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Scattered tree death contributes to
substantial forest loss in California

Yan Cheng 1 , Stefan Oehmcke2, Martin Brandt 1, Lisa Rosenthal3,
Adrian Das 3, Anton Vrieling 4, Sassan Saatchi5,6, Fabien Wagner 5,6,
Maurice Mugabowindekwe 1, Wim Verbruggen 1, Claus Beier1 &
Stéphanie Horion 1

In recent years, large-scale tree mortality events linked to global change have
occurred around the world. Current forest monitoring methods are crucial
for identifying mortality hotspots, but systematic assessments of isolated or
scattered dead trees over large areas are needed to reduce uncertainty on the
actual extent of tree mortality. Here, we mapped individual dead trees in
California using sub-meter resolution aerial photographs from 2020 and
deep learning-based dead tree detection. We identified 91.4 million dead
trees over 27.8 million hectares of vegetated areas (16.7-24.7% under-
estimation bias when compared to field data). Among these, a total of 19.5
million dead trees appeared isolated, and 60% of all dead trees occurred in
small groups ( ≤ 3 dead trees within a 30 × 30m grid), which is largely unde-
tected by other state-level monitoringmethods. The widespreadmortality of
individual trees impacts the carbon budget and sequestration capacity of
California forests and can be considered a threat to forest health and a fuel
source for future wildfires.

Forests worldwide are experiencing warmer temperatures and an
increased frequency of severe droughts, insect outbreaks, and
wildfires1–4. These disturbances have led to a global increase in large-
scale tree mortality events, even in drought- and heat-tolerant eco-
systems such as Mediterranean dry forests1,5,6. Severely disturbed for-
ests can take decades to centuries to recover2 and may even, due to
regeneration failureor climatic disequilibrium, transition to an entirely
different ecosystem type7–9. This negatively impacts forest carbon
storage, biodiversity, and livelihoods of people who rely on forest
resources.

California provides an extreme example of climate-induced forest
declines since its 2012-2016 drought event1. Estimates derived fromUS
Forest Service Aerial Detection Surveys (ADS)10 revealed that 1–5% of
the live tree biomass in 2012 died by 201711. A large portion of tree
deaths was a result of compound events, such as droughts, bark

beetles, andwildfires1,12–14. While dead trees are a natural component of
ecosystems and may contribute to biodiversity15 and growth releases
of surrounding or understory trees16, the accumulation of dead trees
can lead to substantial increases in available long-burning fuels such as
logs and snags, and eventually increase the occurrence of large
wildfires17,18. The quantification of dead trees is, therefore, critical
information for the optimisation of fuel reduction treatments to
mitigate large wildfires and associated carbon emissions19,20. The cur-
rent state-scale forest health surveys such as ADS10, where surveyors sit
in a fixed-wing aircraft and visually identify tree mortality, document
areas with elevated mortality and the potential causes, but uncertain-
ties remain large in the estimates of the extent and number of dead
trees21,22.

To better identify the actual extent of tree mortality, it is
important to precisely locate stressed or dead trees. Currently, most
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tree-levelmortality data are collected throughground surveys.Despite
providing detailed information, the spatial coverage of these surveys is
limited by accessibility, time, and cost. Near-surface remote sensing
technologies, such as UAV- and airborne-based optical and LiDAR,
have recently been explored as an alternative method for fine-
resolution forest health monitoring from regional to landscape
scales23–25. Nevertheless, these data are collected on a need basis and
do not provide wall-to-wall coverage at the state scale. Systematic
assessment of forest degradation at regional to landscape is possible
with satellite images such as those from Sentinel-2 and Landsat26–33.
Finer resolution images such as PlanetScope, WorldView, and Pleiades
have also been tested to map tree mortality34–36. Restricted to area-
level estimates via vegetation index anomalies26–29,33–36, biochemical
properties30, or by mapping deadwood fractions at the pixel level31,32,
these approaches can not readily count individuals and likely miss
scattered dead trees37. Consequently, the actual counts of tree mor-
tality and the contribution of small groups of dead trees over large
areas remain unknown. Assessments at the tree level based on finer
resolution data are therefore needed across broad extents. The
National Agriculture Imagery Programme (NAIP)38 provides imagery at
sub-metre resolution for the entire U.S. during the growing seasons on
a biennial basis. Advanced computer vision algorithms create the
opportunity to effectively apply such imagery for fine-resolution and
large-area mapping of tree mortality39–41.

In this study, we used deep learning to map individual dead tree
crowns in California from 2020 NAIP images. We defined dead trees as
overstory standing deadwood or snags. The uncertainty of predicted
dead tree density was assessed with ground observations at the tree
and plot levels. We studied the main patterns, such as spatial dis-
tribution, species composition, and damage agents, emerging from
ourwall-to-wall treemortalitymapping in California.We quantified the
contribution of isolated and small groups of dead trees within
30 × 30m grids to the total extent. From the individual dead treemap,
we derived the crown size of each dead tree and crude approximations
of the recency of mortality by classifying the mortality at “brown” or
“grey” stages based on the crown colour. By combining the count of
dead trees, the percentage of brown-stage mortality, and the median
size of dead crowns per ha, we mapped tree mortality hotspots that
suggest massive and recent loss of forests. Lastly, we presented an
example of multi-year tree mortality mapping by applying the model
trained for 2020 directly to NAIP images acquired in adjacent years
over a subset of the study area and evaluated the accuracy againstfield
observations. We identified 91.4 million dead trees from 2020 NAIP
images with 19.5 million appearing solo within 30 × 30 grids. Bark
beetles and fires are the primary damage agents according to the aerial
and ground surveys. Multi-year mapping unravels diverse changes
in dead tree density despite inconsistent accuracy attributed to geo-
metrical and spectral variations in NAIP images from different years.
Our results highlight the need and feasibility to map and characterise
tree mortality at the individual tree-level over large extents. The tree
mortality maps provide detailed information for forest management
and the understanding of the mechanisms of climate-induced tree
mortality.

