,
we designed competition experiments to measure the fitness land-
scapes in five environments spanning the spectrum of receptor com-
petition (Fig. 1c). Three treatments were set up similarly to the
evolution experiment, with an equal mixture host cells expressing
either LamB or OmpF, and the treatments varied by spiking in an
excess (9:1) of different λ competitors: the initial generalist ancestor
(EvoC), the endpoint L-specialist, or the endpoint O-specialist. Two
additional treatments were also tested that represent the extremes of
the receptor competition spectrum, where only one host cell type was
present (eitherOmpF- or LamB-expressinghost cells) and inboth cases
EvoC was used as the competitor strain. In all cases, the virus mixture
was added to host cells at a lowmultiplicity of infection (0.05) to limit
co-infection, and the cultures were incubated for four hours in shaking
flasks at 37°C, allowing for roughly two cycles of λ infection.

Deep sequencing was used to measure the frequencies of all
genotypes in the libraries before and after the four-hour competition
by isolating phage genomic DNA and using PCR to add unique mole-
cular barcodes and Illumina sequencing adaptors. The competitor
viruses in all cases were excluded from PCR amplification by introdu-
cing synonymous mutations within the primer binding sites used to
generate sequencing libraries. Sequencing errors were resolved by
building consensus sequences for each unique molecular barcode
(representing a unique observation of a genotype from the competi-
tion experiment), and genotype frequencies were calculated based on
the number of unique molecular barcodes observed in association
with each genotype. Competition samples were sequenced to a med-
ian effective depth of 1.4 ×106 unique molecular barcodes per sample
(range: 1.0 ×106 to 1.5 ×106, Supplementary Table 1). To compute a
fitness value for each genotype in the library, we calculated the
selection rate relative to the ancestral EvoC genotype. Selection rate is
defined as the logarithm of the fold change in a genotype’s frequency
relative to that of a reference genotype, over a unit of time, which in
our experiments was 4 hours. The ancestral generalist sequence EvoC
is used as the reference genotype in all analyses, so the reportedfitness
values are always relative to EvoC. Our method provided highly
reproducible measurements of genotype fitness. We measured fitness
using two independently generated mutant virus libraries, and each
librarywasmeasured in thefive environments in triplicate competition
flasks. The resulting fitness measurements were highly correlated,
both between replicate competition flasks (Pearson correlation coef-
ficient 0.96−0.99) and between independent virus libraries (Pearson
correlation coefficient 0.95−0.98) (Fig. 1d, Supplementary Fig. 3).

Competitor-dependent epistasis reshapes fitness landscapes
It remains an open question to what degree environmental change
(such as the spectrum of competitive environments we used to mea-
sure fitness landscapes) can reshape fitness landscapes through
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epistasis2. Since we measured fitness landscapes in the presence of
three different competitors, we were able to quantify competitor-
dependent effects on the landscape. We used multiple linear regres-
sion tomodel fitness as a function of the nine phagemutations and the
competitor. We also included interaction terms in the model for
competitor-by-mutation (CxG) and competitor-by-mutation-by-muta-
tion (CxGxG) effects, to allow for the possibility that the fitness effects
of some mutations, and epistasis between pairs of mutations, could
also depend on the competitor. This approach allowed us to infer the
joint influence ofmutations and the competitor on the structure of the
fitness landscape. We used LASSO regularization to reduce the model
complexity to avoid over-fitting, and the resulting coefficients on the
predictor variables are shown as a heatmap in Fig. 2a, where the most
positive and negative coefficients denote the strongest impacts on
predicted fitness. Some mutation terms (G) and pairwise epistasis
terms (GxG) are strongly predictive regardless of competitor, how-
ever, there are a few strong competitor-dependent effects on indivi-
dual mutations (CxG), and to a lesser degree many competitor-
dependent pairwise epistasis terms (CxGxG). The finding that epistatic
interactions between mutations can vary across competitive contexts
is in line with broader work demonstrating more generally how
environmental perturbations can lead to shifts in fitness landscapes
through epistasis, such as the effects of magnesium ion concentration

on ribozyme activity23, nutritional resources for bacterial growth10,12,
host species for viral infection15,24, and inducer concentrations reg-
ulating a synthetic gene regulatory network13. Our results suggest that
the competitor virus phenotype contributes to changes in the fitness
landscape, not only by influencing the fitness effects of individual
mutations, but also by influencing pairwise epistasis between muta-
tions. More generally this suggests that as a new phenotype evolves in
the population, it has the potential to deform the fitness landscape –

potentially opening new adaptive pathways and ecological
opportunities.

In silico phenotyping reveals a spectrum of generalist and spe-
cialist phenotypes
We next examined our results through the lens of receptor-use phe-
notypes by phenotyping in silico all genotypes in the library. Broadly
speaking, receptor ‘generalists’ are defined to utilize more than one
receptor, while ‘specialists’ predominantly utilize a single receptor.
Based on competition experiments in which only LamB or OmpF-
expressing host cells were provided for infection (Fig. 1c), we derived
each genotype’s fitness on each of the individual receptors OmpF and
LamB. We then calculated a specialization index (SI) for every geno-
type (Fig. 2b, Methods). Genotypes that are much more fit on OmpF
than LamB are OmpF specialists and have an SI approaching −1;

Fig. 2 | Statistical properties of the J fitness landscape. aHeatmap of coefficients
for a linear regression model predicting virus fitness from genotype and compe-
titor context after LASSO regularization. Fitness is predicted from individual
mutations (“G” terms), competitor virus context (“C” terms: CE = EvoC generalist
competitor, CL = LamB specialist competitor, CO = OmpF specialist competitor),
and non-additive interaction terms including competitor-by-mutation (“CxG”),
mutation-by-mutation (“GxG”), and competitor-by-mutation-by-mutation
(“CxGxG”). Larger coefficients denote stronger influence on fitness predictions.
Mutations 2 and 3, alone and in combination, introduce the same amino-acid
change and are highly correlated in their effects on fitness (Supplementary Fig. 6
and 7), thus are treated as a single term. Non-zero coefficients for CxG and CxGxG
terms indicate that the competitor context contributes to changes in the fitness
landscape by modifying both the effects of individual mutations and the pairwise
epistasis between mutations. b A specialization index (SI) is calculated for each
genotype based on the fitness measured on each host receptor in isolation. SI

