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Early excitatory-inhibitory cortical
modifications following skill learning
are associated with motor memory
consolidation and plasticity overnight

Tamir Eisenstein 1 , Edna Furman-Haran2 & Assaf Tal 1

Consolidationofmotormemories is vital to offline enhancement of newmotor
skills and involves short and longer-term offline processes following learning.
While emerging evidence link glutamate and GABA dynamics in the primary
motor cortex (M1) to online motor skill practice, its relationship with offline
consolidation processes in humans is unclear. Using two-day repeated mea-
sures of behavioral and multimodal neuroimaging data before and following
motor sequence learning, we show that short-term glutamatergic and
GABAergic responses in M1 within minutes after learning were associated with
longer-term learning-induced functional, structural, and behavioral modifica-
tions overnight. Furthermore, Glutamatergic and GABAergic modifications
were differentially associated with different facets of motor memory con-
solidation. Our results point to unique and distinct roles of Glutamate and
GABA in motor memory consolidation processes in the human brain
across timescales and mechanistic levels, tying short-term changes on the
neurochemical level to overnight changes in macroscale structure, function,
and behavior.

Learning of a new motor skill does not end when the practice is over.
Followingpractice, offline neural consolidationprocesses takeplace to
establish the fidelity of the newly encoded motor memory trace1.
Previous studies have suggested that the consolidation of new motor
memories involves a mixture of offline processes taking place at dif-
ferent timescales during wakefulness and sleep1,2. For example, while
the stabilization of a newly learned skill is usually achieved over the
first few hours following practice2–4, offline enhancement of skill per-
formance (i.e., offline learning gains) following explicit/intentional skill
learning usually develops across sleep1,2. Both short and longer-term
learning-induced functional and structural changes have been
demonstrated following motor learning5–7.

One brain region that has been critically implicated in the con-
solidation of new motor skill memories is the primary motor cortex

(M1)8, and motor skill consolidation has been shown to involve the
formation of a stable neural representation of the acquired skill in M1,
termed amotormemory “engram”9. Motor learning and consolidation
have also been associated with learning-induced plasticity in M1 on
multiple levels9–11, ranging from microscale remodeling of dendritic
spines tomacroscopic changes in graymatter (GM) volume in humans.
Furthermore, changes in the functional communication between M1
andmotor learning-related brain regions have also beendemonstrated
following the acquisition of new skills5,6. In addition, offline motor
memory reactivation, a putative mechanism of memory
consolidation12, has been demonstrated in M1 in animals following
learning13. Nonetheless, while the motor cortex has been suggested to
play an important role in the early phases of motor memory
consolidation4,14, the mechanisms that support this role, and how they
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relate to longer term learning-induced changes in this region are
not clear.

Neural excitation and inhibition (E–I) have been proposed to play
an important role in the physiological regulation of cognition and
behavior, at both the single neuron level and large-scale circuits15. E–I
are mediated by the brain’s main excitatory and inhibitory neuro-
transmitters glutamate (Glu) and γ-aminobutyric acid (GABA),
respectively. While the physiological balance between excitation and
inhibition in the brain is homeostatically regulated, dynamic responses
of Glu and GABA induced by external inputs and internal processes
have been suggested to be vital to plasticity processes and adaptive
behavior following learning16. For example, previous works in animals
have shown that transient E–I alternations such as GABAergic disin-
hibition support M1 plasticity17. Furthermore, modulation of gluta-
matergic and GABAergic processing, both in vitro and following
learning, has been implicated in the induction of long-term potentia-
tion (LTP), a key mechanism of learning and memory, and the pro-
motion of synaptic strengthening17,18. Magnetic resonance
spectroscopy (MRS) is currently the only method capable of non-
invasively assess excitation and inhibition in the human brain, by

quantifying the concentrations of Glu and GABA. Using MRS, recent
studies have provided insights to the role of E–I dynamics in motor
learning in humans6,19. Yet, at present, most of these studies aiming to
understand the neurochemical underpinnings of learning andmemory
in the humanbrain have focused on the online phaseof learningwhere
the new information is being practiced and encoded. Therefore, we
current lack significant understanding of the offline neurochemical
responses taking place following learning—especially during the see-
mingly critical period of early consolidation2,4—and how they relate to
longer-term learning-induced neurobehavioral changes.

Here, we aimed to take advantage of the increased spatial, tem-
poral, and spectral resolution of ultra-high field 7T MRI and MRS to
investigate the hypothesis that earlymodifications in GABA and/or Glu
concentrations following skill learning play an important role in the
consolidation of a newmotor skillmemory as reflected by longer-term
overnight improvement in skill performance1,2 (Fig. 1a, b). Further-
more, by additionally acquiring multimodal structural and BOLD fMRI
data, we examined how changes in Glu and GABA concentrations are
associated with neural processes thought to support motor skill con-
solidation such as local and remote functional processing of M1

Fig. 1 | Experimental procedure. a Schematic illustration of the experimental
sessions including neuroimaging experiments and motor learning task/resting
control condition. b MRS voxel localization during the two scanning sessions
across participants and groups—MNI-transformed voxels are presented. Note the

consistency in voxel placement across participants, the two experimental sessions,
and between the groups. Anat anatomy, MSL motor sequence learning, rs
resting-state.
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following learning. The consolidation of newmotor skill memories has
been shown to depend on cortico-striatal brain circuits8. The motor
cortex serves as a major source of input to the sensorimotor
striatum20. Cortico-striatal coupling and plasticity over training ses-
sions are essential for the refinement of skilled behavior8,9,21, and
increased coupling between the motor cortex and the striatum fol-
lowing motor skill learning has been shown to occur offline22. More-
over, motor cortical-striatal interactions have been suggested to be
especially important for the consolidation of the egocentric/move-
ment representation component during motor sequence learning23.
Previous studies have suggested that striatal structures are differen-
tially engaged at different levels of the learning process, namely that
the associative striatum is more involved during the initial stages of
skill learning and acquisition, while the sensorimotor striatum which
receives inputs from the motor cortex24 and generally corresponds in
primates to the putamen25, is linked with consolidation and gradual
acquisition of behavior25,26. Therefore, we examined the relationship
between the modifications of Glu and GABA concentrations in
M1 shortly after learning, and the inter-regional communication of M1
with the putamen as quantified with resting state fMRI. In addition, we
used amultivoxel local correlation pattern (MVLC) analysis, previously
used to evaluate memory reactivation in the human brain27, to deter-
mine whether transient changes in Glu and GABA following learning
may relate to local M1 functioning following learning as reflected by
this correlate of motor memory reactivation. Lastly, since learning-
induced plasticity in M1 has been demonstrated to accompany new
skill learning, we investigated whether early changes in Glu and GABA
concentrations following learning may be related to longer-term
structural and functional plasticity in this region, as expressed by
overnight changes in M1 GM volume and the functional connectivity
with the putamen.

Results
Nogroup-level changes in glutamateorGABA following learning
We first measured the temporal dynamics of Glu and GABA levels
during the first 30min following learning or the resting control con-
dition by performing linear mixed-model repeated measures analysis
(Fig. 2a). We found a significant main effect of Time for Glu
(F(5,52.6) = 3.96, p = 0.004), with no main effect for Group
(F(1,54.9) = 0.88, p =0.353). Post-hoc analysis revealed a significant
increase during the first post measurement compared to baseline
levels (pFDR =0.005), but not in any other time point compared to
baseline (pFDR >0.288). We did however find a significant Time×
Group interaction in Glu dynamics between the groups
(F(5,52.6) = 4.17, p =0.003), with an unexpected significant Glu
increase during the first post measurement in the Control group
(pFDR =0.014), while the Learning group demonstrated a post-
learning mean increase which was not statistically significant (pFDR =
0.454). However, between-group post-hoc comparisons showed that
the groups were not statistically different in their Glu levels at baseline
(pFDR =0.737), at the first post measurement (pFDR =0.737) or at any
other time point (pFDR >0.439). It should also be noted that an
increase in Glu after 30min was observed in the Learning group but
did not survive the correction for multiple comparisons
(puncorrected = 0.028, pFDR >0.05). We did not find a main effect of
Time (F(5,53.9) = 0.25, p = 0.936), Group (F(1,54.7) = 0.09, p = 0.768),
or Time×Group interaction (F(5,53.9) = 0.83, p =0.531) in GABA levels
dynamics. In addition, changes were also not observed following
learning in other major or Glu-like minor metabolites, i.e., NAA
(p = 0.119) andGln (p = 0.602), respectively (see Supplementary Fig. 2).

