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Pangenome graphs improve the analysis of
structural variants in rare genetic diseases

Cristian Groza 1, Carl Schwendinger-Schreck2, Warren A. Cheung 2,
Emily G. Farrow 2, Isabelle Thiffault 2, Juniper Lake 3, William B. Rizzo4,
Gilad Evrony 5, Tom Curran 6, Guillaume Bourque 7,8,9,10 &
Tomi Pastinen 2

Rare DNA alterations that cause heritable diseases are only partially resolvable
by clinical next-generation sequencing due to the difficulty of detecting struc-
tural variation (SV) in all genomic contexts. Long-read, high fidelity genome
sequencing (HiFi-GS) detects SVs with increased sensitivity and enables
assembling personal and graph genomes. We leverage standard reference
genomes, public assemblies (n = 94) and a large collection of HiFi-GS data from
a rare disease program (Genomic Answers for Kids, GA4K, n = 574 assemblies)
to build a graph genome representing a unified SV callset in GA4K, identify
common variation and prioritize SVs that are more likely to cause genetic dis-
ease (MAF <0.01). Using graphs, we obtain a higher level of reproducibility than
the standard reference approach.Weobserveover 200,000SValleles unique to
GA4K, including nearly 1000 rare variants that impact coding sequence. With
improved specificity for rare SVs, we isolate 30 candidate SVs in phenotypically
prioritized genes, including knowndisease SVs.We isolate a novel diagnostic SV
in KMT2E, demonstrating use of personal assemblies coupled with pangenome
graphs for rare disease genomics. The community may interrogate our pan-
genome with additional assemblies to discover new SVs within the allele fre-
quency spectrum relevant to genetic diseases.

Structural variants (SVs) contribute to Mendelian and complex disease,
yet they are themost challenging to detect, assemble, and fully resolve.
Indeed, many SVs are in repetitive sequences that are difficult to
approach with short-read sequencing libraries1,2. In contrast, long-reads
can detect and characterize much more complex and repetitive struc-
tural variants3 and can be used to efficiently build reference-free de
novo assemblies from genomes as large as a human genome4. Long--
reads, together with information fromparental sequencing, also enable

the phased assembly of haplotype-resolved maternal and paternal
genomes based on unique k-mers5. Previous efforts employing
long-reads have discovered up to 28,000 SVs per human genome6.
However, we still need to adopt computational methods to fully lever-
age this richer data in the context of rare diseases. While SV callers that
operate on whole genome assemblies exist7,8, their approach of com-
paring a proband genome against a single reference genome may fail,
even with high-quality genome assemblies, since some regions may be
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absent or contain very different alleles. Moreover, it remains difficult to
compare alleles among genomes since the genomes are only related to
the reference genome and not to each other. While tools exist to call
andcluster SVs9–11, they relyonheuristics suchas themaximumdistance
between events or proximity graphs12, which may erroneously split or
merge SVs because they donot consider the entire genomeassembly or
variation between alleles in complex loci. Therefore, accurate estima-
tion of SV allele frequency may benefit from tools that align and com-
pare the various alleles observed in complex loci.

To alleviate these shortcomings and fully leverage high-quality
genome assemblies, a pangenomic approach, where genomes are
related to each other in a graph, is necessary. Some approaches have
been developed to achieve this through progressive alignment of gen-
ome assemblies13,14, while others do so through pairwise comparisons15.
The resulting pangenome graphs, built from high-quality genome
assemblies, have already been used to create a pangenome reference of
human population diversity by the Human Pangenome Reference
Consortium (HPRC)16. This new type of reference showed increased
sensitivity in detecting SVs over methods that use a linear reference.
Pangenome graphs also provide a unified SV callset where the bound-
aries of polymorphisms are delimited by bubbles, and the alleles are
precisely defined as paths through bubbles. This allows formore robust
allele frequencies, especially in the case of multiallelic SVs.

Here, we explore the benefits of using such a strategy to char-
acterize structural variation in a rare disease cohort, exclude common
non-pathogenic or infrequent (MAF 1–5%) variation, and prioritize SVs
that are sufficiently rare to be causal (MAF <0.01). Also, we show how
pangenome methods can be used along with other tools to improve
sensitivity and specificity in detecting SVs.