Results
Mapping of individual and scattered dead trees in California
for 2020
We trained a deep learningmodel on about 24,000manually digitised
dead trees to detect individual dead tree crowns in vegetated areas in
California from 7645 NAIP aerial images in 202038 (Methods). When
comparing to an independent set of about 3000 digitised dead tree
crowns, we found an overall underestimation bias of 3.61% and aMean
Absolute Error (MAE) of 2.27 dead trees ha-1 (Supplementary Fig. 1).
The overall underestimation bias and MAE for fire-related mortality
(15.3% and 4.56 dead trees ha-1) were greater than non-fire-related

mortality (0.15% and 1.91 dead trees ha-1; Supplementary Fig. 2). When
compared to point locations of dead tree mapped in field surveys
between 2016 and 2020 (Methods), the underestimation bias was 16.7-
24.7% (Supplementary Table 1). The comparison to the count of dead
treeswith a diameter at breast height (DBH) > 40 cmfor plots visited in
2016 and 2018 (Methods) indicates an underestimation bias between
5.08-19.9% and an MAE of 2.2–2.9 dead trees ha-1 (Supplementary
Fig. 3). Some of the omission errors can be explained by the presence
of severelydecayed treeswith a short trunk and/or a small “crown” that
can be covered by adjacent tree canopies, especially in dense canopies
(Supplementary Fig. 4b) and/or in images with severe distortion issues
due to off-nadir view angles (Supplementary Fig. 4a, c). In addition,
given that noticeable decay of standing dead trees usually starts within
2–5 years post mortality42, dead trees recorded before 2020 may have
fallen down and therefore could not be detected from aerial images
acquired in 2020.

We found about 91.4million dead trees over 27.8 million hectares
of vegetated areas (Methods) in California,which accounts for 2.33%of
the estimated tree count in 201143. Our report on the total number of
dead trees is smaller than previous estimates (156.7 million) from ADS
2012-202010 (Methods; Supplementary Table 2). However, our model
appears to capture a larger number of dead trees in Northern Cali-
fornia as compared to other sources (Supplementary Fig. 5). While the
time mismatch and the exclusion of dead trees fallen before 2020 in
this study could partly contribute to discrepancies between sources,
ADS’ estimates were found to substantially over-estimate the actual
dead tree count due to mapping design limitation (hand-drawn
polygons)21.

Among 16 main forest-type groups44, California mixed conifer
appeared to be the most affected, accounting for half of all detected
dead trees (Fig. 1b) and the highest percentage of mortality per ha
(Fig. 1c). The western oak group was the next most vulnerable forest
type (Fig. 1b), confirming recent studies based on field observations45.
Geographically speaking, the North Coast and central and southern
Sierra Nevada were the most affected regions. A total of 8.22% of the
dead trees were found in Shasta-Trinity National Forest (NF) followed
by Klamath NF (7.51%) and Sierra NF (7.36%); these NFs account for
2.03%, 3.53%, 5.44% of the treesmapped in 201143, respectively. Shasta-
Trinity NF has the highest percentage of tree mortality since 2011
among 17 national forests in California (Fig. 1a).

Tree mortality may be attributed to single or multiple damage
agents12–14,22 depending on the interactions between damage agents
such as a combination of biotic and abiotic agents or multiple species
of pests or diseases. In particular, the prolonged droughts in California
since 2012 have been suggested as one of the underlying triggers of
bark-beetle-related treemortality14. By overlapping the individual dead
tree map with damage agent surveys10 and fire perimeters46 from 2012
to 2020 (referred to as damage agent database hereafter, Methods),
we assigned potential damage agents for 67.7% of the detected dead
trees. As shown in Supplementary Fig. 6a–c, biotic agents such as bark
beetles (42.5%), cankers (1.5%), wood borers (0.89%), and combina-
tions of bark beetles and wood borers (0.89%) were the dominant
damage agent of tree mortality in California, accounting for 45.8% of
total dead trees detected, followed by fires (27.2%), drought (16.5%),
and a combination of bark beetles and fires (7.1%). The majority of
biotic agent-related tree mortality was found in conifer-dominated
woodlands. Fires occurred throughout California and affected all
forest types. Single-agent drought-related mortality was mostly
observed on oak woodlands in the foothills of central California. Wild
animals, such as wild boar, and human activities, such as herbicides,
were found to have a minor impact on tree mortality (1.2% and 0.33%;
Supplementary Fig. 6c).

By integrating the classic watershed algorithm in post-processing
(Methods), our model was able to separate clumped dead trees, pro-
viding robust count estimates in different scenarios, such as scattered
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and clustered die-offs in open and closed canopies (Fig. 2a–c). To
quantify scattered die-offs, which are likely to be missed by conven-
tional monitoring methods, we aggregated the individual dead tree
map into a count map at 30m resolution and found that 19.5 million
dead trees appeared solo within 30 × 30m grids (Fig. 2d), accounting
for 28.4% of predicted dead trees without bias correction (Methods).
Smaller groups of dead trees (≤3 dead trees within a 30 × 30m grid)
account for about 60% of the total count of dead trees (Fig. 2d).
Compared to a widely used forest changemap for 2000–2020 derived
from Landsat images at 30m resolution27, 71% of the dead trees
detected in our study were not captured by this dataset, among which
more than half (56.6%) of the dead trees are in 30 × 30mgridswith one
(34.4%) or two dead trees (22.2%; Fig. 2e). While the Landsat-based
forest changemap is not tailored to capture small-scalemortalities27, it
performs well in detecting large mortality clusters from fire and bark-
beetle outbreaks (Supplementary Fig. 8a and Supplementary Fig. 6a)
and general trends in mortality over time (Supplementary Fig. 8b).
Nevertheless, the Landsat-based maps miss out on isolated and scat-
tered dead trees, which, as we show, make up for a significant part of
the total mortality in California, highlighting the importance of map-
ping tree mortality at the tree-level towards improved estimates of
forest loss.

Beyond dead tree localisations
From the individual dead treemap, we calculated additional structural
metrics and the mortality stage and aggregated them into hectare

grids (Methods). The additional structural metrics consisted of dead
tree count, median dead tree crown size, and dead canopy area per ha
(Supplementary Fig. 9a, b, e). The median of dead tree crown size per
ha can be used to understand the decay stages and tree sizes/dia-
meters in combination with ancillary information such as species47.
The dead canopy area and median dead tree crown size come with an
uncertainty factor (Supplementary Fig. 9f), which we quantified by
assessing the geometric distortions in NAIP images caused by off-nadir
view angles (Methods).