ranges from -1 (OmpF specialist) to +1 (LamB specialist) (see Methods). By defini-
tion, EvoC has SI = 0 since all fitness measurements are in reference to this geno-
type. Each point represents a genotype from the combinatorial library and is
colored by SI.Many genotypeshave relatively high SI, which contributes to changes
in fitness landscapes when varying host receptors are available for infection.
Unobserved genotypes in a given condition are assigned a selection rate of −10 for
visualization purposes. c Pleiotropic effects of mutations on fitness for each
receptor. From any starting genotype in the library, most point mutations reduce
fitness on LamB (the native receptor), but the change in fitness on OmpF is evenly
distributedaround zero.dHybridizationbetween specialists tends to incur afitness
cost. Genotypes with the highest absolute specialization indices (27 O-specialists
and 27 L-specialists, see Supplementary Fig. 4) were used to generate hybrids in
silico that contain combinations of mutations from the parental specialists. On
average, the hybrid genotypes were less fit than the average of the parental
specialists.
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conversely, LamB specialists have an SI approaching +1, while geno-
types agnostic to receptor have a SI near 0. As expected, the evolu-
tionary replay experiment end-point L-specialist and O-specialist
genotypes (that were later used as the competitor viruses in the fitness
landscape measurements) had SI measurements confirming their
respective specializations (Fig. 2b). Most genotypes in the virus library
were strong LamB or OmpF specialists, including many LamB specia-
lists that were completely unable to infect through OmpF. This is
consistent with prior work suggesting that mutations allowing a gen-
eralist to specialize on one host are generally accompanied by a trade-
off in fitness on other hosts25.

Effects ofmutation andhybridization on receptor specialization
phenotypes
Wenext analyzed howmutation and hybridization between genotypes
impact receptor specialization phenotypes. Acquisition of any of the 9
mutations, on average (across all genotype backgrounds in the
library), tend to be deleterious to LamB fitness and have a relatively
equal chance of being beneficial or deleterious to OmpF fitness
(Fig. 2c). We interpret this to mean that λ was already well-adapted to
use its native receptor, LamB, and there are fewer mutations available
to improve on it. In contrast, the use of OmpF as a second receptor is a
novel function EvoC gained through experimental evolution19, and
there remain ample opportunities to gain or lose fitness through
additional mutations. We were particularly interested in whether
genomic incompatibilities between specialists, which we had pre-
viously observed in a single pair of specialists18, might contributemore
generally to speciation of diverging specialists. We examined a set of
the most specialized OmpF and LamB specialists (Supplementary
Fig. 4) and askedwhether hybrids derived from two specialists became
more or less fit than the parental specialists. Most hybrids (88%) were
less fit than the average of the parental specialists (Fig. 2d), congruent
with our prior results with a single pair of specialist genotypes18. This is
likely an underestimate of the fitness loss that occurs during the
hybridization of opposing specialists, because it does not include
cases of hybrid genotypes that completely lost the ability to infect
through OmpF, which could not be analyzed quantitatively because
their fitness on OmpF is undefined. Overall, the widespread observa-
tion of genetic incompatibilities between mutations observed in

different receptor specialists shows that Mueller-Dobzanski
incompatibilities26, which have not been extensively studied in viral
speciation, can contribute to λ’s speciation, in addition to the repro-
ductive isolation ensuing from the preference to infect different host
cells27,28.

LamB and OmpF specialists occupy distinct fitness peaks in
diverging environments
Fitness landscapes across the five competition conditions are shown in
Fig. 3. We visualized the landscapes by plotting the fitness (selection
rate) of all genotypes, arranged by the number of mutations acquired
relative to EvoC, and colored by SI, from red (strong O-specialist) to
grey (generalist) to blue (strong L-specialist). The landscapes are
arrayed from left to right based on the gradient of strength of com-
petition for LamB versus OmpF. As expected, O-specialists have the
highest fitness in the landscapes where there is strong competition for
LamB (for example, as in Fig. 3b in the presence of an L-specialist
competitor) and most L-specialists are maladapted and have lower
fitness than the EvoC ancestor. O-specialists also have high fitness in
the landscape where both hosts are available and the competitor is a
generalist (Fig. 3c), whichmight seem counterintuitive, although it can
be explained by the previous observation that EvoC has a slight pre-
ference for LamB18, effectively acting like a weak L-specialist compe-
titor. In the flasks where both hosts are available and the O-specialist
competitormakes up 90% of the viruses (Fig. 3d), the L-specialists gain
fitness, the O-specialists lose fitness, and some L-specialists out-com-
pete the EvoC ancestor. This trend continues in the condition where
only LamBcells are available (Fig. 3e). This shift fromselection favoring
OmpF-specialists to LamB-specialists is in line with predictions by ADT
that as competition for one niche intensifies, selection will favor gen-
otypes able to access alternative niches.

Overall, these fitness landscapes visually demonstrate that when
different competitor virus phenotypes emerge in the virus population,
the resulting changes in resource competition sculpt the fitness land-
scapes to favor different phenotypes in different conditions. To our
knowledge this is the first measurement of the effect that competitor
viruses have on reshaping fitness landscapes and the positions of
generalists and specialists on different fitness peaks. Martin et al.
observed complexfitness landscapes ofCyprinodonpupfishes, where a

Fig. 3 | Fitness landscapes are reshaped by competition between viruses for
host cells. Fitness landscapes are represented by hypercubes where each point
denotes a genotype. Points are connected by a line if they differ by only a single
mutation. The points are separated along the x-axis by hamming distance from
EvoC (i.e., number of mutations), and fitness (selection rate) is plotted on the
y-axis. Some genotypes in some conditions are not shown because their fitness
was so low that they were not observed at the end of the competition experi-
ment and selection rate could not be quantified. Genotypes are shaded
according to specialization index as in Fig. 2b (red = OmpF specialist; blue =