Results
A pangenomic approach to identify and integrate structural
variation across hundreds of genomes
We pursued the discovery of rare SVs that were potentially pathogenic
among a cohort of 287 parent–offspring trios included in the
Genomic Answers for Kids (GA4K) program targeting pediatric
genetic disease17. In this cohort, prior to assembling the genomes,more
than 90% of the probands remained undiagnosed after chromosomal
microarray analysis or even standard clinical sequencing and systematic
exploration of putatively causative single nucleotide variants (Supple-
mentary Data 1), with only less than 10% being eventually diagnosed.
Thus, this set of genomes is enriched for difficult to solve cases. We
included short-read genome sequencing (srGS) parental data and fur-
ther sequenced all the probands using PacBio HiFi reads (Methods) at a
mean depth of 27× (Fig. 1A, median 27×, range 6–48×). A subset of this
HiFi-GS data, but none of the assemblies, was included in an earlier
study17. Here, we expanded the cohort and systematically developed
assemblies of 574 haploid proband genomes using hifiasm5, obtaining a
mean N50 of 18.2Mbp (Fig. 1B, median 16.4Mbp, range
78.6 kbp–55.3Mbp). To facilitate the identification of rare variants, we
also augmented our data with the 94 haploid genomes released by the
HPRC16. We then created a pangenome graph with minigraph13, which
was previously tested and found to highly agree with reference-based
methods16, to identify structural variants in the combined set of 668
haploid genomes together with two standard reference genomes
(GRCh38 and CHM13v2). We chose minigraph since it scales linearly
with the number of genomes at the expense of requiring a backbone
reference tobuild thegraph.Duringgraphconstruction,whenahaploid
genomewas added, polymorphisms that were larger than 50 base pairs
(bp) but missing from the graph created new nodes and paths (Fig. 1C).
With our data, we found that the number of new non-reference
sequencenodes added fromeach additional haploid genomeplateaued
at around 500 (Fig. 1D). This suggests that there remains many more
alleles to be discovered in human genomes, continuing the trend pre-
viously observed in the HPRC dataset16.

Using the resulting graph, we genotyped the assemblies and
observed 180,755 bubbles, which are polymorphic loci (see Fig. 1C),
and 631,400 distinct alleles, which are possible sequences in each
bubble or polymorphic locus (Fig. 1C). To ensure all genotypes were
derived from reliably assembled sequences, we validated the assem-
blies with Flagger16 and excluded the genotypes supported by col-
lapsed, duplicated or low coverage regions (Supplementary Fig. 1,
Methods). In the best assemblies, 98% of alleles were supported by
valid regions, which is comparable to the HPRC assemblies (Fig. 1E). In
a subset of 43 lower coverage assemblies, the number of alleles sup-
portedby valid regionswas as lowas45%.However, Flaggermaynotbe
suitable to validate lower coverage assemblieswhere the sample size in
each region is too small (Supplementary Fig. 2) because it needs to fit a
mixture model on genome coverage data16. As expected, singleton
alleles that were observed only once were the most likely to be called
from unreliable sequences, with 42,881 of 215,578 singleton alleles
(19.9%) being rejected by Flagger, while very common alleles were the
least likely to be rejected (Supplementary Fig. 3). After excluding
genotypes from invalid regions, we count a total of 178,188 reliable
bubbles, involving 501,967 non-reference nodes and constituting
584,146 alleles. Some of these alleles were found in biallelic loci
(150,942 alleles) but most were found in complex polymorphic loci
(433,204 alleles) where we count up to 560 alleles in the same locus
(Fig. 1F). As expected, the few loci with extremely large numbers of
alleles are unstable simple and short tandem repeats, which naturally
create many alleles but are difficult to align and require additional
analysis (Supplementary Fig. 4). Of the 185,926 singletonSV alleles that
were observed only once, 77.4% occur within 100 bp of a polymorphic
locus with more than 2 alleles. Ancestry mapping based on SNVs
(Supplementary Fig. 5) and pangenome alleles (Supplementary Figs. 6
and 7) showed that the majority of GA4K probands are of European-
ancestry (EUR) and in line with self-reported ethnicity characteristics
of the GA4K cohort17 (Methods).

Repeats and duplications are major contributors to structural
variation
The non-reference nodes in the pangenome graph contributed
approximately 610Mbp of non-reference sequence, of which 184Mbp
was derived from HPRC genomes and 426 Mbp from GA4K genomes.
We wanted to know what contributes to this increase in the size of the
pangenome. RepeatMasker found that 74.2% of the content in non-
referencenodes and that the leading contributorswere simple repeats,
satellites, L1s, and Alus (Fig. 2A). In terms of alleles, the pangenome
contained 57,129 insertions, 50,011 deletions and an additional 418,302
variants with paths that pass through complex bubbles. These com-
plex bubbles represent multiple deletions, insertions, or substitutions
of DNA segments in loci such as STRs or VNTRs where structural var-
iation frommultiple genomes overlaps.Moreover, we discovered 1056
full-length LINE polymorphisms (Methods) and 15,598 full-length SINE
polymorphisms (Fig. 2B and Supplementary Fig. 8), of which 340 LINEs
and 3664 SINEs are unique to GA4K (Supplementary Fig. 9).

Next, we aligned the non-reference nodes to the CHM13v2 refer-
ence and found that 24.5% of all non-reference sequences (8.9% in
HPRC and 15.6% in GA4K-only) were not repeats but mapped to some
region in the genome (Fig. 2C), suggesting duplications or other
rearrangement events. Overall, 98.7% of all non-reference sequences
mapped to repeats or other parts of the genome, leaving 1.3%
(7.5 Mbp) of the pangenome as putatively novel sequences. Novel
sequences from the GA4K proband genomes accounted for 0.8%
(4.7Mbp) of the pangenome. Many of these novel sequences assigned
to the pangenome were short, with only 21% being longer than
100bp (Fig. 2C).