The mortality stages such as the brown-stage and grey-stage are
determined by the colour of dead tree canopies and imply the
existence of foliage, which can be a proxy for the recency ofmortality
when comparing within the same species group. Brown-stage
trees appear brownish or reddish on RGB images (Fig. 3e) and
imply recent tree death with dried or decoloured foliage remaining
on stems48. Grey-stage trees have lost their foliage, appear greyish or
whitish (Fig. 3f), and imply long-standing dead woods48. Differ-
entiating between brown- and grey-stage allows for crude approx-
imations of recent mortality from single-year NAIP images, along
with species and damage agent information. The percentage of
brown-stage dead trees against the number of all dead trees (Meth-
ods) indicates areas with recency of mortality, which is relevant for
indicating a potential ongoing mortality event, such as a burgeoning
bark-beetle outbreak. This indicator is also relevant to fire risk
modelling and fire behaviour forecasting because brown-stage trees
are more likely to increase the risk for crown fires as compared
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Fig. 1 | Status of treemortality in California from individualdead trees detected
from NAIP aerial images in 2020. In panel a, the orange circles denote the total
count of dead trees in each national forest. Supplementary Table 3 provides the
lookup table for national forest abbreviations. The underlying map represents the
percentage of tree mortality, which is the count of detected dead trees against the
count of all trees in 2011 within 240 × 240m grids43. Only forests, shrublands, and
grasslands that are contained in the National Land Cover Database 201963 and ESA
WorldCover 202064 are included in the mapping (Methods). b Total number of
dead trees and spatial coverages for 16 main logical ecological groupings of forest

types in California44. c Box plots of percentages of tree mortality per ha for each
forest-type group. The boxes represent the interquartile range (IQR) which is
between the 25th and the 75th percentile of the percentages of tree mortality. The
whiskers represent 1.5 times the IQR. Thewhite lines inside the boxes represent the
medians. The notches inside boxes represent the 95% confidence intervals for the
medians. Random selection of 30% of the pixels per forest-type group was applied
to mitigate the spatial auto-correlation. The colour scheme used in panels a, b is
consistent with the forest-type group map (Supplementary Fig. 7), representing
different forest-type groups.
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to grey-stage dead trees, due to the presence of flammable low-
moisture content foliage17,49,50.

In total, 19.1% of all identified dead treeswere classified as being in
the brown-stage mortality. The most affected forest group types were
California mixed conifer, western oak, and fir/spruce/mountain hem-
lock with 18.1%, 18.9%, and 32.5% of dead trees classified as brown-
stage, respectively (Supplementary Fig. 10a). Among all forest group
types, Lodgepole pine, fir/spruce/mountain hemlock, and pinyon/
juniper had the highest percentage of brown-stage mortality,
accounting for 39.5%, 32.5%, and 28.3% of the total count of dead trees
in each group (Supplementary Fig. 10a). These three groups also
occupiedonly a relatively small spatial extent, especially for Lodgepole
pine, which made up for 0.97% of the forested areas in California
according to ref. 44.

We selected three independent metrics to characterise tree mor-
tality at the landscape scale: count of dead trees, percentage of brown-
stage mortality, and median of dead tree crown size per ha. By com-
bining these metrics in the RGB colour space (Fig. 3), three types of
mortality hotspots stood out: first, newly developed mortality (stres-
sed/dead trees with dried or decoloured foliage), denoted in greenish
colours (Fig. 3c), refers to areas with high percentages of brown-stage
mortality; second, massive dead canopy areas, denoted in magenta
colours (Fig. 3b), represent areas with large numbers of dead trees and
large dead tree crowns; third, large-scale legacy mortality (Fig. 3a),
denoted in reddish colours, implies areas with a large amount grey-

stage mortality with small dead tree crowns. Hotspots of recent mor-
tality (high percentage of brown-stage dead trees) were mainly con-
centrated in Sierra Nevada Range (green and yellow in Fig. 3), which is
likely due to increased droughts and bark-beetle outbreaks14,25. In con-
trast, the KlamathMountains/California High North Coast Range where
a large count of grey-stage dead trees in relation to historical fires was
uncovered (red to magenta in Fig. 3).

Multi-year tree mortality mapping
We directly applied the model trained using NAIP images in 2020 to
the NAIP images from 2016, 2018, and 2022 over a spatial subset of the
study area. The model was able to detect the most recent mortality
from NAIP 2022 (Fig. 4d), the gradual increase in mortality from 2016
to 2022 (Fig. 4e), and the decreased number of dead trees due to
manual removal, natural falling or decomposition (Fig. 4f). Figure 4d, e
illustrate some of the inconsistencies in between-year image distor-
tions and geo-referencing of NAIP imagery, which introduces chal-
lenges for comparing changes at the individual tree level. However,
this challenge is reduced when aggregating to count of dead trees per
ha (Fig. 4c), which effectively shows temporal trends of tree mortality
over the test area. The spatial-temporal patterns of tree mortality
(Fig. 4d–g) provide detailed information for future studies in drivers
and help improve the early warning of tree mortality.

By comparing to field surveys of dead trees or snags from 2016 to
2023 (Methods), we found an underestimation bias between 16.7% and
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Fig. 2 | Contribution of isolated and scattered dead trees. a–c examples of
individual dead tree segmentation in multiple scenarios. In each panel, the upper
rows are the NAIP true colour images, while the bottom rows present dead tree
crowns (red shapes) in predictions. The ticks around each frame represent
30× 30m grids. d total count and cumulative percentage of total dead trees for

30 × 30m grids with a number of dead trees ranging from 1 to 47. The cumulative
counts of dead trees were derived directly by aggregating the individual dead tree
segmentations without applying bias correction (Methods). e Percentage of tree
mortality (count and area) groupedbynumberofdead treeswithin a 30× 30mgrid
for areas that were not mapped in Global Forest Change v1.9 (2000–2020)27.
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53.1% (Supplementary Table 4). The underestimation biases for 2016,
2018, and 2022 are higher than for 2020, which could be a result of
different geometrical and spectral characteristics of the 2016, 2018,
and2022 imageswith respect to the 2020 images thatwere thebasis of
the training samples. Further addition of training samples for the dif-
ferent years may improve the accuracy of multi-year mapping. The
highest bias was found in predictions for 2022 when compared to field
observations before 2021, which could be partially explained by the
fire disturbances that occurred in 2021 over the field sites.

Discussion
Standing dead trees are a natural component of any forested ecosys-
tem and play an important role in supporting biodiversity15 and med-
iating the growth trajectories of surrounding trees16. However, climate
change and increasing climate extremes, have globally pushed fores-
ted ecosystems to their limit of safe functioning, sometimes, resulting
in large-scale die-offs2. In this study,weapplied semantic segmentation
coupledwith theDeepWatershed algorithm to locate and characterise
overstory standing dead trees from sub-metre resolution aerial photos
at the California state level. We showed that 60% of the dead trees are
isolated or in small groups of two to three, and would have remained
unseen at 30mLandsat resolution27, which emphasises the importance
of mapping individual dead trees at large scales for the accurate count
and area estimates of tree mortality.