LamB specialist, grey = generalist). Lines connect two genotypes if they are
separated by a single mutation. a competition against EvoC for exclusively
OmpF-expressing host cells; b competition against L-specialist for mixture of
host cells; c competition against EvoC for mixture of host cells; two black
arrows represent sequentialmutations that lead from the ancestral sequence to
a fitness peak defined by O-specialists; d competition against O-specialist for
mixture of host cells; e competition against EvoC for exclusively LamB-
expressing host cells. See Supplementary Fig. 15 for another visualization of
this figure showing the individual points.
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generalist species occupied a local fitness optimum separated by fit-
ness valleys from even higher fitness peaks containing specialists29.
They hypothesized competition may allow for the generalists to
‘escape’ from being trapped on the generalist peak, although intri-
guing follow-up work found that these fitness peaks were surprisingly
static and independent of competitor frequency30. This is in contrast to
our findings with λ where there are clearly competitor-dependent
shifts in specialist fitness peaks, which are generally accessible to the
generalist without crossing a fitness valley. The differing results in
these studies on Cyprinodon and λ might be due to any number of
factors, including differences in the biology and ecology between
pupfish and their prey in natural environments, and viruses and their
prey in controlled laboratory environments, as well as differences in
methodology in measuring fitness landscapes between these studies.

Dynamic fitness landscapes promote genotypic and phenotypic
diversification
We next asked whether the structure of these fitness landscapes could
help explain the process by which a receptor generalist could evolve
into two coexisting receptor specialists, as we have seen reproducibly in
laboratory evolution18. Visual inspection of the fitness landscape corre-
sponding to a population of the ancestor generalist virus without any
specialist competitor present (Fig. 3c) shows that an early fitness peak
can be reached by an adaptive walk taking several mutations (black
arrows), and that this peak leads to specialization on OmpF. We envi-
sioned that as a virus population evolves by ascending this peak, and as
the population phenotype shifts closer to becoming dominated by
O-specialists (corresponding to the experimental conditions used to
measure the fitness landscape in Fig. 3d), that the narrowing fitness gap
between O-specialists and L-specialists might allow for L-specialists to
emerge. Furthermore, it appears from visual inspection that as the
population becomes dominated by exclusively OmpF-utilizing viruses
(and in the limiting case, removing all available OmpF-expressing cells,
represented by the experimental conditions in Fig. 3e) that the resulting
fitness improvement of L-specialists could permit their emergence and

co-existence with O-specialists. More generally, in line with ADT, we
hypothesized that shifts in resource use (receptor usage) will alter the
fitness landscape structure in ways that promote diversification.

We tested this hypothesis using computer simulations of λ evo-
lution, using our experimentallymeasured fitness landscapes to assign
reproductive success probabilities to genotypes. We used a modified
Wright-Fishermodel to simulate the effects ofmutation, selection, and
genetic drift on λ evolution. We used two general types of models for
simulating evolution: one using a single static fitness landscape
throughout the simulation, and one using a shifting fitness landscape.
The static landscape models simulated evolution on each of the five
landscapes separately, using a constant landscape throughout each
simulation. The shifting models used experimentally measured fitness
landscapes from all five environments, placed along a “landscape axis”
with coordinates defined by population phenotype (i.e., the average
specialization index (SI) of the population, see Methods and Supple-
mentary Fig. 10). For each evolved generation in the shifting models,
the fitness landscape used to govern selection on that generation was
re-assessed based on the simulated population’s average SI. Among
the two shifting models we implemented, a fitness landscape was
either computed as a weighted average of the nearest two empirical
landscapes (continuous shifting model), or the nearest empirical
landscape was used without interpolation (discrete shiting model). In
this manner, the fitness landscapes underlying selection in the shifting
models fluctuate in response to the emergence of new phenotypes.

We performed 500 replicate simulations for each of the evolu-
tionarymodels. All simulations startedwith a homogenous population
of the ancestor EvoC genotype, and each simulation progressed with
population sizes equivalent to those observed during the evolution
(5 ×109 viral particles) for 500 generations (Supplementary Fig. 5).
Figure 4a shows the average genetic diversity plotted across genera-
tions under each model. Although in early generations most models
had similar average levels of genetic diversity as new genotypes sweep
through the population, diversity is only maintained in the shifting
landscape model. While the static models tend to converge on single

Fig. 4 | Shifting fitness landscapes promote genotypic and phenotypic diver-
sification. Simulations of λ evolution were run using a modified Wright-Fisher
model incorporating effects of mutation, selection (governed by experimentally
measured fitness landscapes), and genetic drift. Two main types of models were
used: one in which the fitness landscape remained static across all generations, and
one in which the fitness landscape was continuously updated each generation as a
functionof populationphenotype (e.g., if the populationbecomesdominatedbyO-
specialists, the fitness landscape used becomes more like the landscape measured
in the presence of the O-specialist competitor virus). 500 replicate simulations

were performed for each model. The static landscape labels A-E correspond to the
landscape labels in Fig. 3. a Genetic diversity was computed at each generation.
Solid lines represent the median and shaded regions represent the interquartile
range. Only the shifting landscape model results in genetic diversity. b Phenotypic
diversity computed at the endpoint of each simulation. The number of simulations
arriving at the designated combination of phenotypes (>=2.5% abundance) is
plotted. Only the shiftingmodel results in combinations of two coexisting receptor
phenotypes. Examples of individual simulations under each model are shown in
Supplementary Fig. 5.
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genotypes dominating the population, only the shifting model allows
for the prolonged co-existence of multiple genotypes.

We hypothesized that the increased genetic diversity under the
shifting model was reflective of phenotypic diversity in receptor
specialization. We used in silico phenotyping (Fig. 2b) to ascribe
receptor preferences to the viruses surviving at the end of the
simulations (Fig. 4b). Most simulations under the shifting model
resulted in more than one virus phenotype (an O-specialist co-
existing with either an L-specialist or a generalist). In contrast, each
of the static models nearly always arrived at a viral population with a
single phenotype. The static landscape ‘C’ that best reflects the initial
conditions of the evolution experiment only favors the emergence of
a single phenotype (O-specialist). Only by allowing for the eco-
evolutionary feedback imposed by emergent viral phenotypes
reshaping the fitness landscape during λ evolution is it possible for
co-existing specialist phenotypes to evolve, leading to speciation.
Our results build upon existing work detailing the effect of eco-
evolutionary feedback on adaptive evolution. These results that we
obtained using empirical fitness landscapes are in striking agreement
with a recent study using theoretical fitness landscapes, where it was
also found that dynamic fitness landscapes influenced by eco-
evolutionary feedback promoted genetic diversity, whereas static
fitness landscapes only allowed for one dominant genotype31. Other
work examining the deformability of empirical landscapes by meta-
bolic mutations in E. coli has suggested that static fitness landscapes
can be used to forecast evolution over short evolutionary distances,
and only under longer mutational distances do the shifts in fitness
landscapes become meaningful32, however, our work presents an
example where rapid eco-evolutionary feedback can significantly
reshape landscapes in a short amount of evolutionary time.