Next, we measured the temporal dynamics of the correlation
between Glu and GABA levels following learning compared to pre-
learning levels, as a reflection of the balance between excitation and
inhibition across participants prior-to and following learning/resting
control condition. While a weak, non-significant correlation between

Glu and GABA levels at baseline was demonstrated in the Learning
group (r = 0.182, pFDR =0.289), the relationship between the two
metabolites significantly increased (Z = 2.26, p =0.024) during the
post-learning period (r =0.582, pFDR =0.011) (Fig. 2b). There was no
significant change in the correlation between Glu and GABA between
baseline and the average post measurements in the Control group
(Z = 1.34, p =0.181).

We then examined whether the extent of metabolite concentra-
tion change after learning/resting condition was related to pre-
learning baseline levels. We found a significant inverse relationship
between pre and average post Glu levels in the learning group
(r = −0.465, pFDR =0.008), but not in the Control group (r = −0.185,
pFDR =0.449). However, these correlation coefficients were not sta-
tistically different (Z = 1.03, p =0.304). Furthermore, we found sig-
nificant negative correlations between baseline GABA levels and the
change in GABA during the post period in both the Learning
(r = −0.677, pFDR =0.004) and Control (r = −0.661, pFDR =0.006)
groups, which was not statistically different between the groups
(Z = −0.03, p =0.973) (Fig. 2c).

Lastly, we found no evidence in the Learning group for a rela-
tionship between the immediate or averaged changes in either Glu or
GABA following learning and the extent of neuro-behavioral activation
as reflectedby the overall number of key presses performedduring the
MSL task (immediate Glu change: r =0.002, pFDR =0.990; immediate
GABA change: r =0.091, pFDR =0.805; averaged Glu change:
r = −0.015, pFDR =0.990; averaged GABA change: r =0.136, pFDR =
0.805) or to the M1 engram cluster’s activation level during the MSL
task (as reflected by the β-value of the practice blocks’ regressor in the
fMRI GLM analysis) (immediate Glu change: r = −0.119, pFDR =0.805;
immediate GABA change: r =0.180, pFDR =0.805; averaged Glu
change: r = −0.114, pFDR =0.805; averaged GABA change: r =0.115,
pFDR =0.805).

Increased Glu is associated with behavioral improvement
overnight
Significant offline learning gains were observed at the group-level,
expressed as overnight improvements in skill performance between
the last practice block on day 1 and the testing block on day 2
(F(1,35) = 41.12, p <0.001), which corresponded to 10.46 ± 1.8%
(mean± SE) increase in performance (Fig. 3a). Moreover, while most
participants demonstrated offline learning gains overnight (n = 27),
some participants did demonstrate declined (n = 3) or levelled (n = 6)
performance between the two sessions. Next, we examined whether
post-learning changes in Glu or GABA could have explained the extent
of overnight behavioral learning gains and changes in skill perfor-
mance.We found that post-learning increases inGluwere predictive of
overnight performance improvements when measured immediately
following learning (r = 0.361, pFDR =0.048), after 30min (r =0.352,
pFDR =0.048) and when averaged across the 30min (r = 0.472,
pFDR =0.018) (Fig. 3b). In contrast, changes in GABA levels after
learning were not related to overnight offline learning gains
(immediate: r = 0.171, pFDR=0.513; after 30min: r = 0.095, pFDR =
0.605; 30-min average: r =0.247, pFDR =0.513) (Fig. 3c).

Glu or GABA changes are not related to post-learning functional
connectivity changes
Next, we examined whether post-learning changes in either Glu or
GABA could explain short-term changes in the functional connectivity
between M1 and the putamen, a key region in motor skill
consolidation8. In this analysis we have focused only on the immediate
changes in Glu andGABA inM1 following learning, which preceded the
resting-state scan, in order to follow the rationale of a temporal rela-
tionship. Immediate changes in either Glu or GABA following learning
did not correlate with changes in M1 connectivity with either the right
putamen (Glu: r =0.002, pFDR =0.992; GABA: r = −0.197, pFDR =
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Fig. 2 | Neurochemical temporal dynamics following motor skill learning and
resting control condition. a Glutamate and GABA dynamics following learning as
reflected by changes in concentrations during consolidation and overnight and
evaluated with repeated-measures linear mixed models (n = 57 participants,
means ± SEM are presented, * indicates significant Time ×Group interaction
F(5,52.6) = 4.17, p =0.003). b Temporal dynamics of the “balance” between excita-
tion and inhibition in M1 across participants (assessed with Pearson’s correlation,

two-sided test) following learning or rest (shaded area around fit line represents
95% confidence intervals). c Relationship between baseline metabolite concentra-
tions and the extent of concentration change following learning or rest as mea-
sured with two-sided Pearson’s correlation (shaded area around fit line represents
95% confidence intervals). P-values are corrected for multiple comparisons using
FDR. Pink represents the Learning Group and Cyan the Control Group in the plots.
Source data are provided as a Source Data file.
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Fig. 3 | Neurochemical dynamics following learning and behavioral perfor-
mance. a Behavioral changes in skill performance during the learning task on the
first day (left panel) and overnight (left panel, red dots and vertical lines in the right
panel represent mean performance± SEM on that day, and the blue color coding is
used to discern between participants’ individual data). Repeated measures linear
mixed model analysis revealed significant overnight improvement in performance

at the group-level (n = 36 participants of the Learning Group, F1,35 = 41.12, p = 2.219e
−07); Immediate, post 30min, and average changes of Glu (b), but not GABA (c),
following learning are predictive of offline learning gains overnight (two-sided
partial Pearson’s correlations, FDR-corrected). Shaded area around fit line in panels
b, c represents 95% confidence intervals. Source data are provided as a Source
Data file.
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0.530) or left putamen (r = −0.031, pFDR =0.992; GABA: r = −0.291,
pFDR =0.380). Also, a group-level analysis did not reveal significant
differences in functional connectivity of M1 following learning with
either the right (right putamen: F(2,35) = 1.51, p =0.141) or left
(F(2,35) = 1.39, p =0.247) putamen.

Increased Glu is associated with overnight M1 functional
plasticity
While we did not observe a relationship between post-learning chan-
ges in Glu or GABA in M1 and changes in the functional connectivity
betweenM1 and the putamen shorty following the learning task, when
we examined the relationship between post-learning neurochemical
changes and overnight changes in the M1-putamen communication,
we found increased connectivity betweenM1 and the right putamen to
associate with immediate (r =0.368, pFDR =0.048) and averaged
(r =0.373, pFDR =0.048) increases in Glu following learning (Fig. 4b).
Such a relationship was not evident when Glu changes 30min follow-
ing learningwere examined (r = 0.196, pFDR =0.275).We did not find a
relationship between immediate (r = −0.270, pFDR =0.752) or aver-
aged (r = −0.085, p =0.752) Glu changes and overnight connectivity
changes betweenM1 and the right putamen among the Control group.
Between-group correlations comparison revealed that the correlation
between immediate Glu changes and overnight connectivity changes
with the right putamen was significantly higher in the Learning group
compared to the Control group (Z = 2.11, p =0.035). Furthermore,
there was no relationship between immediate (r = −0.255, pFDR =
0.438) or averaged (r = −0.084, pFDR =0.642) Glu changes and over-
night changes in M1-PCC connectivity. Moreover, within-group corre-
lations comparisons in the Learning group revealed that the
correlation between immediate (Z = 3.42, p <0.001) and averaged
(Z = 2.31, p =0.021) Glu changes and overnight connectivity changes
with the right putamen were significantly higher compared to the
correlations with overnight changes in M1-PCC connectivity.