Systematically assessing tree mortality on a regular basis is nee-
ded to monitor forest dynamics and disentangle when tree mortality
appears to deviate from normal succession and functioning of forest
ecosystems2. Indeed, unhealthy or dead trees can also facilitate insect
outbreaks whichmay eventually lead to large-scale forestmortality12,51.
Applying the model to map individual dead trees for multi-year NAIP
images over a test area, we showed that a clear trend can be identified
in the count of dead trees per ha in spite of inconsistent performances

across years. Given the availability of NAIP images, this demonstrates
the potential tomap treemortality for the contiguousUnited States on
a biennial basis while accurately accounting for scattered dead trees.
We also explored the dominant damage agents of tree mortality in
California from 2012 to 2020 by overlapping dead tree maps with
ancillary datasets of damage agents documented through aerial and
ground surveys. We found that bark beetles and fires are related to
nearly 70% of the dead trees mapped in this study. Despite uncer-
tainties in the ancillary datasets22, the attribution of damage agents at
the tree-level provides spatially detailed information supporting future
studies on spatial patterns of damage agents. Together with the tem-
poral dimension, this enables holistic profiles of existing mortality at
fine spatial resolution, directly supporting the monitoring of forest
health for large extents and the understanding of the interaction
between climate and biotic stressors52. In addition, similar deep
learning frameworks have been used to map live trees from high-
resolution satellite and aerial images39–41, which in combination with
the tree mortality maps enables the study of tree regeneration after
forest degradation.

Dead tree biomass estimates are also a critical input formodelling
fire risk35 and forest carbon fluxes18,53. Standing brown-stage dead trees
increase fire risk given their low fuel moisture and thus stimulate
crown fires. Containing some of the highest densities of carbon
worldwide54, wildfires can turn California’s forests into a net emitter of
carbon20. The localisation and mortality stage classification of indivi-
dual dead trees presented in this study therefore provides spatially
exhaustive information on large ground fuel loads, which overcomes
the challenge in empiricalmodel-based extrapolation attributed to the
weak and varied correlations of certain fuel classes to environment
variables19. As fire spread is strongly related to spatial heterogeneity of
fuel density and fuelflammability atfine resolutions17,55, ourmapping is
expected to improve fire risk and fire behaviour forecasts. Deadwood
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Fig. 3 | Characterisation of tree mortality at the landscape scale based on
structural metrics and mortality stages of individual dead trees. The left-hand
map shows three metrics of dead trees in RGB colour space (referred to as 3-prong
mortality map hereafter), i.e., count of dead trees per ha (Red), percentage of
brown-stage mortality per ha (Green), and median of dead tree crown sizes per ha
(Blue). All three bands are normalised to values between 0 and 1 using the 2nd and
98th percentile of all hectare grids in California as the minimum and maximum
values, allowing to highlight of relative highs and lows within California. Separate
maps for each of the three metrics are provided in Supplementary Fig. 9. Panels
a–f are examples of six generic types of tree mortality, as characterised based on

dead tree count (first character: H=high, L=low), % brown-stage mortality (second
character) and dead tree crown size (third character): a HLL, b HLH, c LHL, d HHL,
e LLH, f LHH. Each panel consists of four items. The top left item is a sample area
from the 3-prong mortality map. The top right item shows individual dead trees
detected within a one-hectare grid located at the centre of the sample area. The
crown area of the dead tree is shown in grey. The red dot indicates brown-stage
mortality. Thedotted lines represent 30× 30mgrids. The lower left and lower right
panels show the true colourNAIP images corresponding to the upper left andupper
right panels. The geolocation of each sample area is indicated by a cyan circle on
the 3-prong map.
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carbon stocks are estimated tobe ~8%of global forest carbon stock53,56,
but the uncertainty from current estimates is high. Research as to how
mortality metrics, such as those estimated from individual dead tree
polygons, can improve fire risk modelling and carbon accounting is
still needed, but there is high potential for incorporating dead tree
information, as obtained in our study, to improve the accuracy of such
applications.

Our results also highlight several uncertainties. First, the ground
observations aregeographically limited to the SierraNevadaRangeand
species-wise dominant by conifers; therefore, they may not represent
the entire California. Despite that, themodelwas also evaluated against
manually digitised labels across California that cover diverse species
groups and elevation ranges (mean ± std.: 1,539 ± 916m; Supplemen-
tary Fig. 7). Nevertheless, standardised data collection anddata sharing

protocols for tree mortality are necessary to facilitate more compre-
hensive evaluation against ground observations. Secondly, despite a
relatively high accuracy for large overstory dead trees, Supplementary
Fig. 3d-f presents a large underestimation bias when including dead
trees of all decay and DBH classes, such as for severely decayed snags
and understory dead trees. As shown in the ground observations used
in this study (Supplementary Table 5), there were only 41.6% ( ± 19.7%)
of dead trees belonging to medium or tall classes (≥15m in height
estimated from DBH using species-specific allometry equations57).
Higher resolution drone or/and aerial imagery32 and active remote
sensing technologies such as Light Detection and Ranging (LiDAR)
could compensate for the mapping of small understory dead trees58,59.
Third, the geometric distortion in NAIP aerial images can lead to the
omission of dead trees with small crowns shaded by surrounding

Fig. 4 | Treemortalitymapping frommulti-yearNAIP images (2016, 2018, 2020,
and 2022) for a spatial subset of the study area. a NAIP image from 2016–2020.
b predictions of individual dead trees. c count of detected dead trees per ha.
d–g detailed views of multi-year NAIP images and detected dead trees: d most
recent mortality from NAIP 2022; e increased tree mortality from 2016 to 2022;

f decreased number of dead trees detected due to the manual removal of dead
trees or the natural decomposition/falling of dead trees; g, spreading of tree
mortality from the north to the south. The locations of these four detailed views are
indicated with black bounding boxes in panel c for 2022. The crosses in panels
d–g are for cross-referencing the same locations in scenes from different years.
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canopies (Supplementary Fig. 4) and thereby introduceuncertainties in
the estimates of dead tree crown size. Here we have limited the impact
by not considering dead trees exceeding an eccentricity of 0.8
(Methods). Further correction of dead tree crown size would require
the disclosure of metadata of raw NAIP images such as view angles and
flight height. Fourth, treemortality can be a result of compound events
and interactions between multiple damage agents1,12–14,22,52, which has
proven to be challenging to document exhaustively through aerial
or ground surveys, including the data used in this study (ADS)22.
In particular, it is difficult to attribute drought especially when com-
pounded with other damage agents such as bark beetles or fires.
Nevertheless, we provide the first tree-level analysis of damage agents
at the state scale, which can serve as first-hand material to understand
the spatial and temporal patterns of tree mortality related to different
damage agents.