Finally, separate from the non-reference nodes that were included
in the graph, there are also unanchored contigs in both HPRC and
GA4K assemblies (Fig. 2D). We independently confirmed some of the
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unanchored contigs for one offspring via coverage from mapped
srWGS sequencing reads from that sample and its parents, and validate
that contigs inherited fromone parent (where therewas high coverage
from the offspring and only one parent) were unambiguously almost

always inherited only from the appropriate parent, (Supplementary
Table 1), indicating that these unplaced portions of the pangenome
can be additional non-reference, family-inherited DNA sequence. We
also confirm RNA transcription from these short-read WGS-validated
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haplotype-resolved unanchored contigs by the mapping of phased
reads from IsoSeq sequencing of the offspring (Supplementary
Fig. 10), showing that these sequences could potentially contain active
genes not currently captured in the reference genomes. In these
unanchored contigs that are not in the graph, an average of 69 kbp of
sequence per genome did not contain repeats and did not align to
CHM13v2 (Supplementary Fig. 11).

Calling SVs with a pangenome graph improves error rates
We expect pangenome graphs to recover the SV alleles called by other
long-readmethods. We calculated the recall and precision of minigraph
SVs (non-reference alleles in the genome graph) over the 287 probands
against the SVs obtainedwith PBSV (Methods), which uses unassembled
PacBioHiFi reads aligned to theGRCh38 reference genome. This yields a

two-dimensional distribution describing the recall (Supplementary
Fig. 12A) and precision (Supplementary Fig. 12B) for each minigraph SV
in each sample, which we visualize as a heatmap (Fig. 3A). We note that
most SVs achieve very high precision and recall, while a small number
show lower precision or lower recall. Overall genotypes, minigraph
achieves a recall of 0.78 and a precision of 0.80 against PBSV, which is in
line with previous benchmarking of these methods16 in difficult regions
of the genome. A similar sensitivity is also achieved when comparing to
chromosomal microarray (CMA) results where minigraph recalls, on
average, 79.5% (median 100%) of CMA SVs in each sample (Supple-
mentary Fig. 13, Methods). Since no truth set is available, we could not
directly evaluate the true positive rates of minigraph and PBSV. How-
ever, there is an identical twin pair with a shared phenotype in the GA4K
cohort thatwecanuse to explore the rate of SVs that replicate as a proxy
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for the true positive rate. We found that PBSV calls a total of 23,516 SVs,
of which 19,547 (83.12%) are replicated in both twins (Fig. 3B). Mean-
while, minigraph calls 29,964 SVs, of which 25,456 are in both twins
(84.96%). This boost in the number of detected SVs is corroborated by
previous findings showing an increase in sensitivity over reference-
based methods16. These results also indicate that false positive and
negative rates of PBSV andminigraph heavily impact allele sharing since
15.04% (minigraph) and 16.88% (PBSV) of alleles were detected in only
one of the twins. Thus, we consider increased allele sharing between
siblings to be evidence of lower false positive and negative rates. We
then explored allele sharing within the other 58 GA4K families in which
at least two siblings were sequenced. In high-quality pairs where both
siblings were sequenced at a depth above 20× minigraph shows an
average of 7.1% more allele sharing than PBSV (Fig. 3C). As expected,
lower coverage samples show less allele sharingdue to their higher error
rates (Supplementary Fig. 14). If we include pairs sequenced at a lower
depth, siblings share on average 3.3% more alleles with minigraph than
with PBSV (Supplementary Fig. 15). When randomly permuted sibling
pairs, minigraph shows an average of 7.5% more allele sharing (Supple-
mentary Fig. 16). While allele sharing indicates a lower overall error rate,
it is affected by the different SVmerging strategies employed by the two
methods and cannot distinguish between false positive or false negative
errors. Thus, we checkedMendelian violations in the GA4K232 trio in an
attempt to disambiguate these two types of errors (Methods) and found
that minigraph has a lower false positive rate and false negative rate
relative to PBSV (Supplementary Table 2).

Pangenome graphs reveal rare SV alleles in haplotype-resolved
assemblies
On average, we genotyped 18,326 non-reference SVs per haplotype
(Supplementary Fig. 17A), or 28,261 SVs per diploid genome (Supple-
mentary Fig. 17B), a figure that is in line with previous findings6, but
that is also influenced by assembly quality (Supplementary Fig. 18) and