We did not find significant correlations between changes in con-
nectivitywith the right putamen andGABA changes following learning,
when measured immediately (r = −0.141, pFDR =0.426), 30min fol-
lowing learning (r = 0.248, pFDR =0.246), or when averaged GABA
changeswere examined (r = 0.300, pFDR =0.246).We also did notfind
a relationship between Glu or GABA changes immediately following
learning (Glu: r = 0.130, pFDR=0.473; GABA: r = −0.074, pFDR =
0.677), after 30min (Glu: r = 0.129, pFDR =0.473; GABA: r = 0.310,
pFDR =0.176), or averaged (Glu: r =0.197, pFDR =0.473; GABA:
r =0.278, pFDR =0.176) andovernight changes in the connectivitywith
the left putamen.

While we did not observe significant overnight connectivity chan-
ges at the group-level following learning (right putamen: F(2,35) = 0.73,
p =0.470; left putamen: F(2,35) = 0.35, p =0.727), overnight increases in
the connectivity of M1 with the right putamen at the subject-level were
associated with overnight offline learning gains and greater improve-
ments in skill performance (r =0.308, puncorrected = 0.031), but did not
survive correction for multiple tests (pFDR=0.144).

Decreased GABA is associated with overnight increase in M1
GM volume
We then examined the relationship between post-learning neuro-
chemical modifications and overnight changes in M1 GM volume as a
marker for learning-induced structural plasticity. A statistically sig-
nificant correlation was found between GABAergic decreases after
30min and M1 volume increase overnight (r = −0.481, pFDR=0.015)
(Fig. 5), but not with immediate (r =0.012, pFDR =0.949) or averaged
changes in GABA (r = −0.346, pFDR =0.080). Post-learning changes in
Glu, either immediately (r = −0.182, pFDR =0.312), following 30min
(r = −0.266, pFDR =0.312) or averaged (r = −0.226, pFDR =0.312) were
not significantly associated with overnight changes in M1 GM volume.
The correlation between GABAergic changes after 30min and M1

volume changes among the Control group was not significant
(r =0.163, pFDR =0.562) but significantly different from the correla-
tion observed in the Learning group (Z = 2.01, p = 0.049). Furthermore,
we did not find a relationship between GABA changes after 30min and
overnight volume changes in the PCC among the Learning group
(r = −0.106, pFDR =0.557), a correlation that was also significantly
different from the one observed between GABA changes and M1 GM
volume changes overnight (Z = 3.15, p =0.002).

Since the tissue-correction of neurochemical changes and the
structural measures were based on the same T1-weighted images, we
also examined the correlation between overnight structural changes
and the GABA changes following 30min (the only significant result
observed) without tissue correction and also using a Cr-referenced
measure. Both analyses yielded significant correlations, similar to the
analysis performed with the tissue-corrected values (see Supplemen-
tary Fig. 3).

While we did find a link between overnight changes in M1 GM
volume and post-learning neurochemical modifications at the subject-
level, therewas no group-level change inM1GMvolumeacross the two
days following learning (F(1,35) = 1.59, p = 0.215)), and the extent of
overnight M1 structural changes was not related to overnight changes
in task performance (r = −0.115, pFDR =0.345).

Increased Glu is associated with greater MVLC similarity after
learning
Lastly, after establishing a connection between neurochemical and
overnight neurobehavioral changes, we examined whether changes in
Glu and GABA following learning were associated with a putative off-
line consolidation-related function, i.e., motormemory reactivation in
M1 (Fig. 6a). Group-level repeated measures mixed model analysis did
not reveal a significant difference between the similarity of the post-
learning restingMVLCpatternswith the taskMVLCpatterns compared
to the pre-learning rest patterns (F(1,35) = 0.03, p =0.876). Thus, at the
group level we did not find evidence for offline motor memory reac-
tivation based on the MVLC patterns. We next examined whether
MVLC pattern similarity difference could be related to the post-
learning changes in Glu and GABA on a subject-by-subject basis. In this
investigation we have focused on the first (immediate) post-learning
MRS measurement which directly preceded the post-learning resting-
state scan in order to follow a theoretical basis for temporal relation-
ship between the two phenomena. We found that greater increases in
Glu immediately following learning were associated with higher
similarity of post-learning resting patterns with the task compared to
pre-learning patterns was (r =0.369, p =0.035) (Fig. 6b). Greater
reductions in GABA immediately after learning were not significantly
related to higher similarity of the post-learning resting patterns with
the task (r = −0.315 p =0.074). While memory reactivation has been
proposed as a strong mechanism of memory consolidation12,28, we did
not observe a significant relationship between MVLC similarity differ-
ence and overnight changes in skill performance (r =0.201,
pFDR =0.256).

Discussion
Lack of group-level changes in Glu or GABA following learning
The aim of the current study was to explore the dynamics of Glu and
GABA in M1 during the early stages of motor memory consolidation,
and how these relate to neuro-behavioral plasticity following MSL. We
examined how early changes inGlu andGABA following learning relate
to overnight changes in skill performance, inter-regional functional
processing of M1, and to structural changes in this region (see Sup-
plementary Fig. 4 for a summary of the significant associations
observed between Glu or GABA changes and neuro-behavioral corre-
lates of motor memory consolidation). These questions follow pre-
vious findings suggesting that the initial hours after skill learning are
vital for the consolidation of motor skills2. Interestingly, however, at
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Fig. 4 | Glu changes and M1 functional connectivity with the putamen.
a Bilateral putamen and PCC ROIs definition. b The relationship between
immediate and averaged changes in Glu following learning/rest and overnight
changes in the functional communication between M1 and right putamen, and
between M1 and the PCC following learning measures with two-sided partial

Pearson’s correlation, FDR-corrected (shaded area around fit line represents 95%
confidence intervals). Pink represents the Learning Group and Cyan the Control
Group. FC functional connectivity, L left, R right. Source data are provided as a
Source Data file.
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the group-level, we did not find significant changes in Glu or GABA,
either immediately or during the first 30min following the task. This is
partially in contrast to a recent study by Maruyama and colleagues5

which found decreased Glu immediately after learning. However, the
reduction in Glu observed in their study was similar in both the
learning group and a non-learning control group, suggesting that it did
not represent a specific learning-induced physiological response.
GABAergic inhibitory neurons display wide variety of morphology and
physiological properties, and different GABAergic neurons subtypes
target different anatomical domains of excitatory neurons, enabling
them to regulate different aspects of the spatiotemporal activity of the
glutamatergic cells29. Therefore, GABAergic modulation following
learning may be subtype-specific and function-specific, as was evi-
dence by both increased and decreased inhibitory axonal boutons
among different GABAergic cells subtypes following the same motor
learning30. This opposite modulatory pattern may in turn underlie a
lack of absolute mean change in GABAergic concentration across the
motor cortex, and may explain why a group-level change in whole M1
GABA was not observed with MRS following motor learning in the
current and other studies5. In contrast, the subject-based correlation
we did find in the current study between GABA dynamics and other
neural metrics may reflect the dynamics within the GABAergic pool
itself across different individuals. Furthermore, the observation that
the same stimulus (i.e., MSL task) resulted in opposite metabolic
responses across different participants, follows previous reports on
such an opposite response across different individuals (even if a sig-
nificant group-level effect was observed) following other types of
learning (i.e., perceptual)31,32 as well as in response to non-invasive
brain stimulation in M133,34. Those observations, taken together with
the findings of the current study, may suggest that the direction of the
neurochemical cortical response to external or internal stimuli across
different individuals, may represent an individual trait, which may
underlie or contribute to the inter-individual differences in learning
capacity and potential. However, this possibility needs further direct
empirical examination.

While we did not observe group-level changes in Glu and GABA
following learning, we did observe a significant increase in the cou-
pling (i.e., correlation) between the metabolites’ concentrations dur-
ing the post-learning period compared to pre-learning but not
following the resting control condition. This increased “coherence”
between Glu andGABA levels following learningmay represent amore
fine-tuned regulation of the balance between inhibition and excitation
thatmay be necessary for further consolidation processes. In addition,
it could also reflect greater homeostatic control mechanism aiming to
restore the balance between excitation and inhibition after it has been
perturbed, for example by learning-induced disinhibition during the
online learning experience19,35. Nevertheless, both of these hypotheses
require further examination. Previous works demonstrated changes in
E-I during the online phase of motor learning, mainly expressed as
decreased GABAergic levels19,35. Although we did notmeasure changes
inGlu andGABAduring the online learning phase, it is possible that the
increase in Glu–GABA coupling following the task may represent a
negative feedbackmechanism aiming to restore baseline physiological
functions after being perturbed during the online learning phase. On
the other hand, as the E–I balance has been proposed to modulate
important aspects of cognition and behavior15, the increased
Glu–GABA coupling may also reflect a direct learning-related phe-
nomenon, presumably representing the controlled processing of the
new neural representation of the learned motor skill. Furthermore, it
was recently suggested that the E–I balance may be vital for neuronal
computation that is robust to noise and for shaping efficient neural
coding36,37 and memory states36. As motor memories are significantly
vulnerable to disruption and interference during the initial offline
period immediately following learning, increasing the Glu–GABA
couplingmay be critical for the stabilization of the newmotormemory
trace2,4.