In conclusion, our wall-to-wall mapping and characterisation of
individual dead trees at California state-level provide detailed and
actionable information for forest health assessment andmanagement.
The fine-resolution mapping may also support improved carbon
accounting as well as fire risk and behaviour modelling. Further,
repeated mapping combined with ground observations can bring
insights into the mechanisms of climate-induced tree mortality and
contribute to early warning systems in areas thatmay face widespread
forest mortality in a changing climate.

Methods
NAIP aerial images
NAIP data consists of sub-metre to metre resolution optical images
that have been acquired every one to two years during the growing
season at pan-US scales since 200338. The image quality and geo-
referencing accuracy vary between years, depending on the hardware
specifications and campaign conditions. Since 2016, the campaigns
have employed a better optical sensor with red (619–651 nm), green
(525–585 nm), blue (435–495 nm), and near-infrared (808–882 nm)
bands. The spatial resolution has increased from 1m to 60 cm, and the
geo-referencing accuracy (RMSE) was reported as 6 metres38. In this
study, we downloaded 7645 NAIP tiles (>3.4TB) acquired in 2020 from
Google Earth Engine to have complete coverage over vegetated areas
(excluding agricultural areas) in California. These images were taken
from the middle of April to early August (Supplementary Fig. 11), thus
allowing a clear distinction between dead trees and deciduous trees.

Ancillary datasets
The list of ancillary datasets and their sources are in Supplementary
Table 6. TheWoodland forCaliforniadataset60, California border61, and
the ecoregion map62 were used to preselect the NAIP tiles for Central
Valley and Mojave Desert (Supplementary Fig. 11), given that the tree
cover for these two ecoregions is less than 5%. For the other ecor-
egions, we downloaded all available NAIP images from 2020. USA
National Land Cover Database 201963, ESAWorldCover 202064, cities65,
urban66, and water shapefiles67 were used to mask non-vegetated and
agricultural areas in all our analyses. The tree count map43 depicts the
total number of live trees per acre in 2011, which was defined as the
initial status of live tree count before the 2012-2016 drought event and
used to calculate the percentage of trees that died between 2011 and
2020. The Forest-Type Group44, which depicts dominant species
within 240 × 240m grids, was used to unravel tree mortality across
forest-type groups. This dataset was created by interpolating plot data
collected between 2014 and 2018. The California forests consist of 16
forest-type groups, with California mixed conifer as the dominant
group (Supplementary Fig. 7). To identify the most affected national
forests, we used Administrative Forest Boundaries68 and only con-
sidered national forests with more than 90% of the area inside
the border of California which includes in total 17 national forests
(Supplementary Table 3).

We used Global Forest Change v1.9 (2000–2020)27 as the repre-
sentative of satellite imagery-based forest disturbance maps to illus-
trate potentialmisses of dead treesmapped atpixel levels. This dataset
was generated from the time series of Landsat imagery at 30m reso-
lution with information on the year of forest loss. It is important to
note that ref. 27 defines trees as all vegetation taller than 5m in height,
and forest loss as a stand-replacement disturbance. The product is
therefore not tailored for monitoring forest degradation due to
selective logging or small-scale mortality.

To study the potential damage agents of tree mortality, we used
surveys from ADS10 which have been conducted on a yearly basis since
2003 in California. These surveys consist of rough extents or point
locations of recent mortality (brown-stage mortality) identified by
observers from a fixed-wing aeroplane at approximately 1500 feet
above the ground. Each identified mortality area contains information
on potential damage agents based on expert knowledge and ground
reports. We used ADS data collected between 2012 and 2020, which
covers about 6.1 to 19.6million hectares of forested land in California.
The 2020 survey was done by visual inspection from very high-
resolution images (0.25 to 0.6m) and only covered ~10% of the usual
survey area due to the suspension of the flight campaign. Therefore
the total number of dead trees from ADS2020 does not represent the
entire California. As ADS polygons mainly represent areas with non-
fire-related tree mortality, to assess fire-related tree deaths, we
employedfire perimetersproducedbyCAL FIRE46 and fuel disturbance
data from LANDFIRE69.

In addition, the individual dead tree count was compared to the
snag density map for 202170 for northeastern California and southern
Sierra Nevada. The snag density mapwas extrapolated from point plot
observations using geospatial datasets70, and depicts the number of
standing dead trees with a DBH larger than 20 inches (~50.8 cm) for all
species and all decay classes within 30 × 30m grids70. To align the
timeframe between our product and the snag density map, areas
overlapping with fire perimeters for 202146 were masked out. Never-
theless, non-fire-related treemortality in 2021 could still explain partof
the discrepancies between products.

Deep-learning-based Individual dead tree detection
We employed instance segmentation to detect and characterise indi-
vidual dead trees for all NAIP images used in this study. To that end, we
used NAIP images as input to an adapted convolutional neural net-
work. We evaluated the location of dead trees and their count per ha
against visually interpreted dead trees from NAIP images and ground
observations. For the evaluation of dead tree crown size, we compared
the model output with manually digitised dead trees from NAIP ima-
ges. The model architecture and model assessment are described in
the following sections and Supplementary Fig. 12.

Label data preparation. We sampled 714 patches with a size of
256× 256 pixels from the NAIP images ( ~ 1685 hectares) overlapping
with the sample areas selected for the ADS visual inspection of tree
mortality in 202019 to include diverse geographical conditions and
damage agent categories (Supplementary Fig. 7 and Supplementary
Fig. 6). A total of 87 patches were used as control (background class in
the model). Those patches were either located over non-vegetated
areas or characterised by the absence of treemortality.We digitised all
dead trees within all patches, which consisted of ~27,000 dead trees.
The patches were then split into a training, validation, and test set in
the ratio of 8:1:1.

EfficientUNet architecture. We customised the well-known UNet
architecture for image segmentation to map individual dead trees in
California from very high-resolution aerial imagery. UNet was intro-
duced for cell segmentation in biomedical images71 and has proven its
capability in tree detection from optical imagery39–41. The customised
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architecture uses EfficientNet72 as the encoder and applies batch nor-
malisation after each layer. Going forward, we will call it EfficientUNet.
The network was trained with NAIP images as input and visually
interpreted dead trees as labels to learn from. To simulate image
conditions and avoid model overfitting, image augmentation, includ-
ing geometric and spectral transformations, was performed for 20-
50% of the total number of input patches. Specifically, we applied an
affine transformation to simulate the noticeable geometric distortions
in NAIP images over mountainous areas. The Focal Tversky loss
function73 together with the Adam optimiser was used for model
parameter optimisation. We set alpha, beta, and gamma values in the
Focal Tversky loss function as0.4, 0.6, and 2.When the gamma value is
greater than one, the focal loss part in the loss function is activated,
which has proven a good performance with imbalanced datasets73.
When the alpha value is larger than the beta value, the model focuses
on minimising false positive predictions73, which results in relatively
conservative predictions for dead trees.