In summary, we find that the structure of λ’s fitness landscape is
dependent upon environmental factors including host cell availability
and competing virus phenotypes. The fitness effects of individual
mutations, as well as epistatic interactions between mutations, are
modulated by biotic changes in the environment when competing
viruses with different receptor preferences alter resource availability.
Furthermore, we find through computer simulations of λ evolution
that a shifting fitness landscape, reshaped through epistasis and
pleiotropy as new population phenotypes emerge to compete for new
niches, is necessary for the outcomeof viral speciation as we have seen
experimentally18. These results provide the first experimental
demonstration of ADT by directly observing deformations in a fitness
landscape across a spectrum of carefully controlled laboratory envir-
onments designed to perturb the nature of virus-virus competition
during λ’s evolution. As λ adapts to specialize on a novel receptor, the
fitness landscape shifts to allow for the emergence and coexistence of
a previously inaccessible phenotype.

We observed this phenomenon of adaptive dynamics in a pro-
karyotic virus diversifying host receptor tropism between two E. coli
outer membrane proteins, but this process likely occurs in other
viruses adapting to new hosts. Diversification of receptor tropism
can lead to cross-species transmission and pandemics33, and appro-
priate tropism is necessary for therapeutic application of viruses to
treat human disease in the emerging fields of phage therapy34, gene
therapy35, and oncolytic virotherapy36. A better understanding of
how a given virus’s fitness landscape is reshaped by epistasis, pleio-
tropy, and competition for resources across varying environments
may more generally provide an additional framework for under-
standing the natural adaptation of pathogenic viruses to new niches,
and may help unlock the adaptive potential of therapeutic viruses
through directed evolution. However, we do not suspect that these
principles of adaptive evolution are unique to the virus world. It is
tempting to speculate that the effects that dynamic fitness land-
scapes exert on biological diversificationmay be generalizable across
all domains of life.

Methods
Cells, viruses, and media
Bacterial hosts used for evolution and competition experiments were
the LamB (“L–” strain JW3996) andOmpF (“O–” strain JW0912) knockout
strains from the Keio collection37. The “wild type” E. coli K-12 BW25113
(parental strain in the Keio collection) was used unless otherwise sta-
ted to titer λ phages by plaque assay using standard protocols. The
host strainHWEC106, which contains amutation in themutSmismatch
repair gene and the pKD46plasmid containing the arabinose-inducible
λ red recombineering machinery38, was used to perform mutagenesis
and is the strain that we used to maintain the cI26-derived engineered
lysogen library as described below. Speciation replay experiments
used strictly lytic phages derived from the λ phage strain cI26. The
receptor generalist which is used as the ancestor for this experiment
(termed “EvoC”) contains five mutations in J relative to cI2619 which
permit the use of the second receptor OmpF in addition to the native
receptor LamB. The virus strain used to create themutant virus library
used for competition experiments is described in the methods for
“Lysogen library mutagenesis” below. Standard LB Lennox media was
used to culture E. coli in the absence of phage infection; a modified
media “LBM9” was used when inducing or infecting with phage (20 g
tryptone, 10 g yeast extract per liter of water, supplemented with
47.7mM disodium phosphate heptahydrate, 22mM potassium phos-
phate monobasic, 18.7mM ammonium chloride, 8.6mM sodium
chloride, 0.2mM calcium chloride; immediately prior to use, the
media was supplemented with 10mM magnesium sulfate).

Speciation replay experiment with population sequencing
We replicated our previous speciation experiment18 but with slight
changes. Briefly, the ancestor receptor generalist strain (EvoC) evolved
by daily serial passage of the phage population into an evenmixture of
fresh L– and O– host cells. Each day, after 8 hours of culture, phage was
isolated from bacteria by centrifugation and filter sterilization of a
10ml culture onto tubes kept on ice with 50 μl chloroform (as a pre-
servative). The followingday, freshovernight cultures of L– andO– cells
were diluted 1:10 and allowed to grow for two hours to reach the
exponential growth phase, then further diluted 1:5000 and addedwith
100 μl of isolated phage to a final volume of 10ml with LBM9 and
cultured again for 8 hours in a 50-ml Erlenmeyer flask for at 37°C with
shaking at 120 rpm before again isolating phage, and the process was
repeated daily. Every five days, phage genomes were extracted in bulk
and J amplicon sequencing was performed with 150-bp paired end
reads using an Illumina iSeq 100 and mutation frequencies were
computed using breseq39 set to polymorphism mode with default
settings; similar results were obtained with less strict filtering para-
meters. Specialist phages (L-specialist and O-specialist) were isolated
by plaque purification (on O– cells and L– cells, respectively), and the
specialization index was measured for these two isolated specialist
phages using standard plaque-formation assays on L– and O– cells, by
first infusing the appropriate host strain ( ~ 5×109 cells) into 10ml of
molten soft agar (10 g tryptone, 1 g yeast extract, 8 g sodium chloride,
7 g agar, 1 g glucose, 1.23 gmagnesium sulfate per L water) at 55°C and
then plating the infused soft agar over a 15-cm diameter Petri dish pre-
plated with a standard LB agar base; after the soft agar had solidified
(approximately 5−10minutes), 2 μl drops of 10-fold serial dilutions
were spotted onto the surface18.