We also found that the extent anddirection ofGABAergic changes
over time were strongly related to baseline GABA levels. Specifically,
higher GABA levels at baseline were associated with greater reduction
in GABA following either learning or the resting condition, and vice

Fig. 5 | GABAergic changes following learning/rest and overnight changes in
M1 or PCC GM volume. Structural changes and GABAergic reductions 30min
following learning is predictive of increased M1 GM volume overnight, but not
following rest or in the PCC.Z scores and p-values represent the result of two-sided
comparisons of the partial Pearson’s correlation coefficients using r-to-z

transformation between groups (left panel) or within learning group (right panel).
Shaded area around fit line represents 95% confidence intervals. Pink represents
the Learning Group and Cyan the Control Group. Source data are provided as a
Source Data file.
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versa. This inverse relationship is in accordance with previous
findings38, and is therefore suggestive of a general homeostatic
mechanism that act to regulate GABA levels over time, as was also
proposed to occur during sleep following learning39. In contrast, we
found a similar inverse relationship for Glu levels following learning,
but not following rest. This in turn, may suggest that short-term Glu
dynamics, in contrast to GABA,may bemore sensitive and reflective of
recent neural responses to external stimuli. However, while it is pos-
sible that this inverse relationship also reflects a homeostatic
mechanism following activation (i.e., the learning task), wedid not find
an association between the extent of finger movements or M1 activa-
tion during the MSL task and the extent of post-learning changes in
either Glu or GABA.

Early offline Glu changes are associated with motor skill
consolidation
While no group-level change in neurochemical responses following
learning was observed in the current study, we did find an association
between increased Glu following learning and the extent of overnight
improvements in skill performance on a subject-by-subject basis. It is
well established that glutamatergic neurons are critically implicated in
the induction of LTP, one of the most-studied forms of synaptic
plasticity40. LTP-induced synaptic modifications have been shown in
the rodent M1 following artificial stimulation and motor learning17,41,
and LTP-like plasticity can also be induced in the human M1, as

demonstrated using non-invasive brain stimulation (NIBS) methods
such a transcranial magnetic stimulation (TMS) and transcranial direct
cranial stimulation (tDCS). This in turn, results in increased M1 motor-
evoked potentials whichmay last from 30min (early post-stimulation)
to hours (late post-stimulation)42,43. Moreover, NIBSmethods have also
been used to provide evidence for the contribution of LTP-like
mechanisms to motor learning in the human M142, as also measured
immediately after initial practice44. Therefore, the temporal dynamics
of neurochemical changes examined and observed in the current
study may presumably reflect an expression of LTP-like processes, as
the early phases of LTP are expressed within the first minutes to hours
following learning or appropriate stimulation, and are dependent on
post-translational synaptic modifications45.

While LTP-dependent synaptic strengthening has traditionally
been associated with post-synaptic modifications of Glu receptors
(namely, AMPA and NMDA), LTP-dependent increased synaptic effi-
cacy has also been proposed to be expressed pre-synaptically by an
increase in the release of Glu by the pre-synaptic neuron, resulting in
increased amount of transmitter outside the vesicles46–49. Such an
effect was documented in the rodent M1 30min following motor
learning, and was associated with increased neuronal excitability50. It
has been proposed that the vesicular pool may be largely invisible to
MRS compared to the extracellular and cytosolic pools of neurons and
astrocytes, and that dynamic changes in the MRS Glu signal may arise
(at least partially) from shifts between compartments that may take

Fig. 6 | Multivoxel local correlation patterns and neurochemical changes fol-
lowing learning. a MVLC analysis and M1 ROI definition (yellow) based on acti-
vation patterns on day 1 and 2. b The relationship between MVLC similarity
differences and immediate Glu and GABA changes following learning measured

using two-sided partial Pearson’s correlation (Shaded area around fit line repre-
sents 95% confidence intervals); L left, R right, MV(L)C multivoxel (local) correla-
tion, ROI region-of-interest. Source data are provided as a Source Data file.
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place during increased neuronal activity51,52. Furthermore, this effect
was suggested to be more pronounced when MRS is measured with
intermediate and longer TE (30 ms or higher, as also utilized in the
current experiment), due to faster T2 relaxation rate of restricted Glu
within the vesicles53. Therefore, a presynaptic LTP-related shift ofmore
Glu into MR-visible compartments (i.e., extra-vesicular) may underlie
the positive association between increased Glu observed following
learning and overnight skill performance, similar to what have been
proposed to occur during task-related functional activation51. This
hypothesis, however, may need further examination, preferably using
the combination of MRS with invasive brain stimulation in animal
models. In addition, it should be noted that 1H-MRS does not enable to
distinguish between intra-synaptic, extra-synaptic or intracellular
compartments, or between different cell types. Therefore, while Glu
subserves physiological functions in both neurons and astrocytes and
plays a dual role in excitatory neurotransmission and cellular energy
metabolism, the origin and physiological pathways of the MRS Glu
signal are currently could not be discernible using 1H-MRS. Therefore,
Glu concentration changes may also reflect increased anaplerotic
reactions subserving the tricarboxylic acid cycle (TCA) cycle during or
following increased neural activity. Furthermore, there is a well-
documented coupling between oxidative metabolism (and the
potential energetic role of Glu) and the glutamate-glutamine cycling54.
While a compartmental shift mechanism based on the visibility of
cellular compartments to MRS may support the contribution of
increased vesicular release and changes in neurotransmission to the
dynamic changes observed in Glu, it needs further investigation.
Nevertheless, althoughwe cannot point out to the physiological origin
of the increased Glu associated with motor memory consolidation in
the current study, either increased neurotransmission or increased
metabolic activity could reflect elevated levels of neural processing
following learning that are bound to the early stages of offline con-
solidation processes.

Interestingly, while we did not observe significant changes in M1
neurochemistry at the group-level, we did find significant group-level
increases in skill performance overnight. Skill enhancement following
explicitMSLparadigmshasbeenproposed todependonpost-learning
sleep to develop1,2, possibly due to post-learning inhibitory mechan-
isms preventing offline learning gains to develop overwakefulness and
presumably delaying it until sleep-dependent consolidation processes
are initiated55. However, it was previously shown that when this
decrease inM1 excitability immediately following explicit skill learning
is prevented by increasing cortical excitability, offline learning gains
that would not normally occur over wakefulness can be induced56.
Furthermore, significant correlation was found in that study between
the extent of cortical excitability and subsequent offline improve-
ments, highlighting the importance of M1 excitability immediately
following explicit learning, and causally linking it to motor memory
consolidation. Robertson and colleagues (2005)14 have demonstrated
that applying TMS to disruptM1 function following implicitmotor skill
learning blocked offline learning gains from developing over the day
but not overnight. Furthermore, this effect was both spatially and
temporally specific, as applying the TMS a little anterior to M1, or 2 h
after learning instead of immediately following it, did result in sig-
nificant learning gains over the day. In addition, Breton and
Robertson57 showed thatdisrupting the function ofM1, but not inferior
parietal lobule, immediately following explicit MSL prevented offline
learning gains from developing over a night of sleep. Taken together,
those findings suggest that M1 may be critical to the development of
offline learning gains following explicit MSL during both wakefulness
and sleep. This in turn, may explain how significant group-level
increase in skill performance was observed overnight despite a lack of
group-level changes in Glu or GABA following the MSL paradigm. As
suggested by Robertson and colleagues14, skill enhancement may not
be a single neural process and instead different neural mechanisms

with differential dependencies on M1 may promote offline improve-
ments over different brain states (i.e., wakefulness and sleep). Hence,
the correlation we found between increased Glu shortly following
learning andovernight skill performance,may reflect an additive effect
of offline learning gains accumulating over the day and overnight.
Further research applying differential modulation of M1 function
duringwakefulness and sleep following explicitMSL is needed in order
to establish the feasibility of such an additive effect.