Deep Watershed algorithm. One of the challenges in image seg-
mentation is to separate touching objects. For example, in dense
canopy areas, tree crowns can overlap with each other, which results
in clumps in the prediction and leads to an underestimation of the
count. To separate clumped canopies of dead trees, we applied an
adapted version of the deep watershed algorithm74. Applying the
deep watershed algorithm results in energy maps that represent the
increasing distance of a pixel to its nearest boundary with higher
energy levels (Supplementary Fig. 12b). These energy level maps can
then be used as an input to the Watershed algorithm75, which will
return separated instances (e.g., individual dead trees). In our
adaptation, we replaced the usual classification of energy levels (e.g.,
with softmax activation), which assumes independence between
classes, with an ordinal classification51, where we need to predict the
presence of low energy before higher energy levels can be predicted.
This adaptation assures that (1) the energy levels represent the
distance from the border, which results in an intuitive and
meaningful label of the predicted segments, (2) no unrealistic holes
remain within the predicted dead tree segments, (3) tree object
boundaries can potentially be sharpened or refined during post-
processing by removing lower energy levels, which would be a more
informed action than simple shrinking, (4) consistency is required for
easy separation of closely grouped instance (e.g., a change in the
direction of energy level gradient serves as an indicator of a new
instance).

Model training and prediction. We trained a model with about
24,000 manually digitised dead tree polygons selected across the
study area. The target outputs consist of an energy map and an
instance band (Supplementary Fig. 12a). The instance band was cre-
ated from the energymap using the classic watershed algorithmwith
a connectivity of 2, where each instance is denoted as a unique
integer value. The instance here refers to the predicted dead tree
crown. In a post-processing step, we counted the instances within
hectare grids. At the end of each training iteration, we calculated the
MAE of dead tree count per patch for the validation set as:

MAE=
1
n

Xn
i = 1

Yobs
i � Y pred

i

��� ��� ð1Þ

where Y obs is the labelled or observed count per patch or plot, Y pred is
the predicted count per patch or plot, n is the total number of patches
or plots. Unless stated otherwise, the definition of these variables
remains the same for other equations hereafter.

We determined the best-performing model as the one with the
lowest MAE (Eq. (1)) of dead trees per patch. With that, the model was
tuned to minimise the MAE of count per patch, meaning optimising

predictions at the patch level76. However, when considering all the
patches as a whole, the low MAE may not imply a low relative total
error76 (rTE) calculated as:

rTE=
jPn

i = 1ðYobs
i � Ypred

i Þj
jPn

i = 1Y
obs
i j

ð2Þ

Tomitigate the propagation of systematic errors at the patch level
to the sum over large areas (many patches), we followed ref. 76 and
applied bias correction for the count maps by adding the Mean Error
(ME) of count per grid area calculated for the training and evaluation
set as:

ME= F ×
1
n

Xn
i = 1

ðYobs
i � Ypred

i Þ ð3Þ

where F is a scale factor that converts the patch or plot size to one
hectare.

Unless stated otherwise, all dead tree counts aggregated
from the individual dead tree map are bias-corrected. For tree-level
or subset-level analysis, for example, when comparing predicted
dead tree density at 30m resolution to Landsat-derived forest
loss data, the count of dead trees for each 30 × 30m grid was
directly derived from individual dead tree segmentations without
bias correction.

Model performance. The model performance was evaluated in two
steps using 10% of the labelled patches (see Methods “Label data
preparation”), in which all dead trees that are visible in NAIP images
were manually digitised, resulting in more than 3000 dead tree poly-
gons. We first evaluated the alignment of shapes (i.e., dead tree areas)
between predictions and labels using the Intersectionof Union (IoU) of
each class (i.e., dead tree andbackground class) and themean IoUof all
classes (mIoU) was calculated as:

IoU =
1
n

Xn
i= 1

TPi

TPi + FPi + FNi

mIoU =
1
k

Xk
i = 1

IoUi

ð4Þ

TP is the true positive value, meaning the number of pixels over
overlapped areas, FP is the false positive value,meaning the number of
pixels over overestimated areas, FN is the falsenegative value,meaning
the number of pixels over underestimated areas, k is the number of
classes.

We then evaluated the accuracy of the dead tree count following
ref. 54 and calculated the count bias as:

bias =

Pn
i= 1ðYobs

i � Ypred
i ÞPn

i= 1Y
obs
i

× 100 ð5Þ

The IoU for the dead tree class and background class were 0.53
and 1, respectively, which means that no false negative occurred and
the dead tree crown size tended to be underestimated. The mIoU was
0.77, meaning a 77% accuracy when considering both background and
dead tree classes. The ME (Eq. (3)) after bias correction was 0.56 dead
tree ha-1 (Supplementary Fig. 1a). When comparing to manually
interpreted dead trees from NAIP images, the overall underestimation
bias (Eq. (5)) was 3.61% and the MAE (Eq. (1)) was 2.27 dead tree ha-1
(Supplementary Fig. 1b). Supplementary Fig. 1b shows that the cumu-
lative error of dead tree count decreases with the increase of sample
size, indicating that the dead tree count accuracy increases for larger
areas. Given that fires have been one of the dominant abiotic causes of
acute tree mortality in California, we calculated the bias (Eq. (5)) and
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MAE (Eq. (1)) for dead trees found within and outside fire perimeters46

to represent the accuracy of fire and non-fire-related tree mortality
(Supplementary Fig. 2).

Comparison to ground observations
The ground surveys of tree mortality used for the model evaluation
were collected between 2016 and 2023 and consist of three types of
tree mortality observations: (1) geo-locations of individual dead trees
collected through opportunistic sampling, (2) geo-locations of all dead
trees within each plot, and (3) the total number of dead trees within
each plot. The evaluation against ground observations was conducted
at both tree and plot levels. Standing dead trees observed in the field
before 2020 may lose a large portion of the top branches or fall42,
which may not be seen in NAIP 2020 images and contribute to the
omission errors. The collection time of NAIP images used for predic-
tions and ground observations for validation need to be aligned,
especially for areas with environmental conditions favouring fast
decomposition and decay of dead trees. However, given the limited
access to ground observations of tree mortality in California, we used
all available data collected from 2016 to 2023 and reported the bias
(Eq. (5)) and MAE of the count of dead trees per ha (Eq. (1)) by years
whenever applicable.