Lysogen library mutagenesis
Our prior work studying receptor specialization in λ was done using
the strictly lytic strain cI2618, which has a nonsensemutation in the lysis
repressor gene cI and lacks the functional attp integration site. For the
purposes of genetic engineering of the λ genome, we engineered a
lysogenic form of cI26 by replacing the nonfunctional cI gene with a
temperature-sensitive mutant (to enable heat induction of the lytic
pathway) and adding a constitutively expressed chloramphenicol
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resistance gene for antibiotic selection of lysogens in the bacterial
host. Stable lysogens weremaintained at 30°C in host strain HWEC106
in the presence of chloramphenicol, and infectious phagewas induced
at 37°C using standard heat induction protocols.

Prior to introducing the combinatorial library mutations, in-
frame stop codons were introduced in the J coding sequence at the
5’ (overwriting nucleotides 2989-2995 with ‘TGATAGT’) and 3’ (over-
writing nucleotide 3232 with ‘T’) edges of the region undergoing
mutagenesis, so that lysogens that did not undergo recombination
with mutagenic oligonucleotides would not produce functional
viruses. This step was necessary to avoid the mutant virus library
being comprised of primarily unmutated genotypes, since only a
small proportion of lysogens undergo recombination. Mutations
were introduced using MAGE17,40. Briefly, we performed iterative
rounds of mutagenesis by electroporating a mixture of long double-
stranded DNA fragments encoding the combinatorial library into
cells with an induced λ red recombination system. The fragments
were generated from PCR amplification of 300nt-long single-stran-
ded DNA oligo pool from Twist Biosciences. Lysogen libraries were
created in duplicate (Library replicates A and B). Because the ninth
mutation site was too far away from the other eight to create a
combinatorial library for all nine mutation sites in one shot, two sub-
libraries (#1 and #2) were created for each replicate (A and B); sub-
libraries 1 A and 1B were constructed without the ninthmutation, and
sub-libraries 2 A and 2B were constructed on a starting sequence
containing the ninth mutation. Each sub-library contains 28 = 256
genotypes, and the combination of the two libraries contains the full
combinatorial sampling across all 9 sites of 29 = 512 genotypes. Deep
sequencing of the lysogen sub-libraries confirmed that not only were
all 256 expected genotypes introduced in all replicates (Supple-
mentary Table 1), but that they were introduced in relatively uniform
frequencies (Supplementary Fig. 2a).

Competitor virus genotypes were constructed by λ red recombi-
neering, by introducing the J mutations of the L-specialist or the
O-specialist from the speciation replay experiment (Supplementary
Fig. 1), or the ancestral EvoC sequence, into the same engineered
lysogenic cI26 strain as above. The three competitor virus genotypes
also encoded synonymousmutations (c2979a, c2982a, g2985t, t2991c,
a2994c, and g2997a) at the forward primer binding site used in the
‘round 1 PCR’ step below (the step attaching partial Illumina sequen-
cing adaptors), thus excluding PCR amplification of the competitor
viruses during sequencing library preparation such that only the
library viruses, and not the competitor viruses, were captured in deep
sequencing.

Lysogen library induction and amplification of virus libraries
Because the lysogen libraries (by nature of their construction descri-
bed above) are predominantly encoding nonviable J genes containing
stop codons flanking the mutagenesis region, only a small fraction of
lysogen cells produce viable mutant viruses upon heat induction. Care
was taken during induction and amplification by using larger volumes
containing larger numbers of viral particles at each step, to avoid
bottlenecking library complexity. Lysogen sub-libraries A1, A2, B1, and
B2 were grown overnight in LB supplemented with 25 μg/ml chlor-
amphenicol at 30°C. To induce lysogens growing exponentially, 133 μl
of overnight lysogen culture was diluted into 4ml of LBM9 into 10-ml
culture tubes and grown for two hours with shaking at 220 rpm at
30°C. These exponentially growing cultures were subjected to heat
shock at 42°C for 15minutes followed by incubation with shaking at
220 rpm at 37°C for 90minutes to allow for lysis and release of λ
virions. The lysates from 10 replicate induction tubes for each sub-
library (40ml total lysate per sub-library for sub-libraries 1 A, 1B, 2 A,
and 2B, all induced separately) were combined and filtered through
0.22 μ m syringe filters. These lysates were at a relatively low titer of
infectious virions (~5 ×103 PFU/ml lysate by plaquing assay on E. coli K

−12) sowe then amplified each sub-library for four hours on E. coli K-12
cells at 37°C (in four replicate flasks per sub-library to maintain library
diversity) by adding 8.5ml of lysate with 0.5ml of overnight K-12 cul-
ture and 1ml of LBM9, beforefinally filtering the lysates through a 0.22
μmsyringe filter, combining the lysates fromeach four replicate flasks
of amplification for each sub-library, and freezing 1ml aliquots of
amplified sub-libraries A1, A2, B1, and B2. The amplified sub-libraries
reached an average titer of ~5 ×108 PFU/ml. The final virus libraries “A”
and “B” were then made by mixing equal plaque-forming units of
amplified sub-libraries A1 + A2 and B1 + B2, respectively.

Competition experiments to measure fitness landscapes
1 × 106 PFU of the specified virus library was mixed with 9 ×106 PFU of
the specified competitor virus (ancestor EvoC, L-specialist, or O-spe-
cialist) and incubatedwith 2 ×108 CFU of the specified host cells (either
L– orO– cells, or an equalmixture of the two), resulting in amultiplicity
of infection of 0.05, in a total 10-ml culture in 50-ml flasks using LBM9
media. Infection proceeded for four hours shaking at 3 °C (roughly two
λ infection cycles) prior to filtering the lysates and extracting viral
genomes for deep sequencing. Each independent library replicate “A”
and “B” was tested in triplicate competition flasks, each of which was
independently sequenced and analyzed as described below. There-
fore, in total, for eachof thefive competition environments (competed
against generalist onL-, O-, or equalmixture of hosts, competed against
L-specialist on equal mixture of hosts, and competed against
O-specialist on equal mixture of hosts), there were six replicate com-
petitions (three for each replicate library).