Increased Glu relates to M1 function and plasticity following
learning
Increased cortical excitability has been shown to affect neural pro-
cesses that are essential to the development of offline behavioral
improvements and cortical plasticity. One of these processes may be
the offline reactivation (i.e., replay) of recently acquired motor mem-
ories. Offline memory reactivation is currently thought to play a vital
role in the consolidation of explicit and implicit memories12. While
offline memory reactivation has been investigated mainly in the hip-
pocampus and in the context of declarative memory, recent evidence
suggest that a similar process occurs in the motor cortex in both
animals13 and humans58 following motor learning. Here, we found that
increased Glu (and to a lesser extent GABAergic reduction) were
associated with higher similarity of MVLC resting patterns in M1
immediately following learning to the patterns observed during the
learning experience itself, potentially reflecting a process of offline
motor memory reactivation. Intra-regional patterns of multivoxel
functional connectivity were previously used to examine offline
memory reactivation in humans27, although these studies have focused
on other brain regions (e.g., the hippocampus). Furthermore, although
the current study did not utilize a direct measure of neuronal reacti-
vation/replay, the recent evidence for a motor memory-related replay
in M1 at the cellular level following motor learning in rodents13 may
support the feasibility of this process in the human motor cortex as
well58.

In addition to the well-established role of glutamatergic mod-
ifications in functional synaptic plasticity, GABAergic modulation has
also been implicated in these processes following learning. Evidence
from the animal literature have demonstrated GABAergic disinhibition
to be essential for the induction of LTP-like plasticity and the facilita-
tion of LTP-like synaptic responses in M118. Animal studies have also
shown motor cortical disinhibition at the cellular level during and
following motor practice that is expressed by rapid elimination of
inhibitory boutons on layer II/III excitatory glutamatergic neurons30

and decreased release of GABA17. Previous studies in humans have
demonstrated a potential link between local GABA levels and func-
tional connectivity of the motor cortex. Specifically, lower GABA
concentrations were found to associate with increased resting state
functional connectivity of themotor network59, while decreasedGABA-
to-Glu ratio (i.e., disinhibition) was associated with greater increases in
M1 functional connectivity with the frontoparietal network following
motor learning5. Here, however, we found a relationship between
short-termGlu increases following learning and overnight increases in
M1 connectivity with the putamen, with no significant association with
GABAergic modifications following learning. The consolidation of
motor skill memories has been demonstrated to depend on motor
cortical–striatal interactions which support the development of the
egocentric/movement representation component of new motor
sequence learning8,9,21,23,60. Motor learning was shown to induce
strengthening ofM1engramneurons’ synaptic outputs to the striatum,
which may be modulated by changes in the neuronal output of M1
excitatory cells at striatal dendrites9. However, these modifications in
turn would have been neurochemically expressed remotely of the
motor cortex, and therefore cannot directly explain the relationship
observed in the current study between Glu increase at the site of M1
and increased M1-putamen connectivity. With that being said, it is
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important to note that such a relationship was observed with respect
to an MSL-related region (i.e., the putamen) and not with the PCC,
which is not generally implicated in learning new motor skills8,61. This
discrepancy in turn support specificity in the observed effect of Glu
changes to the motor skill learning process. Furthermore, it was also
shown that cortico-striatal plasticity keeps developing between train-
ing sessions during the motor learning process21,60, suggesting of a
continuous re-organization of the neural representation of the skill on
a longer time-scale, and not necessarily during initial practice or
immediately following it. While it is now generally accepted that post-
learning sleep plays a role in motor memory consolidation following
explicit skill learning23, two previous studies in both rats22 and
humans62 provided evidence that learning-related modulation of
cortico-striatal activity take place during sleep, and that particularly
non-rapideyemovement (NREM) sleep and sleep spindles areessential
in shaping this connection. Lemke and colleagues (2021)22 demon-
strated that increases in functional connectivity between neurons in
M1 and in the dorsolateral striatum (generally homologs to the puta-
men in humans25) occurred offline following learning, and not during
learning itself as measured immediately after practice. Boutin and
colleagues (2021)62 further found using electroencephalography (EEG)
that greater spindle band coherence between M1 and the putamen in
the contralateral hemisphere to the training hand was related to
overnight improvements in skill performance. Our results may com-
plement those findings as we found short-term glutamatergic changes
in M1 to associate with overnight increases in the functional con-
nectivity between M1 and the putamen, but not shortly after the
learning session. Moreover, this relationship was specific to the con-
tralateral hemisphere to the learning hand (i.e., rightM1 andputamen),
which by itself was related to greater improvements in performance,
regardless of neurochemical changes following learning (although did
not survive multiple comparisons correction). Furthermore, while
Lemke and colleagues22 found that offline increases in cortico-striatal
connectivity correlated with skill performance, they also reported that
only 35% of M1 and striatal electrode pairs that were examined
demonstrated offline increases in connectivity, with the others elec-
trode pairs exhibiting either decreases or no change. Thismay support
our results as we did not find significant overnight changes in M1-
putamen connectivity at the group-level following learning.

Offline reductions in GABA relate to overnight M1 GM volume
changes
In addition to learning-induced functional synaptic strengthening,
synapses also store information by modifying their structure.
Learning-induced structural changes have been shown tobe expressed
with functional specificity such as the differential formation and sta-
bilization of new spines in M1 engram cells9. Accumulating evidence
from animals and humans suggest that structural changes following
motor learningmay be rapidly induced and are already evident shortly
after the learning experience. Xu and colleagues63 reported rapid
increase (within an hour) in spine density within the motor cortex of
mice following skill learning, which returned to baseline only several
days later. Chen and colleagues30 demonstrated significant spine
increases in the mouse M1 within 2 h following motor learning and
overnight. In humans, Taubert and colleagues10 demonstrated
learning-specific increased motor cortical thickness 1 h following a
single balance training session which could not be explained by
changes in resting cerebral blood flow. Furthermore, reductions in
mean diffusivity, an MRI-derived correlate of tissue microstructure,
were observed in the motor system as early as 45min following MSL7.
Interestingly, Kodama and colleagues11 found significant overnight
increases in M1 GM volume following learning which predicted beha-
vioral improvements several days later. Therefore, it is also possible
that short-term structural changes at a given time point following
motor learning may not necessarily reflect the current state of

learning-induced adaptive behavior but rather constitute an inter-
mediate phase in the overall learning process. Furthermore, since
learning-induced structural plasticity involves processes of both for-
mation and elimination of existing synapses that are expressed on
different timescales63, inter-individual variability in the temporal
dynamics of these processes may underlie variable expressions of
structural plasticity when measured at a given time-point during the
learning process.

Dendritic spines remodeling such as enlargement of existing
spines or the formation of new ones40 have been well documented
following the induction of LTP with different temporal expressions.
For instance, the artificial induction of LTP has been shown to increase
the volume of the dendritic pool in layer V of the rat sensorimotor
cortex after 15 days64, while artificially inducing LTP in hippocampal
cultures resulted in the formation of new dendritic spines as early as
45min following the stimulation65. Previous studies have demon-
strated that intense local release of Glu or GABA can induce post-
synaptic dendritic spines formation16. By utilizing two-photon unca-
ging of caged glutamate compounds, which reliably stimulates single
spines, it was shown that releasing Glu into the synaptic cleft and
maximally activating NMDA receptors induced robust spine enlarge-
ment in the adult mouse neocortex66. Interestingly, increased release
of GABAwas shown to induce dendritic spine enlargement only during
early life development, when GABA is still an excitatory transmitter,
further highlighting the importance of excitation (or disinhibition) to
synaptic plasticity following initial learning. This suggest that pre-
synaptic neurotransmitter release may constitute the main trigger for
structural synaptic plasticity andhighlight the roles of Glu andGABA in
promoting synaptic remodeling16. Furthermore, reduced short-
interval intra-cortical inhibition (SICI), a TMS-derived measure pro-
posed to reflect motor cortical GABAA inhibitory function, was
demonstrated early following initialmotor learning44. SinceGABAergic
disinhibition is necessary for LTP in the motor cortex67, decreases in
GABA release probability may promote Glu-mediated plasticity. For
instance, Kida and colleagues50 found a transient decrease in pre-
synaptic GABA release probability after 30min following motor
learning in the rat motor cortex that was associated with increased M1
excitability. Furthermore, Chen and colleagues30 demonstrated sig-
nificant eliminationofGABAergic boutons on excitatory neurons in the
mouse M1 within 2 h following motor learning. Interestingly, while we
did not observe a group-level change in M1 GABA levels, a correlation
with structuralmodificationswasonly evident forGABA levels changes
expressed 30min following learning but not immediately following
practice.