genome diversity. At the same time, PBSV calls 22,428 SVs per
diploid genome (Supplementary Fig. 17C). We wanted to characterize
the population frequency of alleles in this dataset to identify rare
variants in our set of individuals. To achieve this, we split alleles into
three groups: those that are common to both cohorts, those that
are unique to HPRC, and those that are unique to GA4K. As expected,
the majority of alleles were observed in both cohorts, and their fre-
quencydistribution features the full rangeof rare, common, andnearly
fixed alleles (Fig. 4A). More precisely, we observed 185,926 singleton
alleles, 389,983 alleles with a frequency below 10% and 66,034 alleles
with a frequency above 90%. In total, 314,981 alleles were observed in
both datasets, 64,614 were unique to HPRC, and 204,551 were unique
to GA4K. Also, 13,286 alleles that occur at <1% frequency in HPRC are,
in fact, more common in GA4K, while 186,106 alleles that occur in
GA4K at <1% frequency are not observed in HPRC. The most common
allele unique to GA4K occurs in 88 out of 574 haplotypes (Fig. 4A
bottom). Similarly, the most common allele unique to HPRC occurs in
only 23 out of 90 haplotypes. As expected, the allele frequency dis-
tribution of alleles that areunique toGA4K andHPRC is heavily skewed
toward rare variants that occur with a frequency below 10% (Fig. 4B).
To ascertain how many singletons are due to sampling error, we gen-
otyped the 88 haplotype resolved HGSVC assemblies6 against our
genome graph. As a result, we found that the HGSVC assemblies
contain 17.0% of the HPRC singletons but only 4.85% of the GA4K
singletons, indicating that the sampling error is smaller in the GA4K
population.

Next, to begin exploring the properties of rare alleles, we cate-
gorized alleles into insertions, deletions, and complex events that may
not be simple insertions or deletions relative to the reference and
checked their size. We found that the average allele was 8.7 kbp long,
with the expected peak at 300bp (corresponding to Alu-related
events, and that some alleles could reach up to 100 kbp in length
(Fig. 4C). The very long alleles are created by expansions and
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contractions of tandem repeats (Supplementary Fig. 19), inversions, or
when large sequences are replaced by amuch smaller sequence in one
of the genomes. Notably, rare SVs were found to be longer than
common SVs. Then, we assessed if complex, insertion or deletion
GA4K-only SVs follow different frequency distributions (Supplemen-
tary Fig. 20). We found that complex SVs are themost skewed towards
rare alleles, followed by insertions and then deletions.

Rare SV alleles are distributed across the genome and found in
genes of interest
Next, we were interested in SV alleles that may have functional rele-
vance. To this end, we focused on the 204,551 alleles that were unique
to GA4K, of which 132,391 SVs are singletons that were observed only
once in GA4K. We observed that these alleles occur in hotspots of
structural variation near telomeres and centromeres and that they
sometimes overlap with genes and exons (Fig. 5A). We counted GA4K-
only SV alleles in 1Mbpwindows and found 312 such SVhotspots in the
top 10th percentile containing more than 171 SVs (Supplementary
Fig. 21). Overall, we found 73,982 alleles within 7644 genes (9.68
alleles/gene) (Supplementary Fig. 22), of which 18,095 were within
3772 exons in 3112 genes (5.81 alleles/gene) (Fig. 5B). Inparticular, 1,383
alleles overlap 306 OMIM18 exons in 275 OMIM genes (5.03 alleles/
gene) that were previously associated with Mendelian diseases and
phenotypes (Fig. 5C). Next, we checked if singleton alleles are enriched
or depleted between intergenic, genic or exonic regions of the gen-
ome. When binning these alleles by frequency, the majority were sin-
gletons and rare variants. Singleton SVs accounted for 51,733 SVs in
6638 genes (7.79 alleles/gene), 13,083 SVs within 2932 exons in 2530
genes (5.17 alleles/gene), and 978 SVswithinOMIM exons in 242OMIM
genes (4.04 alleles/gene). As expected, the frequency spectrum in
exons and OMIM exons showed the strongest skew towards rare
alleles, followedby intra-genic regions and intergenic regions (Fig. 5D).

In particular, 72.4% of SVs in exons and 70.7% of SVs in OMIM exons
were singletons. In comparison, singleton SVs were slightly less
represented in genic regions (69.2% of SVs were singletons) and much
less represented in intergenic regions (62.7% of SVs were singletons).
Of the GA4K singletons, 94,875 SVs overlap a gnomAD-SV interval19.
Since gnomAD-SVs are not sequence resolved, this indicates thatmost
singletons may either exist at a low frequency or occur in the same SV
hotspots as in the broader population.

Improved rare variant calling by joint graph and reference-
based approaches
We have noted previously that rare HiFi-GS SV variants have higher
parental transmission than rare short-read SV calls20. However, both
pangenome and reference methods still display substantial false
positive rates for rare SVs since every false positive will occur only a
few times and be mistaken for a rare SV. We hypothesized that a
consensus of reference-based and assembly-based methods would
improve theprecisionof rare SVsover reference-basedmethods alone.
First, we confirmed our expectations by benchmarking on the HG001
GIAB truth set (Supplementary Table 3), where the consensus SV set
showed higher precision while being 17.1% smaller thanminigraph and
11.1% smaller than PBSV. Then, to test if the proportion of false posi-
tives relative to true positives was reduced by such an approach in
GA4K, we used an independent set of Illumina srGS Manta21 SV calls
(Methods) as the source of truth and investigated the precision of
replicating common and rare (<5% MAF) SVs against this truth set.
Reference-based SV calls alone are replicated with a precision of 38%
across all frequencies, while reference-based rare SV calls are repli-
catedwith a precision of 11%. However, if we consider the consensus of
reference-based PBSV calls and assembly-basedminigraph calls, SVs of
all frequencies are replicated with a precision of 56% and the rare SV
subset is replicated with a precision of 61% (Supplementary Table 4),
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indicating that combining assembly and reference-based methods
improves the precision of rare SV calls significantly.