Phage genomic DNA extraction
Filtered lysates ( ~ 10ml) from each competition experiment were
mixed with 6.5ml of phage precipitation buffer (20% w/v PEG 6000,
2.5M NaCl, Teknova P4168) and incubated overnight at 4 °C. Phage
were pelleted at 10,000xg for 30minutes at 4°C and the virus
pellets were gently resuspended in 360 μl phage resuspension
buffer (1MNaCl, 10mMTris pH 7.5, 0.1mMEDTA) and transferred to a
1.7ml microcentrifuge tube. 55 μl DNase I 10X buffer, 1 μl DNase
I (2000 U/ml), and 1 μl RNase (20mg/ml) were added to samples and
incubated at 37°C for 30minutes. 10 μl 0.5M EDTA was added to stop
DNase activity prior to adding 2.5 μl proteinase K (20mg/ml) and 25 μl
10% SDS and incubating at 55°C for 60minutes to break apart virions.
Phage genomic DNA was extracted with 600 μl Tris-saturated phenol-
chloroform-isoamyl alcohol, followed by two chloroform extractions
to remove residual phenol from the aqueous phase. Finally, 50 μl 3M
sodium acetate and 1000 μl pre-chilled 100% ethanol were added and
sampleswere incubated at -20°Covernight forDNAprecipitation. DNA
was pelleted by centrifugation at 14,000x g for 30minutes at 4°C,
gently washed with 500 μl of pre-chilled 70% ethanol, pelleted again at
14,000x g for 5minutes, pellets gently air-dried, and resuspended in 50
μl DNA elution buffer (10mM Tris-Cl, pH 8.5) and concentration
quantified using Qubit 1X dsDNA HS Assay Kit.

Deep sequencing of mutant virus libraries
PCR was used to generate Illumina sequencing libraries from each
phage genomic DNA extraction. All PCR mixtures used Q5 Hot Start
High-Fidelity 2X Master Mix (NEB) with the specified primers and
templates below. PCR products were purified using CleanNGS DNA &
RNA Clean-Up Magnetic Beads (Bulldog Bio) and quantified using
Quant-iT PicoGreen (ThermoFisher). First a PCRampliconof the Jgene
containing the 9 sites of mutations in the library was generated using
primers JRR-F (5’- GGAAAGCTGACCGCTAAAAATGC -3’) and JRR-R (5’-
TAAAACGCCCGTTCCCGGAC -3’), each at final concentration 0.5 μM,
with 200ng phage genomic DNA template, in a final volume of 50 μl,
using cycling parameters: 98 °C for 2minutes, then 25 cycles of 98 °C
for 10 seconds, 68 °C for 15 seconds, 72°C for 10 seconds; followedby a
final extension step at 72 °C for 2minutes.
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Next, a two-round PCR procedure was used to add unique mole-
cular identifier barcodes and Illumina adapter sequences. Round 1 PCR
used the following primers to add unique molecular barcodes
and partial Illumina adaptor sequences to J amplicon: R1-Reverse (5’-
GGAGTTCAGACGTGTGCTCTTCCGATCT-X-CGGCGGAATTTTTGCCG
-3’) and R1-Forward (5’- CTTTCCCTACACGACGCTCTTCCGATCT -X
-TCGTCGGGGAAATTGTAAAG -3’), where ‘X’ represents a string of 5-12
random (N) bases, with lengths of 5-12 mixed in equimolar ratios for
both forward and reverse primers. For lysogen sub-library sequencing,
a different R1-Reverse primer was used (5’- GGAGTTCAGACGTGTGCT
CTTCCGATCT-X-CTGGCATGTCAACAATACGG-3’) resulting in a
shorter amplicon which did not contain the ninth mutation site, but
was able to be sequenced with shorter (100bp) sequencing reads. Of
note, during this PCR step, the competitor viruses were excluded by
amplification by synonymous mutations within these primer binding
sites. Lysogen sub-libraries containing the ninthmutation (2 A, 2B) and
without the ninth mutation (1 A, 1B) were independently sequenced to
confirm allelic representation across the other eight mutation sites
after mutagenesis (Supplementary Table 1, Supplementary Fig. 2a).

Round 1 PCR was performed on 4 ng of purified J amplicon tem-
plate, each primer at 0.4 μM, in final volume of 25 μl, using the fol-
lowing thermocycling parameters: 2minutes denaturation at 98 °C; 11
cycles of amplification with 98 °C 10 sec, 63°C 15 sec, 72°C 10 sec; with
final extension step at 72 °C for 2minutes, followed by denaturation at
95 °C for 1minute. The final denaturation step ensures that each
double-stranded DNA product molecule contains two single strands
with uniquemolecular barcodes. Round 1 PCR products were purified,
quantified, and diluted to control the number of unique barcodes used
in round 2 PCR to ensure that expected readdepthwould capture each
barcodemultiple times to build error-corrected consensus sequences.

Round 2 PCR used approximately 2 ×106 double-stranded DNA
molecules of purified round 1 products as template (i.e., 4.4 ×10-4ng of
433 bp dsDNA), round 2 primers each at 0.5 μM (R2-Forward: 5’- AAT
GATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CC -3’; R2-Reverse: 5’- CAAGCAGAAGACGGCATACGAGAT-X-GTGACT
GGAGTTCAGACGTGTGCTCTTCCGATCT-3’; where ‘X’ is replaced with
sample-specific index sequences for multiplexing), in a final volume of
40 μl, using the following thermocycler parameters: 98°C for 2min, 25
cycles of (98 °C 10 sec, 71 °C 15 sec, 72 °C 10 sec), and final extension
step at 72 °C for 2minutes. Competition experiments were sequenced
with 150 bp paired-end reads on a NovaSeq 6000 at the UCSD IGM
Genomics Center. Lysogen sub-library genomic DNA samples were
prepared and sequenced separately (as sub-libraries) using a shorter
amplicon length with 100bp paired-end reads.

Parsing genotype counts from FASTQ files and calculation of
selection rate
Custom python scripts were used to parse FASTQ files using pysam
0.21.0 (https://github.com/pysam-developers/pysam), aligning reads
to the J gene, parsing the unique molecular barcode, building con-
sensus sequences for each molecular barcode observed by at least 3
independent reads, and tabulating the number of unique molecular
barcodes observed for each J genotype sequence. The observed fre-
quencies for all genotypes at time t = 0 and time t = 4 hours were then
used to calculate the selection rate S, per unit time of 4-hour compe-
tition experiment17, providing a fitness metric relative to the ancestor
generalist sequence EvoC:

S=
ln GT=G0

� �� ln EvoCT=EvoC0

� �

T
ð1Þ

where GT and EvoCT are the frequencies of a given genotype G and
EvoC at time point T , respectively. In this framework, since the
ancestor EvoC sequence is the reference for defining selection rates,
the selection rate of EvoC is always zero.