While structural cortical changes have been demonstrated fol-
lowingmotor learning in thehumanbrain, linking thoseneuroimaging-
derived metrics to specific microscopic modifications is not trivial.
Also, while the animal literature proposes a strong link between
structural plasticity and adaptive behavior following motor learning,
findings in humans are less consistent in establishing such as
relationship68, aswas alsoevident in the current study. This in turnmay
result from the limited mechanistic specificity that is inherent in
structural humanneuroimagingmethods andmakes the direct linkage
betweenhumanand animalfindings less straightforward. Investigating
structural brain changes in humans is currently limited to the relatively
macroscopic neuroimaging voxels, which are composed of a mixture
of neural and non-neural components including neurons, glial cells,
vasculature and interstitial space, with over 50% of cortical GM esti-
mated to be composed of neuropil (i.e., axonal, dendritic, and glial
processes)69. Therefore, changes in GM structure as evident with MRI
could result from a combination of a variety of processes such as
neurogenesis, gliogenesis, synaptogenesis, dendritic and axonal
remodeling, cell swelling, and vascular changes. However, while for-
mation of new cells (i.e., neurogenesis or gliogenesis) may require
longer timescales, short-term structural changes ranging from hours
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to few days following learningmay bemore related to dendritic spines
formation and rapid modification of astrocytes morphology, cellular
swelling, and changes in the ratio between intra- and extra-cellular
compartments63,70.

In summary, many human studies to date have focused on the
ratio between Glu and GABA as a reference for the balance between
excitation and inhibition. Here, we show that Glu and GABA may be
independently associated with different aspects of motor memory
consolidation and plasticity on different timescales, and that these
metabolites may underpin distinctive functions in learning and mem-
ory processes.We have demonstrated that changes inGlu andGABA in
M1 early following motor learning may be important for offline con-
solidation processes and the promotion of structural and functional
cortical plasticity. Also, while the post-learning neuro-behavioral
changes were mostly associated with immediate or averaged post-
learning changes inGlu, theseweremore linked to GABAergic changes
only expressed 30min after learning, suggesting that Glu- and GABA-
dependent plasticity processes may operate on different timescales
during the early phase of motor memory consolidation. Hence, the
current study provides important insights to our basic understanding
of the multidimensional mechanisms of learning and plasticity in the
human brain. Furthermore, our findings may also have important
clinical implications. Different applications of NIBS methods such as
TMS and tDCS have been shown to be able to modulate cortical
excitability and LTP-like plasticity, and to promote GABAergic and
glutamatergic changes. Therefore, the potential key role of early post-
learning neurochemical modifications tomotor learning and plasticity
that was revealed in the current study may be further examined in
clinical trials and clinical settings of rehabilitation following stroke or
brain injury using the methods mentioned above.

Methods
Participants
57 healthy right-handed young adults (age 27.5 ± 5.2 years, 24 females)
participated in the current study. Sex of participants was determined
based on self-report and was not considered as a variable of interest in
the study design. All participants provided written informed consent,
approved by the Wolfson Medical Center Helsinki Committee (Holon,
Israel), and the Institutional Review Board (IRB) of the Weizmann Insti-
tute of Science, Israel. Exclusions criteria included age below 18 years or
above 40 years, musicians or video gamers (past or present), any neuro-
psychiatric history (including medications), and participants who did
not meet the safety guidelines of the 7T scanning policy. Participants
received monetary compensation for the participation in the study.

Experimental protocol
We conducted a 2 × 2 (between-group and within-subject) repeated
measures experiment using a multimodal MR approach implemented
on an ultra-high field 7T MRI scanner (Fig. 1a). Participants were divi-
ded into a Learning group (n = 36, age 27.2 ± 3.8 years, 15 females) and
a Control group (n = 21, age 27.9 ± 0.7 years, 9 females), and arrived at
the lab at two consecutive days. During the first day, participants
underwent anatomical, single-voxel MRS and resting-state fMRI scans
prior to and following amotor sequence learning task (i.e., the learning
group) or an equivalent resting period. Task-induced BOLD data was
recorded during the learning task. On the second day, participants
underwent anatomical, resting state fMRI and MRS only once at
baseline, prior to a motor learning evaluation fMRI paradigm in the
case of the Learning group (i.e., a testing paradigm). Only resting
measurements were collected among the Control group’s participants
on the second day.

Motor learning task
All participants in the Learning group performed an explicit motor
sequence learning (MSL) task in which they were asked to repetitively

tap a five-digit sequence (4-1-3-2-4) with their non-dominant left hand,
as fast and accurately as possible71. Keypresses were performed on an
MR-compatible response box with four computer-like pressing keys
(Cedrus Corporation, Lumina LS-LINE model). The response box was
placed near the left thigh, was adjusted for each participant’s arm
length, and fixed to this position to prevent its movement during the
scan. Keypress 1 was performed with the little finger, keypress 2 with
the ring finger, keypress 3 with the middle finger and keypress 4 with
the index finger. The task consisted of 12 trials, lasting 30 s each during
the first day (of initial learning). Each two consecutive task blockswere
separated by a 30 s fixation block in which participants were asked to
fixate on a black cross presented at the middle of a bright screen. The
second day (of learning evaluation) consisted of a single block of 30 s.
The five-digit sequence (4-1-3-2-4) was projected on the screen during
each task block. Each task block also included four white circles pre-
sented on the screen, and each finger press was followed by a corre-
sponding circle being filled for the time duration of that specific press.
This procedure was implemented to provide the participant with
online visual feedback (whether pressing on the desired key) and the
experimenter with online information regarding the execution of the
correct finger sequence. The visual circles did not provide error
feedback, only information on the pressing finger at a given time. The
first day also included a short pre-scan familiarity session with the task
on a lab computer, in which only the experimenter performed a short
version of the task with a control sequence for demonstration, to
prevent any learning effect in the participant prior to the actual task in
the scanner. Therefore, the “real” sequence was only revealed to the
participants when starting the learning paradigm. Importantly, all
participants demonstrated at least one correct sequence pressing
during the first learning block. Behavioral performance in the task was
evaluated by the number of correct sequences performed within each
block, a common behavioral measure that combines both the speed
and accuracy of the performed skill71. As motor skill learning is a gra-
dual process characterized by an initial stage of relatively fast perfor-
mance increase (i.e., early phase), followed by a slower stage of amore
gradual performance change over additional practice (i.e., late
phase)72, we have defined these phases of learning during the first day
for further analyses which are described below. Importantly, the
duration of each stage is highly dependent on the complexity of the
acquired motor skill, and both stages may be evident on the first
practice session when learning simple skills such as short key-press
sequences58.

Therefore, the late phase of the learning session was defined as
the practice block fromwhich no block-to-block significant changes in
performance were observed at the group-level (α <0.05). This eva-
luation was based on non-corrected pairwise comparisons between
consecutive blocks following a random-intercepts and random-slopes
linear mixedmodel analysis with participants’ ID as the random effect.
According to this, the first three blocks comprised the early phase, and
blocks 4–12 comprised the late phase. This division is similar to what
was reported in a recent study58 implementing the same learning
sequence (when this transition occurred after ~30% of the blocks).
Visual stimuli presentation and data collection were conducted using
the Psychophysics Toolbox Version 3 (http://psychtoolbox.org/)
implemented in MATLAB.