The tree-level observations consist of point locations for 898
dead trees and crown polygons for 73 dead trees collected between
2016 and 2023 (Supplementary Table 1). The dead tree information in
datasets named SMNB2016, SMNB2019, SMSB2020 (Supplementary
Table 1), DS2021, and DS2023 (Supplementary Table 4), were col-
lected through opportunistic sampling, and only the ones that were
visible from remote sensing were sampled. DS2021 and DS2023 were
only used to evaluate the predictions for NAIP 2022 to demonstrate
how accurately the model trained using NAIP 2020 can map indivi-
dual dead trees and estimate dead tree counts for NAIP images of
other years. In MCVNB201877 and MCVNB2020, the geo-locations of
all dead trees in a plot that were ≥1.35m in height and ≥40 cm in DBH
were recorded. MCVNB2020 also includes stressed trees (n = (4) that
have a high likelihood to die within a year of the sampling (possible
imminent death, PIDs). The dead tree crown polygons collected in
2019 (SMNB2019) range between 38.45 and 587.22 m2, while some
polygons cover multiple crowns. The plot-level observations are the
total count of dead trees for 88 plots, which consists of 13 plots sized
between 0.93 and 3.35 ha visited in 201877 (Supplementary Fig. 3a)
and 75 circular 0.1 ha-large plots visited in 201613 (Supplementary
Fig. 3b–f). The largest plot (3.35 ha) visited in 2018 is amerge of three
partially overlapped subplots to avoid double counting of dead trees
within the overlaps. The count of dead trees at the plot level for 2018
was aggregated from point locations of 197 dead trees from
MCVNB201877. In the 2016 plot dataset13,57 (DX2016), dead trees
within a 0.1 ha-large plot that were ≥1.35m in height and ≥cm DBH
were recorded with information on species, DBH, and decay stages
(Supplementary Fig. 3c). There were originally 98 plots visited, and
87 plots had coordinates information. Among the 87 plots, there
were a total of 2921 dead trees recorded, of which 327 dead treeswith
DBH ≥40 cm were found in 75 plots. To be consistent withMCV2018,
we only considered dead trees ≥40 cm for the plot-level evaluation of
the count of dead trees per ha (Supplementary Fig. 3b). We also used
DX2016 to calculate the percentage of overstory trees given the
available information of DBH in this dataset. We first converted the
DBH into three height classes (i.e., short: <15m, medium: 15-30m,
tall: >30m) based on species-specific allometric equations (Supple-
mentary Table 7) following ref. 57.We then calculated the percentage
of dead trees for each height and species group and considered trees
classified asmediumor tall class within the same species group as the
overstory trees. A total of 12 dead trees were not included in this
analysis given the missing information of species or the species
types are not included in Supplementary Table 5. The bounding box

of all in-situ datasets covered about 52,000 hectares in the southern
Sierra Nevada (Supplementary Fig. 7), which suggests that our eva-
luation against ground observations is most representative of Sierra
Nevada Range.

For the tree-level comparison, we generated a 6m buffer for
each predicted dead tree segment to mitigate the geo-referencing
uncertainties of NAIP images. We then compared it to the point
locations or polygons of dead trees in ground survey datasets. We
identified the location of a predicted dead tree as correct when the
predicted dead tree segment intersects with a dead tree point or
more than 50% of a dead tree crown polygon recorded in the field.
Based on Eq. (5), we identified the bias as the percentage of ground
observations intersected with predicted dead tree crowns. The bias
was first calculated for each dataset separately and then averaged by
survey years.

For the plot-level comparison, we applied a 6m buffer for each
plot polygon (Supplementary Fig. 3c) and counted the centroids of
predicted dead trees within each buffered plot and compared the
number of dead trees over 40m DBH in each plot. We calculated the
bias (Eq. (5)) andMAE (Eq. (1)) for the comparison to plot observations
in 2016 and 2018 separately.

Characterisation of tree mortality from the individual dead
tree map
To characterise tree mortality, we extracted structural metrics and
mortality stages from the individual dead tree map. We define struc-
tural metrics as geometric properties of identified dead trees, such as
the area and shape of dead tree crowns, count of dead trees, and
percentage of dead trees. The brown- and grey-stage are associated
with the spectrum of dead tree crowns. A brown-stage dead tree
appears brownish or reddish on RGB images and normally implies
recent death with leaves remaining on stems48. A grey-stage dead tree
appears greyish or whitish and implies long-standing deadwood or
snags48. In the following sections, we describe the retrievals of struc-
tural metrics and mortality stages from the individual dead tree map
separately.

Structural metrics of individual dead trees
We extracted geometric properties such as area (after filling hollows)
and coordinates of centroid for each object on the individual dead tree
map. The dead tree count map (Supplementary Fig. 9a) was then
generatedby aggregating thenumber of centroids of dead treeswithin
100 × 100m and 240 × 240m grids. The count maps are bias-cor-
rected, meaning the ME of dead tree count per ha (Eq. (3)) calculated
from the training set was added to the pixel values. The countmapwas
then used to generate the percentage of tree mortality map (Supple-
mentary Fig. 9e) at 240m resolution by comparing it to the tree count
map for 201143 at the pixel level.

We also created a map showing the percentage of dead canopy
per ha by summing the area of dead tree crowns within 100 × 100m
grids (Supplementary Fig. 9c). The median of dead tree crown sizes
within 100 × 100m grid was used to represent the size of dead tree
crowns per ha (Supplementary Fig. 9b). These datasets derived from
the individual dead tree map can be produced at multiple resolutions
dependingon the interests of users.Weused a 100mresolution,which
represents a hectare on the ground and closely responds to the
expressed needs of forest managers.