We discovered that an additional mutation (c3283t) was present
at modest amounts and in association with many of the combinations
of the programmed mutations introduced by MAGE (Supplementary
Fig. 2b–c, teal bars). We infer (but are not certain) that this mutation
was present at modest frequencies in the lysogen stocks prior to
mutagenesis, because we also observed it in linkage with the stop
codons that are present in the parental strain and overwritten during
mutagenesis. We analyzed the fitness of genotypes that were observed
with and without this mutation and found them to be modestly cor-
related in all environments (Supplementary Fig. 8). The remainder of
the analysis was limited to genotypes that only contained the pro-
grammed 512 combinations of mutations in the library design. The
distribution of fitness effects for each of the five fitness landscapes is
provided in Supplementary Fig. 14.

Linear regression
To detect which genetic and environmental factors shape the fitness
landscape, we used a linear regression model where each genotype’s
fitness was predicted as a function of its J mutations and the identity of
the competitor virus present (generalist, L-specialist, or O-specialist).
The predictor variables included terms for single mutations (‘G’ terms),
additional non-additive epistasis amongst pairs of mutations using
mutation-by-mutation terms (‘GxG’), competitor terms independent of
genotype (‘C’ terms), competitor-dependent terms for single and paired
mutations (‘CxG’ and ‘CxGxG’ terms), and an intercept. Because muta-
tions at sites 2 and 3 introduce the same amino-acid change (either alone
or in combination) and because themeasured fitness values were highly
correlated between genotypes containing these synonymous variations
(Supplementary Fig. 6 and 7), we used a single term in the regression
model to indicate the presence of eithermutation 2 ormutation 3 or the
combination of the two. In total, there were 148 features in the model: 1
intercept, 8G, 3C, 28 GxG, 24 CxG, and 84 CxGxG terms.

We only used fitness measurements from the competition
experiments performedonamixtureof L– andO–host cells, to limit the
model to predicting fitness as a function of genotype and competitor
alone. In total we performed 6 replicate competition experiments
(three with each independent library) in each of the three environ-
ments (against an L-specialist, against an O-specialist, and against a
generalist), for 18 total genotype fitness datasets. Each dataset con-
tained fitness observations for between 345 and 467 genotypes (out of
512 possible; some genotypes are not observed in some samples), and
thus a total of 7375 fitness measurements were used in the regression
model. Linear regression was performed using the scikit-learn python
module (version 1.3.0), using the LassoLarsIC function to perform
LASSO regularization to reduce model complexity. The regularization
parameter was tuned using multiple approaches: AIC (Akaike infor-
mation criterion), BIC (Bayesian information criterion), and cross-
validation. Similar results were obtained for each approach.

Computing receptor specialization for all genotypes in the
library
Selection rates computed from library competition experiments per-
formed in the presence of only O– or L– host cells were used as mea-
surements for each genotype’s fitness on each of the individual
receptors LamB and OmpF, respectively. Specialization index (SI) was
then computed for each genotype using the selection rate on each
receptor using an equation analogous to our prior work18 but using
selection rates, which when exponentiated, are proportional to
plaque-forming units:

SI =
eSL � eSO

eSL + eSO
ð2Þ

where SL and SO are the selection rates on LamB and OmpF, respec-
tively. The specialization index ranges from -1 (complete O-specialist)
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to +1 (complete L-specialist). Zero represents equal fitness on both
receptors. The selection rate for the ancestral strain used in these
experiments, EvoC, is zero by default since it is the reference strain
against which all the other selection rates are measured against, and
thus the specialization index of the EvoC genotype is, by definition,
also zero.

Analysis of hybrid incompatibility
We limited our analysis of the effects of hybridization to L-specialists
and O-specialists that all had selection rates measured on both
receptors (e.g., on L– cells alone and onO– cells alone) so thatwe could
implement a geometric interpretation of the effects of hybridization
on fitness (Supplementary Fig. 4a). We used a conservative threshold
in SI to categorize some genotypes as being receptor specialists for
this analysis, since there is no conventional quantitative definition of
specialists in this context. We defined receptor specialists as those
genotypes with absolute SI > 0.33. We chose this cut-off value because
based on the formula above for SI, a cut-off value of SI = 0.33 defines a
specialist genotype as one that has a growth rate approximately two
(or more) times greater on the specialized receptor than the non-
specialized receptor. Using this definition, we identified 27 genotypes
classified as L-specialists that had observed selection rates on both O–

and L– cells. We analyzed these L-specialist genotypes along with the
top 27 most specialized O-specialist genotypes (Supplementary
Fig. 4b). We iterated over all 729 pairwise combinations of an
L-specialist and O-specialist from these groupings and computed a
hybridgenotype that combined themutations fromeachof the chosen
specialists. In some cases, the hybrid genotype is actually the same as
oneof the specialist genotypes, and in other cases the hybrid genotype
did not have an observed selection rate on one of the host cell types;
after subtracting these from the analysis, 536 specialist-specialist-
hybrid trios remained. For all trios we computed the magnitude of a
vector that is orthogonal to, and arising from, the line connecting the
two specialist genotypes on the axis depicted in Supplementary Fig. 4a
to the hybrid genotype. The magnitude of this vector measures the
change in average receptor fitness in the hybrid genotype relative to
the two parental genotypes. Positive and negative values denote
improved or worsened average receptor fitness in the hybrid relative
to the two parents.

Computer simulations of λ evolution
Wesimulated λ evolutionusing amodifiedWright-Fishermodel similar
to our previous study17. This model incorporates the effects of muta-
tion, selection, and genetic drift to model a virus population as it
samples mutations at the nine sites in J. Briefly, the model uses a fixed
population size (in our simulations, 5 ×109 viral particles) and a pure
starting genotype (the ancestor receptor generalist, EvoC). The num-
ber of progeny viral particles in each new generation are drawn from a
multinomial distribution, where the probability for each genotype to
reproduce is proportional to the product of the abundance of viral
particles of that genotype and the measured fitness of that genotype.
Random mutations introduced at each generation, based on the esti-
mated mutation rate of λ (7.7 ×10-8 substitutions per base per
replication41), provided the chance for new genotypes to emerge.
Representative population curves under various models are shown in
Supplementary Fig. 5.