MRI scanning procedures
MR data acquisition. The scanning sessions were performed on a 7T
Terra scanner (Siemens-Healthineers, Erlangen, Germany) using a
commercial single-channel transmit/32-channel receive head coil
(NOVA Medical Inc., Wilmington, MA, USA), capable of maximum B1+

amplitude of 25 μT. Soft pads were used to hold each participant’s
head in place to minimize head movement during the scanning ses-
sions. An initial localizer and gradient echo fieldmapwere acquired for
automated B0 shimming (Scan parameters for B0 mapping: TR/TE1/
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TE2 = 406/3.06/4.08ms, α = 25°, 1.9 × 1.9 × 2.0mm resolution, TA =
1:04min). A high-resolution structural T1-weighted MP2RAGE (Mag-
netization Prepared 2 Rapid Acquisition Gradient Echoes) image was
acquired for voxel placement and subsequent tissue segmentation
(TR/TE/TI1/TI2 = 4460/2.19/1000/3200ms, α1 = 4°/α2 = 4°, 1mm3 iso-
tropic voxels, TA = 6:56min). For the MRS acquisitions, a 2 × 2 × 2 cm3

spectroscopic voxel was placed over the hand knob region of the right
primarymotor cortex, based on neuroanatomical guidelines73 (Fig. 1b).
The voxel was shimmedusing the automatedB0 shimming capabilities
of the in-house Visual Display Interface (VDI) libraries (The Weizmann
Institute of Science, Israel, www.vdisoftware.net) in MATLAB 2020b
(TheMathworks, NatickMA). TheMRS acquisitionwas performedwith
a SemiLASER (sLASER) sequence (TR/TE = 7000/80ms, NEX = 36,
TA = 4:58min) previously optimized and validated74. Functional MRI
data were acquired using a multiband gradient-echo echo-planar
imaging sequence. Scanning parameters were implemented according
to theHumanConnectomeProject (HCP) 7Tprotocol75 (TR/TE = 1000/
22.2ms, field of view = 208 × 208mm2, matrix size = 130 × 130, voxel-
size = 1.6mm3, 85 slices, multi-band/GRAPPA acceleration factor = 5/2,
bandwidth = 1924Hz/Px, flip angle = 45°). The resting state scans
included the acquisition of 420 volumes per scan, while the task
paradigms included the acquisition of 710 and 50 volumes on the first
and second day, respectively. In addition, spin echo images with
opposite phase encoding directions were acquired immediately prior
or following each functional acquisition for EPI distortion correction
(TR/TE = 3000/60ms, field of view = 208 × 208mm2, matrix size =
130 × 130, voxel-size = 1.6mm3, 85 slices, multi-band/GRAPPA accel-
eration factor = 5/2, bandwidth = 1924Hz/Px, flip angle = 180°).

MRS analysis. MRS pre-processing was carried out using the VDI
libraries. Coils were combined via signal-to-noise ratio (SNR) weight-
ing, with weights computed from the reference water and noise scans,
using a singular value decomposition algorithm. Spectra were aligned
and phase-corrected relative to each other using a previously pub-
lished robust iterative algorithm76. Global zero-order phase-correction
was carried out based on the 3.0 ppm creatine peak in the summed
spectra. No apodization or zero filling were employed. SPM12 (Well-
come Center for Human Neuroimaging, UCL, UK, http://www.fil.ion.
ucl.ac.uk/spm) was used to segment the T1-weighted anatomical ima-
ges into GM,whitematter (WM), and cerebrospinal fluid (CSF) images.
Tissue fractions within the spectroscopic voxel were computed using
VDI for subsequent use in absolute quantification and as a quality
assurance metric. Metabolite quantification was carried out using
LCModel77 version 6.3c, with a basis set containing 17 metabolites:
aspartate (Asp), ascorbic acid (Asc), glycerophosphocholine (GPC),
phosphocholine (PCh), creatine (Cr), phosphocreatine (PCr), GABA,
glucose (Glc), glutamine (Gln), glutamate (Glu), myo-inositol (mI),
lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate
(NAAG), scyllo-inositol (Scyllo), glutathione (GSH), and taurine (Tau),
as well as lipids and macromolecules (Lip13a, Lip13b, Lip09, MM09,
Lip20, MM20, MM12, MM14, MM17, Lip13a+Lip13b, MM14+Lip13a
+Lip13b+MM12, MM09+Lip09, MM20+Lip20). Supplementary Fig. 1
presents representative spectra. Basis functions were simulated by
solving the quantum mechanical Liouville equation using VDI, taking
into account the full 3D spin profile and the actual pulse waveforms.
Absolute quantification was carried out by correcting the metabolite
concentrations provided by LCModel for tissue fractions estimated
from the segmented images78, assuming a water concentration of 43.3
M in GM, 35.88 M in white matter (WM) and 5.556 M in cerebrospinal
fluid (CSF). Relaxation correction assumed the samevalueof T2 forGM
andWM.We also assumednometabolites inCSF tissue fractions79. The
long TR eliminated saturation effects and, consequently, no T1 cor-
rections were required. In addition to the concentration, the relative
Cramer Rao Lower Bound (%CRLB) for each metabolite was also
obtained.

fMRI analysis
Pre-processing. Functional MRI pre-processing was carried out using
the FEAT tool in FSL 6.05 (FMRIB’s Software Library, www.fmrib.ox.ac.
uk/fsl). The first 5 TRs of the functional data were discarded to allow
steady-state magnetization. Registration of the functional data to the
high resolution structural images was carried out using boundary
based registration algorithm80. Registration of high resolution struc-
tural to standard space (1mm MNI152) was carried out using FLIRT81,
and then further refined using FNIRT nonlinear registration. Motion
correction of functional data was carried out using MCFLIRT81, non-
brain tissue removal, grand-mean intensity normalization of the entire
4D dataset by a single multiplicative factor, and high-pass temporal
filtering was performed with a Gaussian-weighted least-squares
straight line fitting with a cut-off period of 100 s. Since we utilized a
multivoxel-based pattern analysis (detailed below), minimal spatial
smoothing using a Gaussian kernel of 2mm FWHMwas applied to the
data82. EPI distortion correction of the functional data was carried out
with FSL-TOPUP using the acquired spin-echo field maps. In addition,
independent component analysis (ICA)-based exploratory data analy-
sis was carried out using FSL’s Multivariate Exploratory Linear
Decomposition into Independent Components (MELODIC), in order to
investigate the possible presence of unexpected artefacts or activa-
tions. We implemented the ICA with automatic removal of motion
artifacts (ICA-AROMA) tool83 on the subject-specific spatial ICs and
associated time-courses to identify motion-related noise components
and denoise the data. The ICA-AROMA denoising strategy identifies
ICA noise components based on their location at brain edges and CSF,
high frequency content, and correlation with realignment parameters
resulting from initial motion correction. ICA-AROMA procedure
resulted in a denoised 4D time-course for each participant that was
further used in subsequent task and resting-state analyses.

Task-based analysis. First-level analysis was carried out on the pre-
processed data for each participant. Time-series statistical analysis
(pre-whitening) was carried out using FILM with local autocorrelation
correction84. First-level task regressors were defined based on the
onset times of the task blocks and were convolved with a double-
gamma hemodynamic response function. Specifically, in the current
experiment we have defined two task regressors of interest repre-
senting the early-phase and late-phase learning stages in the first day.
Regressor of the temporal derivative of the task timing was also
included in the analysis. Subject-specific Z-maps were thresholded
non-parametrically using clusters determined by Z > 3.1 and a cor-
rected cluster significance threshold of p =0.05. Group-level analysis
was carried out using FLAME (FMRIB’s Local Analysis of Mixed Effects)
stage 1. Group-level Z-maps were thresholded non-parametrically
using clusters determined by Z > 3.1 and a corrected cluster sig-
nificance threshold of p = 0.05. Multiple comparisons correction was
spatially restricted to include onlyGMvoxels using aMNI152 GMmask.