Discovery of phenotypically impactful structural variants
Finally, using this strategy, we curated the GA4K-specific minigraph
alleles (not observed in HPRC) that are replicated by PBSV and
potentially disrupt exonic sequences (n = 924). To focus on variants
with potential phenotypic impact, we used the patient structured
phenotype terms (HPO) to score candidate loci for each patient and
limited to the top quartile of scores (phrank > 5)22. Among the rare SVs
impacting the resulting 40 filtered exons, 10 were seen in highly
polymorphic exons, suggesting that they are not evolutionary con-
strainedormapped tonon-OMIMgenes. In the remaining 30exons, we
observed 23 potentially pathogenic disruptions (2 previously reported
pathogenic inClinVar) in geneswhere loss-of-function (LOF) alleles are
reported causes, but for autosomal recessive diseases (Supplementary
Data 2). We checked for additional possible causal SNVs among the
individuals with these 23 potentially deleterious alleles using
DeepVariant23 and did not find any. However, a subset of four alleles
included a previously detected causal structural variant in AARS2
(Supplementary Fig. 23), where the second variant is a likely patho-
genic missense variant ([clinvar_ids: 213963], GRCh38 chr6:44311148
G >A, rs200105202 leading to c.595 C >T in NM_020745.4 and amino
acid substitution p.Arg199Cys). In three other cases, the nature of the
variant and its inheritance from the unaffected parent suggested low
disease relevance. Also, a disease candidate inversion involving the
ACOX1 locus that rearranges several exons was observed. However,
typically dominant ACOX1 mutations are gain-of-function, and there-
fore, follow-up RNA expression studies are required (Supplementary
Fig. 24). A paternally inherited rare deletion in NLRP12 was observed
with partial phenotypic fit, where variants have been reported to have
variable penetrance. Finally, a novel diagnostic finding was uncovered
in the maternal haplotype of one patient: a 14.5 kbp deletion in KMT2E

ranking in the top 5th percentile in phenotype fit score (phrank)22

among all disease genes in this proband and was the highest scoring
exonic rare SV affecting exons 9-13 in KMT2E (Fig. 6A–C). While the
KMT2E variant is not exclusive tominigraph (and is validated by short-
read WGS, Supplementary Fig. 25), it had not previously been prior-
itized for follow-up and clinical validation (see Supplementary Data 1
for testing history). This deletion is predicted to result in a premature
stop and loss of function (NM_182931.3(KMT2E):c.729+113_1359-612del
(p.Ala244*). The patient had a neurodevelopmental phenotype of
hypotonia, macrocephaly, and developmental delay, overlapping the
clinical picture described for KMT2E loss-of-function autosomal
dominant variants. The maternal transmission was verified from
sequence reads (Fig. 6D), the variant was validated by short-read
genome data and was clinically confirmed by long-range PCR. Impor-
tantly, the mother had a history of cognitive delay and learning
disabilities.

Discussion
Pangenome graphs provide a comprehensive framework to study
genetic variation and can explore complex loci that are difficult to
characterize from pairwise comparisons to a reference genome. The
ability of genome graphs to resolve recurrent structural variant
biology24 and repetitive DNA25 was highlighted following the comple-
tion of the draft human pangenome reference16. In the case of rare
genetic diseases, causal variants have a population frequency that is
significantly lower than 1%. Expanding the collections of personal
haploid assemblies in each population and generating deeper pan-
genome graphs will improve the filtering of common and rare SVs and
help the identification of ultra-rare genetic variation in proband
genomes.

Here, we relied on a progressive pangenome construction tech-
nique where each proband genomewas added one at a time, revealing
the SVs that are common and those that are less common. Such a
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progressive method is efficient, but it depends on the order of gen-
omes that are incorporated and might miss events such as
translocations26. An alternative could be a reference-free method such
as the PanGenomeGraphBuilder15, but further developmentswouldbe
needed to implement adding genomes to an existing pangenome.
Furthermore, this pangenome may be extended in the future by add-
ing base-level variation with minigraph-cactus27, which would reveal
any small nested variation thatmay exist within structural variants and
refine SV breakpoints.

Most of the additional pangenome content is composed of
repeats, genomic duplications, and other rearrangements, which are
difficult sequences that sometimes exceed even the length of long
reads. This is especially the case for rarer SVs, which tend to be longer.
These limitations increase the genotyping error rate, which

complicates the filtering and ranking of pathogenic SVs. Ensemble
approaches that combine orthogonal approaches have been shown to
improve variant calling28–30. Our analyses combined graph and
reference-based approaches to improve the accuracy of SV
identification.