Colour space-based classification of mortality stages
We classified mortality stages such as brown- (recent mortality) and
grey-stage (long-standing deadwood) based on the Hue-Saturation-
Value (HSV) colour space of NAIP images following an approach
adapted from ref. 48 We first applied a one-pixel inner buffer for dead
tree segments tomitigate edge effects and calculated themean of RGB
values within each buffered segment. The mean RGB values were
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converted into H, S, V, and used to calculate Xgreen, Xbrown, Xgrey, and
Xbackground as:

Xgreen =
Cg

Hg�1

Cg�1 ,Hg ≥0

0,Hg <0

8<
:

Xbrown =
Cr

Hr�1

Cr�1 ,Hr ≥ 0

0,Hr <0

(

Xgrey =
Cy

1�S � 1

Cy � 1

Xbackground =
Cb

1�V � 1
Cb � 1

Hg = 1�
H � 1=3
�� ��

1=6

Hr =
1=2� H
1=6

� 2 ð6Þ

where the Cg, Cr, Cy, and Cb are tunable parameters. We adopted the
same settings used in ref. 48 (5, 5, 1e7, and 1e4),whichweredetermined
following training with NAIP data spanning from 2012 to 2019 for the
entire US with an overall accuracy of 0.89-0.90.

The classification of mortality stages was then based on the
maximum value among Xgreen, Xbrown, Xgrey, and Xbackground. If the
maximum value is Xbrown, the dead tree is classified as brown-stage
mortality. After identifying the mortality stage of each dead tree, we
calculated the percentage of brown-stage mortality against the num-
ber of all dead treeswithin 100 × 100mgrids (Supplementary Fig. 9d).
To eliminate noise, we removed the pixels with only one brown-stage
dead tree in this calculation.

We used the ADS survey data collected in 2020 (ADS2020) to
validate the classification performance at the plot level. ADS2020
consists of more than 1000 hand-drawn polygons over areas where
brown-stage trees were visually identified from very high-resolution
images (0.25 to 0.6m) as the flight campaign was cancelled. We laid
the ADS2020 polygons over the count map of brown-stage dead trees
(100m resolution) and extracted the total number of brown-stage
dead trees within each ADS polygon. To ensure at least one pixel from
the count map within each ADS polygon, we discarded ADS polygons
smaller than 1 pixel size (1 ha) in this analysis, resulting in 1,180
ADS polygons. False negatives (i.e., brown-stage misclassified as grey-
stage) were only found in 116 polygons (9.8% of the total number of
ADS polygons).

Damage agents of tree mortality from expert knowledge
We used ADS datasets10 and historical fire records46,69 to attribute
damage agents to dead trees falling inside ADS and fire polygons. In the
ADS datasets, a maximum of three damage agents were logged to each
polygon based on expert knowledge and ground surveys with a rela-
tively high accuracy21,22. The ADS survey is conducted on a yearly basis
and reports tree mortality that occurred between the previous and the
current survey year. Therefore, we used the latest record of damage
agents for overlapping areas between ADS polygons from different
years (Eq. (7)). To complement ADS datasets, we used historical fire
records46,69 to identify fire-impacted areas. We followed Eq. (8) to
determine the damage agents for overlapping areas between ADS and
fire polygons. Hereafter, the post-processed ADS and fire datasets are
referred to as damage agent polygons or damage agent datasets.

We found 85 different damage agent labels (Level 4 category;
Supplementary Table 8) in the damage agent datasets, which are
regrouped into 15 Level 3, nine Level 2, and three Level 1 categories.
Level 2 category was used to visualise the spatial distribution of recent
and primary damage agents (Supplementary Fig. 6a). Level 1 and Level
3 categories were used to analyse the composition of damage agents
(Supplementary Fig. 6c and Supplementary Fig. 13). In total, only 13.6%
of the total area covered by damage agent polygons were attributed to
more than one Level 4 damage agent categories (Supplementary
Fig. 13). By overlapping the damage agent polygons with the individual
dead tree map, we also summarised the total number of dead trees by
Level 1 and Level 3 damage agent categories (Supplementary Fig. 6c
and Supplementary Table 9).

Drought-related mortality was mostly mapped as points in the
ADS datasets. By overlapping these point layers with a species map44,
we identified that Oregon white oak, Canyon live oak/interior live oak,
Blue oak, and Deciduous oak woodland were the dominant species
thatwere prone to droughts. This is also in linewith the findings in ADS
reports. The number of dead trees in those areas was accounted as
drought-caused mortality in Supplementary Fig. 6.

AgentsADS1\ADS2 =
AgentsADS1, YearADS1 ≥ YearADS2
AgentsADS2,YearADS1<YearADS2

�
ð7Þ

AgentsADS\Fire =
ðAgentsADS1\ADS2, FireÞ, YearFire ≥ YearADS
AgentsADS1\ADS2, YearFire < YearADS

�
ð8Þ

Quantification of view angle-caused uncertainties
Severe geometric distortion caused by off-nadir view angles has been
found on NAIP images near the edge of flight routes and in mountai-
nous areas (Supplementary Fig. 9f). This has resulted in elongated
ellipsoid-shaped dead tree crowns in the prediction (Supplementary
Fig. 9f), which introduces uncertainties in predicted dead tree crown
sizes and is considered one of themain reasons for a relatively low IoU
value for dead tree class in the model assessment. To quantify the
severity of geometric distortion, we calculated an eccentricity for each
predicted dead tree crown as:

e =
c
a

ð9Þ

where e is eccentricity, c is the distance between the focal points, a is
the length of the major axis.

The eccentricity is between 0 and 1 and is inversely proportional
to the roundness of a dead tree crown. In practice, we calculated
median eccentricity for dead tree crowns more than 50 pixels (18 m2)
within 500 × 500m grids. The median, mean, and standard deviation
(std.) of eccentricities in California are 0.68, 0.68, and 0.12, respec-
tively (Supplementary Fig. 9f). We recommend carefully using area-
relatedmaps (i.e., dead canopy area andmedian dead tree crown size)
where eccentricity is larger than 0.8 (mean + std.).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
NAIP images are freely available on Google Earth Engine (https://
developers.google.com/earth-engine/datasets/catalogue/USDA_NAIP_
DOQQ). The sources of all ancillary datasets are listed in Supplemen-
tary Table 6. Derived products, i.e., dead tree count per ha (100m),
median dead crown size per ha (100m), percentage of dead canopy
area per ha (100m), percentage of brown-stage mortality per ha
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(100m), eccentricity map (500m), and percentage of tree mortality
(240m), are freely accessible at ref. 78 Field observations DX2016 and
MCVNB2018 are available from refs. 13,57 and ref. 77, respectively.
Field observations (datasets SMNB2016, SMNB2019, MCVNB2020,
SMSB2020, and DSSB2021) are available from A.D. and DS2023 is
available from A.D. and Y.C.

Code availability
The code for NAIP data downloading from GEE, the pre-trained Effi-
cientUNet with the deep watershed algorithm for dead tree segmen-
tation, and the post-segmentation processing code can be accessed at
(https://doi.org/10.6084/m9.figshare.23723388). All codes used for
this study were written in Python (3.9).
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