Regions-of-interest definition. Four functional regions of interest
were defined in the current study for the evaluation of M1’s functional
processing characteristics. First, ROIs ofM1 and the right/left putamen
were defined as our main MSL-related regions of interest. In addition,
to test for the specificity of the selected ROIs in motor memory con-
solidation, additional ROI of the bilateral posterior cingulate cortex
(PCC) was also defined as a control region which is not generally
implicated in motor learning59,61. M1 ROI was initially defined as the
caudal part of the precentral gyrus (the anterior wall of the central
sulcus), which directly controls finger movements85. This part of the
motor cortex was previously shown to be functionally and anatomi-
cally differentiated from themore anterior part of the precentral gyrus
corresponding to the adjacent dorsal premotor cortex86. Then, as the
study aim was to investigate aspects of a motor memory formation in
M1, we defined thefinalM1 ROI to be the set of voxelswithin the caudal
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part of the precentral gyrus that demonstrated statistically significant
increased activation during both the last (12th) practice block of the
first day and the testingblock on the secondday. Thiswas basedon the
definition of memory engram cells87, i.e., activated by a learning
experience, and reactivated by subsequent memory reactivation/
retrieval, and also previously demonstrated in M1 following motor
learning9. Importantly, the M1 ROI voxels were located within the MRS
voxel. Right and left ROIs of the putamen were defined in the same
way. The ROI of the PCC was extracted from the Harvard-Oxford
Cortical Atlas, thresholded at 30% and binarized. These ROIswere then
used in subsequent analyses.

Functional processing of M1. Following pre-processing, the standard
space denoised time-courses were used to measure the intra- and
inter-regional functional connectivity ofM1 using CONNToolbox v.21a
(http://nitrc.org/projects/conn). Resting-state data were further
denoised by regressing out the signal of the first component of the
CSF83 extracted with the component-based method (CompCor)
implemented in CONN.

Multivoxel local correlation (MVLC) analysis.Weused the Integrated
Local Correlation (ILC) analysis implemented inCONN to construct the
MVLC pattern of the voxels within the M1 ROI. The ILC analysis yields
the local connectivity of each voxel with its surroundings, which is
characterized by the strength and sign of correlation between a given
voxel’s time-course and the neighboring voxels’ time-courses88. We
used a 1mm kernel for characterizing the size of the local neighbor-
hoods, in order to express the local correlation of each voxel with its
directly surrounding voxels (as the standard space data resolution was
1mm3). Each voxel’s ILC value (i.e., correlation value) was then Fisher
Z-transformed. Task-related MVLC pattern was defined as the spatial
pattern of ILC values across all M1 ROI voxels during the late phase of
learning on the first day. This is based on recent findings suggesting
that activity patterns at reactivation correspond to those at the late
(but not the early) phase of motor learning in M19. Resting MVLC
patterns were defined as the spatial pattern of ILC values across all M1
ROI voxels during either the pre- or post-learning rest periods (in
which resting-state BOLD fMRI data were acquired). Next, we mea-
sured the similarity between the task MVLC pattern and the pre- and
post-learning resting MLVC patterns. This was carried out by trans-
forming the MVLC patterns to vectors and calculating the Pearson
correlation between them, i.e., post rest-task correlation and pre rest-
task correlation (note that the same elements across vectors corre-
spond to the sameM1 ROI voxels). Then, we computed the difference
between the two similarity measures (i.e., subtracting the post rest-
task similarity and the pre rest-task similarity), resulting in a similarity
difference measure for each participant. This in turn enabled us to
examine whether post-learning resting MVLC patterns were more
similar to the task MVLC patterns compared to the pre-learning rest,
therefore presumably reflecting offline memory reactivation27).

Functional connectivity analyses between M1 and other ROIs. The
functional connectivity between the M1 ROI and the putamen/PCC
ROIs was calculated using an ROI-to-ROI approach, correlating the
average time-courses of the ROIs at rest both before and after the task
on the first day, and before the task on the second day. Each correla-
tion value was then Fisher Z-transformed. Differences in functional
connectivity were computed by subtracting post and pre values for
each participant.

Structural MRI analysis. Overnight changes in M1 GM volume were
examined using the voxel-based morphometry pipeline implemented
in FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM)89. FSL-VBM pre-
processing first included non-brain tissue removal using BET, and
tissue-type segmentation via a the Automated Segmentation Tool

(FAST) to segment the images into GM, WM, and CSF. FSL FAST also
performed bias-field correction for RF/B1-inhomogeneity. Next, the
segmented native-space GM images were non-linearly registered with
FNIRT to the standard MNI space using the ICBM-152 GM template, in
order to create a study-specific GM template. Then, the GM images
were non-linearly registered to the study-specific template using
FNIRT. Finally, the resulting GM images were modulated by multi-
plying each voxel in eachGM image by the Jacobian of the warp field in
order to compensate for the contraction/enlargement due to the non-
linear component of the transformation90. M1 GM values were
extracted from these non-smoothedmodulated images by computing
the averaged value across all voxels in the M1 ROI. We also extracted
the values from the PCC to serve as a control region in further analyses.

Statistical analyses. Statistical analyses and visualizations were per-
formed and constructed with MATLAB v21.a, and R v4.1.2. Here, we
evaluated post-learning changes (e.g., changes in metabolites con-
centrations, functional connectivity, behavioral performance) with
linear-mixed models using the lme4 package implemented in R. Each
mixed effect model in the current study was examined as random
intercept and random slope model, enabling the expression of dif-
ferent baseline levels but also difference in the extent of change for
each evaluated measure across the participants. To this end, partici-
pants ID was used as the random effect and time as the fixed effect.
Between-group differences were evaluated by entering an interaction
term to the model: dependent variable ~ Time*Group + (Time | ID).
Post-hoc pairwise comparisons were corrected formultiple tests using
the False Discovery Rate method (FDR)91. For the MRS data, the mean
concentration and standarddeviationof eachmetabolite, aswell as the
mean and standard deviation of the CRLB were calculated for each of
the timepoints. Quality assuranceof theMRS data followed previously
reported metrics: visual inspection for gross artifacts, such as lipid
contamination and spurious echoes, metabolites concentrations that
were three standard deviations away from the mean of all time-points
measurements were excluded from further analyses (following pre-
vious recommendation92 and implementation74), as well as water
linewidths exceeding 15 Hz FWHM, and SNR of ≤30 from the LCModel
output5,19. MRS data quality summary is presented in Supplementary
Note 1 and Supplementary Table 1. LCModel fitting representation is
presented in Supplementary Fig. 1. To evaluate consistency in theMRS
voxel placement across the two scanning sessions, repeated measure
linearmixedmodelswere used forGM,WM,andCSF tissue fractions of
the two voxels. These comparisons did not demonstrate statistically
significant tissue fraction differences between the scanning sessions
(See Supplementary Note 1). Relationships between continuous vari-
ables were assessed using Pearson’s correlation coefficient (two-tailed
tests). Since we aimed to investigate the unique relationship between
Glu or GABA and the other brain/behavior changes, we computed
partial correlations while controlling for the other metabolite. The
associations between the proposed consolidation and plasticity mea-
sures (i.e., functional connectivity metrics and GM volume) and the
change in behavioral performance overnight were evaluated using a
one-tailed correlation test as directional relationships were hypothe-
sized as part of the rationale of the study. All correlations evaluating a
relationship with overnight performance changes were adjusted for
performance on the last practice block on the first day, as higher
performance on the first day was associated with smaller overnight
gains in performance (p <0.05). Corrections for multiple correlations
were conducted using FDR within each family of hypothesis tests38,93.
Comparisons between correlation coefficients (between-groups or
within-group) were performed with Fisher’s r-to-z transformation
using the “cocor” package in R. Within- and between-group correla-
tions comparisons (i.e., between learning and control settings such as
the different ROIs or the two groups) were only conducted for statis-
tically significant correlations to reduce the overall number of tests

Article https://doi.org/10.1038/s41467-024-44979-9

Nature Communications |          (2024) 15:906 14

http://nitrc.org/projects/conn
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM


performed. In addition to excluding Glu or GABA values above or
below 3/-3 SD, respectively, outliers for all other continuous measures
were defined as values thatweremore than3 times the IQRbelowQ1or
above Q3 and were not included in further analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to medical confidentiality of participants’ data the raw imaging
data cannot be uploaded to a public repository. The unidentified
dataset’s spreadsheet generated and analyzed during the current
study is available from the corresponding author on request. Source
data are provided with this paper.

Code availability
The MATLAB VDI libraries used to analyze the MRS data are publicly
available (https://www.weizmann.ac.il/chembiophys/assaf_tal/
software-0). Other MATLAB and R codes used for data processing
and visualizations are available from the corresponding author on
request.
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