The majority of structural variation in the pangenome continues
to follow trends observed in previous assemblies, with the majority
constituting repeat expansions and contractions. Despite this, it
remains one of the largest collections of such rare disease genome
assemblies to date, which we synthesized as a genome graph that
organizes the structural variation in bubbles and allows queries using
other assemblies. We released a useful resource to exclude common
variation and keep SVs that aremuchmore likely to be rare, even if the
SV frequencies in this sample may not generalize to all populations.

Fig. 6 |KMT2Ediagnostic deletion.A Phrank ranking of rare SVswithin exons. The
KMT2E rare deletion ranksfirst among all rare SVs that overlap exons.B Pedigree of
the 14,446 bp deletion and its representation in the genome graph. C UCSC

GenomeBrowser viewof the affected region.DRawalignments of long-reads in the
proband genome, thematernal and the paternal genomes, confirming the deletion,
viewed in the Integrative Genomics Viewer (IGV).
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Moreover, our resource allows users to expand this graph genome
with their own assemblies, enabling rare SV discovery in any assembly.
The pangenome graph and the process to iteratively add new assem-
blies are released and documented at https://doi.org/10.5281/zenodo.
8309976. These resourceswill accelerate the interrogation of very rare
SVs by the rare disease community, increasingly utilizing long-read
sequencing as a rescue tool in unsolved diseases.

We established higher precision of rare SV consensus calls where
reference and minigraph-based variants are concordant, which is
particularly important for SVs outside known disease genes where the
prior probability of pathogenicity is lower. High-quality rare SV catalog
among undiagnosed cases will form the basis for new disease gene
discovery.

We also applied phenotypically guided prioritization for manual
curation involving only coding structural variation in known disease
genes. Therefore, other novel disease genes and potentially non-
coding variations can remain in our dataset and may be important for
unsolved cases.

Moreover, our efforts to annotate the structural variation in these
assemblies require an overlap with the existing functional annotation
of the reference genomes. Better annotation of newly discovered
regions would likely help identify more DNA with clinical significance
and further increase diagnostic yield.

Finally, the SV alleles represented in the pangenomegraph do not
include sequences that could not be anchored to the pangenome. The
estimated 69 kbp of unique sequences in contigs outside the pan-
genomewere corroborated by family inheritancepatterns and showed
evidence of transcription. Placement of these contigs might require
greater read lengths and sequencing depths, but further experiments
would be needed to understand their potential function.

Methods
Ethical approval
The Institutional Review Board (IRB) of Children’s Mercy Kansas City
gave ethical approval for this work (Study#11120514).

Age and sex reporting
Age and sex are reported for all study participants (Supplementary
Data 3). Sex is assigned from self-reporting at enrollment and con-
firmed with genomic analysis. We focus all analysis on autosomes.
Thus, the findings are applicable to both sexes, and no sex-specific
analysis was performed.

Trio assemblies with parental HiFi reads
To produce trio-binned assemblies, k-mer hash tables, including
unique k-mers, were created for each parent fromHiFi reads using yak
count v0.15. Proband HiFi reads were then assembled into two haplo-
types with hifiasm v0.155 using the trio-binning method. The hifiasm
k-mer frequency settings were adjusted to have a lower and upper
bound of 1 to improve binning at lower parental coverage.

Trio assemblies with parental short-reads
K-mer hash tables excluding unique k-mers were created for each
parent from Illumina reads using yak count v0.1. Proband HiFi reads
were then assembled into two haplotypes with hifiasm v0.15 using the
trio binning method.

Validation of diploid assemblies
We validated the diploid genome assembly using the
Secphase–Flagger pipeline16. The HiFi reads were realigned to the
combined diploid genome of each sample with minimap231.
The alignments were phased, corrected, and filtered using Secphase.
For correcting alignments, we called biallelic SNVs with DeepVariant
on the phased alignments. Then, we calculated the coverage across the

diploid assembly with samtools depth. Finally, we clustered the
regions of the diploid assembly into haploid, error, collapsed, and
duplicated categories using Flagger. Specifically, we fitted the clus-
tering model over 5Mbp windows of the diploid assembly to account
for local biases in sequencing depth.

Ancestry mapping
We use somalier32 to predict ancestry from the genotypes using prin-
cipal components analysis based on 17,766 informative sites and 2504
reference samples from the 1000 Genomes Project.

Creating genome graphs
We used minigraph-0.20 (r559)13 with base-level alignments to build
the genome graph with the command “minigraph -cxggs -t16
chm13v2.fa hg38.fa sample1.fa sample2.fa … sample668.fa >
graph.gfa”. We startedwith theCHM13v24 reference as a backbone and
progressively augmented the graphwith the hg38 reference, theHRPC
genomes, and finally, the 574 GA4K haploid genomes. The order of the
genomes to be added to the graph was determined lexicographically
by sample name. To create a genome graph file suitable for publica-
tion, all stable sequence identifiers of each node were replaced with
the sha256 hash of the GA4K assembly name concatenated to a ran-
dom salt that is unique to each node. This yields a unique identifier for
each stable sequence of each node from which the original assembly
name cannot be reconstructed. This prevents linking nodes that were
derived from the same assembly.