We ran each simulation for 500 generations. The generation time
of λ in our experiments is difficult to know precisely. Generation time
depends on adsorption rate (which itself depends on J genotype14 and
host and phage densities during the course of the experiment) and on
lysis time, which exhibits some degree of variability42. Using an
approximation of 60minutes as the generation time, each eight-hour
‘day’ in the speciation replay experiment would reflect 8 generations,
resulting in a total of 8 ×35 = 280 generations in the replay experiment.
We conservatively chose to run our simulations for 500 generations to

ensure that the simulations would be long enough to sufficiently
capture evolutionary dynamics occuring in our replay experiment. In
most cases across all models, a state of equilibrium is reached by
generation 280 and endures until generation 500 (Fig. 4a, Supple-
mentary Fig. 5, Supplementary Fig. 12).

Since our measurements of fitness exhibited some degree of
uncertainty between experimental replicates, we designed the simu-
lations such that replicate simulations incorporated a similar degree of
uncertainty by adding noise to fitness landscapes on a per-simulation
basis. Each simulated evolution experiment used fitness landscapes
drawn fromadistribution of landscapes centeredon the averageof the
experimental measurements but with normally distributed noise
applied to each fitness value. Themagnitude of the noise was tuned to
produce replicate draws of noise-added fitness landscapes with cor-
relation coefficients similar to the correlations between experimental
replicates (Pearson correlation coefficient for selection ratesmeasured
between two independent virus libraries ranged from 0.95 to 0.98,
Supplementary Fig. 3, Supplementary Fig. 9).

We ran simulations under seven different models that differed in
how the various fitness landscapes were used, and for each model we
ran 500 replicate simulations. Five models each used a static fitness
landscape that remained constant across all generations (corre-
sponding to the five different environments in which the landscapes
were measured, see Fig. 3), and two models used a shifting fitness
landscape to account for changes in the fitness landscape that are
induced by the emergence of new competing phenotypes in the viral
population.

For the shiftingmodel simulations, we initially ran a ‘continuous’
shiting model as follows: the five experimentally measured land-
scapes were positioned along a ‘landscape axis’ (Supplementary
Fig. 10) at coordinates defined by the population SI (average of SI
across all genotypes in the population, weighted by abundance)
associated with the experimental conditions used to measure the
landscapes. We computed the population SI for the experimental
conditions used to measure the fitness landscapes as follows: in the
three landscapes measured with both L– and O– host cells (Fig. 3b–d),
population SI was computed with the assumption that the mutant
virus library (which by design was present as 10% of the virus
population) has a net SI of 0 (as it is a complex mixture of genotypes
sampling both generalists and specialists to varying degrees), and
the remainder 90% of the population (by experimental design) was
comprised of a competitor genotype with a known SI as computed in
Fig. 2b (SI for the L-specialist competitor = +0.778, for the generalist
EvoC = 0, and for the O-specialist competitor = -0.99). By calculating
the population SI for each of these experimental conditions, we
positioned landscape B at population SI = +0.7, landscape C at
population SI = 0, and landscape D at population SI = -0.9; as these
were the population SI present in the experimental conditions that
were used to measure each of these landscapes. For the two extreme
ends of the landscape axis, we positioned the landscape measured
with only OmpF-expressing hosts (L– cells) at +1, and the landscape
measuredwith only LamB-expressing hosts (O– cells) at -1, since these
two experimental conditions approximate the limiting cases of
saturation with an L-specialist (or O-specialist) to the extreme degree
that LamB-expressing hosts (or OmpF-expressing hosts, respec-
tively) are no longer available for infection. While simulating evolu-
tion on the continuous model, at each generation the population SI
was calculated and the fitness landscape used to govern reproduc-
tion probabilities in that generation was interpolated as a weighted
average of the two experimental landscapes nearest to the popula-
tion SI on the landscape axis.

To test whether the results of the continuous shifting model were
dependent on the method of continuous interpolation between
experimentallymeasured landscapes,we also implemented a ‘discrete’
shifting model. The discrete model only used the five experimentally
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measured landscapes and shifted between landscapes based on which
landscape was ‘closest’ on the landscape axis to that generation’s
population SI. Only the continuousmodel is shown in Fig. 4 for brevity;
the effect onmaintaining genetic and phenotypic diversity is the same
in both shifting models (Supplementary Fig. 11).

For all evolutionary models, the Shannon entropy was computed
for each generation from the abundances of all genotypes in that
generation. Phenotypic diversity at the endpoint of each simulation
was summarized by counting the number of discrete phenotypes (L-
specialist, O-specialist, or generalist) present at the endpoint across all
genotypes present with at least 2.5% abundance. Trajectories of
population SI for all 500 simulations within each of the total seven
evolutionary models are provided in Supplementary Fig. 12, and the
correspondingmedian and interquartile range of SI trajectory for each
model is shown in Supplementary Fig. 13.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data are available from the Sequence Read Archive under
BioProject PRJNA984687, BioSample Accession SAMN35774826. All
data analyses and intermediate datasets are deposited in a GitHub
repository (github.com/mbdoud/shifting-fitness-landscapes) and
archived at Zenodo DOI: 10.5281/zenodo.10459906 (https://doi.org/
10.5281/zenodo.10459906)43.

Code availability
The computer code for computational analyses and figure generation
is available in a GitHub repository (github.com/mbdoud/shifting-fit-
ness-landscapes) andhasbeendeposited atZenodohttps://doi.org/10.
5281/zenodo.10459906 (https://doi.org/10.5281/zenodo.10459906)43.
The computational analyses were run using python 3.11.4, numpy
1.25.1, scipy 1.11.1, scikit-learn 1.3.0, pandas 2.0.3, networkx 3.1, mat-
plotlib 3.7.2, and pysam 0.21.0.
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