Surveying additional sequences in the graph
We selected non-reference nodes that are above 100bp in length from
the genomegraph.We ranRepeatMaskerwith theDfam_2.033 database
on the nodes to identify repeats. These nodes were also aligned to
CHM13v2 with minimap -x sr to count how much sequence is not
observed in the reference genome. Then we removed node intervals
covered by RepeatMasker or CHM13v2 alignments with Genomi-
cRanges::subtract to findunique sequences. Unique sequences shorter
than 10 bp were ignored. We also spelled the path sequences and
RepeatMasked full-length alleles.

Calling genotypes
We called genotypes by realigning the assemblies back to the graph
with minigraph -cxasm --call. The resulting genotypes were corrected
by keeping calls derived from regions labeled as haploid. Calls derived
fromerror, collapsedor duplicated regionsweremarked as invalid.We
repeated the same with HPRC and HGSVC genomes. We merged the
genotypes over the entire cohort by enumerating each observed tra-
versal of a bubble as an allele in each sample. Then,we created amatrix
where alleles are rows and columns are samples and where the pre-
sence of an allele is marked with 1 and its absence with 0.

Annotating alleles
We categorize alleles according to the structure of the bubble in which
they are found. Somealleles are simple paths that are clearly insertions
or deletions, while some are complex paths thatmay be a combination
of insertions, deletions, and alternate haplotypes relative to the
reference. We ran RepeatMasker over the sequence of each allele. Full-
length SINE and LINE were defined as alleles that are more than 80%
covered by the repeat annotation and are 250–400bp and
5000–10,000 bp in length, respectively. Each allele was overlapped
with genes and exons using the lifted EBI GENCODEv38 r234 annotation
that was published with the CHM13v2 genome4. Similarly, alleles were
overlapped with OMIM exons using an annotation that was lifted over
to CHM13v2. To overlap minigraph GA4K singleton SVs with gnomAD-
SV, we lifted the gnomAD-SV annotation from hg19 to CHM13v2 and
excluded BND calls.
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Population structure from SV genotypes
To compute the population structure of our datasets and the HPRC
samples, we selected alleles that are called from a common set of
regions that were assembled and passed quality checking in all sam-
ples. We augmented the HPRC genomes with 100 GA4K genomes of
known EUR ancestry from previous ancestry mapping with somalier32

in order to create a training set. Then, we used the R prcomp function
followed byUMAP35,36 on the first 45 PCs36 on this training set to learn a
projection, which we then applied to all HPRC and GA4K genomes.

Comparison of SV genotypes from minigraph with SV calls by
PBSV on GRCh38 and chromosome microarray
In order to evaluate the accuracy of our method, we compared mini-
graph calls to long-read PBSV PacBio calls. For this comparison, we
restricted the minigraph calls to those with only two alleles and clas-
sified the less common variant as the ALT allele. We further omitted
minigraph calls that are less than 100bp away from regions missing in
GRCh38. For this comparison, we considered both (1) the set of all
minigraph calls remaining after filtering and (2) only minigraph calls
whose ALT allele corresponds to a star (*) deletion. To compare the
resulting call sets to PBSV, we then found all (>50bp) PBSV calls within
100bp of a minigraph call. We then quantified the correspondence
between minigraph and PBSV by treating PBSV calls as the ground
truth and calculating recall and precision accordingly:

R=
minigraph calls with PBSV call

totalPBSV calls
ð1Þ

P =
minigraph calls with PBSV call

totalminigraph calls
ð2Þ

When reporting the average values R and P, we restricted to regions
with at least one minigraph call and one PBSV call in at least one
sample.

To compare against chromosomemicroarray (CMA), we lifted the
hg38 CMA results to CHM13v2, filtered for assemblies with aminimum
of 20× coverage, and reported the number of CMA intervals that
overlap a minigraph non-reference SV allele.

When analyzing the shared genotyped SVs in pairs of siblings, we
used SURVIVOR9 to merge the non-reference PBSV calls of the siblings
that are a minimum of 50bp in size and at most 10% of the SV length
apart. Similarly, we merged the non-reference minigraph alleles
delimited by the same source and sink nodes of the SV bubble. Since
the PBSV genotypes are not phased, we only considered the presence
and absence of SV calls. The expected allele sharing is not necessarily
50% due to population structure among parents. To plot the allele
sharing density, we adjusted the bandwidth parameter in the density
kernel to smooth out the lowermodes that are related to differences in
sequencing coverage and to emphasize the highest modes that are
related to PBSV and minigraph performance. We then repeated the
analysis by randomly permuting sibling pairs 10 times and reporting
the resulting distribution and its average.

We checked Mendelian violations on the GA4K232 trio, where
parents and proband featuredHiFi assemblies and PBSV calls.We used
SURVIVOR as before to merge the PBSV trio genotypes. We defined
Mendelian violations as genotypes that are impossible given the pro-
band and parental genotypes. When an allele is homozygous in both
parents, the proband must also be homozygous. If only one of the
parents is homozygous, the proband must be at least heterozygous.
Otherwise, we consider these events to be false negatives. Genotypes,
where the proband has more copies of an allele than the parental
genotypes allow, is a false positive events.

Sensitivity of minigraph and PBSV consensus
To combineminigraph and PacBio PBSV calls into a single high-quality
dataset and quantify the sensitivity of this set, we separated PacBio
calls into those that match minigraph calls (the “concordant” set) and
those that donotmatchminigraph calls (the “discordant” set) and then
compared the rates at which the Illumina Manta calls21 recall the con-
cordant and discordant set. We used this to measure how the pro-
portion of false positives changes relative to the proportion of true
positives in the concordant and discordant sets. For this analysis, we
focused on a set of 68 samples that have high-coverage PacBio
sequencing data, high-coverage Illumina sequencing data, and mini-
graph calls. The reported numbers are averaged over these 68 sam-
ples. To create the concordant/discordant datasets, wefirstfiltered the
minigraph calls to regions consisting of exactly two alleles. We next
created two sets of the minigraph/PBSV/Illumina calls—(1) sets con-
taining all calls that pass quality filters and (2) sets containing only rare
calls at <5% MAF. Then, for all and rare datasets separately, we found
the PBSV calls that do/don’t overlap a minigraph call to define the
concordant/discordant datasets and then determined the fraction of
these datasets whose calls overlap an Illumina Manta call.

Unanchored assembly contigs
For all assemblies, we extracted contigs that do not align to the pan-
genome end to end. We aligned the sequences with minimap2 to
CHM13v2.0 to find subsequences that align with the human genome.
Then, we ran RepeatMasker to identify repeats in these contigs. We
reported the number of unique sequences in each assembly as the
number of base pairs that do not align to the pangenome, do not align
to CHM13v2.0, and are not covered by RepeatMasker annotations.

For two trios where corresponding srWGS data was available, we
used the assembled contigs for each of the two-phased haplotypes in
the child as a personal reference genome and used DRAGEN to align
the srWGS from each of the parents and from the child itself to the
child’s personal reference genomes. Examining the coverage in the
assembled contigs that were completely unanchored by theminigraph
at 500bp bin resolution using most depth, we classified the bins as
either being covered (>8× for the child or father of GA4K86-01, >3× for
other parents), otherwise classified asuncovered.While themajority of
bins in the unanchored regions are covered by all three members of
the trio, there is a distinctive subset of over 1Mb of sequence that is
covered in the child and the expected parent for the phased haplotype
for the personal reference, indicating there is still unique, inherited
genomic sequence yet to be explored (Supplementary Table 1).

For one of these trios, in addition to the srWGS data, we also have
Iso-Seq RNA expression for three different cell types (blood, iPSC,
neuronally-differentiated iPSC), which we aligned to the paternal and
maternal personal genomes of the proband. Barcoded primers were
removed with PacBio’s demultiplexing tool lima, followed by isoseq
refine to assemble full-length non-chimeric transcripts (FLNC).
Assembled FLNC transcripts were aligned to the hifiasmhap1 and hap2
assemblies of the proband using gapped minimap2. Mosdepth37 was
used to determine binned (500 bp tiles) coverage across the contigs
for each of the assemblies.

The majority of the Iso-Seq expression was seen in the bins that
are covered by both parents (as that is the largest proportion of the
bins); however, among the bins that were uniquely covered by only
one of the parents, we see Iso-Seq signal aligned to the paternally
inherited genome only showed expression in bins covered by the
father, and likewise Iso-Seq signal aligned to the maternally inherited
genome only showed expression in bins covered by the mother
(Supplementary Fig. 6).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The 5-base HiFi-GS, HiFi long-read transcript sequencing (IsoSeq), and
WGBS raw and processed data, including assemblies and genotypes
generated in this study, have been deposited in the dbGAP (https://
www.ncbi.nlm.nih.gov/gap/) database under accession code
phs002206.v4.p1. Raw and processed data are available under
restricted access due to IRB regulations and informed consent limiting
access to users studying genetic diseases. Data access is provided by
dbGAP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for
certified investigators with local IRB approval in place. The CHM13v2.0
reference genome is available for download at https://s3-us-west-2.
amazonaws.com/human-pangenomics/T2T/CHM13/assemblies/
analysis_set/chm13v2.0.fa.gz, and the GRCh38 reference genome is
available for download at https://hgdownload.soe.ucsc.edu/
goldenPath/hg38/chromosomes/. The GA4K genome graph, allele
definitions, and their frequencies, together with related data on
assembly size, read depth, and validation with Flagger and Repeat-
Masker results, are available for download at https://doi.org/10.5281/
zenodo.8309976.

Code availability
Custom scripts can be downloaded at https://doi.org/10.5281/zenodo.
8309976. These scripts were used to build the genome graph, geno-
type the assemblies, validate and merge the genotype information
across samples, calculate SV lengths, and repeat mask SVs.
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